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Some Connections between Falconer’s Distance
Set Conjecture and Sets of Furstenburg Type

Nets Hawk Katz and Terence Tao

Abstract. In this paper we investigate three unsolved conjectures in geomet-
ric combinatorics, namely Falconer’s distance set conjecture, the dimension
of Furstenburg sets, and Erdös’s ring conjecture. We formulate natural δ-
discretized versions of these conjectures and show that in a certain sense that
these discretized versions are equivalent.
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1. Introduction

In this paper we study Falconer’s distance problem, the dimension of sets of
Furstenburg type, and Erdös’s ring problem. Although we have no direct progress

Received January 22, 2001.
Mathematics Subject Classification. 05B99, 28A78, 28A75.
Key words and phrases. Falconer distance set conjecture, Furstenberg sets, Hausdorff dimen-

sion, Erdös ring conjecture, combinatorial geometry.

ISSN 1076-9803/01

149

http://nyjm.albany.edu:8000/nyjm.html
http://nyjm.albany.edu:8000/j/2001/Vol7.html
http://nyjm.albany.edu:8000/j/2001/7-10.html


150 Nets Hawk Katz and Terence Tao

on any of these problems, we are able to reduce the geometric problems to δ-
discretized variants and show that these variants are all equivalent.

In order to state the main results we first must develop a certain amount of
notation.

1.1. Notation. 0 < ε � 1, 0 < δ � 1 are small parameters. We use A � B to
denote the estimate A ≤ Cεδ−CεB for some constants Cε, C, and A ≈ B to denote
A � B � A.

We use B(x, r) = Bn(x, r) to denote the open ball of radius r centered at x in
Rn, and A = An to denote any annulus in Rn of the form A := {x : |x| ≈ 1}.

If A is a finite set, we use #A to denote the cardinality of A. For finite sets A,
B, we say that A is a refinement of B if A ⊂ B and #A ≈ #B.

If E is contained in a subspace of Rn and has positive measure in that subspace,
we use |E| for the induced Lebesgue measure of E. The subspace will always be
clear from context.

For sets E,F of finite measure, we say that E is a refinement of F if E ⊂ F and
|E| ≈ |F |. We say that E is δ-discretized if E is the union of balls of radius ≈ δ.
Definition 1.2. For any 0 < α ≤ n, we say that a set E is a (δ, α)n-set if it is
contained in a ball Bn(0, C), is δ-discretized and one has

|E ∩B(x, r)| � δn(r/δ)α(1)

for all δ ≤ r ≤ 1 and x ∈ Rn.

Roughly speaking, a (δ, α)n-set behaves like the δ-neighbourhood of an α-dimen-
sional set in Rn. The condition (1) is necessary to ensure that E does not con-
centrate in a small ball, which would lead to some trivial counterexamples to the
conjectures in this paper (cf. the “two ends” condition in [17], [18]).

If X,Y are subsets of Rn, we use X + Y to denote the set X + Y := {x + y :
x ∈ X, y ∈ Y }. Similarly define X − Y , and (when n = 1) X · Y , X/Y , X2,

√
X,

etc. Note that X2 � X · X in general. Note that X × Y denotes the Cartesian
product X × Y := {(x, y) : x ∈ X, y ∈ Y } as opposed to the pointwise product
X ·Y := {xy : x ∈ X, y ∈ Y }. Unfortunately there is a conflict of notation between
X2 := {x2 : x ∈ X} and X2 := {(x, y) : x, y ∈ X}; to separate these two we shall
occasionally write the latter as X⊕2.

If a rectangle R has sides of length a, b for some a > b, we call the direction of R
the direction ω ∈ S1 that the sides of length a are oriented on. This is only defined
up to sign ±.

1.3. The Falconer distance problem. For any compact subset K of the plane
R2, define the distance set dist(K) ⊂ R of K by

dist(K) := |K −K| = {|x− y| : x, y ∈ K}.
In [8] Falconer conjectured that if dim(K) ≥ 1, then dim(dist(K)) = 1, where
dim(K) denotes the Hausdorff dimension ofK. As progress towards this conjecture,
it was shown in [8] that dim(dist(K)) = 1 obtained whenever dim(K) ≥ 3/2. This
was improved to dim(K) ≥ 13/9 by Bourgain [2] and then to dim(K) ≥ 4/3 by
Wolff [21]. These arguments are based around estimates for L2 circular means of
Fourier transforms of Frostman measures. However, it is unlikely that a purely
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Fourier-analytic approach will be able to improve upon the 4/3 exponent; for a
discussion, see [21].

Now suppose that one only assumes that dim(K) ≥ 1. An argument of Mattila
[12] shows that dim(dist(K)) ≥ 1

2 . One may ask whether there is any improvement
to this result, in the following sense:

Distance Conjecture 1.4. There exists an absolute constant c0 > 0 such that
dim(dist(K)) ≥ 1

2 + c0 whenever K is compact and satisfies dim(K) ≥ 1.

This is of course weaker than Falconer’s conjecture, but remains open.
One may hope to prove this conjecture by first showing a δ-discretized analogue.

As a naive first approximation, we may ask the informal question of whether (for
0 < δ, ε � 1) the distance set of a (δ, 1)2 set of measure ≈ δ can be (mostly)
contained in a (δ, 1/2)1 set.

Unfortunately, this problem has an essentially negative answer, as the counterex-
ample{

(x1, x2) : x1 = k
√
δ +O(δ), x2 = O(

√
δ) for some k ∈ Z, k = O

(
δ−1/2

)}
(2)

shows1 . A substantial portion of the distance set of (2) is contained in the δ-
neighbourhood of an arithmetic progression of spacing δ1/2, and this is a (δ, 1

2 )1
set.

Figure 1. An example to remember. Few blurred distances but
many blurred points.

This obstruction to solving Conjecture 1.4 can be eliminated by replacing the
above informal problem with a “bilinear” variant in which an angular separation
condition is assumed:2

Bilinear Distance Conjecture 1.5. Let Q0, Q1, Q2 be three cubes in B(0, C) of
radius ≈ 1 satisfying the separation condition

|(x1 − x0) ∧ (x2 − x0)| ≈ 1 for all x0 ∈ Q0, x1 ∈ Q1, x2 ∈ Q2.(3)

For each j = 0, 1, 2, let Ej be a (δ, 1)2 subset of Qj, and let D be a (δ, 1/2)1 subset
of R. Then

|{(x0, x1, x2) ∈ E0 × E1 × E2 : |x0 − x1|, |x0 − x2| ∈ D}| � δ3−c1(4)

where c1 > 0 is an absolute constant.

1This counterexample also appears in Fourier-based approaches to the distance problem. See
[21].

2This idea is frequently used in related problems, see, e.g., [15], [1], [20]. Other discretizations
are certainly possible, providing of course that (2) is neutralized.
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The estimate (4) is trivially true when c1 = 0. Also, if it were not for condition
(3) one could easily disprove (4) for any c1 > 0 by modifying (2). Conjecture 1.5
is also heuristically plausible from analogy with results on the discrete distance
problem such as Chung, Szemerédi and Trotter [4]. We remark that the arguments
in that paper require the construction of three cubes satisfying (3), and involve the
Szemerédi-Trotter Theorem (which may be considered as a result concerning the
discrete analogue of the Furstenburg problem).

Q0
Q1

Q2

Figure 2. In the bilinear distance conjecture, the points are split
into three camps.

In Section 9 we prove:

Theorem 1.6. A positive answer to the Bilinear Distance Conjecture 1.5 implies
a positive answer to the Distance Conjecture 1.4.

Although this implication looks plausible from discretization heuristics, there are
technical difficulties due to the presence of the counter-example (2), and also by
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the fact that several scales may be in play when studying the Hausdorff dimension
of a set.

1.7. Dimension of sets of Furstenburg type. We now turn to a problem arising
from the work of Furstenburg, as formulated in work of Wolff [19], [21].

Definition 1.8. Let 0 < β ≤ 1. We define a β-set to be a compact set K ⊂ R2

such that for every direction ω ∈ S1 there exists a line segment lω with direction
ω which intersects K in a set with Hausdorff dimension at least β. We let γ(β) be
the infimum of the Hausdorff dimensions of β-sets.

In [19] the problem of determining γ(β) is formulated. At present the best
bounds known are

max(β +
1
2
, 2β) ≤ γ(β) ≤ 3

2
β +

1
2
;

see [19]. This problem is clearly connected with the Kakeya problem (which is
essentially concerned with the higher-dimensional analogue of γ(1)). Connections
to the Falconer distance set problem have also been made; see [21].

The most interesting value of β appears to be β = 1/2. In this case the two
lower bounds on γ(β) coincide to become γ( 1

2 ) ≥ 1. We ask:

Furstenburg Problem 1.9. Is it true that γ( 1
2 ) ≥ 1 + c2 for some absolute con-

stant c2 > 0? In other words, is it true that 1
2 -sets must have Hausdorff dimension

at least 1 + c2?

One can δ-discretize this problem as:

Discretized Furstenburg Conjecture 1.10. Let 0 < δ � 1, and let Ω be a δ-
separated set of directions, and for each ω ∈ Ω let Rω be a (δ, 1

2 )2 set contained in
a rectangle of dimensions ≈ 1 × δ oriented in the direction ω. Let E be a (δ, 1)2
set. Then

|{(x0, x1) ∈ E × E : x1, x0 ∈ Rω for some ω ∈ Ω}| � δ2+c3(5)

for some absolute constant c3 > 0.

As before, this conjecture is heuristically plausible from analogy with discrete
incidence combinatorics, in particular the Szemerédi-Trotter Theorem [14]. Unlike
the case with the distance problem, the set (2) does not provide a serious threat,
and so one does not need to go to a bilinear framework.

The Discretized Furstenburg Conjecture 1.10 is related to the Furstenburg Con-
jecture 1.9 in much the same way that the Kakeya maximal function conjecture is
related to the Kakeya set conjecture. In Section 8 we show:

Theorem 1.11. A positive answer to the Discretized Furstenburg Conjecture 1.10
implies a positive answer to the Furstenburg Problem 1.9.

1.12. The Erdös ring problem. We consider a problem of Erdös, namely:

Ring Problem 1.13. Does there exist a subring R of R which is a Borel set and
has Hausdorff dimension strictly between 0 and 1?

This problem is connected to Falconer’s distance problem; for instance, Falconer
[8] used results on the distance problem to show that Borel subrings R of R could
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not have Hausdorff dimension strictly between 1/2 and 1. Essentially, the idea is
to use the fact that dist(R×R) ⊆ √

R.
We concentrate on the specific problem of whether a subring can have dimension

exactly 1/2; it seems reasonable to conjecture that such rings do not exist. A
positive answer to Conjecture 1.4 would essentially imply this conjecture.

If R is a ring of dimension 1/2, then of course R+R and RR also have dimension
1/2. This leads us to the following δ-discretization of the above conjecture.

Ring Conjecture 1.14. Let 0 < δ � 1, and let A ⊂ A be a (δ, 1
2 )1 set of measure

≈ δ1/2. Then at least one of A+A and AA has measure � δ 1
2−c4 , where c4 > 0 is

an absolute constant.

The dimension condition (1) is crucial, as the trivial counterexample A := [1, 1+
δ1/2] demonstrates. In principle the discretized ring conjecture gives a negative
answer to the Erdös ring problem, but we have not been able to make this rigorous.

For the discrete version of this problem, when measure is replaced by cardinality,
there is a result of Elekes [6] that when A has finite cardinality #A, at least one
of A + A and AA has cardinality � #A5/4 . The proof of this result exploits the
Szemerédi-Trotter Theorem. This is heuristic evidence for Ring Conjecture 1.14
if one accepts the (somewhat questionable) analogy between discrete models and
δ-discretized models.

