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Divisible Tilings in the Hyperbolic Plane

S. Allen Broughton, Dawn M. Haney, Lori T. McKeough,
and Brandy Smith Mayfield

Abstract. We consider triangle-quadrilateral pairs in the hyperbolic plane
which “kaleidoscopically” tile the plane simultaneously. In this case the tiling
by quadrilaterals is called a divisible tiling. All possible such divisible tilings
are classified. There are a finite number of 1, 2, and 3 parameter families as
well as a finite number of exceptional cases.
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1. Introduction

Let ∆ be a polygon in one of the three two-dimensional geometries: the sphere
S2, the Euclidean plane E or the hyperbolic plane H. Suppose also that each
interior angle of the polygon at vertex Pi has measure π

si
where si is an integer.

The polygon generates a tiling of the plane by repeated reflections in the sides
of the polygon. Examples are the icosahedral tiling of the sphere by 36◦-60◦-
90◦ triangles in Figure 1.1, and the partially shown tilings of the Euclidean plane
by 45◦-45◦-90◦ triangles in Figure 1.2 and the hyperbolic plane by 36◦-36◦-90◦

triangles in Figure 1.3. These tilings are called geodesic, kaleidoscopic tilings since
the tiling may be generated by reflections in a single tile. We explain the term
geodesic soon. A denizen of the two dimensional geometry could view the tiling by
constructing a polygon of mirrors meeting at the appropriate angles – assuming that
light travels in straight lines in the geometry! In the Euclidean case the mirrored
polygons can actually be physically constructed and the tiling viewed for the three
Euclidean kaleidoscopic triangles (30◦-60◦-90◦, 45◦-45◦-90◦, 60◦-60◦-60◦) and the
one 1-parameter family of kaleidoscopic rectangles.

The plane may be kaleidoscopically tiled in several different ways as Figure 1.2
shows. One way is by triangles. A second way is by squares consisting of four
triangles meeting at the center of the square. Yet a third way is the tiling by
squares formed from two triangles meeting along a hypotenuse. The tilings by
squares are both refined or subdivided by the tiling of triangles, i.e., each square
is a union of either four non-overlapping triangles or two non-overlapping triangles
in the two cases. We say that the tiling by squares is divisible or that the tiling by
squares is subdivided by the tiling by triangles. If ∆ ⊂ Ω are such a triangle and
square respectively we call (∆,Ω) a divisible tiling pair.

There are no divisible quadrilateral tilings of the sphere. There are infinitely
many different divisible quadrilateral tilings of the Euclidean plane but they are all
found in the 45◦-45◦-90◦ tiling in Figure 1.2. In this paper we turn our attention to
the much richer case of divisible quadrilateral tilings of the hyperbolic plane. The
reader is invited to find the tiling by quadrilaterals hidden in Figure 1.3 without
“cheating” by looking at the “answers” in the tables in Section 6. Each quadrilateral
has 12 triangles.

The main result of the paper, Theorem 6.2, is a complete catalogue of all divis-
ible quadrilateral tilings of the plane which may be subdivided by a triangle tiling.
For completeness we also include the less complex cases of triangle tilings which
subdivide triangle tilings (Theorem 6.1) and quadrilateral tilings which subdivide
quadrilateral tilings (Theorem 6.3). The classification of tilings of quadrilaterals by
triangles is broken up into two categories, constrained and free. The main differ-
ence between the two is that the free tilings occur in infinite families with simple
parametrizations by integers, but there are only a finite number of constrained di-
visible tilings. The complete lists of the four types of divisible tiling pairs described
above are given in Tables 6.1–6.4 in Section 6. More importantly, pictures of all
the various tiling pairs are given in Tables 6.5–6.8 of the same section.

To put our results in a broader context we sketch an application of the results
to a problem in the classification of Fuchsian groups, which in turn is relevant to
the singularity structure of moduli spaces of Riemann surfaces for certain genera.
Let Λ1 and Λ2 be two Fuchsian groups such that Λ1 has signature (0; l,m, n) and
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Λ2 has signature (0; s, t, u, v), and let H be the disc model of the hyperbolic plane.
Thus the projections H → H/Λ1 and H → H/Λ2 are branched covers of the sphere
branched over 3 points of orders l,m, n and 4 points of orders s, t, u, v respectively.
One may ask under what conditions does Λ2 ⊆ Λ1. The tiling polygons ∆ and
Ω generate groups Λ∗

1 and Λ∗
2 such that the conformal subgroups Λ1 ⊂ Λ∗

1 and
Λ2 ⊂ Λ∗

2, of index 2, are of the type specified in the classification problem. The two
groups constructed are real, i.e., the tiling polygons may be translated such that
Λ1 and Λ2 are real, i.e., both groups are invariant under conjugation. In turn this
implies that the points Λ1 and Λ2 correspond to singular points on the moduli space
of Riemann surfaces with real defining equations for certain genera. The details
of this will be discussed in a subsequent paper [4] which examines divisible tilings
on surfaces. The problem of determining pairs Λ2 ⊆ Λ1 with an equal number
of branch points was solved in [10]. The corresponding tiling problem is tilings
of triangles by triangles and quadrilaterals by quadrilaterals. The solution of this
problem follows easily from [10], though the classification has not been published,
to our knowledge. We include both of these results for completeness.

The remainder of this paper is structured as follows. In Section 2 we introduce
the necessary background on planar tilings, divisible tilings and the tiling groups.
In Sections 3, 4 and 5 we introduce and discuss the two computer algorithms for
determining the divisible tilings and illustrate them with some sample calculations.
Finally all results, including figures are listed in tables in Section 6. Throughout
the discussion, the reader is encouraged to look at these figures to gain a clearer
idea of the definitions and the discussion.

We will use the disc model for the hyperbolic plane H, in which the points are
in the interior of the unit disc, the lines are the unit disc portions of circles and
lines perpendicular to the boundary of the unit disc, and reflections are inversions
in the circles defining the lines. We will denote the hyperbolic distance between
two points z1 and z2 by ρ(z1, z2). All properties we use about hyperbolic geometry,
in particular the area formula for polygons, may be found in the text by Beardon
[1].
Acknowledgments. The initial part of this research work was conducted during the
NSF-REU program at Rose-Hulman Institute of Technology in the summer of 1997
(Haney and McKeough [8]) and continued in 1998 (Smith [12]) under the direc-
tion of Allen Broughton. The 1997 project worked out the classification under a
restrictive hypothesis called the corner condition and yielded 13 of the constrained
cases. A subdivided quadrilateral satisfies the corner condition if each corner of
the quadrilateral contains a single triangle. For example cases C1 and C2 in Ta-
ble 6.7 satisfy this property though cases C5 and C9 do not. Many of the symmetry
properties of the tilings were examined, and therefore the symmetry groups of the
tiling pairs are included in the tables in Section 6. The 1997 group also under-
took some of the preliminary work in determining divisible tilings on surfaces, the
results of which will appear in a forthcoming publication [4]. The 1998 project
took a different approach that yielded many of the free cases with a small number
of triangles. The present work combines and extends both approaches to yield a
complete classification of planar hyperbolic divisible tilings by quadrilaterals.

We thank the numerous participants of the 1997 and 1998 programs for the useful
conversations and encouragement. All numerical calculations were performed using
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Maple [13]. The figures were produced with Maple and Matlab [14]. All Maple and
Matlab scripts used, as well as images, are available at the tilings website [15].

Figure 1.1. Icosahedral (2, 3, 5) tiling of S2

Figure 1.2. (2, 4, 4) tiling of E Figure 1.3. (3, 3, 4) tiling of H

2. Tilings and Tiling Groups

A tiling of the spherical, Euclidean or hyperbolic plane is a collection T of
polygons, called tiles, that completely cover the plane without overlaps or gaps.
The sides or edges of the tiles are called the edges of the tiling and the vertices of
the tiles are called the vertices of the tiling. Let E and V denote the collection of
edges and vertices of the tiling.
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Definition 2.1. A tiling T of a plane is said to be a kaleidoscopic tiling if the
following condition is met:

1. For each edge e ∈ E of the tiling the reflection re in the edge e is an isometry
of the plane that maps tiles to tiles. In particular it interchanges the two tiles
whose common edge is e.

A tiling T is called a geodesic, kaleidoscopic tiling if in addition we have
the following condition.

2. The fixed line or mirror {x ∈ S : re(x) = x} of each reflection re, is the union
of edges of the tiling. Such a line is called a line of the tiling.

The tiling of the Euclidean plane by hexagons or the dodecahedral tiling of the
sphere by pentagons are examples of kaleidoscopic tilings which are not geodesic.
For the remainder of the paper, unless specified otherwise, all tilings we discuss will
satisfy Definition 2.1. The following proposition allows us to easily identify which
polygons give rise to the desired tilings. It is easily proven using the Poincaré
Polygon Theorem [1, p. 249].

Proposition 2.2. Let ∆ = P1P2 · · ·Pn be a n-gon. Then ∆ generates a kalei-
doscopic tiling of the plane by repeated reflection in its sides only if the interior
angles at the vertices of the polygon have measure 2π

ni
where ni is an integer. If in

addition each ni is even, say ni = 2mi, so 2π
ni

= π
mi

then ∆ generates a geodesic,
kaleidoscopic tiling.

We shall call a polygon kaleidoscopic if it generates a kaleidoscopic tiling. Through-
out the paper we shall only consider kaleidoscopic tilings that generate geodesic
tilings, i.e., the angles have the form π

mi
.

Notation 2.3. A polygon P1P2 · · ·Pn such that the interior angle at Pi has radian
measure π

mi
is called an (m1,m2, . . . ,mn)-polygon. Note that 2mi tiles meet at the

vertex Pi. Hence we easily identify the tiles of the icosahedral tiling in Figure 1.1
as (2, 3, 5)-triangles.

2.1. Tiling Groups. The reflections in the edges of a tiling generate a group of
isometries of the tiling, called the tiling group. We describe this group in some
detail now for the case of a triangle. The generalization to the group of a general
polygon easily follows from the triangle discussion. It is easy to show that every
tile in the plane is the image, by some element of the tiling group, of a single tile,
called the master tile, pictured in Figure 2.1. The sides of the master tile, ∆0, are
labeled p, q, and r, and we denote the vertices opposite these sides by P, Q, and R,
respectively. We also denote by p, q, and r the reflection in corresponding side. We
assume that ∆0 is an (l,m, n)-triangle so that the angles at R, P, and Q have size
π
l radians, π

m radians, and π
n radians, respectively, where l, m, and n are integers

≥ 2 (see Figure 2.1). At each of the vertices of the triangle, the product of the
two reflections in the sides of the triangle meeting at the vertex is a rotation fixing
the vertex. The angle of rotation is twice the angle at this vertex. For example
the product p · q , a reflection first through q then through p, is a counter-clockwise
rotation through 2π

l radians. We will refer to this rotation as a = pq and use it to
label the vertex in Figure 2.1. Rotations around each of the other corners can be
defined in the same way, so that b = qr and c = rp are counter-clockwise rotations
through 2π

m radians and 2π
n radians, respectively.
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Figure 2.1. The master tile and generators of T and T ∗

From the geometry of the master tile, we can derive relations among these group
elements. It is clear that since p, q, and r are reflections, the order of each of these
elements is 2:

p2 = q2 = r2 = 1.(1)

From the observations about rotations above, it is also clear that the orders are
given by

o(a) = l, o(b) = m, o(c) = n,(2)

and

abc = pqqrrp = 1.(3)

The reflections generate a group T ∗ = 〈p, q, r〉 , and the rotations generate a sub-
group T = 〈a, b, c〉 which includes only the orientation-preserving isometries in T ∗.
The subgroup T is of index 2 in T ∗ and hence is also normal in T ∗. Here are some
well-known basic facts about T ∗ and T.

