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Multigraded Modules

Hara Charalambous and Christa Deno

Abstract. Let R = k[x1, . . . , xn] be a polynomial ring over a field k. We
present a characterization of multigraded R-modules in terms of the minors of
their presentation matrix. We describe explicitly the second syzygies of any
multigraded R-module.
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1. Introduction

In what follows k is a field and R = k[x1, . . . , xn] is the polynomial ring in n
variables over k. Traditionally, monomial ideals of R have been the focus of intense
study: Apart from providing a wide basis for examples, their theory is accessible
and beautiful, they reflect various extremal properties of general ideals, and they
form the link to combinatorial commutative algebra, [Ei94].

A natural generalization of the notion of monomial ideals is the notion of multi-
graded modules. These are the modules that stay graded with respect to any
grading of the indeterminates. Such modules were considered in [Sa90], [Ch91],
[BrHe95], [Mi99], [Rö99], [Ya99], [Sb00]. In the first section of this note we present
a necessary and sufficient condition for a module to be multigraded in terms of the
minors of its presentation matrix.

In the second section of this note we disscuss the multigraded generators of the
second syzygy of a multigraded module and discuss a generalization of the well
known Taylor resolution for multigraded modules.
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2. Deciding when a module is multigraded

First we note that R = ⊕Ri where i = (i1, . . . , id), and Ri = kxi1
1 x

i2
2 . . . xid

d .
Moreover RiRj ⊂ Ri+j . An R-module M is multigraded if there is a collection
of additive subgroups Mj = Mj1,j2,...,jd

with the properties that M ∼= ⊕Mj and
RiMj ⊂ Mi+j . A nonzero element of Mj has multidegree j while the multidegree of
the zero element is undefined. If F = Re1⊕· · ·⊕Ren and ej has multidegree rj then
F is multigraded and Fi = Rk1e1⊕· · ·⊕Rknen where kj +rj = i. A homomorphism,
ϕ : M−→N , between two multigraded modules is a multigraded homomorphism
if there exists a multidegree r = (r1, r2, . . . rd), such that ϕ(Mj) ⊂ Nr+j . Any
monomial ideal of R is multigraded as are quotients of multigraded modules and
the syzygies in multigraded resolutions. Whenever ϕ : M−→N is a multigraded
homomorphism, by adjusting the degrees of the generators of M and N if necessary,
we can assume that ϕ has multidegree 0. If F1 = ⊕n

i=1Rεi, F2 = ⊕m
j=1Rej , εi, ej

have multidegrees si and rj respectively, and ϕ(εj) =
∑

t atjet is a multigraded
homomorphism of degree 0, then atj = λtjx

αtj where αtj = sj − rt. Conversely the
matrix (λtjx

αtj ) is multigraded if there exists sj and rt such that

sj = αtj + rt

for {i = 1, . . . ,m}, {j = 1, . . . , n}, and λtj 
= 0, [Ch90].

Example 1. A is multigraded while B is not:

A =


 xy2 xyz 0

yz2 0 x2z
0 yz2 x2y


 , B =


 x y 0

z 0 x
0 z y


 .

In Theorem 2 we give a criterion for the matrix A to be multigraded that involves
computing all size minors of the matrix A. One could state the same criterion
in terms of the sums of the multidegrees along all permutations possible of any
collection of rows and columns of A. Below we set our notation. If A = (aij)
is a monomial matrix and A′ is the k × k submatrix of A formed by the rows
i1, . . . , ik and columns j1, . . . , jk, the determinant of A′ is the sum: det(A′) =∑

σ∈Sk

sign(σ)ai1σ(j1)ai2σ(j2) . . . ainσ(jk) and the multidegree of the nonzero σ-term
is the sum αi1σ(j1) + αi2σ(j2) · · · + αinσ(jk). The following theorem shows that the
consistency of the system of equations is equivalent to the condition that the nonzero
terms of det(A′) have the same multidegree, for each square submatrix A′.

Theorem 2. Let A = (aij) be an m×n monomial matrix. A is multigraded if and
only if the nonzero terms of the determinant of any square submatrix of A have the
same multidegree.