It may appear that the ring hypothesis is being under-exploited when reducing to
Ring Conjecture 1.14, since one is only using the fact that R+R and RR are small.
However, we shall see in Proposition 4.2 that control on A + A and AA actually
implies quite good control on other arithmetic expressions such as AA − AA or
(A− A)2 + (A− A)2 (after passing to a refinement), so the ring hypothesis is not
being wasted.

1.15. The main result.
One Ring to rule them all,
One Ring to find them,
One Ring to bring them all,
and in the darkness bind them. [16]

As one can see from the previous discussion, there have been many partial con-
nections drawn between the Falconer, Furstenburg, and Erdös problems. The main
result of this paper is to consolidate these connections into:

Main Theorem 1.16. Conjectures 1.5, 1.10, and 1.14 are logically equivalent.

We shall prove this theorem in Sections 3-6.
In particular, in order to make progress on the Falconer and Furstenburg prob-

lems it suffices to prove the Ring Conjecture 1.14. This appears to be the easiest
of all the above problems to attack. It seems likely that one needs to exploit some
sort of “curvature” between addition and multiplication to prove this conjecture,
although a naive Fourier-analytic pursuit of this idea seems to run into difficul-
ties. This may indicate that a combinatorial approach will be more fruitful than a
Fourier approach. The fact that R is a totally ordered field may also be relevant,
since the analogue of Erdös’s ring problem is false for non-ordered fields such as
the complex numbers C or the finite field Fp2 . (Unsurprisingly, the analogues of
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Falconer’s distance problem and the conjectures for Furstenburg sets also fail for
these fields; see, e.g., [19].)

These problems are also related to the Kakeya problem in three dimensions,
although the connection here is more tenuous. A proof of Conjecture 1.14 would
probably lead (eventually!) to an alternate proof of the main result in [10], namely
that Besicovitch sets3 in R3 have Minkowski dimension strictly greater than 5/2,
and would not rely as heavily on the assumption that the line segments all point
in different directions. Very informally, the point is that the arguments in [10] can
be pushed a bit further to conclude that a Besicovitch set of dimension exactly
5/2 must essentially be a “Heisenberg group” over a ring of dimension 1/2. We
shall not pursue this connection in detail as it is somewhat lengthy and would not
directly yield any new progress on the Kakeya problem.

In conclusion, these results indicate that the possibility of 1/2-dimensional rings
is a fundamental obstruction to further progress on the Falconer and Furstenburg
problems, and may also be obstructing progress on the Kakeya conjecture and
related problems (restriction, Bochner-Riesz, Stein’s conjecture, local smoothing,
etc.). It also appears that substantially new techniques are needed to tackle this
obstruction, possibly exploiting the ordering of the reals.

2. Basic tools

In this section 0 < ε� 1 is fixed, but δ is allowed to vary. As in other sections,
the implicit constants here are not allowed to depend on δ.

To clarify many of the arguments in this paper, it may help to know that almost
all estimates of the form A � B which occur in this paper are sharp in the sense
that the converse bound A � B is usually trivial to prove. It is this sharpness which
allows us to pass from one expression to another without losing very much in the
estimates (if one does not mind the implicit constants in the � notation increasing
very quickly).

A typical application of this philosophy is:

Cauchy-Schwarz 2.1. Let A, B be sets of finite measure, and let ∼ be a relation
between elements of A and elements of B. If

|{(a, b) ∈ A×B : a ∼ b}| ≥ λ|A||B|
for some 0 < λ ≤ 1 then

|{(a, b, b′) ∈ A×B ×B : a ∼ b, a ∼ b′}| ≥ λ2|A||B|2.
Proof. We can rewrite the hypothesis as∫

A

|{b ∈ B : a ∼ b}| da ≥ λ|A||B|

and the conclusion as ∫
A

|{b ∈ B : a ∼ b}|2 da ≥ λ2|A||B|2.

The claim then follows from Cauchy-Schwarz. �

3A Besicovitch set is a set which contains a unit line segment in every direction.
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The next lemma deals with the issue of how to refine a δ-discretized set to become
a (δ, α)n set for suitable α.

Refinement 2.2. Let 0 < δ � 1 be a dyadic number, 0 < α < n, K � 1 be
a constant, and let E be a δ-discretized set in Bn(0, C) such that |E| � δn−α.
Then one can find a set Eδ′ for all dyadic δ < δ′ ≤ 1 which can be covered by
� δKεδ′−α balls of radius δ′, and a set (δ, α)n set E∗ (with the implicit constants
in the definition of a (δ, α)n set depending on K) such that

E ⊆ E∗ ∪
⋃

δ<δ′≤1

Eδ′ .

Proof. Define the sets Eδ′ by

Eδ′ :=
{
x ∈ Rn : |E ∩B(x, δ′)| ≥ δ−Kεδn(δ′/δ)α}

and E∗ by

E∗ :=

E\ ⋃
δ<δ′≤1

Eδ′

+B(0, δ).

The required properties on Eδ′ and E∗ are then easily verified. �

Separation 2.3. Let X be a (δ, α)n set in Rn for some 0 < α < n such that
|X| ≈ δn−α. Then there exist refinements X1, X2 of X which respectively live in
cubes Q1, Q2 of size and separation ≈ 1 with |Q1| = |Q2|, and |X1|, |X2| ≈ δn−α.
Proof. By (1) we see that

|X ∩Q| ≤ 10−n|X|
for all cubes Q of side-length δC1ε, if C1 is a sufficiently large constant. The claim
then follows by covering B(0, C) with such cubes, extracting the top 5n cubes in
that collection which maximize |X ∩Q|, picking two of those cubes Q1, Q2 which
are not adjacent, and setting Xi := X ∩ Qi for i = 1, 2. We leave the verification
of the desired properties to the reader. �

For any function f in R2, define the Kakeya maximal function f∗δ (ω) for ω ∈ S1

by

f∗δ (ω) := sup
R

1
|R|

∫
R

|f |,

where R ranges over all 1× δ rectangles oriented in the direction ω.
The following estimate can be found in [5] (see also Lemma 6.2):

Kakeya 2.4 (Córdoba’s estimate). We have

‖f∗δ ‖2 � ‖f‖2.

Dually, if we set Rω be a collection of δ× 1 rectangles oriented in a δ-separated set
of directions, then ∥∥∥∥∑

ω

χRω

∥∥∥∥
2

� 1.
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3. Arithmetic combinatorics

We shall prove Theorem 1.16 by showing that

Bilinear Distance �� Discretized Ring

�� ������������

������������

Discretized Furstenburg

�� �������������

�������������

We shall need a number of standard results concerning the cardinality of sum-sets
A + B and difference sets A − B, and partial sum-sets {a + b : (a, b) ∈ G}, where
G is a large subset of A×B.

We first give the results in a discrete setting.

Lemma 3.1. [13] Suppose A1, A2 are finite subsets of R such that

#(A1 +A2) ≈ #A1 ≈ #A2.

Then we have
#(Ai1 ± · · · ±AiN ) ≈ #A1

for all choices of signs ± and i1, . . . , iN ∈ {1, 2}, where the implicit constants
depend on N . Also, we can find a refinement A′

1 of A1 and a real number x such
that x+A′

1 is a refinement of A2.

Proof. Most of these results are in [13]. For the last result, observe that the
discrete function χ−A1 ∗ χA2 has an l1 norm ≈ (#A1)2 and is supported in a set
of cardinality ≈ #A1 by the results in [13]. Thus one can find an x such that
χ−A1 ∗ χA2(x) � #A1, and the claim follows by setting A′

1 = A1 ∩ (A2 − x). �

We also need Bourgain’s variant of the Balog-Szemerédi Theorem [3] (as used in
Gowers [9]), namely:

Lemma 3.2. [3] Let N � 1 be an integer, and let A, B be finite subsets of R such
that

#A,#B ≈ N.
Suppose there exists a refinement G of A×B such that

#{a+ b : (a, b) ∈ G} � N.

Then we can find refinements A′, B′ of A and B respectively such that G∩(A′×B′)
is a refinement of A′ ×B′, and for all (a′, b′) ∈ A′ ×B′ we have

#{(a1, a2, a3, b1, b2, b3) ∈ A×A×A×B ×B ×B :

a′ − b′ = (a1 − b1)− (a2 − b2) + (a3 − b3)} ≈ N5.

In particular, we have
#(A′ −B′) ≈ N.

We can easily replace these discrete lemmata with δ-discretized variants as fol-
lows.
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Corollary 3.3. Suppose A,B are finite unions of intervals of length ≈ δ such that
|A+B| ≈ |A| ≈ |B|.

Then we have
|A± · · · ±A| ≈ |A|

for all choices of signs ±, with the implicit constants depending on the number of
signs. Also, we can find a refinement A′ of A and a real number x such that x+A′

is a refinement of B.

Perfection 3.4. Let r � δ, and let A, B be finite unions of intervals of length ≈ δ
such that

|A|, |B| ≈ r.
Suppose there exists a refinement G of A×B such that

|{a+ b : (a, b) ∈ G}| � r.
Then we can find δ-discretized refinements A′, B′ of A and B respectively such that
G ∩ (A′ ×B′) is a refinement of A′ ×B′, and for all (a′, b′) ∈ A′ ×B′ we have

|{(a1, a2, a3, b1, b2, b3) ∈ A×A×A×B ×B ×B :

a′ − b′ = (a1 − b1)− (a2 − b2) + (a3 − b3)}| ≈ r5.
In particular, we have

|A′ −B′| ≈ r.
To obtain these corollaries, we first observe that any δ-discretized set A contains

the ≈ δ-neighbourhood of a discrete set A∗ of cardinality #A∗ ≈ |A|/δ which is
contained in an arithmetic progression of spacing ≈ δ. The claims then follow by
applying the previous lemmata to A∗, B∗. (See also the proof of [3], Lemma 2.83).

We also observe the trivial estimate

|A+B| � |A|, |B|(6)

for all sets A, B.
If we also assume that the sets A, B are contained in the annulus A then one can

also obtain analogues of (6) and the above two Corollaries in which addition and
subtraction are replaced by multiplication and division respectively. This simply
follows by applying a logarithmic change of variables. In the next section we shall
use the fact that multiplication distributes over addition, to obtain hybrid versions
of the above results.

4. The Bilinear Distance Conjecture 1.5 implies the Ring
Conjecture 1.14.

Assume that the Bilinear Distance Conjecture 1.5 is true for some absolute con-
stant c1 > 0. In this section we show how the Ring Conjecture 1.14 follows.

Let 0 < ε � 1 be fixed. We may assume that δ is sufficiently small depending
on ε, since the Ring Conjecture is trivial otherwise. We may also assume that δ is
dyadic. Assume for contradiction that one can find a (δ, 1

2 )1-set A ⊂ A of measure
|A| ≈ δ1/2 such that

|A+A|, |A ·A| � δ1/2(7)
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Figure 3. A set which contradicts the distance conjecture if a
half-dimensional ring exists and constitutes its vertical and hori-
zontal sets of projections.

We will obtain a contradiction from this, and it will be clear from the nature of the
argument that one can in fact show that at least one of A+ A, A · A has measure
� δ 1

2−c4 for some absolute constant c4 > 0 depending on c1.
From Separation 2.3 one can find refinements A1, A2 of A which are contained

in intervals of size and separation ≈ 1 and have measure |A1|, |A2| ≈ δ1/2. From
the additive and multiplicative versions of (6) we thus have

|A1|, |A2|, |A1 +A2|, |A1A2| ≈ δ1/2.(8)

Heuristically, the idea is to apply the Bilinear Distance Conjecture 1.5 with E0,
E1, E2 equal to A1 ×A1, A1 ×A2, A2 ×A1 respectively. The difficulty with this is
that we cannot quite control the distance set

√
(A1 −A1)2 + (A1 −A2)2 accurately

using (8). However, this difficulty can be avoided if we pass to various refinements
of A.

