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Turning Monoidal Categories into Strict Ones

Peter Schauenburg

Abstract. It is well-known that every monoidal category is equivalent to a
strict one. We show that for categories of sets with additional structure (which
we define quite formally below) it is not even necessary to change the category:
The same category has a different (but isomorphic) tensor product, with which
it is a strict monoidal category. The result applies to ordinary (bi)modules,
where it shows that one can choose a realization of the tensor product for each
pair of modules in such a way that tensor products are strictly associative.
Perhaps more surprisingly, the result also applies to such nontrivially nonstrict
categories as the category of modules over a quasibialgebra.
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1. Introduction

It is well-known that the tensor product of vector spaces is not associative on
the nose, but it is so up to isomorphism. In fact strict associativity is not to
be expected, since the tensor product is, by its abstract definition by a universal
property, only defined up to isomorphism; also, if one chooses one of the standard
constructions of the tensor product, it turns out not to be associative. At any rate,
the relevant associativity isomorphism is so obvious and so well-behaved that there
is no harm in identifying tensor products of more than two factors that only differ
in the way parentheses are used to build them from binary tensor products.

The well-behavedness of the associativity isomorphisms is axiomatized in the
definition of a monoidal category, which requires that the two ways of switching
parentheses from the left to the right in a fourfold tensor product by using the
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associativity isomorphisms for three factors should be the same (this is Mac Lane’s
famous pentagon axiom). The statement that there is no harm in identifying is
of course sloppy, and takes its exact form in Mac Lane’s coherence theorem [2],
which says (also sloppily) that all diagrams one can build up from associativity
isomorphisms commute.

A very convenient and conceptual way of expressing the coherence theorem is the
following: Every monoidal category is monoidally equivalent to a strict monoidal
category (i.e., one in which the associativity isomorphism is the identity after all).
Essentially this says that any reasonable fact about monoidal categories that holds
in the strict case should also hold in the general case. But if one is interested in
a concrete category C, the theorem forces one to abandon C and replace it with a
new, quite abstractly defined category Cstr, which is then strict. If C is, say, the
category of vector spaces, then Cstr is strict, but on the other hand it does not
contain any vector spaces.

Our main result says that to get a strict category, one may very often keep the
category, and just has to redefine the tensor product, namely to replace the tensor
product of each pair of objects with an isomorphic copy (an operation which is
surely to be considered irrelevant). In particular, one can define the tensor product
of vector spaces or bimodules (i.e., one can choose a solution for each of the relevant
universal problems for each pair of vector spaces or bimodules) in such a way that
the tensor product is associative, without any need of identifying or keeping track
of associativity isomorphisms. In fact the result holds much more generally for any
category whose objects are sets with additional structure, and whose morphisms
are the structure preserving maps (we give a formal definition of such categories
below). In particular, it holds for the category of modules over a quasibialgebra H:
One can choose an object V �W ∼= V ⊗W ∈ HM for all V,W ∈ HM in such a
way that U � (V �W ) = (U � V )�W for all U, V,W ∈ HM.

The result for bimodules tells us that we are perhaps more justified than we
thought when we (as is customary) identify iterated tensor products of (bi)modules.
After all, one has just to choose the right realization of the tensor product, then
the things we want to identify are really the same. The result for modules over
quasibialgebras and similar manifestly nonstrict categories should perhaps be read
as a warning rather than a convenience: One really has to take the definitions (say,
that the underlying functor from modules to vector spaces is not coherent) seriously
and should not be led to think that the category of modules over a quasibialgebra
is nonstrict in any more essential way than the category of vector spaces is.