Proof. First we note that the necessity of this criterion follows at once since there
is a functor from modules to exterior powers which respects grading. For a direct
proof, one can assume that A is a k × k multigraded matrix and σ and τ are
two elements of Sk that correspond to nonzero terms of detA. The corresponding
multidegrees are

∑
αi,σ(i) and

∑
αi,τ(i). Since A is multigraded,∑

αi,σ(i) +
∑

ri =
∑

sσ(i) =
∑

sτ(i) =
∑

αi,τ(i) +
∑

ri,

and
∑

αi,σ(i) =
∑

αi,τ(i).
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Next we prove the sufficiency of our criterion. Note that A is multigraded if and
only if for each sequence {(αi1,j1 , αi1,j2), . . . , (αik−1,jk−1 , αik−1,jk

), (αik,jk
)}, then

sj1 = αi1,j1 − ri1 = αi1,j1 − αi1,j2 + sj2 = · · · =
= αi1,j1 − αi1,j2 + αi2,j2 − · · · + αik,jk

− rik

= (αi1,j1 + αi2,j2 + · · · + αik,jk
) − (αi1,j2 + αi2,j3 + · · · + αik−1,jk

) − rik
.

If A is not multigraded then for some {j1, ik} there are two sets of indices

{(i1, j1), (i2, j2), . . . , (ik, jk)} and {(i′1, j1), (i′2, j
′
2), . . . , (i′l, j

′
l)},

where i′l = ik and

(αi1,j1 + αi2,j2 + · · · + αik,jk
) − (αi1,j2 + αi2,j3 + · · · + αik−1,jk

) − rik


= (αi′1,j1 + αi′2,j′
2

+ · · · + αik,j′
l
) − (αi′1,j′

2
+ αi′2,j′

3
+ · · · + αi′l−1,j′

l
) − r′il

.

Since rik
= r′il

, this implies that

(αi1,j1 + αi2,j2 + · · · + αik,jk
) + (αi′1,j′

2
+ αi′2,j′

3
+ · · · + αi′l−1,j′

l
)


= (αi1,j2 + αi2,j3 + · · · + αik−1,jk
) + (αi′1,j1 + αi′2,j′

2
+ · · · + αik,j′

l
).

Next we consider the submatrix A′ of A, formed by taking the rows i1, . . . ,
ik,i′1, . . . , i

′
l−1 and the columns j1, . . . , jk, j′2, . . . , j

′
l . The two sums above represent

two nonzero terms of its determinant with different multidegree. �

It is clear that if the criterion of Theorem 2 is satisfied then all minors of A are
generated by monomials. In [De99] we show that Theorem 2 is actually equivalent
to the condition that all minors of A are generated by monomials.

If A satisfies Theorem 2, one can apply the following procedure to obtain multi-
degrees ri and sj by moving along the columns and rows of A, [De99]:

1. Set r1 := 0.
2. If ri but not sj has an assigned value, and aij 
= 0, then sj := αij + ri.
3. If sj but not ri has an asssigned value, and aij 
= 0, then ri := sj − αij .
4. If ri does not have an assigned value, and for every j such that aij 
= 0 sj

also does not have a value, then ri := 0.
By adding appropriate positive vectors, the multidegrees can be adjusted so that
the components of ri, sj are greater than or equal to zero for all i and j.

Example 3. Let A be the matrix of Example 1. The multidegrees of its rows
and columns are: r1 = (0, 0, 0), s1 = (1, 2, 0), s2 = (1, 1, 1), r2 = (1, 1,−2), s3 =
(3, 1,−1), and r3 = (1,−1,−1). By adding (0, 1, 2) to the above we get a set of
positive multidegrees for the rows and columns of A.

Remark 4. The columns of a multigraded matrix may not be a Gröbner basis
(with respect to the usual monomial gradings), for the space they generate, as is
the case with the matrix A.

Remark 5. Any multigraded module M can be lifted to a multigraded squarefree
module M over a polynomial ring R so that if F is a projective resolution of M
over R then F ⊗R is a projective resolution of M over R, [BrHe95]. By squarefree
we mean that the multigraded presentation matrix of M consists of squarefree
monomials. With the notation as above, suppose that the square of some variable
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y divides an entry of M . To find M with respect to y, we concentrate to the
columns with the highest y-degree, and if aij is divisible by y, we replace it by
yk
aij

y
. We repeat this procedure (and increase the index of yk), until we reach M.

