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Modules with Injective Cohomology, and Local
Duality for a Finite Group

David Benson

Abstract. Let G be a finite group and k a field of characteristic p dividing
|G|. Then Greenlees has developed a spectral sequence whose E2 term is the
local cohomology of H∗(G, k) with respect to the maximal ideal, and which
converges to H∗(G, k). Greenlees and Lyubeznik have used Grothendieck’s
dual localization to provide a localized form of this spectral sequence with
respect to a homogeneous prime ideal p in H∗(G, k), and converging to the
injective hull Ip of H∗(G, k)/p.

The purpose of this paper is give a representation theoretic interpreta-
tion of these local cohomology spectral sequences. We construct a double
complex based on Rickard’s idempotent kG-modules, and agreeing with the
Greenlees spectral sequence from the E2 page onwards. We do the same for
the Greenlees-Lyubeznik spectral sequence, except that we can only prove
that the E2 pages are isomorphic, not that the spectral sequences are. Ours
converges to the Tate cohomology of the certain modules κp introduced in
a paper of Benson, Carlson and Rickard. This leads us to conjecture that

Ĥ∗(G, κp) ∼= Ip , after a suitable shift in degree. We draw some consequences
of this conjecture, including the statement that κp is a pure injective module.
We are able to prove the conjecture in some cases, including the case where
H∗(G, k)p is Cohen–Macaulay.
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1. Introduction

Let G be a finite group and k be a field of characteristic p. By a theorem of
Evens and Venkov [10, 23], the cohomology ring H∗(G, k) is a finitely generated
graded commutative k-algebra. Further restrictions on the structure of H∗(G, k)
can be expressed in terms of the existence of certain spectral sequences. The first
of these was constructed by Benson and Carlson [2] using multiple complexes and
related finite Poincaré duality complexes of projective kG-modules. It follows from
the existence of this spectral sequence that if H∗(G, k) is Cohen–Macaulay, then
it is Gorenstein. Even if H∗(G, k) is not Cohen–Macaulay, the existence of the
spectral sequence gives severe restrictions on the possibilities for the ring structure.
An example of an application of this spectral sequence is the statement that if
H∗(G, k) is a polynomial ring, then it follows that p = 2, the generators are in
degree one, and G/O(G) is an elementary abelian 2-group.

Greenlees [11] found a way of using the same techniques coming from multiple
complexes to construct a cleaner spectral sequence expressing much of the same
information. This spectral sequence can be written as

H∗
mH

∗(G, k) ⇒ H∗(G, k).

Here, m denotes the maximal ideal generated by the elements of positive degree in
H∗(G, k), and H∗

m denotes local cohomology in the sense of Grothendieck [13, 14].
Greenlees and Lyubeznik [12] showed how to apply dual localization to this spectral
sequence, with respect to a homogeneous prime ideal p of H∗(G, k). This leads to
a spectral sequence whose E2 page is

H∗
p H

∗(G, k)p

and which converges to the injective hull, in the graded sense, of H∗(G, k)/p as a
H∗(G, k)-module, suitably shifted in degree.

The first purpose of this paper is to provide a construction of the Greenlees
spectral sequence using Rickard’s idempotent modules [22]. This construction is
essentially a stabilized version of a construction which Carlson and Wheeler [8]
introduced in the context of complexity quotient categories. The construction is
given in Section 3, where the following theorem is made more precise.

Theorem 1.1. There is a double complex consisting of homomorphisms from pro-
jective kG-modules to Rickard idempotent modules, whose spectral sequence is iso-
morphic to the Greenlees spectral sequence, from the E1 page onwards.

We give an interpretation in terms of this spectral sequence of the “last survivor”
method of Section 7 of [2]. The result is a slightly stronger theorem, the proof of
which can be found in Section 4.

Theorem 1.2. Let ζ1, . . . , ζr be a homogeneous set of parameters for H∗(G, k),
and let ai = deg(ζi) (1 ≤ i ≤ r). Then there is an element of degree

∑r
i=1(ai − 1)

in H∗(G, k) which is not in the ideal (ζ1, . . . , ζr) and is not annihilated by any
nonzero element of k[ζ1, . . . , ζr].