Proposition 2.4. Let T ∗ and T be derived from a tiling T as above. Then the
following hold.

1. The groups T ∗ and T have the following presentations

T ∗ =
〈
p, q, r : p2 = q2 = r2 = (pq)l = (qr)m = (rp)n = 1

〉
(4)
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and

T =
〈
a, b, c : al = bm = cn = abc = 1

〉
.(5)

2. The full tiling group T ∗ acts simply transitively on the tiles of T .

Proof. These facts are well-known, though we give a brief proof sketch for com-
pleteness. According to the Poincaré Polygon Theorem [1, p. 249], T ∗ is a Fuchsian
group, i.e., a discrete group of isometries, and a tile is a fundamental region for T ∗.
Any group element fixing a tile must therefore fix all the interior points of the
tile, and equals the identity. Thus, simple transitivity is proven. Now for the first
part. First construct the dual graph by joining incentres of adjacent triangles by a
segment meeting the common edge of the triangles at a right angle. It is easy to
see that every word in T ∗ corresponds to an edge path in the dual graph starting
at the incentre of the master tile. Words which equal the identity correspond to
closed paths. Now suppose we have a word corresponding to a closed path. We
must show that we can reduce it to the identity by the relations above. Since H is
simply connected a closed edge path in the dual graph is homotopic to the identity.
Using the homotopy a closed edgepath can be deformed to the identity in a series of
moves of the following type: a) introduce or eliminate a path that crosses a tile edge
and then goes back, b) replace a path which makes a partial clockwise turn around
a vertex with the complimentary counter-clockwise turn around the same vertex.
These two types of homotopies correspond to the relations p2 = q2 = r2 = 1 and
(pq)l = (qr)m = (rp)n = 1, respectively. This proves that T ∗ has no other relations.
A similar proof works for T. �

Because of the simple transitivity, given a master tile ∆0, there is a unique
isometry g ∈ T ∗ such that ∆ = g∆0. This then allows us to identify a vertex x as
being a vertex of type P , Q, or R, depending on which vertex it is equivalent to
in the master tile. The same applies to edges. Of course, in scalene triangles the
vertex type and edge type are easily identified by angle measure and side length.
However in the case of an isosceles triangle it is necessary to use the tiling group
action to define types. Similar remarks apply to the quadrilateral with respect to
the corresponding tiling groups of an (s, t, u, v)-quadrilateral, which we call Q∗ and
Q :

Q∗ =
〈

w, x, y, z : w2 = x2 = y2 = z2 =
(wx)s = (xy)t = (yz)u = (zw)v = 1

〉
(6)

and

Q =
〈
d, e, f, g : ds = et = fu = gv = defg = 1

〉
.(7)

2.2. Divisible Tilings.

Definition 2.5. A kaleidoscopic tiling is said to be divisible if it can be kaleido-
scopically divided into a finer tiling. Thus we have two tiles ∆ ⊂ Ω both of which
generate a kaleidoscopic tiling of the plane. Each tile of the Ω-tiling is a union of
polygons from the ∆-tiling. We say that the ∆-tiling subdivides the Ω-tiling. We
call (∆,Ω) a divisible tiling pair.

We have seen an example of a divisible hyperbolic quadrilateral tiling in Fig-
ure 1.3 and all examples of divisible tilings of the hyperbolic plane are given in the
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figures in Section 6. In each of the figures we only give one quadrilateral, though it
may be easily extended to the plane through reflections in the sides of the quadri-
lateral. In fact the following is easily proven by using reflections in the sides of
Ω.

Lemma 2.6. Suppose that ∆ is a kaleidoscopic tile and that Ω ⊃ ∆ is a larger
polygon such that Ω is a union of the triangles of the tiling defined by ∆, and
that the angles of Ω have measure π

mi
for various integers mi. Then (∆,Ω) is a

kaleidoscopic tiling pair.

For the remainder of the paper we shall concentrate on the case where both
∆ and Ω are triangles or quadrilaterals and the tilings are geodesic. In almost
every case ∆ will be a triangle and Ω will be a quadrilateral.

Remark 2.7. There are examples of kaleidoscopic tiling pairs where the tilings
may not be geodesic. For example the Euclidean “honeycomb” tiling by hexagons
may be subdivided into a tiling by equilateral triangles.

Remark 2.8. For an (l,m, n)-triangle ∆ to tile an (s, t, u, v)-quadrilateral Ω each
of s, t, u, and v must be a divisor of one of l,m, or n. For, some multiple of an angle
of ∆ must fit into each corner of the quadrilateral Ω.

The number of triangles. Let the (l,m, n)-triangle ∆ and the (s, t, u, v)-quadrilateral
Ω with ∆ ⊂ Ω form a divisible tiling pair. The areas of the triangle, At, and
quadrilateral, Aq, are given (see [1, 150] and [1, 153]) by:

At = π

(
1− 1

l
− 1

m
− 1

n

)
= πµ(l,m, n),

Aq = π

(
2− 1

s
− 1

t
− 1

u
− 1

v

)
= πν(s, t, u, v),

for some positive rationals µ(l,m, n) and ν(s, t, u, v). Note that we must therefore
have

1
l
+

1
m

+
1
n
< 1 and

1
s
+

1
t
+

1
u
+

1
v
< 2.

A table of all values of possible (l,m, n) with µ(l,m, n) ≤ 1
4 is given in Appendix A.

These are the only values we shall need for our study. Now Ω is a union of triangles
congruent to ∆, let K denote the number of triangles. We have Aq = KAt or,

2− 1
s
− 1

t
− 1

u
− 1

v
= K

(
1− 1

l
− 1

m
− 1

n

)
,(8)

or alternatively:

K =
2− 1

s − 1
t − 1

u − 1
v

1− 1
l − 1

m − 1
n

=
ν(s, t, u, v)
µ(l,m, n)

.(9)

It turns out that K has an upper bound of 60 for all triangles in the hyperbolic
plane.
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Proposition 2.9. Suppose the (l,m, n)-triangle ∆ tiles the (s, t, u, v)-quadrilateral
Ω. Then,

K =
ν(s, t, u, v)
µ(l,m, n)

=
2− 1

s − 1
t − 1

u − 1
v

1− 1
l − 1

m − 1
n

≤ 60.

Proof. Fix l,m and n. To maximize K we need to maximize the area of a quadri-
lateral. Thus each integer s, t, u, and v, should be made as large as possible.
Since each of s, t, u, and v must divide one of l, m, or n, then the largest possible
quadrilateral is a (b, b, b, b)-quadrilateral such that b is the largest integer selected
from l, m, and n. Now the smallest possible value of µ(l,m, n) on the hyperbolic
plane is 1

42 for a (2, 3, 7)-triangle, according to the table in Appendix A. Picking a
(7, 7, 7, 7)-quadrilateral as suggested above, we get K = 10

7 / 1
42 = 60. For any other

triangle we have µ(l,m, n) ≥ 1
24 with µ(l,m, n) = 1

24 realized for a (2, 3, 8) triangle.
But now

K =
2− 1

s − 1
t − 1

u − 1
v

1− 1
l − 1

m − 1
n

<
2

1/24
= 48.

�

Hubs. Let Ω be an arbitrary quadrilateral and let v be any vertex of the (l,m, n)-
tiling contained in the interior or on the boundary of Ω. Assume for the moment
that v is of type R. The collection of (l,m, n)-triangles with common vertex at v
and contained in Ω will be called an R-hub. If the hub occurs at a corner in Ω
then the number of triangles divides l. If the hub occurs on an edge, but not at
a corner, then there are exactly l triangles in the hub and a hub occurring in the
interior of the quadrilateral has 2l triangles. To distinguish the three types of hubs
we call them corner hubs, edge hubs, and interior hubs, respectively. Since we are
mainly concerned about edge hubs we just call them hubs, if it will not cause any
confusion. An interior hub may be considered to be a union of two edge hubs, then
it is called a double hub. The P -hubs and a Q-hubs are defined in the same fashion.
When l,m and n are all distinct we refer to the R-hubs, P -hubs and Q-hubs as
l-hubs, m-hubs and n-hubs respectively. The various types of hubs are illustrated
in the figures in Table 3.1 in the next section.

The number of R-hubs (edge hubs and interior hubs, with interior hubs counted
as two hubs) in a subdivided quadrilateral is the number hR, given by:

hR =
K − cR

l
,(10)

where cR is the number of triangles occurring in the corner R-hubs. We can clearly
see that hR must be an integer since the remaining edge hubs have l triangles, the
interior hubs have 2l triangles, and every triangle belongs to a unique R-hub. The
number cR is usually easily determined from the numbers s, t, u, v. Similar formulas
hold for P -hubs and Q-hubs:

hP =
K − cP

m
, hQ =

K − cQ
n

.(11)



246 S. A. Broughton, D. Haney, L. McKeough, and B. Mayfield

3. Overview of Quadrilateral Search

We shall employ two different types of search algorithms depending on whether
K is large or small. For low values of K we directly construct tilings of quadrilat-
erals without worrying what the angles are. For large values of K we will develop
an algorithm that starts with a specific (l,m, n)-triangle ∆ and determines all
(s, t, u, v)-quadrilaterals Ω that the triangles can tile. To understand the rationale
of splitting the search into two approaches, we need to define constrained and free
vertices. We will also obtain constraints and bounds on l,m, n and K that are
helpful in restricting the search. These bounds are important for otherwise the
computer implementation of the search is impractical.

Definition 3.1. Let ∆ ⊂ Ω generate a divisible tiling. Then the P -type vertices
of the ∆-tiling are called Ω-constrained if at least one belongs to either an edge hub
or an interior hub, i.e., hP > 0. Otherwise the P -type vertices are called Ω-free.
Similar definitions hold for Q-type and R-type vertices.

Remark 3.2. As the same triangle tiling can refine two different quadrilateral
tilings freeness is relative to Ω, though we rarely mention Ω.

3.1. Free Vertices. The freeness of vertices is exemplified in the figures in Ta-
ble 3.1. There we show the first four quadrilaterals of the infinite family of (2, 3, 5d)
tilings of (d, 5d, d, 5d) quadrilaterals where d ≥ 2. All the quadrilaterals have the
same divided structure. The free vertices may be “freely” dragged to the boundary
of the hyperbolic plane through an infinite discrete set of positions. (In contrast,
a constrained vertex cannot since it has a fixed measure.) The angles at the free
vertices become smaller and smaller as we approach the boundary until we reach
a (2, 3,∞) tiling of an (∞,∞,∞,∞)-quadrilateral. The free vertices are on the
boundary and have measure 0 = π

∞ . As we prove below, every divisible tiling with
free vertices gives rise to such an infinite family of tilings.

Remark 3.3. Free vertices, or rather the lack of them play a special role in the
interpretation and calculation of the “monodromy group” T ∗/coreT∗(Q) of the
tiling pair ∆ ⊂ Ω. This group and its relation to tiling groups of surfaces with
divisible tilings are discussed in greater detail in [8] and in the forthcoming paper
[4].

The search algorithm for quadrilaterals with free vertices has to be handled dif-
ferently from those with constrained vertices only, since there are infinitely many
possibilities. Also, it turns out that the quadrilaterals with small numbers of tri-
angles have free vertices and those with a large number of triangles have only
constrained vertices, and for the midrange of values of K we have both types.
We define special K to be the number such that for any tiling pair ∆ ⊂ Ω with
K > special K the divisible tiling has only constrained vertices. For values below
or equal to special K we will use one algorithm and for those values above special
K we will use another algorithm. The following proposition specifies special K.