2. Definitions and conventions

We refer largely to [1] for the basic definitions and facts on monoidal categories.
We use the following conventions: A monoidal category (C,⊗, I, α, λ, ρ) consists of
a category C, a bifunctor ⊗ : C × C → C, an object I ∈ C, and isomorphisms

αXY Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z),
λX : I ⊗X → X, and ρX : X ⊗ I → X

functorial in X,Y, Z ∈ C, called the associativity and left and right unit constraints.
These are required to fulfill the following coherence conditions:

(W ⊗ αXY Z)αW,X⊗Y,Z(αWXY ⊗ Z) = αW,X,Y ⊗ZαW⊗X,Y,Z ,
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usually depicted as a pentagonal diagram, in which both sides are morphisms

((W ⊗X)⊗ Y )⊗ Z → W ⊗ (X ⊗ (Y ⊗ Z)),

and (X ⊗ λY )αXIY = ρX ⊗ Y , usually depicted as a triangular diagram. The
coherence conditions imply commutativity of “all” diagrams that one can build from
the constraints, in particular (X ⊗ ρY )αXY I = ρX⊗Y , and λX⊗Y αIXY = λX ⊗ Y .

A monoidal category is strict if all three constraints are identities.
A monoidal functor

(F, ξ, ξ0) : (C,⊗, I, α, λ, ρ) → (C′,⊗′, I ′, α′, λ′, ρ′)

consists of a functor F : C → C′, a natural isomorphism

ξXY : F (X)⊗′ F (Y ) → F (X ⊗ Y )

and an isomorphism ξ0 : I ′ → F (I) making the hexagons

(F (X)⊗′ F (Y ))⊗′ F (Z)
ξ⊗id ��

α′

��

F (X ⊗ Y )⊗′ F (Z)
ξ �� F ((X ⊗ Y )⊗ Z))

F (α)

��
F (X)⊗′ (F (Y )⊗′ F (Z))

id⊗ξ �� F (X)⊗′ F (Y ⊗ Z)
ξ �� F (X ⊗ (Y ⊗ Z))

and the squares

I ′ ⊗ F (X)
ξ0⊗id��

λ′

��

F (I)⊗′ F (X)

ξ

��
F (X) F (I ⊗X)

F (λ)��

and

F (X)⊗ I ′
id⊗ξ0��

ρ′

��

F (X)⊗′ F (I)

ξ

��
F (X) F (X ⊗ I)

F (ρ)��

commute. A monoidal functor is called strict if both ξ and ξ0 are identities (this may
well happen if the categories are not strict). Without giving the relevant formulas,
we note that the composition of monoidal functors has again the structure of a
monoidal functor.

A functorial morphism φ : F → F ′ between two monoidal functors (F, ξ, ξ0) and
(F ′, ξ′, ξ′0) is said to be monoidal if

φX⊗Y ξXY = ξ′XY (φX ⊗ φY ) : F (X)⊗′ F (Y ) → F ′(X ⊗ Y )

and φIξ0 = ξ′0φI . We note that if (F, ξ, ξ0) is a monoidal functor, F ′ is a functor,
and φ : F → F ′ is a functorial isomorphism, then there is a unique monoidal functor
structure (F ′, ξ′, ξ′0) such that φ is a monoidal transformation.

A monoidal category equivalence is by definition a monoidal functor (F, ξ, ξ0)
in which the functor F is an equivalence of categories. The definition is justified
since for any monoidal equivalence there is an inverse monoidal equivalence [3].
More precisely, if (F, ξ, ξ0) is a monoidal equivalence, and if G is a quasi-inverse
equivalence, with isomorphisms η : Id → GF and ε : FG → Id that are also ad-
junction morphisms making F a left adjoint of G, then there is a unique monoidal
functor structure (G, ζ, ζ0) such that η and ε are monoidal isomorphisms (where
the identity functors are strict monoidal functors, and the compositions are given
the canonical monoidal functor structures we skipped explaining above).

Knowing this, it makes sense to say two monoidal categories are (monoidally)
equivalent, if there exists a monoidal category equivalence between them. Our main
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result relies on the following form of Mac Lane’s coherence theorem, which can be
found in Kassel’s book [1] (The present paper’s title is stolen from the title of
section XI.5 there.): Any monoidal category C is monoidally equivalent to a strict
monoidal category Cstr.

