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The Umbral Transfer-Matrix Method, I11I:
Counting Animals

Doron Zeilberger

ABSTRACT. This is the third part of the five-part saga on the umbral transfer-
matrix method, based on Gian-Carlo Rota’s seminal notion of the umbra.
In this article we describe the Maple package Z00 that for any specific k,
automatically constructs an umbral scheme for enumerating “k-board” lattice
animals (polyominoes) on the two-dimensional square lattice. Such umbral
schemes enable counting these important classes of animals in polynomial time
as opposed to the exponential time that is required for counting all animals.
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Required reading

The reader is assumed to be familiar with [Z1]. It would also help to read the
part of [Z0] concerned with finding generating functions for counting lattice animals
with vertical cross-sections of bounded width. The present treatment is inspired by
the finite case described in detail in [Z0], but with the umbral twist, getting matrices
whose entries are operators rather than mere polynomials, as transfer matrices.

The alphabet

Recall that a square-lattice animal (from now on animal) is a connected subset of
lattice points in the two-dimensional square lattice, up to translation-equivalence.
For example,

3),(0,3),(2,2)}

A= {(Oa O)a (07 1)3 (17 1)7 (L 2)7 (17
1),(1,2),(1,3),(0,3)} is not, since

is (a representative) of an animal, but {(0,0), (0,
the latter has two connected components.

We first need a convenient way to represent finite sets of integers, up to transla-
tion-equivalence. If we have a ‘continuous segment’ {i,i+1,...,i+j — 1}, we will
denote it by [j], and say that this is a 1-board set. Otherwise, we can partition the
set into a union of such maximal boards, interspersed with gaps. If there are two
boards (and hence one gap), we will represent this by a triple [A;, By, As] which
represents a finite set of integers consisting of A; consecutive integers, followed by
B, consecutive integers that do not belong to it, followed again by As consecutive
integers that do belong to it. If the smallest member is 0 then [A;, By, Ag] is the
set

{0,1,2,3,...,A41 —1,A1 + By, A1+ B1+1,..., 41 + B1 + Ay — 1}.

In general, the set of integers of type [A;1, By, Aa, ..., By_1, Ax] whose smallest
member is 0, is the set

{0,172,...7141 -1, A1 +B1,A1+B1+1,...,Ai +B1+A>—1,...,
A+ Bi+Ay+Bo+ - A A1+ Bp_1, Ay + Bi+ Ay + Bo+ -+ A+ B +1, L
A+ B +Ay+Bo+ -+ Ap_1+ B + A, — 1},

For example the set of integers {0,1,2,5,6,7,10,11,14, 15,16} is represented,
up to translation, by [3,2,3,2,2,2,3], and has 4 boards (of lengths 3,3, 2, 3) inter-
spersed by 3 gaps (of lengths 2,2,2). For a k-board set of integers, we will call
the k£ — 1 gaps between the boards genuine gaps. In addition we have two ad-
ditional ‘infinite gaps’, the bottom one, from —oco to —1, and the top one, from
A1 +B1+Ay+By+ -+ Ap_1+ Bi_1 + A, to oo.

Each animal induces a word, that can be read from right to left, obtained by
looking at the set-types induced by its vertical cross sections. For example, for the
animal A above: we first have the word

{(0,0),(0,1),(0,3)},{(1,1), (1,2), (1,3)},{(2,2) }}.

We then look at the set-types of these vertical cross-sections (ignoring the z-
coordinate that is the same at any given vertical cross-section). In this example we
would have [[2,1, 1], [3], [1]].
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So the alphabet consists of lists of positive integers, [41, By, Aa, ..., Br—1, 4],
k > 1, of odd size. Such a letter-type means that at the given cross section, scanning
from bottom up, we first have a board of A; dots belonging to our animal, followed
by a gap of By dots, followed again by a board of length As, and so on, the top
board being of length Ay.