We turn to the details. From (8) and Perfection 3.4 with A,B,G set to A1, A2,
A1 × A2 respectively, and some re-labeling, we can find δ-discretized refinements
C, D of A1, A2 respectively such that

|{(a1, a2, a3, a4, a5, a6) ∈ A⊕6 : d− c = (a1 − a4)− (a2 − a5) + (a3 − a6)}| ≈ δ5/2
(9)
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for all (c, d) ∈ C ×D. From construction we have

|c− d| ≈ 1 for all c ∈ C, d ∈ D.(10)

Lemma 4.1. We have

|A ·A ·A · (C −D)/(A ·A)| =∣∣∣∣{a1a2a3a4a5
(c− d) : a1, a2, a3, a4, a5 ∈ A, c ∈ C, d ∈ D

}∣∣∣∣ ≈ δ1/2.
Proof. The lower bound is clear from (10) and the multiplicative version of (6),
so it suffices to show the upper bound.

Fix a1, a2, a3, a4, a5, c, d. By multiplying (9) by a1a2a3/a4a5, which is ≈ 1, we
see that

|{(e1, e2, e3, e4, e5, e6) ∈ (A ·A ·A ·A/(A ·A))⊕6 :
a1a2a3
a4a5

(d− c) = (e1 − e4)− (e2 − e5) + (e3 − e6)}| � δ5/2.

Integrating this over all possible values of a1a2a3
a4a5

(d− c) and using Fubini’s theorem
we obtain

|A ·A ·A ·A/(A ·A)|6 � δ5/2|A · (C −D)|.
On the other hand, from (7) and the multiplicative form of Corollary 3.3 we have

|A ·A ·A ·A/(A ·A)| ≈ δ1/2.
The claim follows by combining the above two estimates. �

From (8) and the multiplicative version of (6) we have

|C|, |D|, |CD| ≈ δ1/2.
From the multiplicative form of Perfection 3.4 with A := C and B := 1/D, we may
thus find refinements C ′, D′ of C, D respectively such that if c ∈ C ′, d ∈ D′, then

(11) |X| ≈ δ5/2, where

X = {(c1, c2, c3, d1, d2, d3) ∈ C×C×C×D×D×D : cd = (c1d1)(c2d2)−1(c3d3)}.
Lemma 4.2. We have

|C ′D′ − C ′D′| = |{cd− c′d′ : c, c′ ∈ C ′, d, d′ ∈ D′}| ≈ δ1/2.
Proof. As before, the lower bound is immediate from the additive and multiplica-
tive versions of (6), so it suffices to show the upper bound.

Fix c, c′, d, d′, and let (c1, c2, c3, d1, d2, d3) ∈ X with X in (11). Then we have
the telescoping identity

cd− c′d′ = x1 − x2 + x3 − x4

where

x1 :=
(c1 − d′)d1c3d3

c2d2
x2 :=

d′(c′ − d1)c3d3
c2d2

x3 :=
d′c′(c3 − d2)d3

c2d2
x4 :=

d′c′d2(c2 − d3)
c2d2

.
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Indeed, we have the identities

c1d1c3d3
c2d2

= cd
d′d1c3d3
c2d2

= cd− x1

d′c′c3d3
c2d2

= cd− x1 + x2
d′c′d2d3
c2d2

= cd− x1 + x2 − x3

c′d′ =
d′c′d2c2
c2d2

= cd− x1 + x2 − x3 + x4.

As a consequence of these identities, (10) and some algebra we see the map

(c1, c2, c3, d1, d2, d3) �→ (x1, x2, x3, x4, c2, d2)

is a diffeomorphism on X (recall that c, d, c′, d′ are fixed). From (11) we thus have

|{(x1, x2, x3, x4, c2, d2) ∈ (A ·A ·A · (C −D)/(A ·A))⊕4 × C ×D :

cd− c′d′ = x1 − x2 + x3 − x4}| � δ5/2.

Integrating this over all values of cd− c′d′ and using Fubini’s theorem we obtain

|C ′D′ − C ′D′| � δ5/2|A ·A ·A · (C −D)/(A ·A)|4|C||D|.
The claim then follows from Lemma 4.1. �

From the above lemma and the multiplicative form of (6) we have

|C ′|, |D′|, |C ′D′| ≈ δ1/2.
From the multiplicative version of Corollary 3.3 we can therefore find a refinement
F of C ′ and a real number x ≈ 1 such that xF is a refinement of D′. In particular,
since FF − FF is a subset of x−1(C ′D′ − C ′D′), we thus see that

|FF − FF | ≈ |FF | ≈ |F | ≈ δ1/2.
From Corollary 3.3 we thus have

|FF − FF − FF + FF + FF − FF − FF + FF | ≈ δ1/2.
Since (F − F )2 ⊂ FF − FF − FF + FF , we thus have

|(F − F )2 + (F − F )2| � δ1/2.

The set F is a (δ, 1
2 )1 set with measure ≈ δ1/2. From Separation 2.3 we may find

refinements F1, F2 of F which are contained in intervals I1, I2 of size and separation
≈ 1 such that |I1| = |I2| and |F1|, |F2| ≈ δ1/2.

Define

E0 := F1 × F1, E1 := F1 × F2, E2 := F2 × F1,

Q0 := I1 × I1, Q1 := I1 × I2, Q2 := I2 × I1.
It is clear that Q0, Q1, Q2 obey (3) and that E0, E1, E2 are (δ, 1)2 sets of measure
≈ δ contained in Q0, Q1, Q2 respectively.

Let D denote the set

D =
√
(F2 − F1)2 + (F1 − F1)2.
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Clearly D is a δ-discretized set of measure |D| � δ1/2 which lives in A. In fact,
from the size and separation of F1 and F2 we have

|D| ≈ δ1/2.(12)

Also, we have
|x1 − x0|, |x2 − x0| ∈ D

for all x0 ∈ E0, x1 ∈ E1, x2 ∈ E2. In particular, we have

|{(x0, x1, x2) ∈ E0 × E1 × E2 : |x0 − x1|, |x0 − x2| ∈ D}| = |E0||E1||E2| ≈ δ3.
(13)

We are almost ready to apply the hypothesis (4), however the one thing which is
missing is that D need not satisfy (1). To rectify this we shall remove some portions
from D.

Apply Refinement 2.2 to obtain a covering

D ⊂ D∗ ∪
⋃

δ<δ′�1

Dδ′

with the properties asserted in Refinement 2.2 , and K equal to a large constant to
be chosen shortly.

Proposition 4.3. For all δ′ > δ, we have

|{(x0, x1) ∈ E0 × E1 : |x0 − x1| ∈ Dδ′}| � δ2δKε/100

and
|{(x0, x2) ∈ E0 × E2 : |x0 − x2| ∈ Dδ′}| � δ2δKε/100.

Proof. Fix δ′. We may assume that ε is sufficiently small depending on K, and δ
is sufficiently small depending on K and ε, since the claim is trivial otherwise.

By reflection symmetry it suffices to prove the first estimate. Suppose for con-
tradiction that

|{(x0, x1) ∈ E0 × E1 : |x0 − x1| ∈ Dδ′}| � δ2δKε/100.
From Cauchy-Scwartz 2.1 we thus have

|{(x0, x1, x
′
1) ∈ E0 × E1 × E1 : |x0 − x1| ∈ Dδ′ , |x0 − x′1| ∈ Dδ′}| � δ3δKε/50.

Write x1 = (x1, y1), x′1 = (x′1, y
′
1). Observe that

|{(x0, x1, x
′
1) ∈ E0 × E1 × E1 : |x1 − x′1| � δKε/10}| � δ3δKε/20.

This is because for fixed x1, x′1 can only range in a set of measure � δ1/2δKε/20

thanks to (1) and the fact that F1 is a (δ, 1
2 )1 set. Subtracting the two inequalities

we obtain (if δ is sufficiently small)

|{(x0, x1, x
′
1) ∈ E0 × E1 × E1 :

|x0 − x1| ∈ Dδ′ , |x0 − x′1| ∈ Dδ′ , |x1 − x′1| � δKε/10}| � δ3δKε/50.
Since |E1| ≈ δ, we may thus find x1, x

′
1 ∈ E1 such that

|x1 − x′1| � δKε/10(14)

and

|{x0 ∈ E0 : |x0 − x1| ∈ Dk, |x0 − x′1| ∈ Dδ′}| � δδKε/50.(15)
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From Refinement 2.2 Dδ′ can be covered by � δKεδ′−1/2 intervals in A of length �
δ′. From this fact, (14), and the geometry of annuli which intersect non-tangentially,
we see that the set in (15) can be covered by � δ′−1

δ2Kε balls of radius � δ−Kε/5δ′.
Since E0 is a (δ, 1)2 set, we see from (1) that

LHS of (15) � δ′−1
δ2Kεδ′δ−Kε/5.

But this contradicts (15) if δ is sufficiently small. This concludes the proof of the
proposition. �

From (13) and the above proposition we see that (if K is a large enough absolute
constant, and δ is sufficiently small depending on ε, K)

|{(x0, x1, x2) ∈ E0 × E1 × E2 : |x0 − x1|, |x0 − x2| ∈ D∗}| � δ3.(16)

From (12) we have |D∗| � δ1/2. From elementary geometry and a change of vari-
ables we have

|{x0 ∈ E0 : |x0 − x1|, |x0 − x2| ∈ D∗}| � |D∗|2
for all x1 ∈ E1, x2 ∈ E2. Integrating this over x1 and x2 and comparing with
the previous we thus see that |D∗| ≈ δ1/2. But then (16) contradicts (4) (with D
replaced by D∗), if ε is sufficiently small depending on c1 and δ sufficiently small
depending on ε. The full claim of the proposition follows by a modification of this
argument, providing that c4 is sufficiently small depending on c1.

5. Ring Conjecture 1.14 implies Discretized Furstenburg
Conjecture 1.10

Assume that the Ring Conjecture 1.14 is true for some absolute constant c4 > 0.
In this section we show how the Discretized Furstenburg Conjecture 1.10 follows.

The main idea is that R is a half-dimensional ring then R × R contains a one
dimensional set of lines each of which contain half dimensional sets. That many of
these lines are parallel seems hardly consequential and we will deal with it by an
appropriately chosen projective transformation.

Let 0 < ε � 1 be fixed. We may assume that δ is sufficiently small depending
on ε, since (5) is trivial otherwise, and may assume δ is dyadic as before. Let E, Ω,
Rω be as in the Discretized Furstenburg Conjecture 1.10. Assume for contradiction
that

|{(x0, x1) ∈ E × E : x1, x0 ∈ Rω for some ω ∈ Ω}| � δ2(17)

We will obtain a contradiction from this, and it will be clear from the nature of the
argument that (5) in fact holds for some absolute constant c3 > 0 depending on c4.

It will be convenient to define the non-transitive relation ∼ by defining x ∼ y
if and only if x, y ∈ Rω for some ω ∈ Ω. We also write x1, . . . , xn ∼ y1, . . . ym if
xi ∼ yj for all 1 ≤ i ≤ n and all 1 ≤ j ≤ m.