Suppose that (C,⊗, I, α, λ, ρ) and (C,�, I�, α�, λ�, ρ�) are two monoidal cat-
egory structures on the same underlying category. When there exists a monoidal
equivalence of the form (Id , ξ, ξ0) between the two structures, we shall say that
they are equivalent monoidal category structures. Observe this says that for any
two X,Y ∈ C the two tensor products X ⊗ Y and X � Y are isomorphic, and
functorially so; in addition to this there are coherence conditions, of course.

3. Making the unit constraints strict

In this section we show that, by replacing some tensor products with suitably
chosen isomorphic copies, one can always make the unit constraints of any monoidal
category strict. This is based on the following observation:

Lemma 3.1. Let (C,⊗, I, α, λ, ρ) be a monoidal category.
Suppose we are given a map � : Ob C ×Ob C → Ob C, a family of isomorphisms

ξXY : X ⊗ Y → X � Y , an object I� of C, and an isomophism ξ0 : I → I�.
Then there is a unique monoidal category structure (�, I�, α�, λ�, ρ�) on C such

that
(Id , ξ, ξ0) : (C,�, I�, α�, λ�, ρ�) → (C,⊗, I, α, λ, ρ)

is a monoidal functor.

Proof. There is a unique way of extending � to a functor � : C ×C → C such that
the ξXY are the components of a functorial isomorphism. To come up with the new
monoidal category structure, we now merely have to define the new associativity
and unit constraints by the relevant coherence diagrams

(X � Y )� Z
α�

�� X � (Y � Z)

(X � Y )⊗ Z

ξ

��

X ⊗ (Y � Z)

ξ

��

(X ⊗ Y )⊗ Z

ξ⊗Z

��

α �� X ⊗ (Y ⊗ Z)

X⊗ξ

��

I� �X
λ�

�� X

I� ⊗X

ξ

��

I ⊗X

λ

��

ξ0⊗X
��

and

X � I�
ρ�

�� X

X ⊗ I�

ξ

��

X ⊗ I

ρ

��

X⊗ξ0

��

(Actually it is a little tedious to verify coherence of the new constraints, but we
shall nevertheless omit it here.) �

To twist away the nonstrictness of unit constraints, it just remains to find a
suitable choice to replace tensor products with:
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Theorem 3.2. Let (C,⊗, I, α, λ, ρ) be a monoidal category, and I� any object of
C isomorphic to I.

Then there is an equivalent monoidal category structure (�, I�, α�, λ�, ρ�) on
C in which λ� and ρ� are identities. Moreover, if α is the identity, and I� is not
in the image of ⊗, then α� is also the identity, hence the new monoidal category
structure is strict.

Proof. We use Lemma 3.1 with the following special choices: We let

X � Y :=




X ⊗ Y if X 	= I� 	= Y

Y if X = I�

X if Y = I�

and define ξXY : X ⊗ Y → X � Y to be the identity if X 	= I� 	= Y , while we put
ξX,I� = ρX(X ⊗ ξ−1

0 ) and ξI�,Y = λY (ξ−1
0 ⊗ Y ); this is actually well-defined since

λI = ρI , and hence

ρI�(I� ⊗ ξ−1
0 )(ξ0 ⊗ ξ0) = ρI�(ξ0 ⊗ I) = ξ0ρI

= ξ0λI = λI�(I ⊗ ξ0) = λI�(ξ−1
0 ⊗ I�)(ξ0 ⊗ ξ0).

Observe that with the above choices λ� and ρ� are identities by definition. This
implies that α�

XY Z = id whenever I� ∈ {X,Y, Z}. If I� is not in the image of ⊗,
then α�

XY Z = αXY Z whenever I� 	∈ {X,Y, Z}, so if α = id, then α� = id. �

4. Making the whole category strict

While we could remove nonstricness of the unit constraints in any monoidal
category in the preceding section, this does not appear to be possible for the asso-
ciativity constraints. We shall show, however, that it is possible for a large natural
class of categories, which we now define:

Definition 4.1. A category of structured sets is a category C for which there exists
a faithful functor U : C → Sets such that

1. U generates isomorphisms, that is, for all objects X ∈ C, sets S and bijections
f : U(X) → S there exist an object Y ∈ C with U(Y ) = S and an isomorphism
g : X → Y with U(g) = f .