Proposition 3.4. Let ∆ ⊂ Ω be an arbitrary kaleidoscopic tiling pair consisting of
an (l,m, n)-triangle ∆ and an (s, t, u, v)-quadrilateral. Let

K =
2− 1

s − 1
t − 1

u − 1
v

1− 1
l − 1

m − 1
n
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Table 3.1. A family of divisible quadrilaterals with free vertices

(2, 3, 10) tiling of (2, 10, 2, 10) (2, 3, 15) tiling of (3, 15, 3, 150)

(2, 3, 20) tiling of (4, 20, 4, 20) (2, 3, 25) tiling of (5, 25, 5, 25)

be the number of triangles covering Ω. Then if K > 12 then there are no Ω-free
vertices in the ∆-tiling, i.e., special K equals 12. Furthermore if there are two types
of free vertices then K ≤ 4 and if there are 3 types of free vertices then K = 2.

Proof. The examples in Table 3.1 show that special K is 12 or greater. Now
suppose that ∆ ⊂ Ω is a tiling pair such that Q is a free vertex. We shall first
construct an infinite family of divisible quadrilaterals all with the same structure.
Assume that our tile ∆ has sides p and q meeting at the origin at R in an angle π

l , so
that q is a portion of the positive x-axis and p is a diameter in the first quadrant.
The third side r of our triangle is a portion of a (euclidean) circle in the first
quadrant meeting q at P in an angle π

m , meeting p at Q in an angle π
n , and meeting

the boundary at right angles. (see the figures in Table 3.1). Now each triangle in the
quadrilateral is of the form gi∆ where g1, . . . , gK ∈ T ∗. For the quadrilaterals in the
examples the 12 different g’s are 1, q, qr, qrp, qrpr, qrprq, pq, p, pr, prp, prpr, prprq.
Move the side r so that its point of intersection moves along the x-axis, but the
angle remains π

m . The moving line, denoted rN , will intersect the diameter p in an
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angle π
N that varies continuously from π(1− 1

l − 1
m ) (when the point of intersection

is at the origin) down to 0 (when the side rN meets p on the boundary). Let ∆N

denote the triangle bounded by p, q, rN and let p, q, rN also denote the reflections
in the sides of ∆N . Now let gi(N) be the isometry constructed from gi by the
replacements p → p, q → q, and r → rN . Because Q is a free vertex then

K⋃
i=1

gi(N)∆N

is a quadrilateral whose subdivided combinatorial structure is independent of N.
The angles at Q-vertices have measure ρiπ

N , where ρ1, . . . , ρk are the numbers of
triangles meeting at Q-vertices. In our example k = 4, ρ1 = ρ3 = 1, and ρ2 =
ρ4 = 5. Let ρ be the least common multiple of the ρi’s. There are now an infinite
number of integer values of N = ρd, d = d0, d0+1, . . . ∈ Z such that N

ρi
= ρ

ρi
d is an

integer for all Q vertices, and such that the resulting (l,m,N)-triple corresponds
to a hyperbolic triangle. The resulting quadrilaterals, of type (sN , tN , uN , vN ), for
appropriately selected integers, will then form our infinite family of kaleidoscopic
quadrilaterals. If the other types of vertices are free then a multiparameter family
may be created.

Finally let us get a bound on K. We know that

K =
2− 1

sN
− 1

tN
− 1

uN
− 1

vN

1− 1
l − 1

m − 1
N

≤ 2
1− 1

l − 1
m − 1

N

Now we may chose (l,m,N) of the form (l,m, ρd) so that

K ≤ lim
d→∞

2
1− 1

l − 1
m − 1

ρd

=
2

1− 1
l − 1

m

.

The largest possible side for the right hand side is 12 when l = 2,m = 3. The
next largest size is K = 8 for l = 2,m = 4. If there are two or three types of free
vertices then a two or three parameter family limit calculation shows that K ≤ 4
and K ≤ 2, respectively. �

3.2. Constrained Vertices. We have established a limit on K when there are
free vertices, we may establish a limit on l,m, n when there are only constrained
vertices. We shall also show that l,m, and n must be chosen from the table in
Appendix A.

Proposition 3.5. Let ∆ ⊂ Ω be an arbitrary kaleidoscopic tiling pair consisting of
an (l,m, n)-triangle ∆ and an (s, t, u, v)-quadrilateral. Let

K =
2− 1

s − 1
t − 1

u − 1
v

1− 1
l − 1

m − 1
n

be the number of triangles covering Ω. Then if all the vertices of the ∆-tiling are
constrained then

l,m, n ≤ K.(12)

Proof. If the R-vertices are constrained then there is at least one R-hub and hence
at least l triangles. But then K ≥ l. The proofs of the other inequalities are
identical. �
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The above proposition implies that the universal bound of 60 is also a bound for
l,m, n when we have constrained vertices. However we can do much better than
this. Assume that l ≤ m ≤ n. Then, s, t, u, v ≤ n and

ν(s, t, u, v) = 2− 1
s
− 1

t
− 1

u
− 1

v
≤ 2− 1

n
− 1

n
− 1

n
− 1

n
= ν(n, n, n, n).

It follows that

l,m, n ≤ K ≤ ν(n, n, n, n)
µ(l,m, n)

.(13)

Thus, for instance, for a (2, 3, n) triangle we have

n ≤ 2− 4
n

1
6 − 1

n

= 12
n− 2
n− 6

.

Solving this inequality for integer solutions, we obtain 3 ≤ n ≤ 16. Since the triangle
is hyperbolic then we further restrict 7 ≤ n ≤ 16. Analogously, for (2, 4, n) triangles
we get 5 ≤ n ≤ 10, and for (3, 3, n) triangles we have 4 ≤ n ≤ 7.

Now let us obtain a lower bound for K when there are constrained vertices.

Proposition 3.6. Let ∆ ⊂ Ω be a kaleidoscopic tiling pair with only constrained
vertices. Then the number of triangles, K, is at least six.

Proof. Suppose that Ω has at least one interior hub. Then the proposition is
satisfied unless the interior hub has four triangles. If there are only 4 triangles then
the two other vertices are free. Suppose there are five triangles. Then, adjoining
a single triangle to an interior hub of 4 will force us to have at least one edge hub
with three triangles. In turn this will force an equivalent vertex to be a corner hub
with exactly two angles of measure π

3 , which is not allowed. In fact the hub of
four must be completed to a quadrilateral tiled with six triangles as in case F12 in
Table 6.6.

Thus we may assume that there are no interior hubs and that there is an edge
hub for each different type of vertex, say a P -hub HP , centered at VP , a Q-hub
HQ, centered at VQ, and an R-hub HR, centered at VR. The number of trian-
gles in at least one of the hubs satisfies |HP ∪HQ ∪HR| ≤ K. We shall estimate
|HP ∪HQ ∪HR| by inclusion-exclusion and arrive at a contradiction. We have:

|HP ∪HQ ∪HR| = |HP |+ |HQ|+ |HR|
− |HP ∩HQ| − |HP ∩HR| − |HQ ∩HR|
+ |HP ∩HQ ∩HR|
= l +m+ n

− |HP ∩HQ| − |HP ∩HR| − |HQ ∩HR|
+ |HP ∩HQ ∩HR| .

Now |HP ∩HQ| = 0 unless VP and VQ are vertices of the same triangle. Further-
more, |HP ∩HQ| = 1 if the edge joining VP and VQ is part of an edge of Ω and
|HP ∩HQ| = 2 otherwise. Also |HP ∩HQ ∩HR| = 1 if VP , VQ, and VR are the
vertices of the same triangle and it is zero otherwise. If |HP ∩HQ| = |HP ∩HR| =
|HQ ∩HR| = 2 then |HP ∩HQ ∩HR| = 1 and |HP ∪HQ ∪HR| = l +m + n − 5.
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On the other hand if |HP ∩HQ ∩HR| = 0 then one of |HP ∩HQ| , |HP ∩HR| , and
|HQ ∩HR| is zero so |HP ∪HQ ∪HR| ≥ l +m+ n− 4. Thus in all cases we have

l +m+ n− 5 ≤ |HP ∪HQ ∪HR| ≤ K ≤ 5, or
l +m+ n ≤ 10.

Now as we go through hyperbolic (l,m, n)-triples in Appendix A we see that there
is only one triple that satisfies this namely (3, 3, 4). The quadrilateral must contain
one hub of order 4, but it is impossible to add a single triangle to make it into
quadrilateral. We have eliminated all cases. �

The inequality (13) combined with K ≥ 6 shows that we get an area restriction
µ < 1

3 . We now prove a stronger restriction µ ≤ 1
4 , which allows us to select all our

µ-data from the table in Appendix A.

Proposition 3.7. If an (l,m, n)-triangle subdivides an (s, t, u, v)-quadrilateral, with
only constrained vertices then µ(l,m, n) ≤ 1

4 .

Proof. Suppose that µ = µ(l,m, n) > 1
4 . Let ν = ν(s, t, u, v), we know that ν ≤ 2

and so thus

K =
ν

µ
<

2
1/4

= 8.

Since K must be an integer, and K ≥ 6 by our last proposition, then 6 ≤ K ≤ 7.
Also, by Proposition 3.5, l,m, n ≤ K, so we may assume, without loss of generality,
l ≤ m ≤ n ≤ 7. We consider four cases.
Case 1. n = 7, K = 7. There exists exactly one 7-hub and no other triangles.
However it is not possible to select the other angles to form a quadrilateral.
Case 2. n = 6, K = 6, 7. There is exactly one 6-hub. At most one other triangle
can be added and thus either 2 or possibly 3 triangles meet at the vertices. Since
there is at least one hub of each type, then the only possible hyperbolic triangle is
(3, 3, 6). However this satisfies µ ≤ 1

4 .
Case 3. n = 5, K = 6, 7. Again there is exactly one 5-hub and one or two triangles
must be added. Thus, except at the 5-hub, 2, 3 or 4 triangles meet at each vertex.
The only hyperbolic possibilities are (2, 4, 5), (3, 3, 5), (3, 4, 5), and (4, 4, 5) triangles.
The first satisfy two satisfy µ ≤ 1

4 and for the last two the upper bound ν(n,n,n,n)
µ(l,m,n)

for K is smaller than 6.
Case 4. n = 4, K = 6, 7. The only possible triangles are (3, 3, 4), (3, 4, 4), and
(4, 4, 4) triangles, all of which satisfy the inequality.

Since there are no hyperbolic triangles with n ≤ 3, the proof is complete. �

Remark 3.8. After constructing the tables we may actually verify that µ(l,m, n) ≤
1
6 .