From (17) we then have

|{(x0, x1) ∈ E × E : x0 ∼ x1}| � δ2.(18)

Roughly speaking, the idea will be to find x1, x
′
1 ∈ E and a refinement E′′ of E

such that x0 ∼ x1, x0 ∼ x′1 for all x0 ∈ E′′, and such that there are many relations
between pairs of points in E′′. Then after a projective transformation sending x1,
x′1 to the cardinal points at infinity we can transform E′′ to a Cartesian product of
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two (δ, 1
2 )1 sets of measure ≈ δ1/2, at which point the ring structure of these sets

can be easily extracted.
We turn to the details. From (18) and the fact that |E| ≈ δ, we see that

|{(x0, x1) ∈ E′ × E : x0 ∼ x1}| � δ2(19)

where
E′ = {x0 : |{x1 ∈ E : x0 ∼ x1}| ≈ δ}

provided the constants are chosen appropriately.
Let C2 be a large constant to be chosen later, and let E1 be the set

E1 =
{
x1 ∈ E :

∑
ω∈Ω

χRω (x1) ≤ δ−C2εδ−1/2

}
.

From Kakeya 2.4 and Chebyshev we have

|E\E1| � δ2C2εδ

and thus
|{(x0, x1) ∈ E′ × (E\E1) : x0 ∼ x1}| � δ2C2εδ2.

If we then choose C2 large enough, and δ is small enough depending on C2 and
ε, we thus see from (19) that

|{(x0, x1) ∈ E′ × E1 : x0 ∼ x1}| � δ2.(20)

In particular, we have |E1| ≈ δ as before. Henceforth C2 is fixed so that (20)
applies.

From (20) and Cauchy-Schwarz 2.1 we have

|{(x0, x1, x
′
1) ∈ E′ × E1 × E1 : x0 ∼ x1, x

′
1}| � δ3.(21)

Let C3 be a large constant to be chosen later.

Lemma 5.1. If C3 is large enough, and δ is small enough depending on C3 and ε,
we have∣∣{(x0, x1, x

′
1) ∈ E′ × E1 × E1 : x0 ∼ x1, x

′
1; |(x1 − x0) ∧ (x′1 − x0)| ≥ δC3ε

}∣∣ ≈ δ3.
Proof. From (20) it suffices to show that

(22)
∣∣{(x0, x1, x

′
1) ∈ E′ × E1 × E1 :

x0 ∼ x1, x
′
1; |(x1 − x0) ∧ (x′1 − x0)| ≤ δC3ε

}∣∣ � δC3ε/8δ3.

(The constant 8 is non-optimal, but this is irrelevant for our purposes). In order to
have

|(x1 − x0) ∧ (x′1 − x0)| ≤ δC3ε

one must either have |x1 −x′1| � δC3ε/2, or that |x1 −x′1| � δC3ε/2 and x0 is within
� δC3ε/2 of the line joining x1 − x′1.

Let us consider the contribution of the former case. Since E1 is a (δ, 1)2 set, we
see that each pair (x0, x1) contributes a set of measure � δC3ε/2δ to (22). From
Fubini’s Theorem we thus see that the contribution of this case to (22) is acceptable.

Now let us consider the contribution of the latter case. By Fubini’s Theorem
again it suffices to show that

|{x0 ∈ E′ : x0 ∈ S}| � δC3ε/8δ

for any strip S of width � δC3ε/2.
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Figure 4. A Furstenburg set when viewed from x1 and x′1. Note
how this resembles a projective transformation of Figure 3.

Fix S. From the definition of E′ and Fubini’s Theorem it suffices to show that

|{(x0, x2) ∈ E′ × E : x0 ∈ S, x2 ∼ x0}| � δC3ε/8δ2.

From the definition of ∼, we can estimate the left-hand side by∑
ω∈Ω

|S ∩Rω||Rω|.
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Since Rω is a (δ, 1
2 )1 set, we have |Rω| � δ3/2. Also, if ω makes an angle of � δC3ε/4

with S we have |S ∩ Rω| � δC3ε/8δ3/2 by (1) and elementary geometry, otherwise
we may estimate |S ∩ Rω| ≤ |Rω| � δ. Inserting these estimates into the previous
and using the δ-separated nature of the ω, we see that∑

ω∈Ω

|S ∩Rω||Rω| � δC3ε/8δ2

as desired. �

Henceforth C3 is fixed so that the above lemma applies. We now suppress all
explicit mention of C2, C3 and absorb these factors into the � notation.

From the lemma and the fact that |E1| ≈ δ, we can thus find x1, x
′
1 in E1 such

that
|{x0 ∈ E′ : x0 ∼ x1, x

′
1; |(x1 − x0) ∧ (x′1 − x0)| ≈ 1}| � δ.

Fix x1, x′1. Clearly one must have |x1 − x′1| ≈ 1, else the left-hand side is
necessarily zero. If we define Q by

Q := {x0 ∈ R2 : |x0| � 1; |(x1 − x0) ∧ (x′1 − x0)| ≈ 1}
and E′′ by E′′ := E′ ∩ Q, then clearly |E′′| ≈ δ if we have chosen the origin
appropriately. Also, if we define Ω1, Ω′

1 by

Ω1 := {ω ∈ Ω : x1 ∈ Rω}, Ω′
1 := {ω ∈ Ω : x′1 ∈ Rω},

then we have ∑
ω∈Ω1

∑
ω′∈Ω′

1

|E′′ ∩Rω ∩Rω′ | � δ.

From the definition of E1 we note that

#Ω1,#Ω′
1 � δ−1/2.

From the definition of E′ we see that

#{ω ∈ Ω : x0 ∈ Rω ∩Q} � δ−1/2

for all x0 ∈ E′′. Integrating this on E′′, which has measure ≈ δ, we obtain∑
ω∈Ω

|Rω ∩Q ∩ E′′| � δ1/2.(23)

Let Ω2 denote those ω ∈ Ω for which the direction of the bounding rectangle for
Rω stays at a distance ≈ 1 from x1 and x′1.

Lemma 5.2. If the constants in the definition of Ω2 are chosen appropriately, we
have ∑

ω∈Ω2

|Rω ∩Q ∩ E′′| � δ1/2.(24)

Proof. From elementary geometry we see that

χ∗E′′(ω′) � δ−1|Rω ∩Q ∩ E′′|
whenever |ω′ − ω| � δ, where χ∗E′′ is the Kakeya maximal function of χE′′ . From
Kakeya 2.4 we thus have

δ
∑
ω∈Ω

δ−2|Rω ∩Q ∩ E′′|2 � |E′′| ≈ δ.
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From Cauchy-Schwarz we thus have∑
ω∈Ω\Ω2

|Rω ∩Q ∩ E′′| � #(Ω\Ω2)1/2δ.

If one defines the constants in Ω2 appropriately, the claim then follows from (23).
�

Let RP2 denote the projective plane, i.e., the points in R3\{0} with x identified
with tx for all t ∈ R\{0}. We embed R2 into RP2 in usual manner, identifying
(x, y) with (x, y, 1).

Let L : RP2 → RP2 be a projective linear transformation which sends x1 to
(1, 0, 0) and x′1 to (0, 1, 0), but maps Q to a subset of B(0, 1) with Jacobian ≈ 1 on
Q. (This is possible because of the construction of Q). In particular we have

|L(E′′)| ≈ δ.(25)

The set
⋃
ω∈Ω1

Rω ∩Q stays a distance ≈ 1 from the line joining x1 and x2, and
is also contained in the union of � δ−1/2 rectangles of dimensions about δ×1 which
pass through x1. From this fact and some elementary projective geometry we see
that

L

( ⋃
ω∈Ω1

Rω ∩Q
)

⊂ R×B

for some δ-discretized set B ⊂ [−1, 1] with |B| ≈ δ1/2. Similarly we have

L

( ⋃
ω∈Ω′

1

Rω ∩Q
)

⊂ A×R

for some δ-discretized set A ⊂ [−1, 1] with |A| ≈ δ1/2. Combining these two facts
with the definition of E′′ we thus have

L(E′′) ⊂ A×B.(26)

The sets A and B are already our prototypes for half-dimensional rings. In what
follows we refine their geometric properties and establish their algebraic ones.

For all ω ∈ Ω2, let R̃ω denote the set

R̃ω := L(Rω ∩Q).
From the hypothesis on Rω and some elementary projective geometry we see that
R̃ω is a (δ, 1

2 )2 set which is contained in a rectangle of dimensions ≈ 1 × δ, and
whose long side is oriented at an angle of ≈ 1 to the cardinal directions (0,±1),
(±1, 0). From (24), (26) we have∑

ω∈Ω2

|R̃ω ∩ (A×B)| � δ1/2.(27)

The sets A and B need not be (δ, 1
2 )1 sets because there is no reason why they

should satisfy (1). To rectify this we shall refine A0, B0 slightly.
Apply Refinement 2.2, with K a large constant to be chosen shortly, to obtain

a covering
A ⊂ A∗ ∪

⋃
δ<δ′≤1

Aδ′ .
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From Refinement 2.2, Aδ′ can be covered by � δKεδ′−1/2 intervals I of length δ′.
For each such interval I we have

|R̃ω ∩ (I ×B)| � δ′1/2δ;

this follows from the properties of R̃ω, (1), and some elementary geometry. Sum-
ming this over I and ω, we obtain∑

ω∈Ω2

|R̃ω ∩ (Aδ′ ×B)| � δKεδ1/2.

Summing this over all δ′, we obtain (if K is sufficiently large, and δ sufficiently
small depending on K and ε)∑

ω∈Ω2

|R̃ω ∩ (A∗ ×B)| � δ1/2.

By breaking A∗ up into intervals I of length ≈ δ and arguing as before we see that∑
ω∈Ω2

|R̃ω ∩ (A∗ ×B)| � |A∗|;

since |A∗| ≤ |A| � δ1/2, we thus see that |A∗| ≈ δ1/2. Also, by Lemma 2.2 we see
that A∗ is a (δ, 1

2 )1 set.
By repeating the above argument in the second co-ordinate, we may also find a

(δ, 1
2 )1 set B∗ of measure ≈ δ1/2 such that∑

ω∈Ω2

|R̃ω ∩ (A∗ ×B∗)| ≈ δ1/2.

Let Ω′
2 consist of those ω ∈ Ω2 such that

|R̃ω ∩ (A∗ ×B∗)| � δ3/2.(28)

Since #Ω2 � δ−1, we thus see that∑
ω∈Ω2\Ω′

2

|R̃ω ∩ (A∗ ×B∗)| ≤ 1
2

∑
ω∈Ω2

|R̃ω ∩ (A∗ ×B∗)|

if the constants are chosen correctly. We thus have∑
ω∈Ω′

2

|R̃ω ∩ (A∗ ×B∗)| ≈ δ1/2.

Since |A∗| ≈ δ1/2, we can therefore use the pigeonhole principle find an a ∈ A∗ such
that ∑

ω∈Ω′
2

|R̃ω ∩ ({a} ×B∗)| � 1.

Fix such an a, and let Ω′′
2 consist of those ω ∈ Ω′

2 such that

|R̃ω ∩ ({a} ×B∗)| � δ.
By repeating the previous argument, we see that∑

ω∈Ω′′
2

|R̃ω ∩ ({a} ×B∗)| � 1

for suitable choices of constants.
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Let C5 be a constant to be chosen later. Since A∗ is a (δ, 1
2 )1 set, the set

A∗∩B(a, δC5ε) can be covered by � δC5ε/2δ−1/2 intervals I of length δ. By repeating
the argument used to refine A and B, we have∑

ω∈Ω′′
2

|R̃ω ∩ ((A∗ ∩B(a, δC5ε)×B∗)| � δC5ε/2δ1/2.

Thus, if C5 is large enough and δ is small enough depending on C5 and ε, then∑
ω∈Ω′′

2

|R̃ω ∩ ((A∗\B(a, δC5ε)×B∗)| ≈ δ1/2.