Each animal uniquely defines a word in the above alphabet. But this result-
ing word is not enough to reconstruct the animal, since we also have to describe
how each ‘letter’ gets interfaced to the next one. Also, for the sake of Markovity,
we have to know how the k boards (of lengths A, As,..., Ax) that feature in
[A1, B1, A, ..., Br_1, Ai] relate to each other under the relation “reachability from
the right”. This is clearly an equivalence relation, and hence the k£ boards of length
Ay, As, ..., Ay form a set partition amongst themselves. It is easy to see ([Z0]) that
they must form a non-crossing set partition. It is well-known, and not too hard to
see, that the number of non-crossing set partitions of a k-element set {1,2,..., &k}
equals the Catalan number Cj, = (2k)!/(k!(k 4+ 1)!). For example when k = 1 there
is obviously only one non-crossing set partition: {{1}}, when k = 2, there are two:
{{1},{2}} and {{1,2}}; When k = 3, we have 5, and when k = 4 we have 14: all
the By = 15 set partitions except the crossing set-partition {{1, 3}, {2,4}}.

The umbral letters

The beauty of the umbral approach is that we can consider families of infinitely
many letters at once. What we do is look at all the letters with the same number
of boards, and inducing the same non-crossing set partition. We will call each
such family an umbral letter. Thus, there is only one umbral letter for 1-board
letters, namely {{1}}, there are two umbral letters for 2-board letters:{{1}, {2}},
and {{1,2}}, etc. The natural classes to consider are, for a specified k, the set A(k),
of all animals all of whose vertical cross-sections have at most k boards. Hence the
umbral alphabet for A(k) will consist of C; + Cy + - - - + Cy, letters.

The weight

To the concrete pre-letter [Ay, By, As, Ba, ..., Br—1, Ag] with k boards and k —1
gaps, we assign the weight

B
(qz1) My (qu2) M ys? oyt (qan) .

Note that the variable g keeps track of the number of dots, which is our main con-

cern, while the variables x1,y1,22,...,yr_1, Tk are catalytic variables, ultimately
to be all set equal to 1.

Interfaces

How can a pre-letter, let’s call it M, consisting of m boards and m — 1 gaps be
placed to the left of an n-board letter, N? Let’s number the bottom (infinite) ‘gap’
(i.e. the region under the first board) of N, by 1, the bottom board of N by 2, the
gap between the first and second boards of N, by 3, the second board by 4, and
so on, until we reach the top board of N, that gets to be numbered 2n, and the
infinite (last) ‘gap’ above it, that is called ‘region 2n + 1’. Let’s call these 2n + 1
intervals of N ‘regions’. Now we look, for each of the m boards of the tentative
letter where it begins and where it ends. Suppose that the first (bottom) board of
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M starts at region a; and ends at region b; of N, the second board of M starts at
region ap and ends at region by of N, ..., the m! board of M starts at region a,,
and ends at region b,,. All this information is encoded into a list of m pairs:

[[a1,b1], [az,b2], - .., [@m, bim]]-

Of course we must have a; < by <ag <bg <---<a,, < by,

Not every interface is legal. We need that every component of the letter IV
will touch at least one board of M or else the constructed animal will die (des-
tined to be disconnected). We will denote by Interfaces(m,n) the set of all the
interfaces between the m-boards on the left and the n boards and n + 1 gaps (in-
cluding the infinite gaps on the bottom and top). Given the letter IV, the subset of
Interfaces(m,n) that consists of legal continuation to the left, of the umbral letter
N, will be denoted by Legallnterfaces(m,n, N). For example:

Interfaces(1, 1) = {[[1, 1], [[1, 21}, [[1, 3]}, [[2, 2]], [[2, 3]], [[3, 3]I},

but
Legallnterfaces(1, 1, {{1}}) = {[[1, 2]], [[1, 3]], [[2, 2]], [[2, 3]]}-

The interface [[1,1]] is illegal since then the first (and only) board of M starts and
ends in region 1 of N (which is the infinite bottom gap), leaving the sole board of
N untouched. For a similar reason [[3, 3]] is illegal, since now the only board of M
is totally immersed inside the top infinite gap.

Induced letters

Given the letter NV that stands on the right, and a legal interface of a pre-letter M
with m boards, we turn the pre-letter M into a genuine letter: a non-crossing set-
partition of {1,2,...,m}. Board i and board j of M belong to the same component
iff they touch the same component of N, since then it is possible to walk, from board
i to board j, without using the dots to the left of M.

