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Reduced Cowen Sets

Raudl E. Curto and Woo Young Lee

ABsTRACT. For f € H?, let

G} :={g € 2H?: f+g € L and T}, is hyponormal}.
In 1988, C. Cowen posed the following question: If g € G’f issuch that A g ¢ G’f
(all X € C, |A| > 1), is g an extreme point of G} ? In this note we answer this

question in the negative. At the same time, we obtain a general sufficient
condition for the answer to be affirmative; that is, when f € H°° is such that

rank HT < oo.
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1. Introduction

A bounded linear operator A on a Hilbert space is said to be hyponormal if its
self-commutator [A*, A] := A* A— AA* is positive (semidefinite). Given ¢ € L>°(T),
the Toeplitz operator with symbol ¢ is the operator T, on the Hardy space H?(T)
of the unit circle T = 0D defined by T,,f := P(y¢ - f), where f € H*(T) and P
denotes the orthogonal projection that maps L?(T) onto H?(T). Let H>(T) :=
L>* N H?, that is, H* is the set of bounded analytic functions on . The problem
of determining which symbols induce hyponormal Toeplitz operators was solved
by C. Cowen [Co2] in 1988. Cowen’s method is to recast the operator-theoretic
problem of hyponormality for Toeplitz operators as a functional equation involving
the operator’s symbol.
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Suppose that ¢ € L*°(T) is arbitrary and consider the following subset of the
closed unit ball of H>(T),

E(p) :={k € H*(T) : [[k|loc <1 and ¢ —kp € H*(T)}.

Cowen’s Theorem states that T, is hyponormal if and only if £(¢) is nonempty
[Co2], [NT]. We also recall the connection between Hankel and Toeplitz operators.
For ¢ in L, the Hankel operator H, : H*> — H? is defined by H, f := J(I—P)(¢f),
where J : (H?)* — H? is given by Jz=" = 2"~! for n > 1. The following are two
basic identities:

(1) Tpy —T,Ty = HEHy (¢, € LF) and Hyy =TiH, (he H),

where for ¢ € L, we define ((z) := ((2). From this we can see that if k € £(p)
then

T3, T,) = HiHy — HyH, = HiHy — Hy ;Hyp = Hi(1 - T,TY) Hy,
which implies that ker Hy C ker [T}, T,].

To describe the set of g such that T, is hyponormal for a given f, C. Cowen
[Col] defined the set G’ as follows. If H := {h € zH> : [|h[|s < 1}, let

b= {g € zH?: sup |(hho, f)| > sup |(hhg,g)| for every h € HQ}.
ho€H ho€eH

To see how this definition is relevant to hyponormality of Toeplitz operators, we
assume that f + g € L. Note that if f € H? then H7 makes sense when f has an
L>-conjugate g € H?, that is, f + g € L>. For, given h € H? we have H7+g(h) =
J(I — P)(fh +gh) = J(I — P)(fh) =: Hzh. If f +g € L™ (f € H?,g € zH?) and
h € H? then

sup |(hho, f)| = sup

/hhofd,u‘ = sup
T

/T (I — P)(Fh + gh)ho du

hoeH hoeH hoeH
= sup [((I = P)fh,ho)| = sup [(J(I — P)fh, ho)]
hocH hoeH
= |[Hzhl|

and similarly,
sup |(hho,g)| = [|Hghl|.
ho€H

Recall ([Ab, Lemma 1]) that if ¢ = f +g§ € L™ (f € H?,g € 2H?) then the
following are equivalent:

(a) T, is hyponormal;
(b) [[HFh|| = |[Hgh|| for every h € H2.

Therefore we can see that for f € H?,
(2) ’f = {g €zH?: f+ge L™ and Tyygis hyponormal} .

We call G} the reduced Cowen set for f. To avoid some technical difficulties using
the original definition of G} when dealing with hyponormality of Ty, hereafter
we assume that f + g € L and adopt (2) as our definition of G’f; this appears to
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be natural when studying the set G;. We can easily see that G'; is balanced and
convex. Write

VG :={geG: \g¢ G} (al X e C, [\ >1)}

and ext G’f for the set of all extreme points of G}. In [Col] the following question
was posed:

Question. Is VG’f Cext G’f ?