2. If X,Y are objects of C, and g : X → Y is an isomorphism, then U(X) = U(Y )
and U(g) = id imply X = Y and g = id.

It should be obvious that the axioms of a category of structured sets do capture
some properties of what one might näıvely have called a category of structured sets:
The idea is that a set S is given the structure of an object of C by exhibiting X ∈ C
with U(X) = S, so U plays the rôle of an underlying functor. Axiom (1) says that
any set in bijection with the underlying set of an object of C is itself the underlying
set of an isomorphic object of C. The structure can be transported along the
bijection, as it were, so that the bijection is the underlying map of an isomorphism.
As the reader will verify easily, Axiom (2) implies that Y and g in Axiom (1)
are unique. In particular, all categories of algebraic structures are categories of
structured sets, but also the category of topological spaces, of topological groups,
of manifolds with an action of some fixed group. On the other hand, the homotopy
category of topological spaces, or a derived category do not seem to be categories
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of structured sets (at least not in any obvious way). Also, if C is a category of
structured sets, it is not clear whether the same is true for the opposite category.

For later use, we note:

Remark 4.2. Let C be a category of structured sets, with an “underlying” functor
U as in Definition 4.1.

Let T : Sets → Sets be an automorphism of the category of sets (not merely an
auto-equivalence!). Then U ′ := TU : C → Sets also satisfies the requirements in
Definition 4.1.

Now we come to our main result:

Theorem 4.3. Let C be a category of structured sets. Then for each monoidal
category structure on C there is an equivalent strict monoidal category structure
with the same unit object.

Proof. Recall from [1] that there is a strict monoidal category Cstr monoidally
equivalent to C. We denote the tensor product in Cstr by ∗, and the unit object
by ∅; the unit object in the concrete construction of Cstr in [1] really is the empty
sequence, but this is irrelevant, and we would rather have ∅ understood as a mere
notation for the unit object. We fix a monoidal equivalence (F,ϕ, ϕ0) : Cstr → C, a
quasi-inverse equivalence G : C → Cstr, and an isomorphism ε : FG → Id .

We construct a new category equivalence R : Cstr → C, which we write R(V ) =
[V ], as follows: We fix a functor U : C → Sets satisfying the conditions in Definition
4.1. For any V ∈ Cstr there is by assumption a unique pair ([V ], χV ) in which
[V ] =: RV is an object of C satisfying U [V ] = {V } × UFV , and χV : [V ] → FV
is an isomorphism in C such that U(χV ) : {V } × UFV → UFV is the (bijective)
projection onto the second factor. We make R a functor in the unique way such
that χ : R → F is functorial.

As an immediate consequence R, being isomorphic to an equivalence, is itself an
equivalence of categories. In addition, R is injective on objects. This depends on
the properties of ordered pairs and the cartesian product of sets: For a set S one
can decide wether or not S is a cartesian product of two other sets, and if it is,
then there are unique sets S1 and S2 such that S = S1 × S2, and each element of
S has a unique first component in S1 and second component in S2. Note that we
have to take the set-theoretic definition of the cartesian product rather serious to
ensure this, in particular we need to remember S1 × (S2 × S3) 	= (S1 × S2)× S3.

We now construct a specific quasi-inverse equivalence L for R as follows:
The functor L : C → Cstr is defined on objects by L([V ]) = V for all V ∈ Cstr,

and LX = GX if X is not in the image of R (this is well-defined since R is injective
on objects). We define γX : RLX → X by

γX = ([GX]
χGX−−−→ FGX

εX−→ X)

if X is not in the image of R, and γX = id if X = [V ] for some V ∈ Cstr. Since R
is fully faithful, we can define L on morphisms by requiring γ : RL → Id to be a
functorial isomorphism. By definition β = id: Id → LR is a natural isomorphism,
so that L is a quasi-inverse equivalence for R. We shall show in addition that Lγ
is the identity; since γR is the identity by definition, this actually says that β and
γ are the adjunction morphisms of an adjoint equivalence. Since R is faithful, it
suffices to check that RLγX is the identity for all X. Now the application of L
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to morphisms is defined through naturality of γ, so that we have a commutative
diagram

RLRLX
RLf ��

γRLX

��

RLX

γX

��
RLX

f �� X
for any f : RLX → X. Specializing f = γX yields RLγX = id since γRLX = id.