Given a letter N (a non-crossing set partition), and one of its legal interfaces,
I, let’s denote by LeftLetter(I, N) the induced letter M, that the boards of I turn
into.

For example: LeftLetter([[2, 3], [4,5]], {{1,3},{2}}) equals {{1}, {2}}, since the
first board, [2, 3] touches the component {1, 3} while the second board, [4, 5] touches
the component {2}. On the other hand LeftLetter([[2, 3], [4, 6]], {{1, 3}, {2}}) equals
{{1,2}} since both boards [2, 3] and [4, 6] touch the same component of N : {1,3}.

Gap interfaces

Remember from [Z1] that we need a completely algorithmic way to find the
umbral evolution, i.e., starting with a generic member of a fixed k-board letter,
with weight xfllel ...yf_’“[le’“, to find all the ways of continuing it. Hence we
had to break it up into cases according to interfaces. But we have to break these
up even further, before we are ready to compute the umbral scheme.

We need to know not only how the m boards of the left letter M interface
with the letter to its right, N, but also how the m + 1 gaps do so. Here we also
include the two infinite ‘gaps’: the one below the bottom board and the one above
the top board. “But this is implied!” you would shout. If we have the interface
[[a1,b1], ..., [@m, bm]] of letter M in relation to letter N, which means that the first
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board of M starts at region a; and ends at region by, the second board starts at
region as and ends at region bo, etc., then necessarily, the bottom infinite gap must
go from region 1 to region aq, the first genuine gap (between the first and second
board) must go between region b; and as, the second gap must extend between
by and a3 and so on. Well, there are other possibilities. For example the bottom
infinite gap may end at region a; — 1 (if a1 > 1). Also the gap between the first
and second boards may start at region b; + 1, or it may end in region as — 1, or
both! (if feasible), and so on.

Given an interface I, and a positive integer n, denoting the number of boards
of the right letter N, we will denote by Gaplnterfaces(I,n) all the possible gap
interfaces compatible with I. For example Gaplnterfaces([[1,2],[3,4]],2) equals

In this case the first member of each gap-interface must be [1,1], since a; = 1.
The last gap-interface above: [[1,1],[3,3],[5,5]], together with its parent interface
[[1,2],[3,4]] represents the following scenario. The letter M has two boards and
three gaps. The bottom (infinite) gap extends from region 1 and ends at region 1.
The bottom board starts at region 1 and ends at region 2. The middle gap starts
at region 3 and ends at region 3; the top board starts at region 3 and ends at region
4, and the infinite gap above the top board starts at region 5 and ends at region 5.

A very important polynomial in this algorithm

Let A be a symbol denoting an integer, and let z1, 25, ..., 2, be variables. We
let

i1 im
Pa(z1,...y2m) = E 21 2g e 2y

where the sum extends over all m-tuples of positive integers (i1, ..., 4m,) satisfying
i1+ -+1i, = A. Note that Pa(21,...,2m) = 21 Zmha—m(21, ..., 2m), where h;
is the usual complete homogeneous symmetric polynomial of degree 1.
If Z ={z1,...,2m} is a set of variables, we will sometimes write the above as
P4(Z), which is legitimate, since P4 is a symmetric function of its arguments.
We have, of course,

A-1
Pa(z1,. . y2m) = Z Pa_i(z1,- .-, zm,l)zfn.
i=1

Since Pa(2z1) = z{', we can repeatedly use the above inductive formula to get
Pa(z1,...,2m) for any m. All that is involved is summing geometric series, that
Maple does very well. For example

A A
21 292 — Z1%2
PA(Zl,ZQ):il 2 .
Z1 — %9
Note that the evaluated expression of P4(z1,...,2m) is a linear combination of

2 244 .. 24 with coefficients that are rational functions of 21, 2o, . . ., 2.
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How can each individual board and gap of the right letter be
continued to the left?