3.3. The Two Search Methods. The existence of free vertices and families of
divisible tilings forces us to split our search into two different approaches: the direct
construction method (K ≤ 12) and the boundary construction method (K > 12).
We describe the two approaches very briefly here and then devote one section each to
the full description, implementation, and computational examples of both methods
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Direct construction method (K ≤ 12). Assume for the moment that there are no
interior hubs. Then each edge of a triangle must either be a part of the side of
the quadrilateral or reach from one side of the quadrilateral to another. Thus, as
a “combinatorial” object the quadrilateral may be viewed as a circle with a set
of non-intersecting chords or a better yet as a polygon with K + 2 vertices and
with a collection of K − 1 diameters (see Figure 4.1 below). The diameters of the
vertices can then be labeled as P,Q,R vertices via the tiling structure. In order to
transform the polygon into a quadrilateral triangle K − 2 corners of the polygon
must be flattened to straight angles, leaving four corners to form a quadrilateral.
This imposes restrictions on l,m, and n, and allows us to compute s, t, u, and v
or conclude that no tiling pair exists. The algorithm can be extended to the case
where there are interior hubs. The algorithm depends only on the combinatorial
structure of the polygon and not the actual angles so it can handle the case of free
vertices. Unfortunately, the computational complexity of the computer search rises
very quickly with K, and is not useful for large numbers of triangles.
Boundary construction method (K > 12). If K > 12 then there is only a finite
number of possibilities for (l,m, n) and hence a finite number of possibilities for
(s, t, u, v), according to Remark 2.8. For each compatible pair of an (l,m, n) and
(s, t, u, v) we try to construct an (s, t, u, v)-quadrilateral in the (l,m, n)-tiling by
constructing the possible boundaries of a quadrilateral. The tile edges must occur
in certain sequences in the tiling, thus the boundary can be constructed “combi-
natorially”. By making a geometric check we can tell whether the hypothesized
boundary closes up, and hence forms a quadrilateral. Again there is only a finite
number of cases to check.

4. Direct Construction Method (K ≤ 12)
We are first going to show that all divisible quadrilaterals may be constructed

from a collection of Euclidean polygons, subdivided into K triangles and their
combinatorial analogs. By using the dual graph we will show the existence of an
algorithm that allows us to inductively construct all such polygons by attaching
triangles, interior hubs and conglomerations of interior hubs to a polygon with a
fewer number of triangles. Each such polygon may then be tested to see if it yields
a quadrilateral.

An associated divided polygon is constructed as follows. See Figures 4.1 and 4.3
below for examples without interior hubs. In Figure 4.2 an associated polygon
with interior hubs has been drawn along with its dual graph discussed below. Let
P1, . . . , Pn be the vertices of the triangular tiling of Ω as we move clockwise around
Ω. Construct a convex Euclidean n-gon whose vertices are labeled P1, . . . , Pn. Add
in all diagonals PiPj that correspond to edges of the tiling contained in Ω. Next
we add points into the interior of the polygon corresponding to vertices of the
tiling in the interior of Ω. We denote these vertices by Q1, . . . , Qs (see Figure 4.2
below). We further add in all the segments QiPj and QiQj corresponding to
edges of tiling interior to Ω. A combinatorial representation of the associated di-
vided polygon or combinatorial divided polygon may then defined as the quintuple
({Pi}, {PiPj}, {Qi}, {QiPj}, {QiQj}) = (V∂ , E∂ , Vi, Ei∂ , Ei) where each component
is taken over the appropriate index set. Note that the set E∂ = {PiPj}, the set of all
edges connecting boundary points, contains all the segments PiPi+1, 1 ≤ i ≤ n−1,
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Figure 4.1. Polygon without interior hubs

and PnP1. The combinatorial representation is what we use for computer represen-
tation and calculation, the Euclidean polygon realization serves for visualization.
Note that the same set of associated polygons also arises from a pentagon, hexagon
etc., tiled by a triangle. The two critical features we need for the associated polygon
are:

• it is a convex n-gon that is subdivided into triangles, and
• an even number of triangles meet at each interior vertex.
In order to prove that we may inductively construct all the associated polygons

we work with a modification of the dual graph of an associated polygon. This is
constructed as follows. Place a node in the interior of each of the triangles. Connect
the nodes of neighbouring triangles by an arc crossing the common boundary. The
constructed graph has cycles if and only if there are interior hubs. See Figure 4.2
for a combined picture of an associated polygon and its dual graph. The graph has
the following properties, though we don’t use them all.

• It is planar.
• Each node is connected to at most three other nodes.
• The arcs of the graph may be coloured according to which type of edge they

cross.
• The minimal cycles have an even number of nodes.
• The region enclosed by a minimal cycle contains no other point of the graph.
We construct the modified dual graph as follows. For each interior hub, fill in the

portion of the dual graph bounded by the corresponding cycle. We could achieve
this by blackening in the two quadrilaterals in the dual graph in Figure 4.2. The
resulting object consists of nodes, arcs, isolated hubs and conglomerated hubs. An



Divisible Tilings in the Hyperbolic Plane 253

Figure 4.2. Polygon and dual graph

isolated hub is one which is connected to another node or hubs by an arc only as
in Figure 4.2. A conglomerated hub is one or more hubs joined together, as in
cases F30, F31, and F33 in Table 6.6. There are some restrictions on the hubs
and conglomerated hubs. The modified dual graph has a tree-like structure and
therefore can be constructed by adding one component at a time. This leads to the
following proposition which is the basis of our combinatorial search.

Proposition 4.1. Let Λ be the associated subdivided polygon constructed from a
tiled quadrilateral. Then there is a sequence of associated subdivided polygons Λ0,
Λ1, . . . ,Λs = Λ such that Λ0 is empty and each Λi+1 is obtained from Λi by adjoin-
ing a triangle, hub or conglomerated hub along a single edge.

Proof. If we replace each hub and conglomerated hub by a node then we obtain a
tree. This follows from the fact that the modified dual graph is simply connected
because it a deformation retract of a quadrilateral. Trees may be constructed by
starting at any single node and then connecting additional nodes, one at a time,
by exactly one arc each. This method of tree construction directly translates into
the statement about adjoining the components of the associated polygons. �

4.1. Polygon Construction and Elimination—No Interior Hubs. Let us
first concentrate on those associated polygons with no interior hubs, as the de-
velopment is simpler. The case for polygons with interior points requires a few
modifications which are described below. Let PK be the set of polygons subdivided
into K triangles without any interior vertices. The dual graph of any one of these
polygons is a tree with K nodes and K − 1 arcs. Now 3K sides are contributed by
the triangles, 2(K−1) of which are absorbed as interior edges corresponding to the
K − 1 arcs. Thus there are K + 2 triangle sides on the boundary and that many
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Figure 4.3. Associated polygons for K = 4

vertices as well. In this case we are going to geometrically represent the associated
polygon by a regular polygon for the following reasons. The first is that the number
of such polygons is well known to be a Catalan number (see [7, p. 457])

|PK | = c(K) =

(
2K
K

)
K + 1

,

and hence we will call the associated divided polygons Catalan polygons. This
will help us in making sure that enumeration is complete. The second is that we
may use the dihedral symmetries of regular polygons to reduce the computational
complexity. Clearly, dihedrally equivalent associated polygons will lead to the same

divisible quadrilateral, if any. Since |P12| = (2412)
13 = 208 012, some reduction in com-

plexity is desirable. The following proposition demonstrates that the complexity is
reduced for low values of K.

Proposition 4.2. Let PK denote the set of subdivisions of regular (K+2)-polygons
into K triangles. Let OPK denote the set of dihedral equivalence classes of the
subdivided regular polygons. Let c(K) = |PK | as above, oc(K) = |OPK |. Then
oc(K) is given by:

oc(K) =
c(K) + (K + 2)c(K−1

2 )
2(K + 2)

, K = 3, 5mod 6,

oc(K) =
c(K) + 2(K+2)

3 c(K−1
3 ) + (K + 2)c(K−1

2 )
2(K + 2)

, K = 1mod 6

oc(K) =
c(K) + (K + 2)c(K2 ) +

(K+2)
2

∑K/2−1
s=0 c(s)c(K2 − 1)

2(K + 2)
, K = 0, 2mod 6

and

oc(K) =
c(K) + 2(K+2)c( K−1

3 )

3 + (K + 2)c(K2 ) +
(K+2)

2

∑K/2−1
s=0 c(s)c(K2 − 1)

2(K + 2)
,

for K = 4mod 6. The growth is still exponential but at least is manageable for
K ≤ 12, since oc(12) = 7528, and oc(K) � c(K)/(2K + 4). The formulas are
given in [5] and further references are listed in sequence M2375 of the Sloan integer
sequence reference [11].

The adjoining process leads to a combinatorial divided polygon ({Pi}, {PiPj},
φ, φ, φ). The next step is to determine which (l,m, n) lead to divisible hyperbolic
quadrilaterals. To do this we need to determine the type of the vertices on the
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boundary. Suppose that PiPj , PjPk, and PkPi, are the three edges of an arbitrarily
chosen triangle ∆ = ∆PiPjPk, contained in Ω. Declare the types of Pi, Pj , and Pk

to be P, Q,and R, respectively. The reflection of ∆ in at least one of its sides must
lie in Ω. Suppose for the sake of argument that this side is PiPj . Then there must
be a Pk′ such that PjPk′ and Pk′Pi belong to the edge set of our combinatorial
polygon. Now Pk′ is the reflected image of Pk and so they must have the same
type, namely R. Since the Pk′ is found by examining only the combinatorial data
({Pi}, {PiPj}) we say that Pk′ is the combinatorial reflection of Pk. Combinatorial
reflection may be continued until every vertex is assigned a unique type.

Once the vertices have been assigned a type then the vertices of type R, P and
Q may be assigned an angle of π

l ,
π
m , π

n . Let mi be the integer so chosen for Pi.
Next we assign to each vertex Pi the number si of triangles that meet at the vertex.
This can be determined combinatorially by noting that there must be si + 1 edges
of the form PiPj in the edge set E∂ . The angle measure at vertex Pi is si

mi
π. Finally

we must select four vertices in V∂ to serve as the corners of the quadrilateral, or
actually K − 2 corners to flatten into a straight angle. At this stage many of the
configurations are eliminated.

Let us illustrate the process by discussing the case K = 4. Though |P4| = 14
there are only 3 dihedrally inequivalent associated polygons. See Figure 4.3. The
list of vertices, in counter-clockwise order, starting at the “3 o’clock vertex”, the
vertex types, and the angle measures divided by π, are as given in the following
table

Vertex Case 1 Case 2 Case 3
P1 P, 1

m P, 1
m P, 1

m

P2 Q, 4
n Q, 3

n Q, 3
n

P3 P, 1
m R, 2

l R, 1
l

P4 R, 2
l Q, 1

n P, 3
m

P5 P, 2
m P, 3

m Q, 1
n

P6 R, 2
l R, 2

l R, 3
l

Now from the six vertices we must select two to flatten out to a straight angle,
the remaining vertices are corners of the quadrilateral. To be a straight angle we
must have si

mi
π = π or si = mi. This automatically forces corners with a single

triangle to be a quadrilateral corner, as is geometrically obvious. In Case 1 we can
either choose {P4, P6} or {P2, P5} to flatten. For, P1 and P3 cannot be chosen and
if we choose one of P4 or P6 we are forced to also choose the other since the angle
measure for both is 2

l π. If we choose {P4, P6} then l = 2, and both 4
n and 2

m are
reciprocals of integers. It follows that (l,m, n) must have the form (2, 2d, 4e) and
(s, t, u, v) must have the form (2d, e, 2d, d). The values of d and e are d ≥ 2, e ≥ 1
except that d = 2, e = 1 is disallowed since ∆ would then be Euclidean. If we
choose {P2, P5} , then n = 4, m = 2, and (l,m, n) must have the form (2d, 2, 4)
and (s, t, u, v) must have the form (2, 2, d, d), with d ≥ 3. The complete analysis of
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K = 4 without interior hubs is given in the table below.

