New York Journal of Mathematics

New York J. Math. 5 (1999) 143-146.

A Lie Transformation Group Attached to a Second Order Elliptic Operator

Atallah Affane

ABSTRACT. Given a second order elliptic differential operator L on a compact C^{∞} manifold, we prove that the group of transformations which preserve the sheaf of functions annuled by L is a Lie transformation group under the compact-open topology.

Contents

1.	Introduction	143
2.	Proofs	144
References		146

1. Introduction

It is well known that for a given manifold, the group of diffeomorphisms which preserve some geometric structure is often a Lie transformation group. For instance, in [3], the authors deduce from a famous theorem of Palais a large list of results of this kind. In this note, where all objects are assumed to be of class C^{∞} , we consider, on a compact manifold M, a partial differential operator which has in any local coordinates the form

$$L = a^{ij} \frac{\partial^2}{\partial x^i \partial x^j} + b^k \frac{\partial}{\partial x^k} + c$$

with the following conditions:

- the coefficients a^{ij} , b^k and c are C^{∞} functions,
- the matrix (a^{ij}) is symmetric and positive definite,
- the function c has negative values.

Using the Bochner-Montgomery Theorem [2] on the group of differentiable transformations, we study the case where the geometric structure considered is the sheaf KerL. More precisely, for i = 1, 2, let M_i be an m_i -manifold provided with a partial differential operator L_i satisfying the three conditions above. We introduce the

©1999 State University of New York ISSN 1076-9803/99

Received October 15, 1999.

Mathematics Subject Classification. 58D05, 58G03.

Key words and phrases. Lie transformation groups, elliptic operators.

subset $E_L(M_1, M_2)$ of all maps $f \in C^0(M_1, M_2)$ such that for any open subset U_2 of M_2 and $\varphi \in C^{\infty}(U_2)$ satisfying $L_2\varphi = 0$ on U_2 , the composite function $\varphi \circ f$ also satisfies $L_1(\varphi \circ f) = 0$ on $f^{-1}(U_2)$. In the case $M_1 = M_2 = M$, we shall consider the group $E_L(M)$ of all homeomorphisms of M such that for any pair (U_2, φ) as above, $L\varphi = 0$ on U_2 if and only if $L(\varphi \circ f) = 0$ on $f^{-1}(U_2)$. In the next section we shall prove the following results:

Proposition 1.1. When M_1 is compact, $E_L(M_1, M_2)$ provided with the compactopen topology is locally compact and contained in $C^{\infty}(M_1, M_2)$.

Proposition 1.2. $E_L(M)$ is a Lie transformation group under the compact-open topology.

2. Proofs

First, we give two technical lemmas.

Lemma 2.1. For any point p there exists a coordinate system $\{x^i\}_{i=1}^m$ defined on a neighborhood U such that

$$Lx^i \equiv 0 \quad for \ i = 1, \dots, m.$$

Proof. By the imposition of a suitable coordinate system, we may assume that p = 0, M is a neighborhood of p in \mathbb{R}^m and $L = a^{kl} \frac{\partial^2}{\partial x^k \partial x^l} + b^j \frac{\partial}{\partial x^j} + c$ with $a^{ll}(x) \neq 0$ for all x in M and $l = 1, \ldots, m$. For $i = 1, \ldots, m$, we prove the existence of a function u^i such that $Lu^i = 0$, $u^i(0) = 0$ and $d_0u^i = dx^i$. To do this, we apply the theorem of Hörmander given in the appendix of [4] and since L is elliptic, the solutions u^i are C^∞ and give a coordinate system.

The next lemma seems classical under other forms.

Lemma 2.2. Let $L = a^{kl} \frac{\partial^2}{\partial x^k \partial x^l} + b^j \frac{\partial}{\partial x^j} + c$ be an elliptic differential operator on an open subset W of \mathbf{R}^m , with C^{∞} coefficients, and suppose that the function c is negative. Let $\{f_n\}_{n \in \mathbf{N}}$ be a sequence of continuous functions on W satisfying

(a) $Lf_n = 0$ for all $n \in \mathbf{N}$.

(b) There exists C > 0 such that $|f_n(x)| \le C$ for all $x \in W$ and $n \in \mathbb{N}$. Then

- (i) $f_n \in C^{\infty}(W)$ for all $n \in \mathbf{N}$.
- (ii) One can extract a subsequence $\{f_{n_k}\}_{k>1}$ which converges in $C^{\infty}(W)$.

Proof. Assertion (i) follows from the ellipticity of L. Let us prove assertion (ii). Let K be a compact subset of W and $\varepsilon > 0$ such that the closed ball $\overline{B(p,\varepsilon)} = \{|x-p| \le \varepsilon\}$ is contained in W whenever $p \in K$. Given a point $p \in K$, we consider the linear map S from $C^0(\partial B(p,\varepsilon))$ into $C^\infty(B(p,\varepsilon))$ which sends $\lambda \in C^0(\partial B(p,\varepsilon))$ on the unique solution of the Dirichlet problem:

$$Lu = 0$$
 on $B(p, \varepsilon)$; $u = \lambda$ on $\partial B(p, \varepsilon)$.