So now we have the input letter with n boards, N, with its generic weight

wfryPrade .yfﬁ[le}", and we also have a specific interface and a specific gap-
interface amongst its compatible ones. Let [[a1,b1], [a2,b2], ..., [@m,bn]] be that
specific interface, and let [[c1,d1], [ca,da],. .., [¢m+1,dm+1]] De the specific gap-

interface. This means that the bottom board of N is of length A;. (Note that,
e.g., A; is symbolic, not numeric—that’s the beauty of the present approach!) Now
let’s see which parts of the continued-to-the-left letter, M, reside on that bottom
board. Recall that we call the first (bottom) board of N region 2. So we look at all
the intervals of the interface [[a1,b1], [az,b2], ..., [am, bm]], that contain 2, i.e. all
those [a;, b;] that satisfy a; < 2 < b;. Whenever this is the case this means that
the variable x; (that lives on the i*" board of M) ‘occupies space’ on the first (A;)
board. Let the set of those x; that made it be X. Similarly, we do the same for the
gap-interface, with their associated variables 1 (corresponding to the infinite bot-
tom gap), y1 (corresponding to the gap between the bottom board to the one right
above it), etc. Let the set of ¢’s that thus made it be called Y. So the M-occupants
of the bottom board of N consists of the variables X UY, and each of them shows
up at least once. So the generating function of all such possibilities is P4, (X UY).
Now we do the same for each of the (genuine) gaps (of length By, Bs,...) and the
rest of the boards (of length As, As,...). Since each of the decisions of the occu-
pants are independent, to get the generating function for all possible continuations,
with that specific interface and gap interface, we multiply Pa, (.)Pa,(.) -+ Pa, (.)
times Pp,(.)Pp,(.) -+ Pp,_,(.), where the arguments of the P4, and Pp, are the
variables that “reside” on the appropriate board and gap respectively.

But, we also have to consider the bottom and top infinite gaps of the input letter
N, since they also may have the boards and gaps of M on top of them. Remember
that they are called region 1 and 2n + 1 respectively. As before we look at the
appropriate variables that correspond to the boards and gaps of M that reside
there, and multiply the previous product by Py (.)Ps(.).

Finally we replace each of the z;’s (i = 1,...,m) by qz;, because the new boards
generate more area.

An example

Suppose the (input) letter, N, on the right is the 3-board letter {{1,3},{2}}.
Suppose that letter to the left (with 3 boards) has interface [[1,1],[1, 3], [4, 7]], and
has gap-interface [[1,1],[1, 1], [3,4],[7, 7]]-

Who intersects with the bottom infinite gap of N7 Of course the bottom infinite
gap of M, but this does not count. Then we have the first board (since 1 <1 < 1),
the first gap (since 1 <1 < 1), and second board (since 1 < 1 < 3). This contributes
Py (x1,y1,22).

Who intersects with the first (bottom) board of N? Only the second board of
M (since 1 < 2 < 3). This gives a contribution of Py, (x3) = 25" to the product.

Who resides on the second gap of N, between the first and second boards of
N? First ag, (since 1 < 3 < 3) and then ys, (since 3 < 3 < 4). So this gives a
contribution of Pg, (x2,y2).
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Who resides on the second board of N, of length As? yo (since 3 < 4 < 4) and x3.
So this contributes Pa,(y2,z3) to the product. Similarly, only x3 lives on the gap
between the second and third board of N, contributing Pg,(x3). Also, only z3 lives
on the third board of N, of length Az, giving a contribution of P4, (z3), and finally,
only x3 lives on the top infinite gap of N, contributing Py (z3) = 3/(1 — z3).

Note that the resulting letter M is {{1},{2,3}}. So we finally multiply it by
Z[{{1},{2,3}}]. Hence the pre-umbra corresponding ONLY to this particular pair
of (interface, gap-interface) is

ety g2y ey Z1{{1, 3}, {21} —
Py (g1, 91, q22) Pa, (q22) P, (g2, Y2) Pa, (Y2, q23) P, (qx3) Pa, (q73) Pao (q3)

ZIH{13 {2, 33

The pre-umbras

Now we (or rather our computers) do this for each and every one of the inter-
faces and each and every one of its accompanying gap-interfaces, and add all these
expressions up. This will give us the action of our umbral scheme on a generic
monomial z{'yP z52y B85 Z[{{1,3},{2}}]. That’s what we called pre-umbra in
[Z21].