Now we use the obvious fact that any category equivalent to a monoidal cat-
egory is itself a monoidal category, to define a new monoidal category structure
(♦, I♦, α♦, λ♦, ρ♦) on C. More precisely, we define X♦Y := R(LX ∗ LY ), and let
I♦ := R(∅). We calculate L(X♦Y ) = LR(LX ∗ LY ) = LX ∗ LY and L(I♦) =
LR(∅) = ∅. We define α♦ = id, which makes sense since

(X♦Y )♦Z = R(L(X♦Y ) ∗ LZ) = R(LX ∗ LY ∗ LZ) =
R(LX ∗ L(Y♦Z)) = X♦(Y♦Z).

It goes without saying that Mac Lane’s pentagon commutes. Further we define the
left and right unit constraints to be λ♦

X = ρ♦X = γX , which makes sense since

X♦I♦ = R(LX♦LR(∅)) = R(LX ∗ ∅) = RLX

and similarly I♦♦X = RLX. Although I♦ is not a strict unit object, we do have

X♦I♦♦Y = R(LX ∗ L(I♦) ∗ LY ) = R(LX ∗ ∅ ∗ LY ) = R(LX ∗ LY ) = X♦Y

for all X,Y ∈ C, and
ρ♦X♦Y = R(L(ρ♦X) ∗ LY ) = R(L(γX) ∗ LY ) = R(id ∗LY ) = id,

and similarly X♦λ♦
Y = id, so that the coherence triangle for the unit constraints

commutes.
We claim that L : (C,♦, α♦, I♦, λ♦, ρ♦) → Cstr is a strict monoidal functor. In

fact we already know that L is strictly compatible with tensor products and neutral
object, and since both associativity constraints are identities, the hexagon for a
monoidal functor commutes trivially. But we also know that L(λ♦

X) = L(ρ♦X) =
L(γX) = id, so the two coherence triangles also commute trivially.

Combining with the monoidal category equivalence F : C → Cstr, we have a
monoidal category equivalence

FL : (C,♦, α♦, I♦, λ♦, ρ♦) → (C,⊗, α, I, λ, ρ)
(we do not care to specify its monoidal category structure). But the functor FL

is naturally isomorphic to the identity, by FLX
χ−1

LX−−−→ RLX
γX−−→ X, hence the

identity is also a monoidal functor between the same two categories.
We have managed to exhibit a monoidal category structure on C equivalent

to the original one, but in which the associativity constraint is the identity. We
complete the proof by applying Theorem 3.2 to make the old unit object I, which
is isomorphic to I♦, the new unit object of a strict monoidal category structure
equivalent to ♦. To be able to do so, we have to make sure that I is not in the
image of ♦, for which it suffices to have I not in the image of R. If I is in the image
of R, then UI = {V } × UFV for some V ∈ Cstr. Should this be the case, however,
we can simply change the “underlying” functor U , modifying it as in Remark 4.2
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by an automorphism T of Sets such that TUI is not a cartesian product of two
sets at all. �

For our first application recall that a tensor product of a right and a left A-
module is (any) solution of the familiar universal problem for A-bilinear maps to
abelian groups. Any tensor product of A-bimodules becomes an A-bimodule in a
natural way. Now our result above says that among the possible tensor products
we can make a smart choice (The Tensor Product, as it were) such that tensor
products are strictly associative.