Fix C5, so that all implicit constants may depend on C5. By the pigeonhole principle
again, one can thus find an a′ ∈ A∗ such that |a− a′| ≈ 1 and∑

ω∈Ω′′
2

|R̃ω ∩ ({a′} ×B∗)| � 1.

Fix a′. Let Ω′′′
2 consist of those ω ∈ Ω′′

2 such that

|R̃ω ∩ ({a′} ×B∗)| � δ.
Then we have by the same arguments as before that∑

ω∈Ω′′′
2

|R̃ω ∩ ({a′} ×B∗)| � 1.

Since R̃ω is contained in a rectangle of sides ≈ 1 × δ and making an angle of ≈ 1
with the vertical, we see that

|R̃ω ∩ ({a′} ×B∗)| � δ
for all ω. Since #Ω′′′

2 ≤ #Ω � δ−1, we thus see that

#Ω′′′
2 ≈ δ−1.(29)

Consider the set X ⊂ B∗ ×B∗ defined by

X := {(b, b′) : (a, b), (a′, b′) ∈ R̃ω for some ω ∈ Ω′′′
2 }.

Each ω contributes a set of measure � δ2 to X. Since the ω are δ-separated and
|a− a′| ≈ 1, we see from elementary geometry that any given point in X can arise
from at most � 1 values of ω. Combining these two facts with (29) we see that

|X| � δ.(30)

In particular, X is a refinement of B∗ ×B∗.
Let C6 be a large constant to be chosen later. We now wish to find many values

of (b, b′) ∈ X and a′′ ∈ A∗ such that
a′′ − a′
a− a′ b+

a− a′′
a− a′ b

′ ∈ B̃,(31)

where
B̃ := B∗ +B

(
0, Cδ1+C6ε

)
is a slight enlargement of B∗.

Lemma 5.3. If C6 is a sufficiently large constant, and δ is sufficiently small de-
pending on C6 and ε, then

|{(b, b′, a′′) ∈ X ×A∗ : |a′′ − a|, |a′′ − a′| > δC6ε, (31) holds}| � δ3/2.
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Proof. Fix (b, b′) ∈ X. From (30) it suffices to show that

|{a′′ ∈ A∗ : |a′′ − a|, |a′′ − a′| > δC6ε, (31) holds}| � δ1/2.
From the definition of X and the fact that Ω′′′

2 ⊂ Ω′
2, we can find ω ∈ Ω′

2 such
that (a, b), (a′, b′) ∈ R̃ω and (28) holds. From elementary geometry we see R̃ω stays
within � δ of the line{(

a′,
a′′ − a′
a− a′ b+

a− a′′
a− a′ b

′
)
: a′ ∈ R

}
.

Since R̃ω is δ-discretized, we thus have (if C6 is sufficiently large)

|{a′′ ∈ A∗ : (31) holds}| � δ1/2.
The separation conditions |a′′ − a|, |a′′ − a′| > δC6ε are easily imposed by (1), since
A∗ is a (δ, 1

2 )1 set. �

Fix C6; all implicit constants may now depend on C6. Let T denote the set

T =
{
a− a′′
a− a′ : a′′ ∈ A∗

}
∩ {t ∈ R : |t| ≈ |1− t| ≈ 1};

note that T is a (δ, 1
2 )1 set. From the above lemma we have

|{(b, b′, t) ∈ B∗ ×B∗ × T : (1− t)b+ tb′ ∈ B̃}| � δ3/2.
Let B′ denote the set of all b′ ∈ B such that

|{(b, t) ∈ B∗ × T : (1− t)b+ tb′ ∈ B̃}| � δ,(32)

From the previous estimate and the fact that |B∗| ≈ δ1/2, we see that B′ is a
refinement of B∗ if the constants are chosen correctly. B′ is not quite δ-discretized,
but this can be easily remedied by introducing the set B′′ := B′ + B(0, δ). B′′ is
now a (δ, 1

2 ) set, and every element b′ ∈ B′′ obeys (32) if we enlarge the constant
C in the definition of B̃ slightly. In particular, we have

|{(b, b′, t) ∈ B∗ ×B′′ × T : (1− t)b+ tb′ ∈ B̃}| � δ3/2.
Since |T | ≈ δ1/2, there thus exists a t0 ∈ T such that

|{(b, b′) ∈ B∗ ×B′′ : (1− t0)b+ t0b′ ∈ B̃}| � δ.
Applying Perfection 3.4 with A and B replaced by (1− t0)B and t0B′′, which have
measure ≈ δ1/2, we can thus find a δ-discretized refinements (1− t0)B′′′′ and t0B′′′

of (1− t0)B and t0B′′ respectively such that

|(1− t0)B′′′′ − t0B′′′| ≈ δ1/2.
From Corollary 3.3 we thus have

|t0B′′′ + t0B′′′| ≈ δ1/2
so that

|B′′′ +B′′′| ≈ δ1/2.(33)

Note that B′′′ is a δ-discretized refinement of B′′ and is therefore a (δ, 1
2 )1 set with

measure ≈ δ1/2.



Falconer and Furstenburg 171

Integrating (32) over all b′ ∈ B′′′ we have

|{(b, b′, t) ∈ B∗ ×B′′′ × T : (1− t)b+ tb′ ∈ B̃}| � δ3/2.
Since |B∗| ≈ δ1/2, there thus exists a b0 ∈ B∗ such that

|{(b′, t) ∈ B′′′ × T : (1− t)b0 + tb′ ∈ B̃}| � δ.
Fix b0. We rewrite the above as

|{(f, t) ∈ (B′′′ − b0)× T : ft ∈ B̃ − b0}| � δ.
Let C7 be a constant to be chosen later, and define the set

F = {f ∈ B′′′ − b0 : |f | > δC7ε}+B(0, δ).

Since B′′′ is a (δ, 1
2 )1 set, we have

|(B′′′ − b0)\F | � δC7ε/2δ1/2.

In particular, we have |F | ≈ δ1/2 and

|{(f, t) ∈ F × T : ft ∈ B̃ − b0}| � δ(34)

if C7 is chosen sufficiently large, and δ sufficiently small depending on C7 and ε.
Fix C7; all constants may now depend on C7. From the multiplicative form of

Perfection 3.4 and (34) we can thus find a δ-discretized refinement F ′ of F such
that

|F ′F ′| ≈ δ1/2.
From the previous we also have |F ′+F ′| � δ1/2. Since F ′ is a (δ, 1

2 )1 set of measure
≈ δ1/2 contained in some annulus A, we have thus contradicted Conjecture 1.14
if ε is sufficiently small depending on c4. By modifying the above argument in a
routine manner one thus obtains Conjecture 1.10 for c3 sufficiently small depending
on c4.

6. The Discretized Furstenburg Conjecture 1.10 implies the
Bilinear Distance Conjecture 1.5

To close the circle of implications and finish the proof of the Main Theorem 1.16
we need to show that the Discretized Furstenburg Conjecture 1.10 implies the Bi-
linear Distance Conjecture 1.5. This will be done by modifying the argument in
Chung, Szemerédi, and Trotter [4], in which the Szemerédi-Trotter Theorem was
applied to the discrete distance problem. The key geometric fact we use to pass
from distances to lines is that if |x0 − x1| = |x0 − x2|, then x0 lies on the perpen-
dicular bisector of x1 and x2. These lines need not point in different directions, but
this will be remedied by a generic projective transformation.

Assume that the Discretized Furstenburg Conjecture 1.10 is true for some abso-
lute constant c3 > 0. Let 0 < ε� 1 be fixed. We may assume that δ is sufficiently
small depending on ε, since (4) is trivial otherwise. Let Qj , Ej , D be as in the
Bilinear Distance Conjecture 1.5. Assume for contradiction that

|{(x0, x1, x2) ∈ E0 × E1 × E2 : |x0 − x1|, |x0 − x2| ∈ D}| � δ3

We will obtain a contradiction from this, and it will be clear from the nature of the
argument that (4) in fact holds for some absolute constant c1 > 0 depending on c3.
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Figure 5. Sets with few distances must concentrate on lines.

Let E′
0 denote the set of all x0 ∈ E0 such that

|{x2 ∈ E2 : |x0 − x2| ∈ D}| ≥ δC8εδ,

where C8 is an absolute constant to be chosen later. We have

|{(x0, x1, x2) ∈ E′
0 × E1 × E2 : |x0 − x1|, |x0 − x2| ∈ D}| � δ3(35)

if C8 is chosen to be sufficiently large and δ sufficiently small depending on C8 and
ε (cf. (19)). Since the left hand side is clearly bounded by |E′

0||E1||E2| ≈ δ2|E′
0|,

we thus see that |E′
0| ≈ δ.

Fix C8; all implicit constants may now depend on C8. Since we clearly have

|{x2 ∈ E2 : |x0 − x2| ∈ D}| ≤ |E2| � δ
then we see from (35) that

|{(x0, x1) ∈ E′
0 × E1 : |x0 − x1| ∈ D}| � δ2.

Since D is δ-discretized, we thus have

|{(x0, x1, d) ∈ E′
0 × E1 ×D : |x0 − x1| ∈ D ∩B(d, δ)}| � δ3.

Applying Cauchy-Schwarz 2.1 with A = E1 × D, B = E′
0, and λ ≈ δ1/2 we thus

have

|{(x0, x
′
0, x1, d) ∈ E′

0 × E′
0 × E1 ×D : |x0 − x1|, |x′0 − x1| ∈ D ∩B(d, δ)}| � δ9/2.

For fixed x0, x
′
0, x1, the set of all d which contribute to the above set has measure

O(δ), and vanishes unless |x0 − x1| = |x′0 − x1|+O(δ). Thus we have
|{(x0, x

′
0, x1) ∈ E′

0 × E′
0 × E1 :

|x0 − x1|, |x′0 − x1| ∈ D, |x0 − x1| = |x′0 − x1|+O(δ)}| � δ7/2.
Let C9 be an absolute constant to be chosen later.
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Lemma 6.1. We have∣∣∣{(x0, x
′
0, x1) ∈ E′

0 × E′
0 × E1 : |x0 − x1|, |x′0 − x1| ∈ D,

|x0 − x1| = |x′0 − x1|+O(δ); |x0 − x′0| ≤ δC9ε
}∣∣∣ � δC9ε/2δ7/2.

Proof. Since |E′
0|, |E1| ≈ δ, it suffices to show that∣∣∣{x0 ∈ E′

0 : |x0 − x1| = |x′0 − x1|+O(δ); |x0 − x′0| ≤ δC9ε
}∣∣∣ � δC9ε/100δ3/2

for all x′0, x1 in E′
0, E1 respectively.

Fix x′0, x1. By definition of E′
0 it suffices to show that∣∣∣{(x0, x2) ∈ E′

0 × E2 : |x0 − x1| = |x′0 − x1|+O(δ); |x0 − x′0| ≤ δC9ε;

|x0 − x2| ∈ D
}∣∣∣ � δC9ε/100δ5/2.