In Section 5, we provide an analagous construction of a spectral sequence with
the same E2 page as the Greenlees–Lyubeznik dual localized spectral sequence.
We have been unable to prove that these two spectral sequences are isomorphic,
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although this seems very likely. Our spectral sequence converges to the Tate coho-
mology Ĥ∗(G, κp) with coefficients in the module κp introduced in introduced by
Benson, Carlson and Rickard [3] (in that paper, the module is called κ(V ), where
V is the closed homogeneous irreducible subvariety of the cohomology variety VG

corresponding to p).
The modules κp are interesting because they are idempotent, in the sense that

κp ⊗ κp
∼= κp in the stable module category, and tensoring with κp picks out the

“layer” in the stable module category corresponding to the prime p ⊆ H∗(G, k).
If it could be proved that the two spectral sequences are isomorphic, then it

would follow that Ĥ∗(G, κp) is an injective H∗(G, k)-module. This would allow
the modules κp to be compared with the modules T (Ip) introduced by Benson and
Krause [5]. The second purpose of this paper is to investigate some special cases
in which we are able to make this comparison. We give evidence for the following
conjecture.

Conjecture 1.3. Let p �= m be a homogeneous prime ideal of dimension d in
H∗(G, k). Then T (Ip) and Ω−dκp are stably isomorphic.

The modules T (Ip) are the representing objects for the contravariant exact func-
tor which takes a module to the Matlis dual of its Tate cohomology, in the sense
that there are functorial isomorphisms

DpĤ
∗(G,M) ∼= Êxt

∗
kG(M,T (Ip)).

In particular, the T (Ip) are pure injective modules, and their cohomology is given
by Ĥ∗(G,T (Ip)) ∼= Ip, the injective hull of H∗(G, k)/p.

The reason for the interest in the above conjecture is that what we know about
the properties of T (Ip) and of Ω−dκp have little overlap. That a single module
should have all these properties seems to have be significant. It seems likely that
there are many consequences for the interactions between commutative algebra and
modular representation theory.

So for example, it would follow from this conjecture that κp is pure injective, so
that there are no phantom maps into κp. It also follows that Ĥ∗(G, κp) ∼= Ip[d], and
that Endk(κp) is a kG-module whose Tate cohomology is the completion H∗(G, k)

∧
p

of the localized cohomology ring with respect to the powers of its maximal ideal.
Another consequence of the conjecture is the formula

T (Ip)⊗k T (Ip) ∼= Ω−dT (Ip)

in the stable module category.
We prove the above conjecture in the case whereH∗(G, k)p is Cohen–Macaulay of

Krull dimension r−d, and also in the case where the depth is r−d−1 and the Krull
dimension is r − d. In particular, since any localization of a Cohen–Macaulay ring
is Cohen–Macaulay, the conjecture holds whenever H∗(G, k) is Cohen–Macaulay.
The proof of the following theorem can be found in Section 7.

Theorem 1.4. Let G be a finite group of p-rank r, and let k be a field of charac-
teristic p. Suppose that p �= m is a homogeneous prime ideal in H∗(G, k) of Krull
dimension d, such that the localization H∗(G, k)p satisfies one of the following con-
ditions:
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(∗) H∗(G, k)p is Cohen–Macaulay of Krull dimension r−d (i.e., its depth is also
equal to r − d), or

(∗∗) H∗(G, k)p has depth r − d− 1 and Krull dimension r − d.
Then the following hold:

(i) The cohomology Ĥ∗(G, κp) is injective in the category of graded H∗(G, k)-
modules; in particular, it is isomorphic to Ip[d].

(ii) The modules T (Ip) and Ω−dκp are stably isomorphic.
(iii) The modules κp are pure injective.
(iv) There are no phantom maps into κp.
(v) The ring Êxt

∗
kG(κp, κp) ∼= Ĥ∗(G,Endk(κp)) is isomorphic to the completion

H∗(G, k)
∧
p of the localized cohomology H∗(G, k)p with respect to the maximal

ideal pp.
(vi) The formula T (Ip)⊗ T (Ip) ∼= Ω−dT (Ip) holds in the stable module category.

If H∗(G, k) is Cohen–Macaulay, then (∗) holds for H∗(G, k)p. Furthermore,
H∗(G, k) is Cohen–Macaulay in (at least) the following cases:
(a) G has abelian Sylow p-subgroups,
(b) G = GLn(Fq) with q a power of a prime different from p,
(c) p = 2 and G has extraspecial Sylow 2-subgroups,
(d) p = 2 and G is a finite simple group of 2-rank at most three, or isomorphic

to U3(2n) or Sz(22n+1),
(e) p = 3 and G has extraspecial Sylow 3-subgroups of order 31+2 and exponent

3.

Finally, if G has p-rank at most two, then either (∗) or (∗∗) is satisfied for every
prime ideal p.

Background material on commutative algebra can be found in Matsumura [16].
References on local cohomology include Brodmann and Sharp [6], Bruns and Herzog
[7], and Grothendieck [13, 14].

