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Weighted Ergodic Theorems Along Subsequences

of Density Zero

Roger L� Jones� Michael Lin� and James Olsen

Abstract� We consider subsequence versions of weighted ergodic theorems	
and show that for a wide class of subsequences along which a�e� convergence
of Cesaro averages has been established	 we also have a�e� convergence for the
subsequence Cesaro weighted averages	 when the weights are obtained from
uniform sequences produced by a connected apparatus�
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�� Introduction

Let 	X�F � �
 be a probability space� For T a linear contraction of Lp	X�F � �
 �
Lp� p � �� various ergodic theorems consider the a�e� convergence of the averages
�

N

PN
k�� T

kf	x
 for every f � Lp� More generally� for fnkg an increasing sequence
of positive integers� various authors have considered the a�e� convergence of averages

of the form �

N

PN
k�� T

nkf	x
� When fnkg has positive density� this convergence can

be represented 	e�g�� ��
 as convergence of weighted averages �

N

PN
k�� a	k
T

kf	x
�
with fa	k
g a ��� sequence� We will be interested in subsequence versions of these
weighted averages� That is� for a sequence fa	k
g of complex numbers for which the
weighted averages converge� we will be interested in studying the almost everywhere
convergence of subsequence averages of the form

�

N

NX
k��

a	nk
T
nkf�	�
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The types of integer sequences fnkg which we will be interested in are those
for which we have a�e� convergence of the unweighted Cesaro averages in the mea�
sure preserving case� that is� for �xed p � �� sequences for which the averages
�

N

PN
k�� f	�

nkx
 converge a�e� for all f in Lp� and for all measure preserving trans�

formations � � Such sequences include the sequence fnkg where nk � k�� or� more
generally� nk � kt� t a positive integer� or nk � k�th prime� or any of the sequences
studied in �� or ���� as well as a variety of other sequences� We will call such
sequences good universal in Lp� If fnkg is good universal in Lp� and also has the
property that for every measure preserving transformation � on a non�atomic prob�

ability space� the maximal operator f�	x
 � supN
�

N

PN
k�� jf	�

nkx
j is strong type
	p� p
 	that is� kf�kp � cpkfkp for every f � Lp
� then we will say that the sequence
fnkg is strongly good universal in Lp�

The types of operators we will consider are those induced by measure preserving
point transformations 	i�e�� Tf � f � � � where � is a measure preserving point
transformation of X
� Dunford�Schwartz operators 	i�e�� linear operators of Lp� all
p� � � p � � such that kTk� � � and kTk� � �
� and positively dominated
contractions of Lp� p �xed� � � p �� 	i�e�� an operator T of Lp such that there is
a positive operator S of Lp norm less than or equal to one that takes non�negative
functions to non�negative functions and jTf	x
j � Sjf j	x
 a�e�
�

When the limit of the averages given in 	�
 exists for all f � Lp for a particular
sequence fnkg� a particular sequence of weights fa	k
g� and all T in some class C
of operators of Lp� we will say that fa	k
g is a good weight sequence along fnkg
for C on Lp� In this terminology� we know that the sequence fa	k
 � �g is a good
weight sequence along fnkg for C when fnkg is good universal in Lp� p � �� and C is
the class of measure preserving transformations� Moreover� for the sequences fnkg
mentioned earlier and p � �� we can enlarge the class C to include the operators
mentioned above 	��� ��� ���� ���� ���
� We will investigate how much of this is
true for some other previously considered sequences of weights fa	k
g� which are
good weights along fnk � kg�

�� Besicovitch Weights

For a sequence of complex numbers fa	k
g� de�ne for � � p � �� the p semi�

norms

kfa	k
gkp � 	lim sup
N��

�

N

NX
k��

ja	k
jp

�

p �

If fa	k
g is de�ned by a	k
 �
Pm

j�� bj�
k
j � where �j � j � �� � � � �m are complex

numbers of modulus one and bj are complex numbers � we call fa	k
g a trigono�

metric polynomial� The p�Besicovitch sequences will be the closure in the p�semi�
norm of the trigonometric polynomials� Besicovitch sequences� as good sequences of
weights� have already been extensively studied� We give just a few of the references
that contain some of the results we will need 	���� ���� ���� ���� ��
�

Note that the p�semi�norm of a bounded sequence does not change if the values
of the sequence are changed� in a bounded way� on a subsequence of the integers
of density zero� It is clear that a set of trigonometric polynomials can be used
to approximate bounded functions that exhibit any behavior whatever along a
sequence of density zero� Therefore� we cannot in general expect a Besicovitch
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sequence fa	k
g to be a good weight sequence along good universal sequences fnkg
of density zero�

In ���� Besicovitch sequences de�ned only on subsets of the integers are intro�
duced� In the terminology introduced there� the class Bp�fnkg of p� fnkg�Besicovitch
sequences is de�ned to be the closure of the trigonometric polynomials in the p
semi�norm de�ned by

kfa	k
gkpp�fnkg � lim sup
N��

�

N

NX
k��

ja	nk
j
p �

Since the integers are an abelian group� the closure of the trigonometric polynomials
is the same as the closure of the almost periodic functions on the integers 	see ���
�

Unfortunately� when we consider good universal sequences of zero density� the
measures on the integers induced by such sequences fnkg� i�e�� the measures �N
that give the measure �

N to the �rst N terms of the sequence fnkg and zero to the
rest of the integers� are not ergodic� Hence� most of the results of ��� will not apply�
We do have� however� that for a �xed fnkg� all the Bp�fnkg classes contain the same
bounded sequences� that is� Bp�fnkg� 	� � B��fnkg � 	� for all p� � � p �� 	����
Theorem ���
� We will refer to this class as bounded fnkg�Besicovitch sequences�

Routine arguments give the following results�

Theorem ���� Fix p� � � p ��� If fnkg is a strongly good universal sequence in

Lp� then the bounded fnkg�Besicovitch sequences are good weight sequences along

fnkg for all Dunford�Schwartz operators on Lp�

Proof� We only sketch the proof� More details of the argument can be found in the
proof of Theorem ��� in ���� By 	the proof of
 Theorem ��� in ���� the constant
sequence fa	k
 � �g is a good weight sequence along any strongly good universal
sequence� for Dunford�Schwartz operators in Lp 	p is �xed
� Thus the constant
sequence is a good weight sequence along fnkg for operators of the form �T � where
� is a complex number with j�j � �� since these operators are Dunford�Schwartz as
well� We then have convergence a�e� for the averages given by 	�
 when fa	k
g is a
trigonometric polynomial�

Let fa	k
g be a bounded fnkg�Besicovitch sequence� Fix f � L�� If fb	k
g is a
trigonometric polynomial with ka	k
� b	k
k��fnkg � 
� then we have a�e�

lim sup
N��

j
�

N

NX
k��

a	nk
T
nkf �

�

N

NX
k��

b	nk
T
nkf j � 
kfk��

Since 
 � � is arbitrary� we obtain a�e� convergence of the weighted averages given
by 	�
 for f bounded� using the convergence for trigonometric polynomials� Since
fa	k
g is bounded and fnkg is good universal for Lp� we have for f � Lp

j sup
N

�

N

NX
k��

a	nk
T
nkf j � kfa	k
gk� sup

N

�

N

NX
k��

jT jnk jf j

which is �nite a�e� An application of the Banach principle completes the proof� �

Remarks� �� The proof required only that fnkg be good universal in Lp�
with the constant sequence fa	k
 � �g a good weight along fnkg for all Dunford�
Schwartz operators on Lp� For p � � and fnk � kg� this is satis�ed with fnkg not
strongly good universal�
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�� A� Bellow �� proved that for any �xed p � �� there are subsequences fnkg
which are good universal sequences in Lp� but not in Lr with � � r � p�

�� In Theorem ��� of ���� the following lemma is implicitly applied to sequences
which are good universal in Lp for every � � p ���

Lemma ���� Let fnkg be a good universal sequence in Lp� for all p in an open

interval 	r� s
� � � r � s� Then fnkg is a strongly good universal sequence in Lp

for every p � 	r� s
�

Proof� Let � be an ergodic measure preserving transformation� By Sawyer�s the�

orem 	��� or ���
� the a�e� convergence of the averages �

N

PN
k�� f	�

nkx
 for every
f � Lp implies that the corresponding maximal operator is of weak type 	p� p
� for
every p � 	r� s
� Let r � p� � p � p� � s� Then this maximal operator is of weak
types 	p�� p�
 and 	p�� p�
� so by 	a special case of
 the Marcinkiewicz interpola�
tion theorem ��� it is of strong type 	p� p
� By Corollary ��� of ���� the maximal
operator along fnkg of any positively dominated contraction of Lp� particularly of
any measure preserving transformation� is of strong type 	p� p
� Since fnkg is good
universal� it is strongly good universal� �

Theorem ���� Let fnkg be a good universal sequence in Lp for all � � p � ��

For a �xed p� if the sequence fa	k
 � �g is a good weight sequence along fnkg for

all positive positively dominated � contractions of Lp� then the r� fnkg�Besicovitch
sequences with r � p�	p � �
 are good weight sequences along fnkg for positive

positively dominated � contractions of Lp�

Proof� Again we only sketch the proof� More details can be found in the proof
of Theorem ��� of ���� By the previous lemma� fnkg is strongly good universal in
Lp for every p� � � p � �� By Corollary ��� of ���� for any positively dominated

contraction T of Lp� � � p � �� the maximal operator supN
�

N

PN
k�� jT

nkf j is
strong type 	p� p
�

Fix p such that fa	k
 � �g is a good weight sequence along fnkg for all positively
dominated contractions of Lp� which means we have a�e� convergence of the averages
along fnkg for these operators� If T is a positively dominated contraction of Lp�
so is the operator �T when � is a complex number of absolute value �� so we
have a�e� convergence of its averages along fnkg� which is convergence in 	�
 for
fa	k
 � �kg�

We now look at the case that fa	k
 � �g is a good weight sequence along fnkg
only for positive contractions of Lp� Following ���� for T a positive contraction of
Lp	X
 we take the product space of the unit circle withX � and de�ne P g	z
f	x
� �
g	�z
Tf	x
� Then P extends to a positive contraction of Lp of the product space�
and applying to P the assumed convergence for positive operators� with g	z
 � z
and f � Lp	X
� we obtain a�e� convergence in 	�
 for fa	k
 � �kg�

We now prove the part of the theorem when fa	k
 � �g is a good weight sequence
along fnkg for all positively dominated contractions of Lp� the restricted case of
positive contractions is obtained by putting S � T in the proof� Let q � p�	p� �

be the dual index of p� i�e�� �

p � �

q � �� �x r � q� and let T be dominated by a

positive contraction S on Lp� By ��� there exists a larger L�p� a positive isometric
embedding D of Lp into L�p� a conditional expectation operator E and a positive

invertible isometry Q such that for each n � Z� we haveDSnf � EQnDf � Since Q
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can be written in the form Qnf	x�
 � wn	x
�
f	�x�
� where � is a non�singular point

transformation� jQnf	x
js � Rnjf js where R is an L�p�s isometry for s � r�	r��
 �

p� Since the maximal operator supN
�

N

PN
k�� R

nk jf j is strong type 	ps �
p
s 
� we have

that the maximal operator supN
�

N

PN
k��S

nk jf j�s is strong type 	p� p
 and hence is
�nite a�e� Thus� if fbj	k
g is a sequence of trigonometric polynomials that approach
fa	k
g in the k � kr�fnkg semi�norm� then for a�e� x H�older�s inequality shows that