For example the z-squarefree multigraded matrix that corresponds to the matrix A
of Example 1 is:

A′ =


 xy2 xyz2 0

yzz1 0 x2z
0 yz1z2 x2y




3. Resolving a m × n multigraded matrix

In this section we describe the second syzygies of M = cokerφ, where φ cor-
responds to the multigraded m × n matrix A = (aij): Rn φ−→Rm−→M−→0. We
note that in [De99], we describe the explicit minimal resolution for all modules
when n = 4, m = 2. Let ε1, . . . , εn be the generators of Rn. Moreover suppose
that Ik(A) 
= 0 while Ik+1(A) = 0. We will describe the second syzygies of M as
elements of the free module Rt with generators eI

J , where t =
(

n
k+1

)(
m
k

)
, and J and

I are ordered sets of length k + 1 and k respectively.
We let I be the ordered set {i1, . . . , ik}, J be the ordered set {j1, . . . , jk+1}, Jl be

the ordered set (J, ĵl), M I
Jl

be the determinant of the k× k submatrix of A formed
by considering the rows indexed by I and the columns indexed by Jl, and we let
gI

J be the monic monomial which is the greatest common divisor of M I
Jl

.
We define the homomorphism ϕ2 : Rt−→Rn, by

ϕ2(eI
J) =

∑
(−1)l+1

M I
Jl

gI
J

εjl
.

We note that ϕ2 is multigraded and that the y-degree of eI
J equals the maximum

of y-degrees of εjl
. Let B be the matrix of ϕ2. Next we show that the image of ϕ2

generates the second syzygies of M .

Theorem 6. Let A be a multigraded m×n matrix corresponding to the homomor-
phism ϕ. The following sequence is exact:

Rt ϕ2−→Rn ϕ−→Rm−→M−→0.

Proof. The entries (ABij) of the product AB are equal to zero: If j is the column
of B that corresponds to the image of eI

J then ABij is the determinant of a (k +
1) × (k + 1) matrix with two equal rows when i ∈ I, while when i /∈ I then
ABij ∈ Ik+1(A) and is zero by the hypothesis on the minors of A. It follows that
ϕ(ϕ2) = 0. To prove the theorem, it is enough to show that ker(ϕ) ⊂ im(ϕ2). Let
A be any multigraded m × n matrix and let A be the corresponding squarefree
matrix, MI

J , γI
J be the corresponding determinants and greatest common divisors

of A. Since MI
J ⊗ R = MJ

I , γI
J ⊗ R = gI

J it is enough to show that the theorem
holds for squarefree multigraded matrices.

Let A be a multigraded squarefree m× n matrix. We will use induction on the
sum of the total degrees of the monomial entries of A.

Suppose that this degree is 0. Without loss of generality we can reorder the
rows and columns of A so that M1,...,k

1,...,k 
= 0. We let I denote the set {1, . . . , k}.
We consider the k × k submatrix A′ of A which consists of the first k rows and k
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columns of A and we let C be the m×m invertible matrix which is the direct sum
of adj(A′) and the (m − k) × (m − k) identity matrix. Since C is invertible the
nullspaces of A and CA are the same. The product CA is the matrix




M I
I 0 . . . 0

0 M I
I . . . 0

...
. . .

...
0 0 . . . M I

I

−M I
I,1̂,k+1

. . . −M I
I,1̂,n

M I
I,2̂,k+1

. . . M I
I,2̂,n

...
. . .

...
(−1)kM I

I,k̂,k+1
. . . (−1)kM I

I,k̂,n

ak+1,1 . . . ak+1,k

...
. . .

...
am,1 . . . am,k

ak+1,k+1 . . . ak+1,n

...
. . .

...
am,k+1 . . . am,n



.

The row reduced form of A (and CA) consists of a k×k identity block. Therefore
it is equal to

1
M I

I




M I
I 0 . . . 0

0 M I
I . . . 0

...
. . .

0 0 . . . M I
I

−M I
I,1̂,k+1

. . . −M I
I,1̂,n

M I
I,2̂,k+1

. . . M I
I,2̂,n

...
. . .

...
(−1)kM I

I,k̂,k+1
. . . (−1)kM I

I,k̂,n

0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0



.

Therefore the kernel of ϕ is generated by elements of the form
∑

(−1)l+1M I
I,l̂,s

εl,
a subset of our proposed set of syzygies.

Suppose now that the sum of the total degrees of the monomial entries of A is
greater than or equal to 1. Let t be a minimal multigraded syzygy: t =

∑
tirεir .