In fact S is continuous. Indeed, if $\{\lambda_n\}$ converges to λ in $C^0(\partial B(p,\varepsilon))$ then, by the maximum principle $\{S\lambda_n\}$ converges to $S\lambda$ uniformly on $B(p,\varepsilon)$; this makes sure that S is closed and one can apply the closed graph theorem. Now, by our hypothesis the sequence $\{\lambda_n = f_n \mid_{\partial B(p,\varepsilon)}\}$ is bounded and $f_n = S\lambda_n$; thus, the sequence $\{f_n\}$ is bounded in the Montel space $C^{\infty}(B(p,\varepsilon))$ and one can extract a converging subsequence. Since K is compact, one can find a neighborhood U of K and a subsequence which converges in $C^{\infty}(U)$. But W is a countable union of compact subsets, and so the classical diagonal method gives the conclusion. \Box

Proofs of Propositions 1.1 and 1.2. Since the two manifolds are metrizable, the compact-open topology is equivalent to the one of the uniform convergence on M_1 . By Lemma 2.1, we have an open covering $\{U_\lambda\}_{\lambda \in \Lambda}$ of M_2 where the U_λ are relatively compact, such that on any U_λ there is a coordinate system $y_\lambda = \{y_\lambda^\beta\}_{1 \leq \beta \leq m_2}$ satisfying

 $L_2 y_{\lambda}^{\beta} = 0$ on U_{λ} and there exists $C_{\lambda} > 0$ with $\left| y_{\lambda}^{\beta} \right| \leq C_{\lambda}$ on U_{λ} .

By classical topology, there exists a second open covering $\{U'_{\lambda}\}_{\lambda \in \Lambda}$ of the paracompact manifold M_2 with the inclusions $\overline{U'_{\lambda}} \subseteq U_{\lambda}$. For $\overline{f} \in E(M_1, M_2)$ we put $V_{\lambda} = \overline{f}^{-1}(U'_{\lambda})$; from the compactness of M_1 we deduce a finite part Λ' of Λ and an open covering $\{V'_{\lambda}\}_{\lambda \in \Lambda'}$ of M_1 such that $\overline{V'_{\lambda}} \subseteq V_{\lambda}$ for all $\lambda \in \Lambda'$. Clearly, the subset

$$\Omega = \left\{ f \in E_L(M_1, M_2) \mid f(\overline{V'_{\lambda}}) \subseteq U'_{\lambda} \text{ for all } \lambda \in \Lambda' \right\}$$

is a neighborhood of \overline{f} in $E_L(M_1, M_2)$ in the compact-open topology. Let $\{h_n\}_{n\geq 1}$ be a sequence in Ω . Let d be a metric on M_1 and $\varepsilon > 0$ such that for any $p \in M_1$ the ball $\overline{B(p,\varepsilon)} = \{d(x,p) \leq \varepsilon\}$ is contained in the intersection of some chart domain with some $V'_{\lambda(p)} \ (\lambda(p) \in \Lambda')$. Given a point $p \in M_1$, we apply Lemma 2.2 to each of sequences $\{y_{\lambda(p)}^{\beta} \circ h_n\}_{n\geq 1}$ and we obtain a subsequence $\{y_{\lambda(p)} \circ h_{n_k}\}$ which converges uniformly on $B(p,\varepsilon)$. As constructed, the limit has its values in $y_{\lambda(p)}(U_{\lambda(p)})$ and by composition we get a subsequence of $\{h_n\}$ which converges uniformly on $B(p,\varepsilon)$. The first part of the proposition results from the compactness of M_1 and the obvious fact that $E_L(M_1, M_2)$ is closed in $C^0(M_1, M_2)$ provided with the compact-open topology. The ellipticity of L_1 gives the second part.

For Proposition 1.2, $E_L(M)$ is obviously a group. Furthermore, we know from a result of Arens [1] that it is a topological group under the compact-open topology. Moreover, we can deduce easily from Proposition 1.1 that it is locally compact and the Bochner-Montgomery Theorem [2] gives the conclusion.

Corollary 2.3. Suppose that the manifold M is compact. Then the group $E'_L(M)$ of all homeomorphisms $f \in C^0(M, M)$ such that for any open subset U of M and $\varphi \in C^{\infty}(U)$ we have:

$$(L\varphi) \circ f = L(\varphi \circ f) \text{ on } f^{-1}(U)$$

is a Lie transformations group under the compact-open topology.

Proof. Since the linear differential operators are continuous on the distributions, one can verify that $E'_L(M)$ is a closed subgroup in $E_L(M)$ and use the Cartan Theorem.

Remark 2.4. 1. In Proposition 1.2, the compactness of M is not necessary. 2. $E'_L(M)$ may be a proper subgroup of $E_L(M)$

Firstly, if L is the Laplace-Beltrami operator of a Riemannian manifold M, $E_L(M)$ is the group of conformal transformations which is a Lie transformation group when $m \ge 3$ (see [5, p. 310]). Secondly, when M is the euclidian space \mathbf{R}^m , $E'_L(M)$ is the group of isometries.

References

- R. Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593–610, MR 8,479i, Zbl 061.24306.
- S. Bochner, D. Montgomery, Locally compact groups of differentiable transformations, Ann. of Math. 47 (1946), 639–653, MR 8,253c Zbl 061.04407.
- H. Chu, S. Kobayashi, The automorphism group of a geometric structure, Trans. Amer. Math. Soc. 113, (1964), 141–150, MR 29 #1596, Zbl 131.19704.
- B. Fuglede, Harmonic morphisms between semi-riemannian manifolds, Ann. Sci. Fenn. Math. 21 (1996), 31–50, MR 97i:58035, Zbl 847.53013.
- [5] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, I. John Wiley & Sons, New York, 1963, MR 27 #2945.

INSTITUT DE MATHÉMATIQUES, U.S.T.H.B., EL-ALIA, B.P. 32 BAB-EZZOUAR, 16111 ALGER, ALGÉRIE.

at all a haff an e@hot mail.com

This paper is available via http://nyjm.albany.edu:8000/j/1999/5-13.html.