Conventions and notations. We assume throughout that G is a finite group of
order divisible by p, and that k is a field of characteristic p. When we talk about
modules and maps over a Z-graded ring, we always mean graded modules unless
otherwise specified. So for example when we talk about injective hulls, these are
taken in the category of graded modules. This is not the same as injective hulls in
the category of all modules. Also, when we use the term “ideal”, we mean graded
ideal unless otherwise specified. If M is a graded module, we write M [n] for the
graded module with M [n]i =Mi+n.

Acknowledgements. I would like to take this opportunity to thank Jon Carlson,
Henning Krause and Jeremy Rickard for the interest they have taken in this work.

2. Depth

Much of this paper is concerned with the depth and the Krull dimension of the
cohomology ring, and various localizations of it. We begin with a statement that
must be well known, but for which it does not seem easy to find a reference in the
literature.
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Theorem 2.1. Let P be a Sylow p-subgroup of G, and k a field of characteristic
p. Then the depth of H∗(G, k) is at least as big as the depth of H∗(P, k).

Proof. There are several ways to prove this theorem. One way is to notice that be-
cause of the existence of the transfer map, H∗(G, k) is a direct summand ofH∗(P, k)
as anH∗(G, k)-module. SinceH∗(P, k) is finitely generated as anH∗(G, k)-module,
the depth of H∗(P, k) as a ring is equal to its depth as an H∗(G, k)-module. Its
depth is therefore at most as big as the depth of the summand H∗(G, k). �

A localized version of the same theorem is also true.

Theorem 2.2. Let p be a prime ideal of H∗(P, k), and let q = p ∩ H∗(G, k) be
the prime ideal of H∗(G, k) over which it lies. Then the depth of the localization
H∗(G, k)q is at least as big as the depth of H∗(P, k)p.

Proof. The proof is essentially the same as the proof of Theorem 2.1, but this
time, we need to observe that H∗(G, k)q is a direct summand of H∗(P, k)p as an
H∗(G, k)q-module. �

3. The Greenlees spectral sequence

We begin by recalling what we need from Rickard’s theory of idempotent mod-
ules [22]. If C is a thick subcategory of the stable category stmod(kG) of finitely
generated kG-modules, then there is a triangle in StMod(kG) of the form

EC → k → FC → Ω−1EC

where EC is a direct limit of modules in C, and FC is C-local in the sense that
HomkG(X,FC) = 0 for all modules X in C. The modules EC and FC are idempotent
modules in the sense that each is stably isomorphic to its tensor square.

If V is a collection of closed homogeneous irreducible subvarieties of the coho-
mology variety VG, closed under specialization (i.e., if V ∈ V and W ⊆ V then
W ∈ V), let CV be the thick subcategory consisting of the modules M such that
each irreducible component of VG(M) is in V. In this case, we write EV and FV for
the corresponding idempotent modules. Finally, if ζ ∈ Hn(G, k), write Eζ and Fζ

for the idempotent modules corresponding to the hypersurface in VG determined
by ζ. The module Fζ can be described as the colimit of

k
ζ̂−→ Ω−nk

ζ̂−→ Ω−2nk → . . .

where the maps ζ̂ are arbitrary representatives of ζ. In particular, Ĥ∗(G,Fζ) is the
localization of H∗(G, k) (or equivalently of Ĥ∗(G, k)) obtained by inverting ζ. More
generally, if V is any nonempty collection generated by hypersurfaces, in the sense
that each element of V is contained in a hypersurface in V, then Ĥ∗(G,FV) is the
localization of H∗(G, k) (or of Ĥ∗(G, k), it doesn’t matter) obtained by inverting
the elements corresponding to the hypersurfaces. Furthermore, for any kG-module
M , Ĥ∗(G,FV⊗kM) is the localization of Ĥ∗(G,M) obtained by inverting the same
elements.

Choose a homogeneous set of parameters ζ1, . . . , ζr for H∗(G, k). For each ζi,
we have a cochain complex

0 → k → Fζi → 0
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where k is taken to be in degree zero and Fζi in degree one. The cohomology of
this complex is Ω−1Eζi

, concentrated in degree one.
Tensoring these complexes together (over k, with diagonal G-action), we obtain

a complex

Λ∗ = Λ∗(ζ1, . . . , ζr) :

0 → k →
⊕

1≤i≤r

Fζi
→

⊕
1≤i<j≤r

Fζi
⊗k Fζj

→ . . .→
⊗

1≤i≤r

Fζi
→ 0.