Case flattened corners (l,m, n) (s, t, u, v) restrictions
1 P4, P6 (2, 2d, 4e) (2d, e, 2d, d) d ≥ 2, e ≥ 1, (d, e) �= (2, 1)
1 P2, P5 (2d, 2, 4) (2, 2, d, d) d ≥ 3
2 P3, P6 (2, 3d, 3e) (3d, e, 3e, d) d, e ≥ 2
2 P2, P5 (2d, 3, 3) (3, d, 3, d) d ≥ 2
3 P2, P4 (3d, 3, 3) (3, 3d, 3, d) d ≥ 2

For larger values of K the “wheat to chaff ratio” decreases drastically so we
need to identify some methods of quickly rejecting combinatorial polygons. Let
R1, . . . , RL be the vertices of type R and let λ1, . . . , λL, be the angle multiplicities
at these points. Define P1, . . . , PM , µ1, . . . , µM , and Q1, . . . , QN , ν1, . . . , νN be
similarly defined. These quantities satisfy the following relations:

L+M +N = K + 2
λ1 + . . .+ λL = K

µ1 + . . .+ µM = K

ν1 + . . .+ νN = K

Next let lλ = lcm(λ1, . . . , λL) and write λi = lλ
si
. There only two ways that we can

assign an angle π
l to R-vertices so that λi πl is an integer submultiple of π. Either

we set the angle to be π
lλ
, in which case the angle of the hub at Ri is λi πlλ = π

si
or we

set it to π
lλd

, d ≥ 2, and then the angle at hub at Ri is λi π
lλd

= π
sid

. In the first case
we get an edge hub for each si = 1 otherwise we get a corner hub. In the second
case every hub is a corner hub and we get a free vertex. Similar considerations
apply to the vertices of type P and Q.

An example will help illustrate. Consider the associated polygon for K = 10 in
Figure 4.1. Proceeding counter-clockwise around the polygon from the three o’clock
position vertices may be labeled R,P,Q, P, R,Q, P,R, Q,R, P,Q with multiplicities
3, 3, 4, 1, 3, 1, 3, 3, 4, 1, 3, 1. The sequences of multiplicities are:

{λi} = {3, 3, 3, 1}, {µi} = {3, 1, 3, 3}, {νi} = {4, 1, 4, 1}.
Thus we can choose either 1 or 4 corner hubs of type R, 1 or 4 corner hubs of type
P, and 2 or 4 corner hubs of type Q. Of the eight possible choices only one yields
a quadrilateral, namely, l = 3, m = 3, and n = 4 yielding 1, 1, and 2 corner hubs
of types R,P and Q respectively. Thus we get a (3, 3, 4) ⊂ (3, 4, 3, 4) tiling pair
yielding case C7 in Table 6.7. Note, for instance, that this method also allows us
to construct a (d, 3, 4d, d, 3, 4d) hexagon tiled by a (3, 3, 4d) triangle.

4.2. Computer Algorithm and Extension to Interior Hubs. Two Maple
worksheets catpolys.mws and hubpolys.mws [15] were used to implement the search
for divisible quadrilaterals with K ≤ 12. Maple was used so that the graphical
capabilities could be used to draw various polygons (such as the figures in this
section) to check the logic of the program during development. The algorithm
steps were the following.

1. Create a sequence of files FK containing the representatives of each dihedral
equivalence class of Catalan polygons with a given number of sides.
a) Start off with F1 consisting of a triangle.

http://nyjm.albany.edu:8000/j/2000/6-12arch/scripts/maple/hubpolys.mws
http://nyjm.albany.edu:8000/j/2000/6-12arch/scripts/maple/catpolys.mws
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b) From FK create the file GK+1, consisting of all polygons that can be
created from polygons in FK by adding a triangle to each side of a polygon
from FK . The polygons are created as an ordered list.

c) Create an empty file FK+1. Place the first element of GK+1 in FK+1.
Create the dihedral orbit of first element of GK+1, and then remove this
list of polygons from GK+1. Repeat the procedure until GK+1 is empty.

2. For each polygon in FK do the following:
a) Compute the multiplicity of all vertices.
b) Label P1 and P2, R and Q respectively. Find the unique point P = Pk

which completes the triangle. Now repeatedly use combinatorial reflection
to label vertices of the polygon with P, Q or R. This part can be written
so that it is guaranteed to terminate.

c) Construct the {λi}, {µj}, {νk} and determine all possible assignments of
l,m, and n that lead to 4 vertices which are corners. This part can be
easily modified to find tilings of pentagons, hexagons, etc.

d) Collect the valid assignments into a file QK .

The algorithm for the case of interior hubs requires just a few modifications.
1. Construct by hand a list consisting of a triangle and all hubs and conglomer-

ated hubs with twelve or less triangles.
2. Start off with F4 containing the hub of 4. Next create G5 by adding triangles

to the element in F4 at all possible locations.
3. Find representatives of the dihedral orbits and place them in F5.
4. Construct further GK by attaching a triangle, hub or conglomerated hub to

polygons in sets with smaller numbers of triangles, so that the total number
of triangles is K. The first non-triangle addition will be a hub of 4 to another
hub of 4. Create FK to be a set of representatives of dihedral orbits.

5. Create a labeling scheme for all vertices including interior vertices.
6. Create all valid assignments of angles to boundary vertices.
7. Check for compatibility with interior vertices, since the angles here are pre-

determined.

5. Boundary Construction Method (K > 12)

The boundary construction method was used for all divisible tilings for which
K > 12, since in this case we are guaranteed that the tiling has no free vertices and
hence there are only a finitely many (l,m, n)-triangles to consider. After describing
the methods in the next two subsections we will do some sample calculations to
illustrate the ideas.

According to the discussion in the previous sections we shall do the following.
1. Enumerate all of the (l,m, n)-triangles for which l ≤ m ≤ n, µ(l,m, n) ≤ 1

4 ,

l,m, n ≤ 60, and n ≤ (2− 4
n )/µ(l,m, n). The table of µ-values in Appendix A

can be used here.
2. For each triangle in Step 1, enumerate all candidate quadruples (s, t, u, v)

formed from l,m, n. The numbers s, t, u, v must be selected from the divisors
of l,m, n which are greater than 1.

3. For each candidate pair of an (l,m, n) and an (s, t, u, v) select those which
pass the K-test and the hub tests, i.e., the quotients calculated in (9), (10)
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and (11) must be integers. In addition we eliminate those cases in which
K = ν(s,t,u,v)

µ(l,m,n) ≤ 12, since these have already been determined by the direct
construction method.

4. For each candidate pair resulting from 3, enumerate all possible assignments
of vertex types of the triangle to the quadrilateral. This allows us to take
multiple corners into account.

5. For each candidate pair resulting from 4, perform the quadrilateral search
algorithm, as we describe next.

Quadrilateral Search. Having found an (l,m, n) and an (s, t, u, v) such that all the
restrictions in 1–4 hold, quadrilaterals tiled by the triangle are sought out using
a Maple program tilequad.mws (see [15]). Two somewhat different programs were
developed, though they differ only in how the quadrilateral test is implemented.
The quadrilateral search program is given an (l,m, n)-triangle, and a quadruple
(s, t, u, v) and tries to find to a corresponding quadrilateral along the lines of the
triangle tiling.

Look at Figures 5.1–5.3 or the figures in the tables in Section 6 to help understand
how the algorithm works. In addition to the information (l,m, n) and (s, t, u, v)
we need an assignment of vertex types and hub multiplicities to the corners of the
quadrilateral. We must consider all compatible type assignments. For example if
(l,m, n) = (2, 4, 5) and (s, t, u, v) = (2, 4, 2, 4) then the possible vertex assignments
are (R,P,R, P ), (P, P,R, P ), (R,P, P, P ) and (P, P, P, P ) with hub multiplicities
(1, 1, 1, 1), (2, 1, 1, 1), (1, 1, 2, 1) and (2, 1, 2, 1), respectively. Special attention needs
to be paid to isosceles triangles. For instance, in attempting to tile a (5, 5, 5, 5) with
a (2, 5, 5), 16 = 24 type assignments should be considered.

Suppose that the type assignment is (S1, S2, S3, S4), where Si ∈ {P,Q,R}. The
algorithm starts by picking the vertex A′ of type S1 on the master tile. Pick an edge
of the angle at A′ and move out along the ray determined by this edge. We move
along the ray and observe the triangles we meet on the same side of the ray as our
original triangle. We stop at some (there are many choices) triangle whose second
vertex encountered is of type S2. Call this vertex B′, our first side will be A′B′

(see Figures 5.2 and 5.3). To get the second side we turn the corner through π− π
t

radians toward the side of the original triangle and proceed along the next ray in
the tiling and stop at a vertex of type S3, say C ′ to produce the second side B′C ′.
Because of the compatibility conditions, when we turn the corner we will move out
along a line of the tiling. Turn again through π − π

u radians to produce a third
side C ′D′ and turn again to produce a fourth side D′E′. When we have finished, if
A′ = E′ and angleD′A′B′ has measure π

s then we have a quadrilateral of the desired
type. Note that there are only a finite number of possibilities for each side of the
quadrilateral since the number of hubs on the edges is bounded by the hub numbers,
as illustrated in the attempted (2, 3, 7) tiling of a (7, 7, 7, 7) quadrilateral later in
this section. Now the program keeps track of the four “combinatorial” sides of the
quadrilateral by writing down the sequence of vertex types that we pass through as
we move along an edge of the proposed boundary of the quadrilateral. This follows
from the following observation:

Remark 5.1. Let 7 be a line of the tiling, and let . . . , S−1, S0, S1, . . . be the bi-
infinite sequence of types of vertices lying on 7, in the order in which they occur.
Then, the entire sequence is determined by the types of two adjacent vertices. For

http://nyjm.albany.edu:8000/j/2000/6-12arch/scripts/maple/tilequad.mws
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example, in a (2, 3, 7) triangle only one sequence occurs {. . . , R, P,Q,R,Q, P, . . . } .
In a (2, 4, 5) triangle ∆RPQ, two different sequences occur {. . . , R, P, . . . } and
{. . . , P,Q,R,Q, . . . } . For a (2, 4, 6) triangle three sequences occur {. . . , R, P, . . . .} ,
{. . . , R,Q, . . . } , and {. . . , P,Q, . . . }. In each of the sequences above, the entire
sequence is the bi-infinite cyclic repetition of the basic pattern shown. The pattern
types only depend on parity of the numbers l,m, and n.

Now that we have the four edges, how can we determine if it is a quadrilateral
with the correct angles. There are two methods that were used, which are explained
in the next two subsections.

Remark 5.2. Though one really only needs one type of test, two were developed
for the following reasons. The first test is faster to calculate and less susceptible to
round off error. The second test produces “boundary words” which can be used to
determine a surface of minimum genus which supports both tilings. See [4].

5.1. Geometric Quadrilateral Test. The first method uses the construction of
a quadrilateral given by the following proposition which is proved in [2].

Proposition 5.3. Let α, β, γ, δ be four angles satisfying 0 < α, β, γ, δ ≤ π
2 and

α+ β + γ + δ < 2π. Then for every value of h satisfying

h >
cosα cosβ + 1
sinα sinβ

(14)

there is a quadrilateral ABCD, unique up to congruence, such that

m(∠DAB) = α, m(∠ABC) = β,

m(∠BCD) = γ, m(∠CDA) = δ,

and

AB = h.

The algorithm so far has given us a set of points A′, B′, C ′, D′, E′, such that all
the lengths are known from the lists of points on the edges. For, the lengths of the
sides of the triangles are easily computed and the types of all edges comprising a side
of a quadrilateral are known. Let h be the length of the side A′B′ and construct
quadrilateral ABCD as in the proposition above with α = π

s , β = π
t , γ = π

u ,
δ = π

v . The algorithm constructs the points A,B,C,D in the unit disc and so the
lengths BC, CD, and DA may be numerically calculated. If any of the differences∣∣BC −B′C ′∣∣ , ∣∣CD − C ′D′∣∣ , ∣∣DA−D′E′∣∣ exceed an appropriately chosen ε then
the candidate quadrilateral does not close up. Because Maple is used we can specify
that the calculations be carried out to a large number of decimal places to guarantee
good accuracy in the calculation of the lengths, and therefore that a small value
of ε may be chosen. If all the differences are less than the tolerance ε then the
candidate tiling is directly constructed, using the Matlab drawing scripts.