The monomials tir
are squarefree and so are the terms M I

Jl
/gI

J . We assign multide-
grees to the columns of A. Moreover for any variable y, the y-degree of M I

Jl
/gI

J is
1 if and only if the y-degree of εis is 1 for is ∈ Jl while the y-degree of el is 0. Let x
be a variable that divides a nonzero entry of A, and let S be the multiplicative set
S = {1, x, x2, . . . }. We consider S−1R, and S−1M , and ϕ′ = S−1ϕ. The matrix A′

of ϕ′ consists of the entries of A evaluated at x = 1: A′ = (a′ij) where a′ij = aij |x=1,
and is multigraded squarefree. Next we consider t′ =

∑
t′ir
ε′ir

where t′j = tj |xl=1

and ε′j are the generators of S−1Rn. Since t′ is a second syzygy of coker(ϕ′), and

the induction hypotheses are satisfied, t′ =
∑

bJ,I

(∑
(−1)l+1

M I
Jl

gI
J

ε′jl

)
. If the x-

degree of t is 0, then it is easy to see that t =
∑

b′J,I

(∑
(−1)l+1

M I
Jl

gI
J

εjl

)
. If the

x-degree of t is 1, we let bJ,I = xb′J,I when the x-degree of εjl
is 0 for all jl ∈ J and

otherwise we let bJ,I = b′J,I . The element g =
∑

bJ,I

(∑
(−1)l+1

M I
Jl

gI
J

εjl

)
has the

same multidegree as t and S−1g = t′, therefore g = t. �
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In particular, when m = 2 and I2(A) 
= 0, the syzygies of M are of the form{
Mjk

gijk
εi − Mik

gijk
εj +

Mij

gijk
εk

}
where Mij = M12

ij and gijk = g12
ijk.

We note that Theorem 6 agrees with the first step in the Buchsbaum-Rim com-
plex whenever the latter one is exact. We also note that Theorem 6 in general
does not provide a minimal set of second syzygies. For example suppose that
I2(A) = 0, and let (T•, θ•) be the Taylor resolution on the entries of any row, r,
[Ei94], ar1, ar2, . . . , arn, and let (F•, d•) be the complex where F0 = R2, F1 = Rn,
the map d1 is given by the matrix A, and (Fi, di) = (Ti, θi) for all i ≥ 2. In [De99]
we remarked the following:

Theorem 7. Let M be a multigraded module with I2(A) = 0. Then (F•, d•) is a
free resolution of M .

Proof. Since I2(A) = 0, d2d1 = 0 and F• is a complex and exact for i ≥ 1.
Moreover the grade of I1(A) ≥ 1 and by the Buchsbaum-Eisenbud criterion F• is
exact. �

In this case, the matrix of Theorem 6 is equal to m copies the matrix of d2.
We also remark that the first part of the proof of Theorem 6 shows that if

M I
J 
= 0, while M I′

J,j = 0 for all possible I ′, then there is a syzygy involving the
generators indexed by J and j. It can be shown that this syzygy can be expressed
in terms of the syzygies corresponding to the maximal nonzero minors.
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[Rö99] T. Römer, Generalized Alexander duality and applications, preprint, 1999.
[Sa90] L. Santoni, Horrocks’ question for monomially graded modules, Pacific J. Math., 141

(1990), 105–124, MR 91b:13022, Zbl 692.13009.
[Sb00] E. Sbarra Upper bounds for local cohomology for rings with given Hilbert function,

preprint, 2000.
[Ta60] D. Taylor, Ideals Generated by Monomials in an R-sequence, Thesis, University of

Chicago, 1960.
[Ya99] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree Nn-graded

modules, J. Algebra, 225 (2000), no. 2, 630–645, CMP 1 741 555.

Dept. of Math., SUNY, Albany, NY 12222
hara@math.albany.edu http://math.albany.edu:8000/˜hara

Dept. of Math. and Comp. Science, The Sage Colleges, Troy, NY 12180
denoc@sage.edu

This paper is available via http://nyjm.albany.edu:8000/j/2001/7-1.html.

http://nyjm.albany.edu:8000/j/2001/7-1.html
mailto:denoc@sage.edu
http://math.albany.edu:8000/~hara
mailto:hara@math.albany.edu
http://www.ams.org/mathscinet-getitem?mr=1741555
http://www.emis.de/cgi-bin/MATH-item?692.13009
http://www.ams.org/mathscinet-getitem?mr=91b:13022
http://www.ams.org/mathscinet-getitem?mr=1779598
http://www.emis.de/cgi-bin/MATH-item?653.13009
http://www.ams.org/mathscinet-getitem?mr=89d:13014
http://www.emis.de/cgi-bin/MATH-item?819.13001
http://www.emis.de/cgi-bin/MATH-item?729.13014
http://www.ams.org/mathscinet-getitem?mr=92b:13020
http://www.emis.de/cgi-bin/MATH-item?888.13004
http://www.ams.org/mathscinet-getitem?mr=96g:13013