By the Künneth theorem, this is exact except in degree r, where its cohomology is

Ω−1Eζ1 ⊗k · · · ⊗k Ω−1Eζr

which is a projective kG-module.
Now let P̂∗ be a Tate resolution of the trivial kG-module. In other words, P̂∗ is

a complex of the form

. . . �� P2
�� P1

�� P0
��

�������� P−1
�� P−2

�� . . .

k

��������

���������

0

���������
0

obtained by splicing together a projective resolution and an injective resolution of
the trivial module.

Consider the double complex Ê∗,∗
0 = HomkG(P̂∗,Λ∗). This gives rise to two

spectral sequences. The spectral sequence where we take cohomology with respect
to the differential coming from Λ∗ first has its E1 page concentrated on a single
line, where it consists of

HomkG(P̂∗,Ω−1Eζ1 ⊗k · · · ⊗k Ω−1Eζr
).

The E2 page is then the Tate cohomology of this projective module, which is zero.
It follows that the cohomology of the total complex Tot Ê∗,∗

0 is zero.
On the other hand, if we take cohomology with respect to the differential coming

from P̂∗ first, then the E1 page is

Ês,t
1 = Ĥt(G,Λs).

Now each Λs is a direct sum of modules of the form Fζ , where ζ is a product of
a subset of size s of ζ1, . . . , ζr. The cohomology of this module is the localization
Ĥ∗(G, k)ζ . The maps in the complex are the signed inclusions. So this is the stable
Koszul complex

Ê∗,∗
1 = C∗(Ĥ∗(G, k); ζ1, . . . , ζr).

See for example Section 3.5 of Bruns and Herzog [7] for a description of the stable
Koszul complex and the fact that it calculates local cohomology. Thus we have

Ês,t
2 = Hs,t

m Ĥ∗(G, k) ⇒ 0.

Here, we have given local cohomology a double grading. The first grading is the
local cohomological grading, and the second is the internal grading coming from
the fact that Ĥ∗(G, k) is a graded ring. The differentials in this spectral sequence
are

dj : Ê
s,t
j → Ês+j,t−j+1

j .
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Now, this is not quite the spectral sequence which Greenlees [11] constructed, so
we make the following modification. Let P̂−

∗ be the subcomplex

0 → P−1 → P−2 → . . .

of P̂∗, and let P∗ be the quotient complex

. . .→ P1 → P0 → 0.

Then we can consider HomkG(P̂−
∗ , k) as a quotient complex of Ê∗,∗

0 by a subcomplex
which we call E∗,∗

0 of the following form.

...

��

...

��

...

��
0 �� 0 ��

��

HomkG(P−2,Λ1) ��

��

· · · �� HomkG(P−2,Λr) ��

��

0

0 �� 0 ��

��

HomkG(P−1,Λ1) ��

��

· · · �� HomkG(P−1,Λr) ��

��

0

0 �� HomkG(P0, k) ��

��

HomkG(P0,Λ1) ��

��

· · · �� HomkG(P0,Λr) ��

��

0

0 �� HomkG(P1, k) ��

��

HomkG(P1,Λ1) ��

��

· · · �� HomkG(P1,Λr) ��

��

0

0 �� HomkG(P2, k) ��

��

HomkG(P2,Λ1) ��

��

· · · �� HomkG(P2,Λr) ��

��

0

...
...

...

We have a short exact sequence of complexes

0 → TotE∗,∗
0 → Tot Ê∗,∗

0 → HomkG(P̂−
∗ , k) → 0.

Since Tot Ê∗,∗
0 is exact, this gives

Hn(TotE∗,∗
0 ) ∼= Hn+1(HomkG(P̂−

∗ , k)).

The cohomology of HomkG(P̂−
∗ , k) is the negative part of Tate cohomology, shifted

in degree by one, Ĥ−(G, k)[−1], which is the same as ordinary homology with
degrees negated. So we have

Hn(TotE∗,∗
0 ) ∼=

{
H−n(G, k) n ≤ 0
0 n > 0.

Now, localizing Tate cohomology at any nonzero element kills all negative degree
elements, and so the result is the same as the localization of ordinary cohomology.
It follows that if we take cohomology with respect to the vertical differential first,
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the E1 page of the spectral sequence is the stable Koszul complex for ordinary
cohomology,

E∗,∗
1 = C∗(H∗(G, k); ζ1, . . . , ζr).

Thus we have

Es,t
2 = Hs,t

m H∗(G, k) ⇒ H−s−t(G, k).

This is the required module theoretic construction of the Greenlees spectral se-
quence.

Note that as a module over H∗(G, k), the homology H∗(G, k) is just the injective
hull Im of k = H∗(G, k)/m. So another way of writing this spectral sequence is

E∗,∗
2 = H∗

mH
∗(G, k) ⇒ Im.(3.1)

4. The last survivor

In this section, we give an interpretation of the last survivor of Section 7 of [2]
in terms of the Greenlees spectral sequence (3.1).