5.2. Boundary Word Test. Our second method uses group theory. For each
of the possible quadrilateral boundaries the program creates four edge words in
p, q, and r by making reflections through the various hubs along an edge of the
quadrilateral. The four edge words are concatenated to form a boundary word.
The four edges close up to form a quadrilateral if and only if the boundary word
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reduces to the identity. The pattern of hubs along the boundary allow us to quickly
write down the boundary word. The details of determining the boundary word
and showing it is the identity is described in detail in some sample calculations in
Subsection 5.4.

By attempting to draw a quadrilateral in the triangle tiling, as above, we have a
word which we want to prove is the identity. There are two possible approaches. The
first approach is see if the word can be reduced to the identity, using the relations
that we have in the group T ∗. Though in any specific example it always seems
possible to find a reduction to the identity (when it exists) the authors decided
against attempting to develop a computer algorithm to decide whether a word was
reducible to the identity because of apparent complexity of doing so suggested by
[9, p. 672]. If the maximum length L of the boundary words to be reduced is known
beforehand the Knuth-Bendix algorithm [6, p. 116] produces, for each (l,m, n), a
finite list of substitution rules which, if applied recursively to a given word of length
at most ≤ L, will reduce to the identity if and only if the word is the identity. The
length of each edge word is (very crudely) bounded by the number of triangles in
the quadrilateral and so L ≤ 4× 60 = 240. Thus it is possible (and interesting), in
principle, to devise a reduction algorithm, however more work is required than by
using the second approach that we describe next.

The second approach converts a product of an even number of reflections into a
matrix by means of a homomorphism q : T → PSL2(C), which we describe shortly.
The matrix images are computed numerically using Maple, which introduces some
error into our calculations due to rounding off the entries in the matrices. This
can be remedied that noting that if the computations are carried out with great
accuracy, say to 50 decimal places as done in the study [8] (see Remarks 5.5 and 5.6),
then a product which is not computed to be within a prescribed distance of the
identity will not equal the identity.

We now describe the map q and state a theorem that guarantees that our conclu-
sions based on approximate calculations are justified. The reflections in the sides
of an (l,m, n)-triangle are inversions in the circle defining the side (or reflection in
a diameter). Every such reflection has the form TA ◦ ε where

TA(z) =
az + b

bz + a
, A =

[
a b

b a

]
, aa− bb = 1,

ε(z) = z.

The matrix is determined only up to a scalar multiple of ±1. If the inversion is in
a circle centered at z0 and perpendicular to the unit disc then A has the form

A =
i√

z0z0 − 1

[
z0 −1
1 −z0

]
.

Otherwise, the line is a diameter meeting the positive x-axis at the angle θ and A
has the form.

A =
[
eiθ 0
0 e−iθ

]

If two of the edges of the (l,m, n)-triangle are diameters through the origin, then
the third side is easily determined using analytic geometry (see [2]). Also note
that the origin is a vertex of the tiling. Let P,Q,R be the matrices such that the
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reflections p, q, r are associated to:

p ↔ TP ◦ ε, q ↔ TQ ◦ ε, r ↔ TR ◦ ε.
Then the elements a = pq, b = qr, and c = rp are associated to:

a ↔ TPQ, b ↔ TQR, and c ↔ TRP ,

since

ε ◦ TA ◦ ε = TA, and
TAB = TA ◦ TB ,

where A is obtained by conjugating the entries of A.
Now a word w in p, q, r in T ∗ representing the identity must have an even number

of factors since an odd word is orientation reversing. Thus w is a word in a = pq,
b = qr, c = rp, a−1 = qp, b−1 = rq, and c−1 = pr, and the matrix corresponding to
w is obtained by making substitutions based on:

a → PQ,(15)

b → QR,

c → RP.

The following theorem now guarantees when an element which is approximately
equal to the identity is actually equal to the identity. We first define the L∞ norm
on matrices:

‖A‖ = max
k,l

(|A(k, l)|)

Proposition 5.4. Let T be the group of orientation-preserving isometries gener-
ated by an (l,m, n)-triangle ∆ in the hyperbolic plane. Assume that a vertex of ∆
is at the origin. Let A ∈ PSL2(C) be a matrix representing an element of g ∈ T,
according to the substitution in (15). Then, there is an ε∆, depending on ∆ and
not on A, such that if min(‖A− I‖ , ‖A+ I‖) ≤ ε∆ then g is the identity in T.

The proposition gets used in the following way. Suppose that the matrix A
in the proposition has been computed approximately as Â. Suppose further that∥∥∥Â− I

∥∥∥ ≤ ε∆
2 by calculation and that

∥∥∥A− Â
∥∥∥ ≤ ε∆

2 by controlling the accuracy

of the computation. Then, ‖A− I‖ ≤
∥∥∥A− Â

∥∥∥ +
∥∥∥Â− I

∥∥∥ ≤ ε∆. and so that g is
the identity.

Proof. Let A =
[
a b

b a

]
and let ζ = g · 0 = a0+b

b0+a
= b/a. Observe that ζ is one of

the vertices of the tiling. There is a small hyperbolic ball of radius h such that 0 is
the only vertex contained in that ball and hence ρ(ζ, 0) > h unless ζ = 0. We may
take h to be any number smaller than all the sidelengths of the master tile. Let
ε∆ = tanh(h/2) be the Euclidean radius of this ball. Thus |ζ| > ε∆ unless ζ = 0.
But since min(‖A− I‖ , ‖A+ I‖) ≤ ε∆, then |b| ≤ ε∆. Also, as aa − bb = 1, then

|a| ≥ 1 and hence |ζ| = |b|
|a| ≤ ε∆. This forces ζ = 0 and so A =

[
eiθ 0
0 e−iθ

]
.

But then min(‖A− I‖ , ‖A+ I‖) = ∣∣eiθ − 1
∣∣ = √

2− 2 cos(θ). The smallest value
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of this expression is
√
2− 2 cos(πb ) where b is the largest of l,m and n. Thus we

need only to adjust ε∆ to be smaller than this. �

Remark 5.5. For a given (l,m, n) the coefficients of PQ, QR, and RP all belong
to finite extension of Q. Therefore it is possible to exactly calculate words in the
matrices by symbolic means. However the “cure” of exact symbolic computation is
worse than the “disease” of approximation.

Remark 5.6. The 50 decimal places used in [8] are probably overkill. However,
the scripts can be run automatically, computing with a large number of decimal
places without an onerous time penalty. It is not to hard to show that an error
bound for q-image of a word of length L is (2M)L/2ε where M is the maximum of
the entries of the matrices in Remark 5.5, and ε is the maximum error of individual
matrix entries. Thus the required number decimal places is linear in the word
length.

5.3. Example: Failure of (2, 3, 7) to Tile (7, 7, 7, 7). The largest possible
value of K occurs for the attempt to tile a (7, 7, 7, 7)-quadrilateral by a (2, 3, 7)-
triangle. The candidate pair passes the K-test and the hub tests since K = 60,
h2 = 30, h3 = 20, and h7 = 8. Each of the four edges of any quadrilateral must
have two 7-hubs. For, an edge with only one 7-hub and terminating π

7 angles must
close up to a (7, 7, 7) triangle as in Figure 5.1 below. Similarly there cannot be zero
7-hubs, as Figure 5.1 also shows. Thus every edge must have exactly two 7-hubs,
and hence there is a unique way to construct the quadrilateral. But Figure 5.2
shows how the attempt to construct such a quadrilateral clearly fails.

Fig. 5.1. (2, 3, 7) tiling of (7, 7, 7) Fig. 5.2. A failed boundary search

5.4. Example: Successful Tiling of (5, 5, 5, 5) by (2, 4, 5). Now let us ex-
amine a quadrilateral which can be subdivided by triangles. Let us subdivide the
(5, 5, 5, 5)-quadrilateral with the (2, 4, 5)-triangle. See Case C25 in Table 6.7 for a
picture of the subdivided tiling. It is found that K = 24, h2 = 12, h4 = 6 and
h5 = 4. By looking at the tiling in Section 6 it is clear the any proposed edge of a
(5, 5, 5, 5)-quadrilateral without a 5-hub closes up to a triangle. Since h5 = 4 then
there must be exactly one 5-hub on each side. This greatly restricts the bound-
ary searches. Let us consider the lower boundary tiles on the lower edge of the
quadrilateral as pictured in Figure 5.3.



Divisible Tilings in the Hyperbolic Plane 263

The far left triangle as oriented is a (5, 4, 2)-triangle. Though the order of l,m and
n is unimportant for first three steps of the search, the ordering is very important
in the quadrilateral construction phase. Thus for this particular triangle we have:

(pq)5 = a5 = 1,

(qr)4 = b4 = 1,

(rp)2 = c2 = 1.

Now let us construct the edge word corresponding to this part of the boundary.
We label the triangles ∆0,∆1, . . . ,∆8 as we move from left to right. It is obvious
that ∆1 = r∆0 since we reflect over the r edge. The reflections in sides of ∆1

are rpr, rqr and r = rrr. In fact if ∆′ = g∆0 for some g ∈ T ∗ the reflections
in the sides of ∆′ are gpg−1, gqg−1 and grg−1. From the picture we see that ∆2

is the rqr image of ∆1 and hence ∆2 = (rqr)r∆0 = rq∆0. Continuing one more
step, we see that the reflections in the sides of ∆2 are rqpqr, rqr = rqqqr and
rqrqr. Now ∆3 is obtained by reflecting ∆2 over the common rqrqr edge. Thus
∆3 = rqrqr∆2 = (rqrqr)rq∆0 = rqr∆0. The pattern is now evident which we now
state as a proposition. We omit the easy induction proof.

Figure 5.3. Boundary tiles of lower edge

Proposition 5.7. Let ∆0,∆1, . . . ,∆s be a sequence of tiles such that ∆i and ∆i−1

meet in edge ei. Let ri the unique edge among {p, q, r} such that ei matches ri by
the unique transformation in T ∗ carrying ∆0 to ∆i. Let ri also denote the reflection
in ri. Then

∆i = r1 · r2 · · · ri∆0, for i = 1, . . . , s.

Applying the proposition we get

∆8 = rqpqprqr∆0 = w1∆0

Continuing on with the next edges we get:

∆16 = w2w1∆0,

∆24 = w3w2w1∆0,

∆32 = w4w3w2w1∆0.
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where w1 = w2 = w3 = w4 = rqpqprqr. The fact that all the edge words w1, w2, w3,
and w4 are equal is a consequence of the four-fold rotational symmetry of the
quadrilateral. Observe that the edgewords are completely determined by the initial
orientation of ∆0 and the number and type of hubs we pass through along an edge.
The process of finding the word can be sped up by observing that passing through
a hub along the edge concatenates a well-defined subword to the edge word. Thus
one multiplies together a sequence of “hub words”.

The boundary word we have is (rqpqprqr)4. The candidate boundary closes up
if and only if and only if ∆32 = ∆0, i.e., if and only if (rqpqprqr)4∆0 = ∆0. Since
T ∗ acts simply transitively on the triangles then the boundary closes up if and only
if

(rqpqprqr)4 = 1.