Since |E2| ≈ δ, it thus suffices to show that

(36)
∣∣∣{x0 ∈ E′

0 : |x0 − x1| = |x′0 − x1|+O(δ); |x0 − x′0| ≤ δC9ε;

|x0 − x2| ∈ D
}∣∣∣ � δC9ε/100δ3/2

for all x2 ∈ E2.
Fix x2. The set in (36) is contained in an annular arc of thickness O(δ), angular

width O(δC9ε), and radius ≈ 1 centered at x1. From (3) and elementary geometry
that the possible values of |x0−x2| thus lie in an interval of length � δC9ε. Since D
is a (δ, 1

2 )1 set, we thus see that the possible values of |x0 −x2| are contained in the
union of � δC9ε/2δ−1/2 intervals of length δ. From (3) and elementary geometry
we thus see that the set in (36) can be covered by � δC9ε/2δ−1/2 balls of radius δ.
The claim follows. �

If we choose C9 to be sufficiently large, and δ is sufficiently small depending on
C9 and ε, we thus have from the above that

|{(x0, x
′
0, x1) ∈ E′

0 × E′
0 × E1 : |x0 − x1|, |x′0 − x1| ∈ D;

|x0 − x1| = |x′0 − x1|+O(δ); |x0 − x′0| ≈ 1}| � δ7/2,

where the implicit constants can now depend on C9. Since |E′
0| ≈ δ, we can thus

find x0 ∈ E′
0 such that

|{(x′0, x1) ∈ E′
0 × E1 : |x0 − x1|, |x′0 − x1| ∈ D;

|x0 − x1| = |x′0 − x1|+O(δ); |x0 − x′0| ≈ 1}| � δ5/2.

Fix this x0. Let E′′
0 denote the set

E′′
0 := {x′0 ∈ E′

0 : |x0 − x′0| ≈ 1}.
For each x′0 ∈ E′′

0 , let R[x
′
0] denote the set

R[x′0] := {x1 ∈ E1 : |x0 − x1| ∈ D; |x0 − x1| = |x′0 − x1|+O(δ)}.
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We thus have ∫
E′′

0

|R[x′0]| dx′0 � δ5/2.(37)

From elementary geometry, and the fact that Q0 and Q1 have separation ≈ 1, we
see that R[x′0] is contained in a rectangle R[x′0] of dimensions ≈ 1 × δ. Since D is
a (δ, 1

2 )1 set, it is easy to see from elementary geometry that R[x′0] is a (δ, 1
2 )2 set.

In particular, we have |R[x′0]| � δ3/2, which implies from (37) that |E′′
0 | � δ. Since

|E0| ≈ δ, we thus have |E′′
0 | ≈ δ. From (37) again we thus see that

|{x′0 ∈ E′′
0 : |R[x′0]| ≈ δ3/2}| ≈ δ

for suitable choices of constants. In particular, we can find a δ-separated set Σ ⊂ E′′
0

such that #Σ ≈ δ−1 and |R[x′0]| ≈ δ3/2 for all x′0 ∈ Σ.
The sets R[x′0] resemble the sets Rω in the hypothesis of Conjecture 1.10, but

their orientations need not be δ-separated. To remedy this we apply a projective
linear transformation.

To find the right transformation to use, we first must isolate a line in R2 in
which the (extensions of) R[x′0] are well-separated. To make this precise we apply
some normalizations. By a rescaling we may let Q1 be the square [0, 1]× [0, 1], and
by a refinement we may assume that the the direction of the R[x′0] are within π/4
of the direction (1, 0). In particular, if we extend the long side of R[x′0] to have
length 10, it will intersect the strip [2, 3]×R in a parallelogram P [x′0] of thickness
≈ δ and slope O(1).

We now apply

Lemma 6.2. We have ∥∥∥∥∑
x′
0∈Σ

χP [x′
0]

∥∥∥∥2

2

� 1.

Proof. We shall use Córdoba’s argument, using (1) for E0 as a substitute for the
direction-separation property. Expand out the left-hand side as∑

x′
0∈Σ

∑
x′′
0 ∈Σ

|P [x′0] ∩ P [x′′0 ]|.

Since #Σ ≈ δ−1, it thus suffices to show that∑
x′
0∈Σ

|P [x′0] ∩ P [x′′0 ]| � δ

for all x′′0 ∈ Σ.
Fix x′′0 . The quantity |P [x′0] ∩ P [x′′0 ]| can vary from 0 to ≈ δ. We need only

consider the contribution when δ2 � |P [x′0] ∩ P [x′′0 ]| � δ, since the remaining con-
tribution is trivial to handle. By dyadic pigeonholing and absorbing the logarithmic
factor into the � symbol, it suffices to show the distributional estimate

#{x′0 ∈ Σ : |P [x′0] ∩ P [x′′0 ]| ≈ σδ} � 1
σ

for all dyadic δ � σ � 1.
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Fix σ. The set P [x′0] lies within � δ of the perpendicular bisector of x′0 and x0,
and within � 1 of x′0 and x0, which are themselves separated by ≈ 1. Similarly for
P [x′′0 ]. From elementary geometry we thus see that

|P [x′0] ∩ P [x′′0 ]| ≈ σδ =⇒ |x′0 − x′′0 | � δ/σ.
Since x′0, x

′′
0 lie within a δ-separated subset of E0, which is a (δ, 1)2 set, we see from

(1) that

#{x′0 ∈ Σ : |x′0 − x′′0 | � δ/σ} � 1
σ
.

The claim follows. �

To complement this L2 bound we have the trivial L1 bound∥∥∥∥∑
x′
0∈Σ

χP [x′
0]

∥∥∥∥
1

=
∑
x′
0∈Σ

|P [x′0]| ≈ δ−1δ = 1.

From Hölder’s inequality we thus see that
∑

x′
0∈Σ χP [x′

0]
must be supported on a

set of measure � 1, so that ∣∣∣∣ ⋃
x′
0∈Σ

P [x′0]
∣∣∣∣ � 1.

Since the set in the left-hand side is contained in the strip [2, 3] × R, we can thus
find a 2 ≤ x ≤ 3 such that∣∣∣∣{y : (x, y) ∈

⋃
x′
0∈Σ

P [x′0]
}∣∣∣∣ � 1.

Fix this x. Each x′0 ∈ Σ contributes an interval of length ≈ δ to the above set.
Thus we can find a refinement Σ′ of Σ such that the sets {y : (x, y) ∈ P [x′0]} are
separated by � δ.

Let L be a projective transformation which sends the line {x}×R to the line at
infinity, but maps [0, 1]×[0, 1] to a bounded set and has Jacobian≈ 1 on [0, 1]×[0, 1].
Thus L(E1) is a (δ, 1)2 set with measure ≈ δ.

For each x′0 ∈ Σ′, we see from elementary projective geometry we see that the
sets L(R[x′0]) are (δ, 1

2 )2 sets contained in a rectangle of dimensions ≈ 1 × δ, and
the orientation ω = ω(x′0) of these rectangles are δ-separated as x′0 varies along
Σ′. Write Ω for the set of all the orientations ω arising in this manner, so that
#Ω ≈ δ−1, and write Rω := L(R[x′0]) for all x

′
0 ∈ Σ′. Also write E := L(E1). Since

Rω is a (δ, 1
2 )2 set and |Rω| ≈ δ3/2, we have

|{(x0, x1) ∈ Rω : |x0 − x1| ≈ 1}| � δ3

for appropriate choices of constants. For any fixed x0, x1 with |x0 − x1| ≈ 1, there
are at most � 1 values of ω for which (x0, x1) is contained in the above set, thanks
to the δ-separation of the ω. Since Rω ⊂ E, we may thus sum the above estimate
in ω to obtain

|{(x0, x1) ∈ E : x0, x1 ∈ Rω for some ω ∈ Ω; |x0 − x1| ≈ 1}| � δ2.
But this contradicts (5) if ε is sufficiently small depending on c3 and δ is sufficiently
small depending on ε. By modifying the above argument in a routine manner one
thus obtains the Bilinear Distance Conjecture 1.5 for c1 sufficiently small depending
on c3. This completes the proof of the Main Theorem 1.16.
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7. Discretization of fractals

In order to pass from the δ-discretized Bilinear Distance Conjecture 1.5 and
Discretized Furstenburg Conjecture 1.10 to their respective continuous analogues
the Distance Conjecture 1.4 and the Furstenburg Conjecture 1.9 we will need some
tools to cover an α-dimensional set in Rn by (δ, α+Cε)n sets for various values of
δ.

We begin this section by recalling the definition of Hausdorff dimension.

Definition 7.1. Let α > 0. For any bounded set E and c > 0, we define the
Hausdorff content hα,c(E) to be the infimum of the quantity∑

i∈I
rαi

where {B(xi, ri)}i∈I ranges over all collections of balls of radii ri < c which cover
E.

dim(E) := inf
{
α : inf

c>0
hα,c(E) = 0

}
= sup

{
α : sup

c>0
hα,c(E) = +∞

}
.

Definition 7.2. Let {Xα}α∈A be a countable collection of sets. We say that the
Xα strongly cover E if each point in E is contained in infinitely many sets Xα.

We shall require a variant of the Borel-Cantelli Lemma for Hausdorff content.

Lemma 7.3. Let 0 < α ≤ n, and let Xi ⊂ Rn for i ∈ Z be such that
∞∑
i=1

hα,c(Xi) <∞

for some c > 0. Suppose also that the Xi strongly cover a set E. Then dim(E) ≤ α.
Proof. For any integer N , we have E ⊂ ⋃

i>N Xi. Since Hausdorff content is
subadditive, we thus have

hα,c(E) ≤
∑
i>N

hα,c(Xi).

The claim then follows by letting N → ∞. �

We can now prove a covering lemma, which is the main result of this section. For
technical reasons it will be convenient to not work with dyadic δ as we have done
in the past, but move to a much sparser range of scales, namely the hyperdyadic
scales (cf. [3]). More precisely:

Definition 7.4. Let 0 < ε � 1 be given. We call a number hyperdyadic if it is of
the form 2−
(1+ε)k� for some integer k ≥ 0, where �x� is the integer part of x. We
call a cube hyperdyadic if it is dyadic and its side-length is hyperdyadic.

Note that there are at most C/ε hyperdyadic numbers between δ and δ100 for
any choice of δ, in contrast to C log(1/δ) in the dyadic regime. This improved
bound will be important in the proof of Theorem 1.6.

Lemma 7.5. Let 0 < ε� 1, 0 < α < n, and let E be a compact subset of Rn.
• If dim(E) ≤ α, then one can associate a (δ, α)n set Xδ to each hyperdyadic δ
such that the Xδ strongly cover E.
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• Conversely, if C is sufficiently large and there is a (δ, α − Cε)n set Xδ for
each hyperdyadic δ such that the Xδ strongly cover E, then dim(E) ≤ α.

Proof. We first prove the latter claim. Since Xδ is a (δ, α−Cε)n set we can cover
it (if the constants are chosen appropriately) by about δ−α+ε balls of radius δ, so
that

hα,1(Xδ) ≤ Cδε.
The claim then follows from Lemma 7.3.

Now we show the former claim. Fix E. For every hyperdyadic number c, we can
find a collection {B(xc,i, rc,i)}i∈Ic of balls covering E such that rc,i < c and∑

i∈Ic

rα+Cε
c,i � 1.(38)

By reducing the constant C slightly we may assume that the rc,i are hyperdyadic.
For each hyperdyadic r, let Yc,r denote the set

Yc,r :=
⋃

i∈Ic:rc,i=r

B(xc,i, rc,i).

Clearly the sets Yc,r strongly cover E as c, r both vary.
Fix c, r, and let Qc,r be a collection of hyperdyadic cubes Q of side-length at

least r which cover Yc,r and which minimize the quantity∑
Q∈Qc,r

l(Q)α,

where l(Q) denotes the side-length of Q. Such a minimizer exists since there are
only a finite number of hyperdyadic cubes which are candidates for inclusion in
Qc,r. From (38) one can cover Yc,r by at most r−α−ε cubes of side-length r, hence∑

Q∈Qc,r

l(Q)α ≤ Cr−ε.(39)

In particular, we have l(Q) ≤ Cr−ε/α for all Q ∈ Qc,r.
From the construction of Qc,r we see that the Q are all disjoint, and for all

hyperdyadic cubes I we have ∑
Q∈Qc,r :Q⊂I

l(Q)α ≤ l(I)α(40)

since we could otherwise remove those cubes in I from Qc,r and replace them with
I, contradicting minimality.