In [CCL] an affirmative answer to the above question was given in case f is an
analytic polynomial. In this note we answer the above question in the negative, and
give a general sufficient condition for the answer to be affirmative: If rank Hy < o0
then VG’f Cext G’f. In [CCL], our ploy was to use the Carathéodory-Schur Inter-
polation Problem to deal with the case of an analytic polynomial f. By comparison,
we here resort to the classical Hermite-Fejér Interpolation Problem.

2. Main results

If ¢ € L, write ¢ = P(p) € H?> and ¢_ = (I — P)(p) € zH?. Thus
@ = @y + p_ is the decomposition of ¢ into its analytic and co-analytic parts.
We first reformulate Cowen’s Theorem. Suppose that ¢ € L* is of the form
o(z) =02 anz" and that k(z) = > oo c,2™ isin H%. Then ¢ —kp € H> if
and only if

ai as as ... an ... €o a—1
az as ... anp ... €1 -2
as C2 a_s

3 - =

(3) - ,
(o

that is, Hz+k = Zo_. Thus by Cowen’s Theorem we have:

Lemma 1 ([Cul)). If ¢ = ¢4 + = € L, then E(p) # O if and only if the
equation Hy—k = Zo_ admits a solution k satisfying ||k||oc < 1.

Recall that a function ¢ € L* is of bounded type (or in the Nevanlinna class)
if it can be written as the quotient of two functions in H*° (D), that is, there are
functions ¥1,¥9 in H* (D) such that

¥1(2)
p(2) 0a(2)
For example, rational functions in L*° are of bounded type. By an argument of
M. Abrahamse [Ab, Lemma 3], the function ¢ is of bounded type if and only if
ker Hz # {0}. Thus if ¢ = ¢4 + &= € L™ and % is not of bounded type then
ker Hz = ker Hz = {0}, so that the equation Hz-k = Zg_ has a unique solution
whenever it is solvable; in other words, if ¥ is not of bounded type, and T, is
hyponormal, then £(y) has exactly one element.

for almost all z € T.

‘We now have:
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Theorem 2. Suppose that 1) € H*® is such that 1 is not of bounded type, and let
f =23, Then VG’f 7 ext G'f.

Proof. By assumption, f € H> and f is not of bounded type; indeed, if f were

of bounded type then f = 7 (g9,h € H*(D)), and so = ZaTg would be of bounded
type. Observe now that by definition and Lemma 1,

’f ={g€zH?: f+ g€ L™ and Hek = zg for some k € H* with ||k||s < 1}
Since f € z3H>, we have that Zf, 22 f, %(2+E2)f all are in zH*°. A straightforward
calculation shows that

7 1
Hy(q) =zqf forq=z, 2% e+ 2?).

Since [|¢|lso < 1 and gf = if € zH>® we have that {zf, 22f, 3(z+2)f} C G'.
We will now show that 4 (2 + 2%)f € VG, which proves VG € ext G's. Since fis
not of bounded type (so ker H7 = {0}), we knoiw‘CNhat for |AJ > 1 and q:= 1(z+2%),
the unique solution of the equation Hzk = Azq f is k = Aq. But 1A q]|eo > 1, sO
Aq f ¢ G’ and therefore %(2+22)f5(jf€VG’f. O

For a concrete example satisfying the hypotheses of Theorem 2, let i) be a
Riemann mapping of the unit disk onto the interior of the ellipse with vertices
+i(1 — )~! and passing through +(1 4 a)~", where 0 < a < 1. Then % is in H*,
and ¢ is not of bounded type ([CoL, Corollary 2]).

In [CCL], an affirmative answer to Cowen’s Question was given in case f is an
analytic polynomial. We now establish that the answer is also affirmative in the
more general instances of rank Hy < oo.

To see this we need the following auxiliary lemma.
Lemma 3. Let q be a finite Blaschke product, let k € H*, and let
G=G(q,k):={b€k+qH™: [|b|o < 1}.
If G contains at least two functions then it contains a function b with ||b||ec < 1.