But we have

(rqpqprqr)4 = rqpqprq(rr)qpqprq(rr)qpqprq(rr)qpqprqr

= rqpqpr(qq)pqpr(qq)pqpr(qq)pqprqr

= rqpq(prp)q(prp)q(prp)qprqr

Now prpr = 1 so prp = r and likewise qrqrqrq = r. Thus we further obtain

(rqpqprqr)4 = rqp(qrqrqrq)prqr

= rq(prpr)qr
= rqqr

= 1.

We have exactly computed the expected reduction. Alternatively, we could trans-
late the boundary word into a word in a, b, c and compute the matrix image in
PSL2(C). One simply takes the letters in boundary word two at a time with the
replacements: p2 = q2 = r2 = 1, pq = a, qr = b, pr = c, qp = a−1, rq = b−1, and
pr = c−1. Our word and the replacement matrices are (to 5 decimal places):

(rqpqprqr)4 = (b−1ac−1b)4.

a −→ A
.=

[
.80903 + .58778i 0

0 .80903− .58778i

]

b −→ B
.=

[
.70708 + .97325i −.66876i

.66876i .70708− .97325i

]

c −→ C
.=

[ −1.2030i −.39308 + .54105i
−.39308− .54105i 1.2030i

]

The test matrix is seen to be approximately a scalar matrix:

(B−1AC−1B)4 .=
[ −.9999 0

0 −.9999

]
.

The matrix calculations are done to 5 decimal places here to ensure clarity. By
computing to a greater number of digits enough accuracy can be achieved to con-
clude that the boundary word is the identity. The matrix method is preferable
since the computer (i.e., programmer) need not get creative about how to reduce
words.
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6. Catalogue of Divisible Tilings

This section contains a complete catalogue of all (s, t, u, v)-quadrilaterals which
can be subdivided by (l,m, n)-triangles. For completeness we have also included the
small number of tilings of triangles by triangles and quadrilaterals by quadrilaterals.
For each category there are two tables, a table of data and a table of figures.

Theorem 6.1. Let ∆ and Ω denote a hyperbolic, kaleidoscopic (l1,m1, n1)-triangle
and (l2,m2, n2)-triangle respectively. Then there is one 2-parameter family, and five
1-parameter families of divisible tiling pairs ∆ ⊂ Ω in which there are free vertices.
There are two exceptional tiling pairs ∆ ⊂ Ω with constrained vertices only. These
families and exceptional cases are listed in Table 6.1 and pictured in Table 6.5.

Theorem 6.2. Let ∆ and Ω denote a hyperbolic, kaleidoscopic (l,m, n)-triangle
and (s, t, u, v)-quadrilateral respectively. Then there is one 3-parameter family, five
2-parameter families, and 28 1-parameter families of divisible tiling pairs ∆ ⊂ Ω
in which there are free vertices. These families are listed in Table 6.2 and pictured
in Table 6.6. In addition there are 27 divisible tiling pairs ∆ ⊂ Ω with constrained
vertices only. These are listed Table 6.3 and pictured in Table 6.7

Theorem 6.3. Let ∆ and Ω denote a hyperbolic, kaleidoscopic (s1, t1, u1, v1)-quad-
rilateral and (s2, t2, u2, v2)-quadrilateral respectively. Then there is one 2-parameter
family, and one 1-parameter family of divisible tiling pairs ∆ ⊂ Ω in which there
are free vertices. There are no examples with constrained vertices only. The two
families are listed in Table 6.4 and pictured in Table 6.8.

Some notes on the tables:
• Although it is usual to arrange for l ≤ m ≤ n the geometry of a triangle
being included in a larger polygon may force a different ordering. For both
the triangle and the quadrilateral the ordering is obtained by moving about
the figure in a counter-clockwise sense. A different orientation is obtained
from the reflected quadrilateral. These permutations of the ordering are in
the tables of pictures only, where comparison of the picture and the ordering
makes sense.

• The groups T ∗ and Q∗ denote the groups generated by reflections in the sides
of ∆ and Ω respectively. Then Aut(Ω) which is equal to the group taking
Ω to itself and StabT∗(Ω) = T ∗ ∩ Aut(Ω) are also given in the tables. The
groups are computed by visual inspection of the pictures. These groups are
useful in determining the structure of tiling groups of surfaces of minimal
genus supporting both tilings. See [8] and the forthcoming paper [4] for more
details.
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Table 6.1. Triangles subdivided by triangles
Case ∆ Ω restrictions K StabT∗(∆) Aut(Ω)
TF1 (2, d, 2e) (d, d, e) 2

d +
1
e < 1 2 Z2 Z2

TF2 (2, 3, 2d) (2, d, 2d) d ≥ 4 3 trivial trivial
TF3 (2, 3, 3d) (3, d, 3d) d ≥ 4 4 trivial trivial
TF4 (2, 4, 2d) (d, 2d, 2d) d ≥ 3 4 Z2 Z2

TF5 (2, 3, 2d) (d, d, d) d ≥ 4 6 D3 D3

TF6 (2, 3, 4d) (d, 4d, 4d) d ≥ 2 6 Z2 Z2

TC1 (2, 3, 8) (4, 8, 8) 12 Z2 Z2

TC2 (2, 3, 7) (7, 7, 7) 21 Z3 Z3
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Table 6.2. Quadrilaterals subdivided by triangles with free vertices
Case ∆ Ω restrictions K StabT∗(Ω) Aut(Ω)
F1 (d, 2e, 2f) (d, e, d, f) 2

d +
1
e +

1
f < 2 2 Z2 Z2

F2 (2, 2d, 3e) (2, d, 2d, e) d ≥ 2, e ≥ 2 3 trivial trivial
F3 (3, 2d, 3e) (d, e, 2d, 2e) 1

d +
1
e < 4

3 3 Z2 Z2,if d = e
F4 (2, 2d, 2e) (d, e, d, e) d ≥ 2, e ≥ 2 4 Z2×Z2 D4,if d = e
F5 (2, 2d, 4e) (d, 2d, e, 2d) d ≥ 2, e ≥ 2 4 Z2 Z2

F6 (2, 3d, 3e) (d, 3d, e, 3e) 1
d +

1
e < 3

2 4 Z2,if d = e Z2,if d = e
F7 (2, 4, 2d) (2, 2, d, d)) d ≥ 3 4 Z2 Z2

F8 (3, 3, 2d) (3, d, 3, d) d ≥ 2 4 Z2 Z2

F9 (3, 3, 3d) (3, d, 3, 3d) d ≥ 2 4 trivial Z2

F10 (2, 4, 6d) (2, 4, 2d, 3d) d ≥ 1 5 trivial trivial
F11 (2, 5, 2d) (2, d, d, 2d) d ≥ 2 5 trivial trivial
F12 (2, 3, 3d) (2, d, 2, d) d ≥ 2 6 Z2 Z2

F13 (2, 3, 4d) (2, 2d, 2, d) d ≥ 2 6 Z2 Z2

F14 (2, 4, 3d) (4, 4, d, d) d ≥ 2 6 Z2 Z2

F15 (2, 4, 6d) (2, 3d, 6d, 2d) d ≥ 1 6 trivial trivial
F16 (2, 5, 6d) (4, 2d, 3d, 6d) d ≥ 1 6 trivial trivial
F17 (2, 6, 2d) (d, d, 2d, 2d) d ≥ 2 6 Z2 Z2

F18 (2, 3, 10d) (2, 5d, 3, 2d) d ≥ 1 7 trivial trivial
F19 (2, 3, 12d) (2, 3d, 3, 4d) d ≥ 1 7 trivial trivial
F20 (2, 3, 4d) (3, d, 3, d) d ≥ 2 8 Z2 Z2

F21 (2, 3, 6d) (3, d, 3, 3d) d ≥ 2 8 Z2 Z2

F22 (2, 4, 2d) (d, d, d, d) d ≥ 3 8 D4 D4

F23 (2, 4, 3d) (d, 3d, d, 3d) d ≥ 1 8 Z2 Z2

F24 (2, 4, 4d) (d, 4d, 2d, 4d) d ≥ 2 8 Z2 Z2

F25 (2, 3, 12d) (2, 4d, 6d, 3d) d ≥ 1 9 trivial trivial
F26 (2, 3, 15d) (2, 3d, 15d, 5d) d ≥ 1 9 trivial trivial
F27 (2, 3, 6d) (2, d, 6d, 3d) d ≥ 2 9 trivial trivial
F28 (2, 3, 14d) (3, d, 14d, 7d) d ≥ 1 10 trivial trivial
F29 (2, 3, 20d) (3, 4d, 20d, 5d) d ≥ 1 10 trivial trivial
F30 (2, 3, 30d) (3, 10d, 15d, 6d) d ≥ 1 10 trivial trivial
F31 (2, 3, 4d) (d, 2d, d, 2d) d ≥ 2 12 Z2×Z2 Z2×Z2

F32 (2, 3, 5d) (d, 5d, d, 5d) d ≥ 2 12 Z2 Z2

F33 (2, 3, 6d) (d, 6d, 2d, 3d) d ≥ 2 12 trivial trivial
F34 (2, 3, 8d) (d, 8d, 2d, 8d) d ≥ 1 12 Z2 Z2
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Table 6.3. Quadrilaterals subdivided by triangles without free vertices
Case ∆ Ω K StabT∗(Ω) Aut(Ω)
C1 (3, 4, 4) (4, 4, 4, 4) 6 Z2 Z2×Z2

C2 (3, 3, 5) (3, 3, 5, 5) 7 trivial Z2

C3 (3, 4, 4) (2, 3, 3, 4) 7 trivial trivial
C4 (2, 4, 5) (2, 2, 4, 4) 10 Z2 Z2

C5 (2, 4, 5) (2, 2, 4, 4) 10 Z2 Z2

C6 (2, 4, 5) (2, 4, 2, 4) 10 Z2 Z2

C7 (3, 3, 4) (3, 4, 3, 4) 10 trivial Z2

C8 (2, 4, 5) (2, 2, 4, 5) 11 trivial trivial
C9 (2, 3, 8) (2, 2, 4, 4) 12 Z2 Z2

C10 (2, 4, 6) (3, 3, 6, 6) 12 Z2 Z2

C11 (2, 4, 6) (4, 4, 4, 4) 12 Z2×Z2 Z2×Z2

C12 (2, 5, 5) (5, 5, 5, 5) 12 Z2 Z2

C13 (3, 3, 4) (4, 4, 4, 4) 12 Z4 Z4

C14 (2, 3, 8) (2, 3, 3, 4) 12 trivial trivial
C15 (2, 3, 10) (3, 3, 5, 5) 14 Z2 Z2

C16 (2, 3, 10) (2, 5, 5, 10) 15 trivial trivial
C17 (2, 3, 9) (3, 3, 3, 9) 16 trivial trivial
C18 (2, 4, 5) (2, 4, 5, 4) 16 trivial trivial
C19 (2, 3, 12) (6, 6, 12, 12) 18 Z2 Z2

C20 (2, 3, 8) (3, 4, 3, 4) 20 Z2 Z2

C21 (2, 4, 5) (4, 4, 4, 4) 20 Z2×Z2 Z2×Z2

C22 (2, 4, 5) (4, 4, 5, 5) 22 Z2 Z2

C23 (2, 3, 8) (2, 8, 4, 8) 24 Z2 Z2

C24 (2, 3, 8) (4, 4, 4, 4) 24 D4 D4

C25 (2, 4, 5) (5, 5, 5, 5) 24 Z4 Z4

C26 (2, 3, 7) (2, 7, 2, 7) 30 Z2 Z2

C27 (2, 3, 7) (3, 7, 3, 7) 44 Z2 Z2

Table 6.4. Quadrilaterals subdivided by quadrilaterals
Case ∆ Ω restrictions K StabT∗(∆) Aut(Ω)
QF1 (2, 2, d, e) (d, d, e, e) 1

d +
1
e < 1 2 Z2 Z2

QF2 (2, 2, 2, d) (d, d, d, d) d ≥ 3 4 Z2×Z2 D4
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Table 6.5. Triangles subdivided by triangles