the sequence fa	k
T kf	x
g will converge in the k � k��fnkg semi�norm� �

Corollary ���� Fix p� � � p � �� Let nk � kt 	�xed t � N
� or let nk denote

the k�th prime� then the r� fnkg�Besicovitch sequences� for r � p�	p� �
� are good

weight sequences along fnkg for Dunford�Schwartz operators in Lp and for positive

contractions of Lp�

Proof� Recall that Bourgain �� has proved that the sequence fktg is strongly
good universal in Lp� for every p � �� Wierdl ��� has proved that the sequence of
primes is good universal in Lp� p � �� In ��� it is shown that in both cases the
constant sequence is a good weight sequence along fnkg for positive contractions of
Lp� so the previous theorem yields the result for positive contractions of Lp� For T
Dunford�Schwartz the proof of the previous theorem applies� since a�e� convergence
in 	�
 for fa	k
 � �kg holds by the �rst part of the proof of Theorem ���� �

�� Uniform Sequences

In this section we will consider the uniform sequences of Brunel�Keane ��� These
are bounded Besicovitch sequences with some further restrictions� We will also
consider good averaging sequences fnkg such that for every irrational � � �� �
�
fnk�g is uniformly distributed 	mod �
� We will show that in this case every
uniform sequence produced by an apparatus with a connected space is in B��fnkg�
Since a uniform sequence is bounded� this means that those uniform sequences will
then also belong to Bp�fnkg for all p � �� and we will be able to apply the results
of the previous section to the uniform sequences fa	k
g along the sequences fnkg�

We �rst give the construction of the uniform sequences of Brunel and Keane
��� the details of which we will need� Let � be a compact metric space� B the
collection of Borel subsets of �� and  a homeomorphism of � such that fngn�� is
an equicontinuous family of mappings� The system 	�� 
 is then called uniformly

L stable� We assume that � possesses a dense orbit� It then follows 	see �� or ���

that there exists a unique  invariant probability measure on 	��B
� denoted by ��
Then for any w � �� and any continuous function f on ��

lim
n

�

n

n��X
t��

f	tw
 �

Z
f d� �

Such a system 	��B� �� 
 is called strictly L stable�
If 	��B� �� 
 is strictly L stable� Y � B with �	Y 
 � �� �	�Y 
 � � and y � ��

the sequence fak	y
g � fXY 	
ky
g is called a uniform sequence of weights� The

entire collection f	��B� �� 
� y� Y g is called the apparatus producing the uniform
sequence of weights� The apparatus is said to be connected if � is connected� It
is clear that a uniform sequence is a �return times� sequence� In fact� we will
be interested in the sequences fak	y
g for all y � �� This should be contrasted
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with the usual situation for return times weights� where one considers only y in a
subset �� of �� where �	��
 � �� The fact that uniform sequences of weights are
bounded Besicovitch is proved in ���� p� ���� V� Losert has shown us 	private
communication
 that uniform sequences need not be weakly almost periodic�

Theorem ���� Let fnkg be a good universal sequence in Lp� p � � �xed� For � �
�� �
 irrational such that fnk�g is uniformly distributed mod �� let T be induced by

the measure preserving transformation �x � ��x mod �� Then for all f � Lp�� �
�
we have

lim
N��

�

N

NX
k��

Tnkf �

Z
f a�e�	�


Proof� We �rst note that if 	�
 holds for a dense class of functions in Lp� then we
are done� given 
 � � and f � Lp�� �
 we can choose f � in our dense class such

that kf � f �kp � 
� Putting AN �
�

N

NX
k��

Tnk � we then have

kANf �

Z
fkp � kANf �AN 	f

�
 �AN 	f
�
�

Z
f � �

Z
f � �

Z
fkp

�



�
�




�
�




�
�

Thus kANf �
R
fkp 	 �� Since the a�e� convergence of the sequence fANfg is

assumed� the limit must be
R
f �

To see the dense class� we just note that for characteristic functions of intervals�
by the assumption that 	nk�
 is uniformly distributed� we have convergence to the
integral� Hence it is true for �nite linear combinations of characteristic functions
of intervals� and these are dense� �

De�nition� Let � be a measure preserving point transformation� We say that
� is totally ergodic if the transformations �n� n � �� �� ��� are all ergodic�

We can now extend the previous theorem to totally ergodic transformations as
opposed to irrational rotations of the circle�

Theorem ���� Let fnkg be a good universal sequence in Lp� for every � � p ���

such that fnk�g is uniformly distributed mod � for all � � �� �
 irrational� � a

totally ergodic measure preserving point transformation of a probability space X�

f � Lp	X
� p � �� Then for a�e� x we have

lim
N��

�

N

NX
k��

f	�nkx
 �

Z
f�

Proof� Let � � e��i� be a complex number of modulus one that is not a root of
unity� By Theorem ���� for the function f	z
 � z de�ned on the unit circle� we
have for a�e� z

lim
N��

�

N

NX
k��

�nkz �

Z
fz�jzj��g

z � ��
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Hence

lim
N��

�

N

NX
k��

�nk � ��

We know that for f � Lp� p � ��

lim
N��

�

N

NX
k��

f	�nkx


exists for a�e� x� and hence also in Lp norm� For f � L�� we have

�

N

NX
k��

	f � �nk � f
 �
�

N

NX
k��

Z
f��j�j��g

�nkdEf 	�


where dEf 	�
 is the spectral measure of the linear operator on L� de�ned by Tf �
f � � � We have shown that

lim
N��

�

N

NX
k��

�nk � �

unless � belongs to the countable set of the roots of unity� But since � is totally
ergodic� no root of unity 
� � is an eigenvalue of T on L�� Hence� no root of unity
except � is an atom of the spectral measure of T � so for f � L��

lim
N��

�

N

NX
k��

f	�nkx
 �

Z
f �

Since L� � Lp is dense in Lp� p � �� the theorem follows as in the proof of Theo�
rem ���� �

Even for strongly good universal sequences� the requirement that � be totally
ergodic is necessary� In fact� consider the strongly good universal sequence of the
primes� Let � be a primitive r�th root of unity� and let X be r point space with
each point having measure �

r � Let � be any cyclic permutation of all the points�
and let f be de�ned by f	x
 � � for one particular x and � otherwise� Then it is
easy to see that for some x

lim
N��

�

N

NX
k��

f	�nkx
 � � 
�

Z
f

and � is an eigenvalue for the operator induced by � � which is ergodic�

Lemma ���� If f	��B� �� 
� y� Y g is a connected apparatus producing a uniform

sequence� then  is totally ergodic�

Proof� Suppose  is not totally ergodic� Then some power of  has a non�constant
invariant function� which implies that the operator S de�ned by Sf � f �  has an
eigenfunction in L� with an associated eigenvalue that is a root of unity�

Let R be the operator S restricted to C	�
� Then R is almost periodic� so for

all � with j�j � � also �R is almost periodic� Consequently� the averages

�

N

NX
k��

�
k
Rkf
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converge uniformly to the projection of f onto the eigenspace of R associated with
��

If this projection is non�zero� which will happen if and only if � is an eigenvalue
for S 	since C	�
 is dense in L�	�
 
� R 	and hence S
 will have a continuous
eigenfunction g associated with the eigenvalue �� Then g assumes only the values
g	x�
� g	x�
� � � � � g	

r��x�
� where x� has a dense orbit� Since g is continuous and
� is connected� this is a contradiction� �

Theorem ���� Let fnkg be a good universal sequence in L�� such that for every

irrational � � �� �
 the sequence fnk�g is uniformly distributed mod �� and let

fa	k
g be a uniform sequence produced by a connected apparatus f	��B� �� 
� y� Y g�
Then fa	k
g is fnkg�Besicovitch�

Proof� By Lemma ����  is totally ergodic� Let g � C	�
� Since fnkg is a good
universal sequence� we have from Theorem ���

lim
N��

�

N

NX
k��

g	nky
 �

Z
g	�


for a�e� y � �� Since g is uniformly continuous� fngn�� is an equicontinuous
family� and open sets have positive measure� we have that 	�
 holds for all y � ��

Let g� and g� be continuous functions such that g�	y
 � XY 	y
 � g�	y
 for all
y � � and

R
g� �

R
g� � 
� where 
 � � is arbitrary 	see �� ���
� We then have� for

all y � ��

lim
N��

�

N

NX
k��

g�	
nky
 � lim inf

N��

�

N

NX
k��

a	nk


� lim sup
N��

�

N

NX
k��

a	nk
 � lim
N��

�

N

NX
k��

g�	
nky


Fix y� Then fg�	
ny
g is almost periodic� and using 	�
 we obtain

lim sup
N��

�

N

NX
k��

jg�	
nky
� a	nk
j �

lim
N��

�

N

NX
k��

g�	
nky
� g�	

nky
� �

Z
	g� � g�
 � 
�

Since 
 is arbitrary� fa	k
g is fnkg�Besicovitch�
Furthermore� for any 
 � � we also have

lim sup
N��

�

N

NX
k��

a	nk
� lim inf
N��

�

N

NX
k��

a	nk
 � 
 �

Since 
 is arbitrary� limN��
�

N

PN
k�� a	nk
 exists 	and equals �	Y 
 
� �

Remark� To get a better picture of the class of sequences fa	k
g considered
in the theorem� we note that Halmos and von�Neumann proved 	see Theorem � of
���
 that every strictly L stable system is isomorphic to a rotation by a generator
of a compact metric monothetic group� Thus� we may assume that � is a compact
metric 	connected
 monothetic group� � its Haar measure� and 	x
 � x � � with
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f�ng dense in �� The referee has remarked that this yields an alternative proof of
Lemma ����

Combining the previous theorem with the results of the previous section� we
obtain the following corollaries�

Corollary ���� Fix p� � � p ��� Let fnkg be a strongly good universal sequence

in Lp� such that fnk�g is uniformly distributed mod � for every irrational � � �� �
�
Then any uniform sequence fa	k
g produced by a connected apparatus is a good

weight sequence along fnkg for Dunford�Schwartz operators in Lp�

Corollary ��	� Let fnkg be a good universal sequence in Ls for every � � s ���

such that fnk�g is uniformly distributed mod � for every irrational � � �� �
�
If for a �xed p the constant sequences are good weight sequences along fnkg for

positive positively dominated � contractions of Lp� then any uniform sequence fa	k
g
produced by a connected apparatus is a good weight sequence along fnkg for positive

positively dominated � contractions of Lp�

Corollary ��
� If nk � kt 	for �xed t � N
� or if nk denotes the k�th prime�

and T is a Dundord�Schwartz operator or a positive contraction of Lp	X
� p � ��
then for any uniform sequence fa	k
g produced by a connected apparatus and for

all f � Lp	X
� we have

lim
n��

�

N

NX
k��

a	nk
T
nkf

exists a�e�

Proof� Bourgain �� has established that for �xed t � N� fnk � ktg is a strongly
good universal sequence in Lp for all p � �� Weyl�s theorem 	���� p� ��
 says that
for � irrational� fkt�g is uniformly distributed mod �� For fnkg the sequence of
primes� Wierdl ��� has established that it is good universal in Lp for every p � ��
and the uniform distribution of fnk�g for irrational � follows from ��� Theorem ����
Hence the hypotheses of Theorem ��� are satis�ed in both cases� and Corollary ���
yields the result� �
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