Since H∗(G, k) and H∗(G, k) are vector space duals, the identity element of
H0(G, k) corresponds to an isomorphism αG : H0(G, k) → k with the property
that if iH,G : H → G is the inclusion of a subgroup H of G then αG ◦ (iH,G)∗ = αH .

Now suppose that G has p-rank r, so that by a theorem of Quillen [19, 20],
H∗(G, k) has Krull dimension r. Then Hi

mH
∗(G, k) = 0 for i > r, and so there is

a right-hand edge homomorphism for the Greenlees spectral sequence (3.1)

Hr,t
m H∗(G, k) → H−r−t(G, k).

This is an isomorphism precisely when H∗(G, k) is Cohen–Macaulay. Composing
with αG, we obtain a homomorphism

γG : Hr,−r
m H∗(G, k) → k.

If H is a subgroup of G then transfer in negative Tate cohomology Ĥ−n(H, k) →
Ĥ−n(G, k) is the same as the map (iH,G)∗ : Hn−1(H, k) → Hn−1(G, k) induced by
the inclusion iH,G : H → G. It follows that transfer induces a homomorphism of
spectral sequences

Hs,t
m H∗(H, k) ��

(TrH,G)∗
��

H−s−t(H, k)

(iH,G)∗
��

Hs,t
m H∗(G, k) �� H−s−t(G, k)

(4.1)

Now let E be an elementary abelian p-subgroup of G of maximal rank r. Then
H∗(E, k) is Cohen–Macaulay of Krull dimension r, and so the edge homomorphism
is an isomorphism in this case. So the edge homomorphisms fit into a commutative
diagram

Hr,−r
m H∗(E, k)

∼= ��

(TrE,G)∗
��

H0(E, k)

(iE,G)∗
��

αE �� k

Hr,−r
m H∗(G, k) �� H0(G, k)

αG �� k
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It follows that

γG ◦ (TrE,G)∗ = γE .(4.2)

Since the top horizontal map in the above commutative square is an isomorphism,
it follows that γE is nonzero, and hence also γG is nonzero.

Theorem 4.1. There is a nonzero canonical homomorphism

γG : Hr,−r
m H∗(G, k) → k. �

A good way of interpreting this theorem is in terms of Grothendieck duality
[13, 14]. Let R be a polynomial subring k[ζ1, . . . , ζr] of H∗(G, k) over which the
latter is finitely generated as a module (i.e., a Noether normalization of H∗(G, k)).
Set ai = deg(ζi), and a =

∑r
i=1 ai. Then the dualizing module for R is R[−a]. So

Grothendieck duality for R states that for any finitely generated R-module M , the
graded vector space dual of Hi,∗

m (M) is isomorphic to Extr−i,−∗
R (M,R[−a]). So for

example, dualizing the spectral sequence (3.1) gives a spectral sequence

Extr−s,−t
R (H∗(G, k), R[−a]) ⇒ H−s−t(G, k).

Reindexing gives

Exts,t
R (H∗(G, k), R[−a+ r]) ⇒ Hs+t(G, k).

Similarly, dualizing the transfer diagram of spectral sequences (4.1) gives

Exts,t
R (H∗(G, k), R[−a+ r]) ��

Tr∗H,G

��

Hs+t(G, k)

resH,G

��
Exts,t

R (H∗(H, k), R[−a+ r]) �� Hs+t(H, k),

provided that R is also a Noether normalization of H∗(H, k) via restriction, which
happens precisely when H has p-rank r. Since Ext0 = Hom, this means that the
element γG can be interpreted as an element of

Hom∗
R(H∗(G, k), R[−a])

of degree r (dualizing negates the degree), or in other words as a degree preserving
R-module homomorphism

γ̃G : H∗(G, k) → R[−a+ r].

In this guise, the transfer formula (4.2) now reads

γ̃G ◦ TrE,G = γ̃E .(4.3)

The homomorphism γ̃E is easy to interpret. As an R-module, H∗(E, k) is free on a
finite set of homogeneous generators. These generators lie in degrees zero through
a − r =

∑r
i=1(ai − 1), and exactly one generator, say u, lies in the largest degree

a− r. It follows that γ̃E must vanish on all the generators except u, and must take
u to some scalar in k times the identity element of R[−a+ r]. In particular, γ̃E is
surjective. It follows from the transfer formula that γ̃G is also surjective.