For each dyadic r ≤ δ ≤ Cr−ε/α, let Xδ,c,r denote the set

Xδ,c,r :=

( ⋃
Q∈Qc,r :l(Q)=δ

Q

)
+B(0, δ).

Clearly Xδ,c,r is a δ-discretized set. From (40) we see that Xδ,c,r is in fact a (δ, α)n
set.

Now define Xδ :=
⋃
c,rXδ,c,r. From the constraints r < c and δ < Cr−ε/α we

see that there are at most C log(1/δ)2 pairs (c, r) associated to each δ. Hence Xδ
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is also a (δ, α)n set. By construction we see that the Xδ strongly cover E, and so
we are done. �

8. The Discretized Furstenburg Conjecture implies the
Furstenburg problem.

We now prove Theorem 1.11. Suppose that the Discretized Furstenburg Con-
jecture 1.10 holds for some c3 > 0, and let K be a 1

2 -set using the notation of the
introduction. Let 0 < ε � c2 � c23 be constants to be chosen later. Assume for
contradiction that K has Hausdorff dimension less than 1 + c2.

By Lemma 7.5, we may find a (δ, 1 + c2)2 set Xδ for each hyperdyadic δ such
that the Xδ strongly cover K.

If ω ∈ S1 is a direction, we call ω bad with respect to δ if one can find a line l in
the direction ω such that

h1/2−c2,1(l ∩Xδ) ≥ δc2 ,(41)

The main estimate we need is:

Lemma 8.1. For all hyperdyadic δ, we have

|{ω ∈ S1 : ω is bad with respect to δ}| � Cc2δCc2(42)

if c2 is sufficiently small with respect to c23.

Proof. The proof of trivial if δ is large, so we will assume that δ is sufficiently
small depending on c2, c3.

From Kakeya 2.4 with f := χXδ
and Chebyshev’s inequality we have

{ω ∈ S1 : (χXδ
)∗δ(ω) > δ

−c2δ1/2} � δCc2 .
Thus to show (42) it suffices to show that

|{ω ∈ S1 : ω is bad with respect to δ, (χXδ
)∗δ(ω) < δ

−c2δ1/2}| � Cc2δCc2 .(43)

Suppose for contradiction that (43) failed. Let Ω be a maximal δ-separated
subset in the set in (43); we thus have

#Ω � Cc2δCc2δ−1.(44)

By construction, for each ω ∈ Ω we can find a line lω in the direction ω such that
(41) holds. Let Rω denote the set (lω +B(0, δ)) ∩Xδ. From the construction of Ω
we thus have

|Rω| � δ(χXδ
)∗δ(ω) � δ−Cc2δ3/2.(45)

Let Q be a collection of squares Q of side-length l(Q) ≥ δ which covers Rω and
which minimizes the quantity ∑

Q∈Q
l(Q)1/2−

√
c2 .

As in the proof of Lemma 7.5, a minimizerQ exists and the squares in Q are disjoint
and satisfy ∑

Q∈Q:Q⊂I
l(Q)1/2−

√
c2 ≤ l(I)1/2−

√
c2(46)
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for all squares I. Also, for all Q ∈ Q we have

|Q ∩Rω| � δ2(l(Q)/δ)1/2−
√
c2

since otherwise we could replace Q by all the δ-cubes contained in Q, contradicting
the minimality of Q. Summing this over all Q we obtain

|Rω| � δ3/2+
√
c2
∑
Q∈Q

l(Q)1/2−
√
c2 .

From (45) we thus obtain ∑
Q∈Q

l(Q)1/2−
√
c2 � δ−

√
c2−Cc2 .

We thus have ∑
Q∈Q:l(Q)>δ1−A

√
c2

l(Q)1/2−c2 � δ(1−A
√
c2)(

√
c2−c2)δ−

√
c2−Cc2 .

If we choose A sufficiently large, we thus have (for δ sufficiently small)∑
Q∈Q:l(Q)>δ1−A

√
c2

l(Q)1/2−c2 � δc2 .

In particular, we have

h1/2−c2,1

( ⋃
Q∈Q:l(Q)>δ1−A

√
c2

Q

)
� δc2 .

On the other hand, since ω is bad with respect to δ, we have

h1/2−c2,1(Rω) ≥ h1/2−c2,1(lω ∩Xδ) ≥ δc2 .
Thus, if we let R′

ω denote the set

R′
ω :=

(
Rω\

⋃
Q∈Q:l(Q)>δ1−A

√
c2

Q

)
+B(0, δ)

then we have
h1/2−c2,1(R

′
ω) � δc2 .

Since R′
ω is δ-discretized, we have in particular that

|R′
ω| � δ3/2+Cc2 .

The set R′
ω is covered by the dilates of those cubes Q ∈ Q for which l(Q) ≤ δ1−A√

c2 .
From this and (46) we see that R′

ω is a (δ, 1/2)2 set but with ε replaced by A
√
c2.

From (5) we thus have

|{(x0, x1) ∈ K ×K : x1, x0 ∈ R′
ω for some ω ∈ Ω}| � δ2+c3−C

√
c2 .

On the other hand, from Separation 2.3 we have

|{(x0, x1) ∈ R′
ω : |x0 − x1| � δCA

√
c2}| � δ3+CA

√
c2 .

Summing this on ω using (44) and noting that each (x0, x1) can be in at most
� δ−CA

√
c2 of the above sets, we obtain

|{(x0, x1) ∈ K ×K : x1, x0 ∈ R′
ω for some ω ∈ Ω}| � Cc2δ2+CA

√
c2 .
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If c2 is sufficiently small with respect to c23 we obtain the desired contradiction, if
δ is sufficiently small. �

If ε is chosen sufficiently small depending on c2, then the left-hand side of (42)
is thus summable in δ. By the Borel-Cantelli Lemma (for Lebesgue measure) we
can thus find a direction ω which is only bad with respect to a finite number of
hyperdyadic δ. In particular we have∑

δ

h1/2−c2,1(l ∩Xδ) <∞

for all lines l parallel to ω. Since the l∩Xδ strongly covers l∩K, we thus see from
Lemma 7.3 that dim(l ∩K) < 1/2 for all l parallel to ω. But this contradicts the
assumption that K is a 1

2 -set. This completes the proof of Theorem 1.11. �

We remark that a similar result obtains for all β-sets providing that β is suffi-
ciently close to 1

2 (depending on c3).

9. The Bilinear Distance Conjecture implies the Falconer
Distance Conjecture.

We now prove Theorem 1.6. Suppose that the Bilinear Distance Conjecture 1.5
holds for some c1 > 0. Let 0 < ε� c0 � c1 be constants to be chosen later. Assume
for contradiction that one can find a compact set K with dimension dim(K) ≥ 1
such that dim(dist(K)) ≤ 1/2 + c0.

By Frostman’s Lemma [11] we may find a probability measure µ supported on
K such that

µ(B(x, r)) ≤ Cεr1−ε(47)

for all balls B(x, r). Fix this µ.
By Lemma 7.5 we may find a (δ, 1/2 + c0)1 set Dδ for each hyperdyadic δ such

that the Dδ strongly cover dist(K). If one then defines

Xδ := {(x, y) ∈ K ×K : |x− y| ∈ Dδ}
then the Xδ strongly cover K ×K.

If it were not for the bilinear formulation of Conjecture 1.5, one could hope to
prove a bound like

µ(Xδ) � δC−1c0 ,(48)

if c0 � c1, which would allow us to obtain a contradiction from the Borel-Cantelli
Lemma. These types of bounds however are not achievable because of the counter-
example (2). Furthermore, it is possible for K to contain obstructions like (2) at
infinitely many scales. Fortunately, one can show that it is not possible for too
many pairs x, y ∈ K to be simultaneously contained in sets like (2) at infinitely
many scales, which allows one to proceed. Of course, one has to make the notion
of “looking like (2)” precise, which causes some unpleasant technicalities.

We begin by converting (4) to a bilinear variant of (48).
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Lemma 9.1. If c0 is sufficiently small depending on c1, and δ is sufficiently small,
then

(49) µ3
({

(x0, x1, x2) : (x0, x1), (x0, x2) ∈ Xδ;

|(x1 − x0) ∧ (x2 − x0)| ≥ δC−1c0
})

≤ Cε,c0δC
−1c0 .

where µ3 is product measure on K ×K ×K.
Proof. Let c5 be a constant to be chosen later. We shall show that

(50) µ3({(x0, x1, x2) : (x0, x1), (x0, x2) ∈ Xδ; |(x1 − x0) ∧ (x2 − x0)| ≥ δc5})
≤ Cε,c0

(
δC

−1c5 + δ−Cc5δC
−1c0

)
,

from which (49) follows from a suitable choice of c5.
Partition K = K1 ∪K2, where

K1 := {x ∈ K : µ(B(x, δ)) ≥ δc5δ},
K2 := {x ∈ K : µ(B(x, δ)) < δc5δ}.

Let us first deal with the contribution to (50) of the case when at least one of
x0, x1, x2 is in K2. By Fubini’s Theorem and symmetry it suffices to show that

µ2({(x0, x1) : x0 ∈ E2, (x0, x1) ∈ Xδ}) ≤ Cε,c0δc5/10.
By Cauchy-Schwarz 2.1 it suffices to show that

µ3({(x0, x1, x2) : x0 ∈ E2, (x0, x1), (x0, x2) ∈ Xδ}) � δc5/5.
Let us first consider the contribution of the case |x1 − x2| � δc5/5. For each x0,

x1, the set of x2 which contribute to the above expression has measure O(δc5/5) by
(47), and so this contribution is acceptable by Fubini’s Theorem. It thus remains
to show

µ3
({

(x0, x1, x2) : x0 ∈ E2, (x0, x1), (x0, x2) ∈ Xδ, |x1 − x2| � δc5/5
})

� δc5/5.

By Fubini’s Theorem again, it suffices to show that

µ({x0 ∈ E2 : (x0, x1), (x0, x2) ∈ Xδ}) � δc5/5

for all x1, x2 ∈ E such that |x1 − x2| � δc5/5.
Fix x1, x2. By (47) again, it suffices to show that

µ
({
x0 ∈ E2 : |x0 − x1|, |x0 − x2| ∈ Dδ; |x0 − x1|, |x0 − x2| � δc5/5

})
� δc5/5.

The set Dδ can be covered by � δ−1/2 intervals of length δ. Let I denote the
collection of those intervals I in this cover such that dist(0, I) � δc5/5. It suffices
to show that ∑

I,J∈I
µ({x0 ∈ E2 : |x0 − x1| ∈ I; |x0 − x2| ∈ J}) � δc5/5.(51)

For fixed I, J , the set described above is contained in an annular arc of thickness
δ, radius δc5/5 � r � 1, and angular width bounded by

� δ−c5/10δ
(δ + |dist(I, J)− |x1 − x2||)1/2
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as one can easily compute using elementary geometry. By the construction of E2

and a simple covering argument, we can thus bound the left-hand side of (51) by

� δc5 δ−c5/10δ
(δ + |dist(I, J)− |x1 − x2||)1/2 .

To complete the proof of (51) it thus suffices to show that∑
J∈I

δ−c5/10δ
(δ + |dist(I, J)− |x1 − x2||)1/2 � δ1/2

for all I ∈ I. But this follows easily by dyadically decomposing the J based on
dist(I, J) and noting from (1) that for each k, there are � 2k/2 intervals J for
which dist(I, J) ≈ 2kδ. Note that any logarithmic factors can be absorbed into the
� notation.