Proof. Write

n
; z—
= 1]o7, where b; = . 0el0,2m),
q E 7 7 1 _ —ZZ [ )
and ai,- - ,a, are distinct points in . If we define

Y
then the functions x; ; form a basis for H*> & ¢H? (cf. [FF, Lemma X.1.1]). Write
k = ky+ko, where ky € H>©qH? and ks € ¢H?. Note that k; is entirely determined
by the values of kgj)(oq) (1<i<n,0<j<n;),and also that
E9) (o) = k%j)(ai) for 1<i<mn and 0<j<n;,.
Therefore the problem of finding a function b in k + ¢H° with |]b]|o < 1 is equiv-
alent to the problem of finding a function b € H* satisfying
(a) b9 (ay) = k§j)(ai) for1<i<nand0<j<ng;

X5 1= for 1<i<n and 0<j <ny,
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(b) [[blloc < 1.
This is exactly the classical Hermite-Fejér Interpolation Problem (HFIP) (If n = 1,
this is the Carathéodory—Schur Interpolation Problem and if n; = 1 for all 7, this is
the Nevanlinna-Pick Interpolation Problem; cf. [FF]). Then by [FF, Theorem X.5.6
and Corollary X.5.7], there exists a solution to HFIP if and only if the Hermite-
Fejér matrix My, associated with k; is a contraction, and furthermore the solution
is unique if and only if || My, || = 1. (M, is the d x d lower triangular matrix whose
entries involve the values of kgj)(ai), where d = Y7 | n;.) Suppose that G contains
two functions. Then the Hermite-Fejér matrix M}, has norm less than 1. We can
then choose a positive number A > 1 for which ||My, || < 1. This implies that
|[Ak1 + ghllos <1 for some h € H*. Let b := ki + 5qh; then b € k + ¢H> and
||bl]oc < 3 < 1. This proves Lemma 3. O

In Section 1 we noticed that if ¢ = ¢ +p_ € L* is such that T, is a hyponormal
operator then ker Hy = ker Hy C ker [T);, T,]. Thus we can see that if ¢ = f + g,
where f € H> and g € G and if rank Hy < oo then rank [T, T,,] < rank H% =
rank Hf'

We now have:

Theorem 4. If f € H* is such that rank Hy < o0 then VG’f C ext G}.

Proof. Suppose that rank Hy = N. By the above considerations, if g € G'f and
¢ = f + g then rank [T}, T,] < N. We observe that if g € VG'f then every
solution k of the equation Hzk = Zg has exactly norm 1; for, if k is a solution of
the equation Hyk = zg with [[k]|ec < 1 then pi— € E(y) for ¢ := f + g/||k[|o,
and hence IIklllm
then £(f + g) consists of exactly one finite Blaschke product. To see this observe
that by Beurling’s Theorem, ker H? = ¢ H? for some inner function ¢q. (Recall
that the second identity in (1) implies that z(ker H,) C ker H, for all ¢ € L>.)
Since rank H? < 00, ¢ must be a finite Blaschke product. Furthermore if & is in
E(f + g), that is, k is a solution of the equation Hyk = Zg and |[k[|sc < 1, then
E(f+7) =Glq,k)={bek+qH>: ||b|| < 1}. By the above considerations and
Lemma 3, £(f + g) then contains exactly one element. Since [T}, T,] is of finite
rank it follows from an argument of T. Nakazi and K. Takahashi [NT, Theorem
10] that £(f 4+ g) contains a finite Blaschke product, and consequently, E(f + §)
consists of one finite Blaschke product.

To prove VG} C ext G'f, we now assume, without loss of generality, that ¢;,
92, 2(g1+g2) € VG it will suffice to show that g1 = go. By what we have just
discussed, there exist finite Blaschke products b; and by corresponding to g; and
ga, respectively. Since Hfbi = zg; for i = 1,2, it follows that %(bl +bs) is a solution
of the equation Hzk = 12(g1 + g2). Further since ||3(by + b2)||so < 1, we have that

1(b1+b2) € E(f+2(g1 + 92)). But since 2(g1+g2) € VG, it follows that 2 (by+bs)
is a finite Blaschke product. However since Blaschke products are extreme points
of the unit ball of H> (cf. [Ga, p. 179]), we can conclude that b; = be, which
implies g1 = go. (In fact, by an argument of K. deLeeuw and W. Rudin [dLR], if
f€H® ||flloo =1, then f is an extreme point of the unit ball of H* if and only
if [log(1 — |f(e%)|)df = —oc.) This completes the proof of Theorem 4. O

cg = W € G;u a contradiction. We now claim that if g € VG’f
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