Theorem 4.2. There is a surjective R-module homomorphism γ̃G : H∗(G, k) →
R[−a+ r].
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In particular, choosing an inverse image under γ̃G for the identity element of R,
we see that H∗(G, k) has a nonzero element in degree a−r which is not in the ideal
(ζ1, . . . , ζr), and is not annihilated by multiplication by any nonzero element of R.
Such an element can be chosen to be a transfer from E. It is not unique, but it is
called the “last survivor”.

In fact, this interpretation of the last survivor gives more information than was
given in Section 7 of [2], because in that context it was not at all clear that the last
survivor is not annihilated by any nonzero element of R.

5. The kappa modules

Let p �= m be a prime ideal in H∗(G, k), corresponding to an irreducible sub-
variety V of the cohomology variety VG. Let V denote the set of subvarieties W
satisfying W �⊇ V . Then the kappa module κp is defined to be EV ⊗ FV. Actually,
this is not quite the definition given in [3] (where the notation κ(V ) is used), but
is easily seen to be equivalent. This definition is better suited to our purposes, be-
cause V is determined by the hypersurfaces in it, and this makes Ĥ∗(G,FV) easier
to calculate. Namely, we have

Ĥ∗(G,FV) = H∗(G, k)p,

the localization of H∗(G, k) obtained by formally inverting all the elements not in
p.

Now let h be the height of p, which is equal to the Krull dimension of the
localization H∗(G, k)p. Using the form of Noether normalization proved in Nagata
[17], we can choose a homogeneous system of parameters ζ1, . . . , ζr for H∗(G, k)
in such a way that ζ1, . . . , ζh lie in p. This means that the images of ζ1, . . . , ζh in
H∗(G, k)p form a system of parameters there. Consider the complex

Λ∗(ζ1, . . . , ζh) : 0 → k →
⊕

1≤i≤h

Fζi →
⊕

1≤i<j≤h

Fζi ⊗k Fζj → . . .→
⊗

1≤i≤h

Fζi → 0

obtained by tensoring together the complexes

0 → k → Fζi → 0

(1 ≤ i ≤ h) as in Section 3. The cohomology of this complex is

Ω−1Eζ1 ⊗k · · · ⊗k Ω−1Eζh
∼= Ω−h(Eζ1 ⊗k · · · ⊗k Eζh

)⊕ (projective)
∼= Ω−hEV ⊕ (projective),

concentrated in degree h. So defining

Λ∗
p = Λ∗(ζ1, . . . , ζh)⊗ FV,

the cohomology of Λ∗
p is

Ω−hEV ⊗k FV
∼= Ω−hκp ⊕ (projective)

concentrated in degree h.
Now consider the double complex obtained by taking homomorphisms from a

Tate resolution of k to Λ∗
p,

E∗,∗
0 (p) = HomkG(P̂∗,Λ∗

p).
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If we take cohomology with respect to the differential coming from Λ∗
p first, the E1

page is concentrated in horizontal degree h, and is equal to HomkG(P̂∗,Ω−hκp). So
the E2 page is also concentrated in horizontal degree h, and is equal to Ĥ∗(G,Ω−hκp)
= Ĥ∗(G, κp)[h]. So we have

H∗(TotE∗,∗
0 (p)) ∼= Ĥ∗(G, κp).

On the other hand, if we take cohomology with respect to the differential coming
from P̂∗ first, then we have

Es,t
1 (p) = Ĥt(G,Λs

p).

This is the stable Koszul complex

E∗,∗
1 (p) = C∗(H∗(G, k)p; ζ1, . . . , ζh).

So doing the differential coming from Λ∗
p gives us the E2 page as local cohomology

with respect to p of the localized cohomology ring. So we have

E∗,∗
2 (p) = H∗

p H
∗(G, k)p ⇒ Ĥ∗(G, κp).(5.1)

6. Dual localization

There is another way to obtain a spectral sequence with E2 page isomorphic
to H∗

p H
∗(G, k)p, due to Greenlees and Lyubeznik [12]. Namely, they use Matlis

duality twice, in a process which they call “dual localization”. If p is a prime ideal
in H∗(G, k), and X is a module over H∗(G, k)p, then we write Dp(X) for the Matlis
dual of X (Matlis [15]):

Dp(X) = Hom∗
H∗(G,k)p

(X, Ip).

Here, Ip denotes the injective hull of H∗(G, k)/p as an H∗(G, k)-module. The
module Ip is in a natural way a module for the completion H∗(G, k)

∧
p of H∗(G, k)p

with respect to the powers of the maximal ideal pp. So Dp takes H∗(G, k)p-modules
to H∗(G, k)

∧
p -modules. It takes Artinian modules to Noetherian modules and vice-

versa. Applying Dp twice to an Artinian module returns the same module, whereas
applying Dp twice to a Noetherian module returns its p-completion.