Case TF1: K = 2,
(d, 2, 2e) ⊂ (d, d, e)

Case TF2: K = 3,
(2, 3, 2d) ⊂ (2, 2d, d)

Case TF3: K = 4,
(3, 2, 3d) ⊂ (3, 3d, d)

Case TF4: K = 4,
(2d, 4, 2) ⊂ (2d, 2d, d)

Case TF5: K = 6,
(2d, 2, 3) ⊂ (d, d, d)

Case TF6: K = 6,
(4d, 3, 2) ⊂ (4d, 4d, d)
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Table 6.5, part 2

Case TC1: K = 12,
(8, 2, 3) ⊂ (8, 8, 4)

Case TC2: K = 24
(7, 3, 2) ⊂ (7, 7, 7)



Divisible Tilings in the Hyperbolic Plane 271

Table 6.6. Divisible quadrilaterals with free vertices

Case F1: K = 2,
(d, 2e, 2f) ⊂ (d, e, d, f)

Case F2: K = 3,
(2, 2d, 3e) ⊂ (2, d, 2d, e)

Case F3: K = 3,
(2d, 3, 2e) ⊂ (2d, 2e, d, e)

Case F4: K = 4,
(2d, 2e, 2) ⊂ (d, e, d, e)

Case F5: K = 4,
(2d, 2, 4e) ⊂ (2d, d, 2d, e)

Case F6: K = 4,
(3d, 3e, 2) ⊂ (3d, e, 3e, d)
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Table 6.6, part 2

Case F7: K = 4,
(2, 4, 2d) ⊂ (2, 2, d, d)

Case F8: K = 4,
(3, 3, 2d) ⊂ (3, d, 3, d)

Case F9: K = 4,
(3, 3, 3d) ⊂ (3, 3d, 3, d)

Case F10: K = 5,
(2, 4, 6d) ⊂ (2, 4, 2d, 3d)

Case F11: K = 5,
(2, 2d, 5) ⊂ (2, d, d, 2d)

Case F12: K = 6,
(2, 3, 3d) ⊂ (2, d, 2, d)
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Table 6.6, part 3

Case F13: K = 6,
(2, 3, 4d) ⊂ (2, 2d, 2, d)

Case F14: K = 6,
(4, 2, 3d) ⊂ (4, 4, d, d)

Case F15: K = 6,
(6d, 2, 4) ⊂ (6d, 2d, 2, 3d)

Case F16: K = 6,
(5, 6d, 2) ⊂ (5, 2d, 3d, 6d)

Case F17: K = 6,
(2d, 6, 2) ⊂ (2d, 2d, d, d)

Case F18: K = 7,
(2, 3, 10d) ⊂ (2, 5d, 3, 2d)
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Table 6.6, part 4

Case F19: K = 7,
(2, 3, 12d) ⊂ (2, 3d, 3, 4d)

Case F20: K = 8,
(3, 4d, 2) ⊂ (3, d, 3, d)

Case F21: K = 8,
(3, 6d, 2) ⊂ (3, d, 3, 3d)

Case F22: K = 8,
(2d, 2, 4) ⊂ (d, d, d, d)

Case F23: K = 8,
(3d, 2, 4) ⊂ (3d, d, 3d, d)

Case F24: K = 8,
(4d, 4, 2) ⊂ (4d, 2d, 4d, d)



Divisible Tilings in the Hyperbolic Plane 275

Table 6.6, part 5

Case F25: K = 9,
(2, 3, 12d) ⊂ (2, 4d, 6d, 3d)

Case F26: K = 9,
(2, 3, 15d) ⊂ (2, 3d, 15d, 5d)

Case F27: K = 9,
(2, 6d, 3) ⊂ (2, d, 6d, 3d)

Case F28: K = 10,
(3, 14d, 2) ⊂ (3, 2d, 14d, 7d)

Case F29: K = 10,
(3, 2, 20d) ⊂ (3, 4d, 20d, 5d)

Case F30: K = 10,
(3, 2, 30d) ⊂ (3, 10d, 15d, 6d)
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Table 6.6, part 6

Case F31: K = 12,
(4d, 2, 3) ⊂ (2d, d, 2d, d)

Case F32: K = 12,
(5d, 3, 2) ⊂ (5d, d, 5d, d)

Case F33: K = 12,
(6d, 3, 2) ⊂ (6d, 2d, 3d, d)

Case F34: K = 12,
(8d, 3, 2) ⊂ (8d, 4d, 8d, d)
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Table 6.7. Divisible quadrilaterals with constrained vertices

Case C1: K = 6,
(4, 4, 3) ⊂ (4, 4, 4, 4)

Case C2: K = 7,
(3, 5, 3) ⊂ (3, 3, 5, 5)

Case C3: K = 7,
(4, 3, 3) ⊂ (2, 3, 3, 4)

Case C4: K = 10,
(2, 4, 5) ⊂ (2, 2, 4, 4)

Case C5: K = 10,
(4, 2, 5) ⊂ (2, 2, 4, 4)

Case C6: K = 10,
(2, 5, 4) ⊂ (2, 4, 2, 4)
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Table 6.7, part 2

Case C7: K = 10,
(3, 3, 4) ⊂ (3, 4, 3, 4)

Case C8: K = 11,
(2, 4, 5) ⊂ (2, 2, 4, 5)

Case C9: K = 12,
(2, 8, 3) ⊂ (2, 2, 4, 4)

Case C10: K = 12,
(6, 4, 2) ⊂ (3, 3, 6, 6)

Case C11: K = 12,
(4, 2, 6) ⊂ (4, 4, 4, 4)

Case C12: K = 12,
(5, 2, 5) ⊂ (5, 5, 5, 5)
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Table 6.7, part 3

Case C13: K = 12,
(4, 3, 3) ⊂ (4, 4, 4, 4)

Case C14: K = 14,
(8, 3, 2) ⊂ (2, 3, 3, 4)

Case C15: K = 14,
(3, 10, 2) ⊂ (3, 3, 5, 5)

Case C16: K = 15,
(2, 3, 10) ⊂ (2, 5, 5, 10)

Case C17: K = 16,
(9, 3, 2) ⊂ (3, 3, 3, 9)

Case C18: K = 16,
(4, 2, 5) ⊂ (2, 4, 5, 4)
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Table 6.7, part 4

Case C19: K = 18,
(12, 3, 2) ⊂ (6, 6, 12, 12)

Case C20: K = 20,
(3, 2, 8) ⊂ (3, 4, 3, 4)

Case C21: K = 20,
(4, 2, 5) ⊂ (4, 4, 4, 4)

Case C22: K = 20,
(4, 2, 5) ⊂ (4, 4, 5, 5)

Case C23: K = 24,
(8, 3, 2) ⊂ (2, 8, 4, 8)

Case C24: K = 24,
(8, 3, 2) ⊂ (4, 4, 4, 4)
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Table 6.7, part 5

Case C25: K = 24,
(5, 4, 2) ⊂ (5, 5, 5, 5)

Case C26: K = 30,
(2, 3, 7) ⊂ (2, 7, 2, 7)

Case C27: K = 44,
(3, 7, 2) ⊂ (3, 7, 3, 7)

Table 6.8. Quadrilaterals subdivided by quadrilaterals

Case QF1: K = 2,
(d, e, 2, 2) ⊂ (d, e, e, d)

Case QF2: K = 3,
(d, 2, 2, 2) ⊂ (d, d, d, d)
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Appendix A. Triangles with area ≤ π
4

Angle Description µ

(2, 3, 7) 1
42

(2, 3, 8) 1
24

(2, 4, 5) 1
20

(2, 3, 9) 1
18

(2, 3, d), d = 10, 11 d−6
6d

(2, 3, 12), (2, 4, 6), (3, 3, 4) 1
12

(2, 3, d), d = 13, 14 d−6
6d

(2, 3, 15), (2, 5, 5) 1
10

(2, 3, 16) 5
48

(2, 4, 7) 3
28

(2, 3, 17) 11
102

(2, 3, d), 18 ≤ d ≤ 23 d−6
6d

(2, 3, 24), (2, 4, 8) 1
8

(2, 3, d), 25 ≤ d ≤ 29 d−6
6d

(2, 3, 30), (2, 5, 6), (3, 3, 5) 2
15

(2, 3, d), 31 ≤ d ≤ 35 d−6
6d

(2, 3, 36), (2, 4, 9) 5
36

(2, 3, d), 37 ≤ d ≤ 59 d−6
6d

(2, 3, 60), (2, 4, 10) 3
20

(2, 3, d), 61 ≤ d ≤ 104 d−6
6d

(2, 3, 105), (2, 5, 7) 11
70

(2, 3, d), 106 ≤ d ≤ 131 d−6
6d

(2, 3, 132), (2, 4, 11) 7
44

(2, 3, d), d ≥ 133 d−6
6d

(2, 4, 12), (2, 6, 6), 1
6

(3, 3, 6), (3, 4, 4) 1
6

(2, 4, 13) 9
52

(2, 5, 8) 7
40

(2, 4, d), 14 ≤ d ≤ 16 d−4
4d

(2, 5, 9) 17
90

(2, 6, 7), (3, 3, 7) 4
21

(2, 4, d), 17 ≤ d ≤ 19 d−4
4d

(2, 4, 20), (2, 5, 10) 1
5

(2, 4, d), 21 ≤ d ≤ 23 d−4
4d

Angle Description µ

(2, 4, 24), (2, 6, 8), (3, 3, 8) 5
24

(2, 5, 11) 23
110

(2, 4, d), 25 ≤ d ≤ 27 d−4
4d

(2, 4, 28), (2, 7, 7) 3
14

(2, 4, 29) 25
116

(2, 4, 30), (2, 5, 12), (3, 4, 5) 13
60

(2, 4, d), 31 ≤ d ≤ 35 d−4
4d

(2, 4, 36), (2, 6, 9), (3, 3, 9) 2
9

(2, 4, 37) 33
148

(2, 5, 13) 29
130

(2, 4, d), 38 ≤ d ≤ 46 d−4
4d

(2, 5, 14) 8
35

(2, 4, d), 47 ≤ d ≤ 55 d−4
4d

(2, 4, 56), (2, 7, 8) 13
56

(2, 4, d), 57 ≤ d ≤ 59 d−4
4d

(2, 4, 60), (2, 5, 15) 7
30

(2, 6, 10), (3, 3, 10) 7
30

(2, 4, d), 61 ≤ d ≤ 79 d−4
4d

(2, 4, 80), (2, 5, 16) 19
80

(2, 4, d), 81 ≤ d ≤ 113 d−4
4d

(2, 5, 17) 41
170

(2, 4, d), 114 ≤ d ≤ 131 d−4
4d

(2, 4, 132), (2, 6, 11), (3, 3, 11) 8
33

(2, 4, d), 133 ≤ d ≤ 179 d−4
4d

(2, 4, 180), (2, 5, 18) 11
45

(2, 4, d), 181 ≤ d ≤ 251 d−4
4d

(2, 4, 252), (2, 7, 9) 31
126

(2, 4, d), 253 ≤ d ≤ 379 d−4
4d

(2, 4, 380), (2, 5, 19) 47
190

(2, 4, d), d ≥ 381 d−4
4d

(2, 5, 20), (2, 6, 12) 1
4

(2, 8, 8), (3, 3, 12) 1
4

(3, 4, 6), (4, 4, 4) 1
4
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