The pre-umbral matrix

Now we form a square matrix whose dimension is the size of the animal alphabet
(ie. C1 +Cy+ -+ Cy), both of whose rows and columns are labelled by letters
(non-crossing partitions of sets of < k elements). The entry corresponding to the
row labelled by L; and column labelled by L is the coefficient of Z[Ls] in the

pre-umbra constructed above, which is our umbra applied to the generic monomial

1 A2 Bm,71 AT,

afryBrgde yPm i aeAm Z[ L], where m is the number of boards of L;.

The umbral matrix

We now convert, as described in [Z1], each of the entries of the pre-umbral matrix
into a full-fledged umbra. (this is accomplished by procedure ToUmbra in ROTA, that
has been transported to Z00).

The umbral scheme

Recall that ([Z1]) in addition to the umbral matrix, an umbral scheme also needs
a subset of starting letters, ending letters, and the initial generating functions for
the starting letters. Since the letters correspond to the (necessarily non-crossing)
set partitions of the set of boards, and two boards belong to the same member-set
of the set-partition iff they can be reached from each other by only using points to
the right, and we go (as in Arabic) from right to left, the rightmost (first) letter
can only be the one corresponding to all singletons. Hence there are k right-letters
altogether: {{1}}, {{1},{2}},...{{1},{2},...,{k}}. Who are the terminal letters?
Here we have the other extreme, since the boards may not reach each other from
the left (since they are leftmost), and since animals are connected, all the boards
must belong to the same component, and the only eligible set-partitions are those
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consisting of one member set, namely everything. So the terminal (leftmost) letters

ave : {11}, {1, 2}, {{1,2,..., k}}.
Finally the initial generating function for one-letter (pre-) animals, for the i-
board letter (1 <i < k), {{1},{2},...,{i}}, is obviously

% i—1

H qz; Y

jzll—qxjjzll—yj’

since the initial ¢ boards and initial ¢ — 1 gaps between them may be of any positive
length independent of each other.

A user’s manual for the maple package ZOO

We strongly advise the reader to study carefully the source code of the Maple
package Z00 that automatically finds umbral schemes for < k-board animals for
arbitrary k. It does not require ROTA, since all the necessary procedures of the
latter were transported.

The main procedures of Z00 are AniUmSc and ApplyUmSc. If you want to get the
umbral scheme for enumerating animals with < k£ boards in each vertical cross-
section, type AUSk:=AniUmSc(k,x,y,q);. Here k is a specific positive integer
(k=1,2,...), while x and y are the indexed variable-names for the board- and
gap-lengths as described above, and ¢ is the variable of interest, that carries the
number of dots.

Once Maple gives you the umbral scheme (that we chose to call AUSk above), to
get the first n terms in the enumerating series (what physicists call “series expan-
sions”) type ApplyUmSc(AUSk,q,n,var):, where var is the set of catalytic vari-
ables: {z[1],y[1],z[2],...y[k — 1], z[k]}. E.g., try ApplyUmSc(AUS1,q,n,{x[1]1}):
and ApplyUmSc(AUS2,q,n,{x[1],y[1],x[21}): .

Since outputting the umbral scheme, AUS2, for < 2-board animals takes a while,
we pre-computed AUS2, and for the sake of completeness, also AUS1.

Typing ApplyUmSc (AUS2,q,54,{x[1],y[1],x[2]1}): and waiting for a few days,
extends sequence A001170 (Formerly M1638 and N0640) (“Board-pair-pile poly-
ominoes with n cells”, first computed in [L]) of Neil Sloane and Simon Plouffe’s
Encyclopedia and database to 54 terms. You would get:

[1, 2, 6, 19, 63, 216, 760, 2723, 9880, 36168, 133237, 492993, 1829670, 6804267,
25336611, 94416842, 351989967, 1312471879, 4894023222, 18248301701, 68036380665,
253638655582, 945464013411, 3523978989671, 13133649924269, 48944841261703,
182390886053785, 679639952406737, 2532435605836553, 9435940029787771,
35157829654829347, 130993992060546335, 488061959593417980, 1818420122974985383,
6775015368226385755, 25242011759461486461, 94045041136136802213,
350385854676874166894, 1305438172166371546918, 4863684396241586531678,
18120658979728427379998, 67512198042235076760287, 251530274898487735498572,
937126264995917017697537, 3491450036706654367545738, 13008087968822268294707203,
48464198629752538664862046, 180562916626733292681832702, 672722655136932068675036320,
2506360408024259482601919315, 9337937683903257909568706940,
34790318720202928318378465769, 129618154246548101581553316346,
482917840548933948578460002791] .
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The big disappointment

Z00 can, in principle, find an umbral scheme for any given, fixed, number of
boards. But the number of interfaces grows so fast that Maple ran out of memory
even when our computer tried to compute the umbral scheme for 3-board animals,
i.e., it refused to perform the command: AUS3:=AniUmSc(3,x,y,q);.

We are almost sure that with a more careful implementation, and/or by trans-
porting to numeric programming languages such as C, AUS3:=AniUmSc(3,x,y,9);
is still feasible, but frankly, we doubt whether it is worth the effort.

The most important point is that there exists a program that can generate
(at least in principle) a polynomial-time (in n), scheme for enumerating k-board
animals with < n cells, for any fixed given k. So what if the ‘polynomial’ is so
big as to make it impractical? I will be very impressed if you can just prove the
eistence of an O (n!000000000000000) aloorithm for Satisfiability!

Many Thanks are due to the dedicated referee for his or her very careful
reading, that corrected many minor errors.

References

[L] W. F. Lunnon, Counting polyominoes, Computers in Number Theory (A. O. L. Atkin and
B. J. Birch, eds.), Academic Press, NY, 1971, pp. 347-372, Zbl 0214.51604.

[Z0] Doron Zeilberger, Symbol-crunching with the transfer-matriz method in order to count
skinny physical creatures, Integers (http://www.integers-ejcnt.org) 0 (2000), paper A9
(34 pages), MR 2001e:05010, Zbl 0954.82006.

[Z1] Doron Zeilberger, The umbral transfer-matriz method. 1. Foundations, J. Comb. Theory Ser.
A 91 (2000), 451-463, MR 2001g:05018, Zbl 0961.05003.

[Z2] Doron Zeilberger, The umbral transfer-matriz method. II. Counting plane partitions, Per-
sonal Journal of Ekhad and Zeilberger, http://www.math.rutgers.edu/ zeilberg/pj.html.

[Z4] Doron Zeilberger, The umbral transfer-matriz method. IV. Counting self-avoiding polygons
and walks, Elec. J. Comb. 8(1) (2001), R28 (17 pages).

[Z5] Doron Zeilberger, The umbral transfer-matriz method. V. The Goulden-Jackson cluster
method for infinitely many mistakes, submitted. Available from the author’s website.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY (NEwW BRUNSWICK), HILL CENTER-
BuscH CAMPUS, 110 FRELINGHUYSEN RD., PISCATAWAY, NJ 08854-8019, USA
zeilberg@math.rutgers.edu  http://www.math.rutgers.edu/ zeilberg/

This paper is available via http://nyjm.albany.edu:8000/j/2001/7-14.html.


http://nyjm.albany.edu:8000/j/2001/zeilberger/zoo.htm
http://www.emis.de/cgi-bin/MATH-item?0214.51604
http://www.integers-ejcnt.org
http://www.integers-ejcnt.org/vol0.html
http://www.ams.org/mathscinet-getitem?mr=2001e:05010
http://www.emis.de/cgi-bin/MATH-item?0954.82006
http://www.ams.org/mathscinet-getitem?mr=2001g:05018
http://www.emis.de/cgi-bin/MATH-item?0961.05003
http://www.math.rutgers.edu/~zeilberg/pj.html
http://www.combinatorics.org/Volume_8/PDF/v8i1r28.pdf
http://www.combinatorics.org/Volume_8/PDF/v8i1r28.pdf
http://www.combinatorics.org/
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/umbV.html
mailto:zeilberg@math.rutgers.edu
http://www.math.rutgers.edu/~zeilberg/
http://nyjm.albany.edu:8000/j/2001/7-14.html