The functor T from injective H∗(G, k)-modules to the stable category of kG-
modules, defined in Benson and Krause [5], is designed to deal with Matlis duality
in this setting. If M is a kG-module, it gives an isomorphism (Lemma 3.2 of [5]):

DpĤ
∗(G,M) ∼= Êxt

∗
kG(M,T (Ip))(6.1)

which may be viewed as a generalization of Tate duality. Namely, in case p = m,
the ideal generated by the homogeneous elements of positive degree, Dm is the same
as (graded) vector space duality over k, and T (Im) is just Ω(k) (Lemma 3.1 of [5]).

Grothendieck duality [13, 14] implies that applying Dm to the Greenlees spectral
sequence (3.1) gives a spectral sequence

Extr−∗,−∗
R (H∗(G, k), R[−a]) ⇒ H∗(G, k).

Localization with respect to p is exact, and so we obtain a spectral sequence

Extr−∗,−∗
Rq

(H∗(G, k)p, Rq[−a]) ⇒ H∗(G, k)p,
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where q = p ∩ R, which is a prime ideal in R. Now if d is the Krull dimension of
H∗(G, k)/p, then H∗(G, k)p has Krull dimension r − d. So Grothendieck duality
implies that applying Dp to the above spectral sequence gives

H∗−d,∗
p H∗(G, k)p ⇒ Ip.

Regrading, we obtain

H∗,∗
p H∗(G, k)p ⇒ Ip[d].(6.2)

This is the Greenlees–Lyubeznik spectral sequence.
In the Cohen–Macaulay case, this immediately calculates Ĥ∗(G, κp) for us, by

comparing the spectral sequences (5.1) and (6.2). In the case where H∗(G, k)p is
not Cohen–Macaulay, it would be desirable to have a more direct way to compare
these spectral sequences.

Theorem 6.1. Suppose that H∗(G, k)p is Cohen–Macaulay. Then Ĥ∗(G, κp) ∼=
Ip[d].

Proof. IfH∗(G, k)p is Cohen–Macaulay then local cohomology is concentrated in a
single degree. Namely, Hs,t

p H∗(G, k)p = 0 for s �= d. So the spectral sequences (5.1)
and (6.2) are each concentrated in a single column, and there are no differentials
or ungrading problems. Thus the two spectral sequences give isomorphisms

Ĥt(G, κp) ∼= Hd,t−d
p H∗(G, k)p ∼= Ip[d]t. �

7. Comparison

We would like to compare the spectral sequences (5.1) and (6.2) and prove that
they are isomorphic, so that Ĥ∗(G, κp) ∼= Ip[d]. Once this is achieved, the next
stage would be to prove that ifM is any kG-module satisfying Ĥ∗(G,M) = 0, then
HomkG(M,κp) = 0. This would enable us to apply Proposition 4.2 of Benson and
Krause [5] to deduce that T (Ip) ∼= Ω−dκp, and Conjecture 1.3 would be proved.

We have been unable to carry out this program in general. Instead, we explain
an alternative route which proves Conjecture 1.3 under some extra hypotheses.

Applying Dp to the spectral sequence (5.1) and using (6.1), we obtain a spectral
sequence

Extr−d−s,−t

R∧
q

(H∗(G, k)
∧
p , R

∧
q [−a]) ⇒ Êxt

−s−t

kG (κp, T (Ip)).

Reindexing gives

Exts,t

R∧
q

(H∗(G, k)
∧
p , R

∧
q [−a+ r]) ⇒ Êxt

s+t

kG (Ω−dκp, T (Ip)).(7.1)

The desired isomorphism between Ω−dκp and T (Ip) should be an element of degree
zero in the right hand side of (7.1). There is an obvious candidate in the E2 page,
namely the image γ̃G,p of the element γ̃G of Section 4 under p-completion. The
problem is that it is not at all obvious that this element should be a universal
cycle, without a more direct comparison of the spectral sequences.

Theorem 7.1. Let p be a prime ideal in H∗(G, k) corresponding to a homogeneous
irreducible subvariety V which is contained in an irreducible component of VG of
maximal dimension (equal to the p-rank of G).
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Suppose that γ̃G,p is a universal cycle in the spectral sequence (7.1). Then any
representative in

Êxt
0

kG(Ω−dκp, T (Ip)) = HomkG(Ω−dκp, T (Ip))

of γ̃G,p is a stable isomorphism.