To conclude the proof of (50) it remains to show that

µ3({(x0, x1, x2) ∈ K1 ×K1 ×K1 : (x0, x1), (x0, x2) ∈ Xδ;
|(x1 − x0) ∧ (x2 − x0)| ≥ δc5}) ≤ Cε,c0δ−Cc5δC

−1c0 .

From the definition of K1 and (47) we see that K1 is contained in a (δ, 1
2 + c5)2 set

E. From (47) and a covering argument we have

µ3({(x0, x1, x2) ∈ K1 ×K1 ×K1 : (x0, x1), (x0, x2) ∈ Xδ;
|(x1 − x0) ∧ (x2 − x0)| ≥ δc5})

� δ−3

∣∣∣∣{(x0, x1, x2) ∈ E × E × E : |x0 − x1|, |x0 − x2| ∈ Dδ +B
(
0, δ1−Cε

)
;

|(x1 − x0) ∧ (x2 − x0)| ≥ 1
2
δc5
}∣∣∣∣.

The claim then follows from (4). �

Henceforth we assume that c0 is so small that Lemma 9.1 holds.
We shall use (49) to create a dichotomy, that either (48) holds or that the pairs

in Xδ are concentrated in a thin set resembling (2). More precisely, we have:

Lemma 9.2. If C11 is a sufficiently large constant, then for each δ we can find an
integer Nδ and sets Sδ,1, . . . , Sδ,Nδ

⊂ B(0, C) such that
• For each δ, each x ∈ K is contained in at most C sets Sδ,i, where C is an
absolute constant independent of δ.

• Each set Sδ,i is contained in a strip Ri (i.e., a rectangle of infinite length)
with width δC11

−1c0 .
• For each i one can find a finite set Fi ⊂ B(0, C) of points with cardinality

#Fi � δ−Cc0(52)

and for each x ∈ Fi one can associate a collection Ai,x,1, . . . , Ai,x,Mi,x of
annuli of thickness Cδ, radii which are � 1 and δ-separated, and center x
such that

Mi,x � δ−Cc0δ−1/2(53)
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for all x ∈ Fi and

Sδ,i ⊂
⋃
x∈Fi

Mi,x⋃
j=1

Ai,x,j .(54)

• We have the estimate
µ2(Yδ) � δCC11

−1c0 ,(55)

where

Yδ := Xδ\
Nδ⋃
i=1

S2
δ,i.

Proof. Fix δ. The space of all strips of width δC11
−1c0 which intersect B(0, C)

is a two-dimensional manifold, which we can endow with a smooth metric d(·, ·).
Let R1, . . . , RNδ

be a maximal C−1δC11
−1c0-separated subset of this space of strips;

note that Nδ � δ−2C11
−1c0 .

For each x ∈ K, let i(x) denote the index 1 ≤ i ≤ Nδ which maximizes the
quantity

µ({y ∈ K : x, y ∈ Ri}),
and for each 1 ≤ i ≤ Nδ, define Tδ,i to be the set

Tδ,i :=
{
x ∈ K : d(Ri, Ri(x)) ≤ CδC11

−1c0
}
.

Clearly the sets Tδ,i are contained in Ri and form a finitely overlapping cover of K.
We shall show the preliminary estimate

µ2

(
Xδ\

Nδ⋃
i=1

T 2
δ,i

)
� δCC11

−1c0 .(56)

It suffices to show

µ2({(x0, x1) ∈ Xδ : d(Ri(x0), Ri(x1)) ≥ Cδ}) � δCC11
−1c0 .

From the bounds on Nδ it suffices to show that

µ2({(x0, x1) ∈ Xδ : i(x0) = i, i(x1) = j}) � δCC11
−1c0

for all 1 ≤ i, j ≤ Nδ such that d(Ri, Rj) ≥ Cδ.
Fix i, j, and rewrite the above as∫

i(x0)=i

µ({x1 : (x0, x1) ∈ Xδ, i(x1) = j}) dµ(x0) � δCC11
−1c0 .

By Cauchy-Schwarz it suffices to show that∫
i(x0)=i

µ({x1 : (x0, x1) ∈ Xδ, i(x1) = j})2 dµ(x0) � δCC11
−1c0 .

By definition of i(x0), we have

µ({x1 : (x0, x1) ∈ Xδ, i(x1) = j}) ≤ µ({x2 : (x0, x2) ∈ Xδ, i(x2) = i}),
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so it suffices to show that∫
i(x0)=i

µ2({(x1, x2) : (x0, x1), (x0, x2) ∈ Xδ, i(x1) = j, i(x2) = i}) dµ(x0)

� δCC11
−1c0 .

This will obtain if we can show

µ3({(x0, x1, x2) : x0, x2 ∈ Ri;x1 ∈ Rj ; (x0, x1), (x0, x1) ∈ Xδ}) � δCC11
−1c0 .

We first consider the contribution of the case when |x1 − x0| ≤ δC11
−1c0 . In this

case we estimate x1 integral by (47) and then integrate in the x0 and x2 variables
to show that the contribution of this case is acceptable. Similarly we can handle
the case |x2 − x0| ≤ δC11

−1c0 . Thus it remains to show that

µ3
({

(x0, x1, x2) : x0, x2 ∈ Ri;x1 ∈ Rj ; (x0, x1), (x0, x1) ∈ Xδ;

|x1 − x0|, |x2 − x0| > δC11
−1c0

})
� δCC11

−1c0 .

Suppose (x0, x1, x2) is in the above set. Since d(Ri, Rj) > Cδ, we see from elemen-
tary geometry that

|(x1 − x0) ∧ (x2 − x0)| ≥ δCC11
−1c0 .

Thus the desired claim follows from (49), if C11 is sufficiently large.
The Tδ,i have most of the properties that we desire for Sδ,i, but need not be

covered by a small number of annuli. To remedy this we shall refine Tδ,i slightly.
Fix j and perform the following algorithm. Initialize Sδ,i to be the empty set. If

one has

µ({y ∈ Tδ,i\Sδ,i : (x, y) ∈ Xδ}) � δCc0(57)

for all x ∈ Tδ,i, we terminate the algorithm. Otherwise, we choose an x ∈ Tδ,i for
which (57) fails, and add the set in (57) to Sδ,i. We then repeat this algorithm,
continuing to enlarge Sδ,i until (57) is finally satisfied for all x ∈ Tδ,i.

Since each iteration of this algorithm adds a set of measure � δCc0 to Sδ,i, this
algorithm must terminate after at most � δ−Cc0 steps. Since Xδ is a (δ, 1

2+c0)1 set,
we see that each set of the form (57) can be covered by annuli Ai,x,1, . . . , Ai,x,Mx

with width δ, radii � 1 and C−1δ-separated, and center at x. Thus we have the
desired covering (54).

It remains to prove (55). From (56) and the bounds on Nδ it suffices to show
that

µ2(Xδ ∩ (T 2
δ,i\S2

δ,i)) � δCC11
−1c0

for all 1 ≤ i ≤ Nδ. Since
T 2
δ,i\S2

δ,i = Tδ,i × (Tδ,i\Sδ,i) ∪ (Tδ,i\Sδ,i)× Tδ,i
it suffices by symmetry to show that

µ2(Xδ ∩ (Tδ,i × (Tδ,i\Sδ,i))) � δCC11
−1c0

for all i. But this follows by integrating (57) over all x ∈ Tδ,i. �
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Henceforth C11 will be assumed large enough so that the above lemma holds.
From (55) we see that

∑
δ µ

2(Yδ) <∞, if ε is chosen sufficiently small depending
on c0. From the Borel-Cantelli Lemma we thus see that for almost every x, y, the
pair (x, y) is contained in only finitely many Yδ. (Here and in the sequel, “almost
every” is with respect to µ). Since the Xδ strongly cover E × E, we thus see that
(x, y) is contained in infinitely many sets of the form S2

δ,i for hyperdyadic δ and
1 ≤ i ≤ Nδ for almost every x, y.

Suppose x ∈ E, and δ is a hyperdyadic number. Define d(x, δ) to be the smallest
hyperdyadic number δ1 such that

δ1 > δ
C11/c0(58)

and such that x ∈ Sδ1,i1 for some 1 ≤ i1 ≤ Nδ1 , or d(x, δ) = +∞ if no such δ1
exists. From the previous observation we thus see that for almost every x, y, there
are infinitely many hyperdyadic δ, δ1, δ2 and i such that x, y ∈ Sδ,i, δ1 = d(x, δ),
and δ2 = d(y, δ). In particular, we have∑
δ1

∑
δ2

µ2{(x, y) ∈ E × E : x, y ∈ Sδ,i, δ1 = d(x, δ), δ2 = d(y, δ) for some δ, i} = ∞.

The desired contradiction then follows immediately (if c0 is sufficiently small)
from:

Lemma 9.3. For all hyperdyadic δ1, δ2 we have (if C11 is chosen appropriately)

µ2({(x, y) ∈ K ×K : x, y ∈ Sδ,i, δ1 = d(x, δ), δ2 = d(y, δ) for some δ, i})
≤ Cc0,εmin(δ1, δ2)1/4−Cc0 .

The 1/4 exponent is not optimal, but that is irrelevant for our purposes, since
we only need the right-hand side to be summable in δ1, δ2.

Proof. Fix δ1, δ2; by symmetry we may assume that δ1 ≤ δ2. By Fubini’s Theorem
it suffices to show that

µ{x ∈ K : x, y ∈ Sδ,i, δ1 = d(x, δ), δ2 = d(y, δ) for some δ, i} ≤ Cc0δ1/4−Cc01(59)

for all y ∈ K.
Fix y. Since y and δ2 are fixed, there are significant constraints on the number

of δ which can contribute to (59). Indeed, if there are two values of δ, say δ′ and
δ′′, which contribute to (59), then δ′ cannot exceed δ′′C11/c0 and δ′′ cannot exceed
δ′C11/c0 , due to the presence of (58) in the definition of d(y, δ′), d(y, δ′′). Because
δ is constrained to be hyperdyadic, we thus see that there are at most CC11,c0,ε

values of δ which contribute to (59). Thus it suffices to show (59) for a single value
of δ. Since the Sδ,i are finitely overlapping as i varies, we see that for each δ there
are at most C values of i which contribute to (59). Hence it suffices to show that

µ{x ∈ K : x ∈ Sδ,i, δ1 = d(x, δ)} ≤ Cc0δ1/4−Cc01(60)

for all δ, i.
Fix δ, i. We may of course assume that (58) holds, else (60) is vacuously true.

By definition of d(x, δ) and the fact that Nδ1 � δ−Cc01 it suffices to show that

µ{x ∈ K : x ∈ Sδ,i, x ∈ Sδ1,i1} ≤ Cc0δ1/4−Cc01

for all i1.
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Fix i1. By (54) and (52) it suffices to show that
Mi1,x0∑
j=1

µ(Sδ,i ∩Ai1,x0,j) ≤ Cc0δ1/4−Cc01

for all x0 ∈ F .
Fix x0. The set Sδ,i is contained in a rectangle of width δC11

−1c0 , hence contained
in a rectangle R of width δ1 by (58). Let r denote the distance from R to x0. From
elementary geometry we see that R∩Ai1,x0,j is the union of two sets, each of which
having diameter at most

Cδ

(δ + |rj − r|)1/2
where rj is the outer radius of Ai1,x0,j . From (47) we thus have

µ(Sδ,i ∩Ax0,j) ≤ Cδ1−ε(δ + |rj − r|)1/2−ε.
If we arrange the rj in order of distance from r, we have |rj − r| ≥ Cjδ since the
rj are δ-separated. Since ε� c0, the claim then follows from (53). �
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