Corollary 4.4. Let A be any ring. Then one can choose, for all M,N in the
category AMA of A-A-bimodules, a concrete realization M ⊗A N of the tensor
product over A, in such a way that for any three M,N,P ∈ AMA we have (M ⊗A

N) ⊗A P = M ⊗A (N ⊗A P ) =: M ⊗A N ⊗A P , M ⊗A A = A ⊗A M = A, and
for any m ∈ M, n ∈ N , p ∈ P , and a ∈ A we have (m ⊗ n) ⊗ p = m ⊗ (n ⊗ p) as
well as a⊗m = am and m⊗ a = ma.

A quasibialgebra H is a k-algebra for which the category HM carries a monoidal
category structure for which the underlying functor to the category of k-modules
strictly preserves tensor products, but does not satisfy the coherence conditions for
a monoidal functor. In particular, H has a comultiplication, which is used to endow
the tensor product (over k) of two H-modules with an H-module structure. We
refer the reader to [1] for details.

Corollary 4.5. Let H be a quasibialgebra. Then one can choose, for all M,N ∈
HM, a left H-module M �N isomorphic to the usual H-module M ⊗N (with the
diagonal module structure) in such a way that (M � N) � P = M � (N � P ) =:
M �N � P for all M,N,P ∈ HM, and M ⊗ k = M = k ⊗M .

Observe that the underlying k-module of M � N is of course a tensor product
over k of the underlying k-modules of M and of N , simply since this was true for
M ⊗N . In particular, we have elements m� n ∈ M �N for m ∈ M and n ∈ N so
that � : M ×N → M �N is a universal k-bilinear map. However, we do not have
(m� n)� p = m� (n� p) in M �N � P .

5. Likely extensions

It appears likely that our results can be extended to “strictify” certain additional
structures on monoidal categories along with the tensor product. Some such (and
some other) extensions of our main theorem are projected below, some of which
seem easy to achieve, while others may pose more serious problems; I have not
checked any details.

1. If C is a category of structured sets, and we are given the structure of a left
rigid monoidal category on C, then we should be able to find an equivalent
strict monoidal category structure on C and a duality functor (–)∗ on C such
that (X ⊗ Y )∗ = Y ∗ ⊗X∗, functorially in X,Y ∈ C, and I∗ = I.

2. If C is a category of structured sets, and we are given the structure of a left
and right rigid monoidal category on C, then we should be able to find an
equivalent strict monoidal category structure on C, a left duality functor (–)∗

and a right duality functor ∗(–) on C, such that (X ⊗ Y )∗ = Y ∗ ⊗ X∗ and
∗(X∗) = X functorially in X,Y ∈ C, and I∗ = I.
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3. If we are given the structure of a ribbon category on a category C of structured
sets, we should be able to find an equivalent strict monoidal category structure
on C and a duality functor (–)∗ such that (X ⊗Y )∗ = Y ∗⊗X∗ and X∗∗ = X
functorially in X,Y ∈ C, and I∗ = I.

4. We should be able to choose, for any three ringsR,S, T and any two bimodules
M ∈ RMS and N ∈ SMT , a realization M ⊗S N ∈ RMT of the tensor
product over S, in such a way that triple tensor products are always strictly
associative, and tensoring a bimodule with one of the rings does not change
it. (Clearly this project falls somewhat outside of the formalism of monoidal
categories).

5. Can one extend the choices in the preceding project to make them compatible
with all of the functors RMS → R′MS′ induced by ring maps R′ → R and
S′ → S, or at least those functors induced by inclusions?

6. Given monoidal categories of structured sets C and C′ and a monoidal functor
F : C → C′, can one find equivalent strict monoidal category structures on C
and on C′, and a strict monoidal functor F ′ : C → C′ isomorphic to F?

7. If F as above is not monoidal, but only tensor product preserving, perhaps
incoherently, can one at least find equivalent strict monoidal category struc-
tures on C and on C′, and a functor F ′ isomorphic to F such that the new
tensor products fulfill F ′(X ⊗ Y ) = F ′(X) ⊗ F ′(Y ) for all objects X,Y ∈ C
(though certainly not functorially)?
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