Proof. Write ρ : Ω−dκp → T (Ip) for a representative of γ̃G,p, and complete ρ to a
triangle

Ω−dκp → T (Ip) → U → Ω−d−1κp

in StMod(kG). By Theorem 7.3 of [5], the variety of T (Ip) is

VG(T (Ip)) = {V }.
By Lemma 10.4 of [3], we also have

VG(Ω−dκp) = {V }.
So it follows that VG(U) ⊆ {V }.

Let E be a maximal elementary abelian subgroup of G such that the image VG,E

of VE → VG is an irreducible component of maximal dimension (equal to the p-rank
of G) containing V . Then we have a diagram of spectral sequences

Exts,t

R∧
q

(H∗(G, k)
∧
p , R

∧
q [−a+ r])

Tr∗E,G

��

�� Êxt
s+t

kG (Ω−dκp, T (Ip))

resG,E

��
Exts,t

R∧
q

(H∗(E, k)
∧
p , R

∧
q [−a+ r]) �� Êxt

s+t

kE (Ω−dκp ↓E , T (Ip)↓E).

Now by Lemma 8.2 of [3], we have

κp ↓E
∼=

⊕
res−1

G,E(P)=p

κP.

Here, P runs over the (finite) set of prime ideals in H∗(E, k) whose inverse image
under restriction are equal to p. This set corresponds to the set of irreducible com-
ponents in VE of the inverse image of V under res∗G,E . Similarly, by Proposition 7.1
of [5], we have

T (Ip)↓E
∼= T (rG,E(Ip)) ∼=

⊕
res−1

G,E(P)=p

T (IP).

Now H∗(E, k) is Cohen–Macaulay, so the spectral sequence

Exts,t

R∧
q

(H∗(E, k)
∧
p , R

∧
q [−a+ r]) ⇒ Êxt

s+t

kE (Ω−dκp ↓E , T (Ip)↓E)

degenerates to an isomorphism

Homt
R∧

q
(H∗(E, k)

∧
p , R

∧
q [−a+ r]) ∼= Êxt

t

kE(Ω−dκp ↓E , T (Ip)↓E)

∼=
⊕

res−1
G,E(P)=p

Êxt
t

kE(Ω−dκP, T (IP)).

By Equation (4.3) we have γ̃G ◦ TrE,G = γ̃E , or Tr∗E,G(γ̃G) = γ̃E . So the element
Tr∗G,E(γ̃G,p) is the sum of the elements γ̃E,P, each of which, regarded as an element
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of HomkE(Ω−dκP, T (IP)), is a stable isomorphism. So the restriction of ρ, which
represents Tr∗E,G(γ̃G), is a stable isomorphism Ω−dκp ↓E→ T (Ip)↓E . It follows that
U ↓E is projective. Since VG(U) ⊆ {V }, this forces VG(U) = ∅ by Theorem 10.6 of
[3]. It then follows, using Section 10 of [3], that U is projective as a kG-module, so
that ρ is a stable isomorphism. �

We now turn to the proof of Theorem 1.4. If H∗(G, k)p is Cohen–Macaulay, then
it is equidimensional, and the spectral sequence (7.1) is concentrated on a single
column. In this case, the conditions of the above theorem are satisfied: Every
irreducible subvariety is contained in a component of maximal dimension, and γ̃G,p

is always a universal cycle.
If the depth and Krull dimension ofH∗(G, k)p differ by one, and if p also contains

a minimal prime of dimension r, then it still follows that γ̃G,p is a universal cycle,
since the spectral sequence is concentrated in two adjacent columns and there is
no room for nonzero differentials. So the conditions of the theorem are satisfied in
case (∗∗) of Theorem 1.4.

We have now shown that if condition (∗) or (∗∗) of Theorem 1.4 holds then any
representative ρ : Ω−dκp → T (Ip) of γ̃G,p is a stable isomorphism, thereby proving
that part (ii) of the theorem holds. Since Ĥ∗(G,T (Ip)) is injective in the category
of stable H∗(G, k)-modules, a degree shift shows that part (i) of the theorem holds.
By Theorem 5.1 of [5], the modules T (Ip) are pure injective. They are even Σ-pure
injective. So part (iii) of the theorem holds. By theorem 1.1.4 of [4], this implies
that part (iv) holds. Finally, part (v) of the theorem follows from Corollary 3.7 of
[5] and part (vi) follows from part (ii) and the idempotent property for κp.

The fact that H∗(G, k) is Cohen–Macaulay in the cases (a)–(e) follows from
the work of a number of people [1, 9, 18, 21]. Finally, if G has p-rank two, then
every maximal elementary abelian p-subgroup has p-rank two, and so H∗(G, k) is
equidimensional with depth one or two. It follows that (∗∗) holds in this case.
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