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ABsTrACT. In this article, we are concerned with the existence of positive
radial solutions of the problem
—Apu = f(z,u,v) in Q,
(S+) _Aq’l) :g(l',u,’U) in Qa
u=v=0 on 012,

where Q is a ball in RV and f, g are positive functions satisfying
f(x,0,0) = g(z,0,0) = 0. Under some growth conditions, we show the
existence of a positive radial solution of the problem ST. We use tradi-
tional techniques of the topological degree theory. When Q = RV, we
give some sufficient conditions of nonexistence.
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In this work, we are concerned with the existence of positive radial solutions of
the problem

—Apu = a(z)ulul* " + b(z)ojv]" ! in Q,
(ST —Agw = c()ulul”™" + d(z)v|v]* in 0,
u=v=0 on 01,
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where Q := Bp, is the ball centered in zero and radius R > 0in RV, a, b, c and d are
given positive continuous functions. Our motivation for studying the system S is
based essentially from the fact that the problem has not necessarily a variational
structure. We shall make recourse to topological degree methods by using the blow-
up technique introduced by Gidas and Spruck [10] in the scalar case. This method
explores the different exponents (v, 3,0,7). In the scalar case the interested reader
may refer to [5], [6] and [16]. In the case of systems, many authors have extended
this method to different situations (see [4], [3] and [15]).

In recent years, for the scalar case the problems of existence and nonexistence
have been studied by several authors by using different approaches (see[5], [6] and
[16]). For the systems case, we mention the recent results of Boccardo, Fleckinger
and de Thelin [2] where the authors prove the existence of the weak solutions of
the following problem:

—Apu = a(z)ulu)® " +b(@)olu[ T+ hi(z) i,

(1.1) —Agv = c(@)ulu]" " + d(@)olv]* " + ho(z) in Q,
u=v=>0 on 01,

under the following assumptions:

(H1) max(p,q) < N.

(H2) (p—1)(g—1)> .

(H3) One of the following conditions holds:

(i) p—1>a, g—1>6.

[all<Aqp and || d[<Aqq-

p—1l=a q¢q—1<9,

iii

(i) { and | a |[< Aqwp).
Here, € is smooth and bounded in RY, A(1,m) (m = p,q) is the first eigenvalue of
the operator A,, (m = p,q) on Q and h; € L' (Q), hy € L7 (Q). We observe that,
with the same approach in [2], if h; and hy are identically zero, the solution (u,v)
would be a trivial solution. Always in the system case, the interested reader may
refer to [1], [4], [7], [8], [9], [11] and [12].

Now, we state our main result.

Theorem 1.1. We assume that the hypotheses (H1), (H2) and (H3) hold. We also

suppose that

(H4) a,b,c,d € C°([0,+o0[) with [%nf [(a(s), b(s),c(s),d(s)) > 0.
s€|0,+o00

Then the problem (ST) possesses a solution (u,v) in C1(Bgr) N C?(Br\{0}), such

that w > 0, v > 0 in Bg.

The paper is organized as follows. At first, we consider the operator of solu-
tion S; associated to the problem (S*) which allows us to seek solutions of the
problem (ST) as a fixed points of S;. In Section 2 we introduce two families of
operators, (Sx)x and (T},),, linked to the problem (S¥), acting in a suitable func-
tional space and we give a fundamental lemma. In Section 3, we prove that for
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any positive solution (u,v) of the problem, it is bounded. By using the theory
of degree, we show that there exists a positive number p; > 0 sufficiently large
such that deg(S1, B(0,p1)) = 1. On the other hand, in Section 4 by means of the
argument blow-up, we show that there exists a number p, > 0 sufficiently small
such that deg(S1, B(0, p2)) = 0. In Section 5 by the excision property we deduce
the existence of the nontrivial positive solutions of (S*) stated in Theorem 1.1.
Finally, in Section 6 we give sufficient conditions for the nonexistence of positive
radial solutions of the problem (S*) on Q = RY.

2. Preliminaries

We now consider x the space
x = {(u,v) € C°(Q) x C°Q) | u=v =00n00}

equipped with the norm ||(u, v)|| = ||t|/cc + ||v||cc, Which makes it a Banach space.
Let Sy and T : x — X be the operators defined by Sy (u,v) = (S (u,v); S%(u,v))
and T, (u,v) = (T*(u,v); T?(u,v)) such that

SY(u,0)(r) = APH/TR [th/OtsN1(a(5)|u(5)|a+b(s)v(s)'@)ds} dt,

q—1

S(u0)(r) = AT /f [tl-N /OtsN—1<c<s>|u<s>|v+d<s>|v<s>|6>ds] d,

and
1

') = [ ! [tl-N / NN a(s) ()] + b (o(s) + r>|ﬂ>ds] T

0

T?(u,v)(r) = /TR [th /Ot sV (e(s)|u(s)]T + d(s)|v(s)5)ds} - dt.

It is well know that, for all A € [0, 1] and for all 7 € [0, 0o[, S\ and T} are completely
continuous operators on x. From the Maximum principle this implies that Sy (x) C
x and that the problem (ST) is equivalent to find some non trivial fixed point
(u,v) € x of the operator Sy (by taking A = 1) such that u/(0) = v'(0) = 0.

We make use in a fundamental way of the following lemma (cf. [3, Lemma 2.1,
p. 2076]):

Lemma 2.1. Let u € C1([0.R]) N C?(]0, R]), u > 0, satisfying

(2.1) — (N7 (r) P72 (1)) > 0 on [0, R].
Then, for any r €]0, £[ we have :
(2.2) u(r) = Cnp rlu'(r)]
where
_p-l o geen
(2.3) v =3 (1-257).

Proof. Integrating (2.1) from r to s € [r, £[ we have:

(2.4) sV ()P = N ()P
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and therefore:
(2.5) —u/(s) > rot ul(r)]sT v

Integrating again from r to 2r with respect to s, we obtain:
No1, T N
(2.6) u(r) > u(r) —w(2r) > re=1|u'(r)] s~ P1ds.
T

. 2r _N—-1 _N=p .
Since [7"s” »=1ds = Cy,pr~ »=1 , we obtain the Lemma. O
In the following sections, we do not distinguish notationally between a sequence
and one of its subsequences, to keep the notation simple.
3. A priori bounds for positive solutions of (S™)

Proposition 3.1. Under the hypotheses (H1), (H2), (H3) and (H4) there exists
some Cy > 0 such that VA € [0,1] if (u,v) € x is a fixred point of the operator S)
then

[[(u, v) || < Co.
This implies that Yp1 > Co, VA €]0, 1] we have
(3.1) deg(I — Sy, B(0,p1),0) = const = 1,

where B(0, p1) = {(v,v) € x [ [[(w, 0)[| < p1}-

Proof. We suppose by contradiction that there exist A € [0,1] and (u,v) € x such
that

(3.2) (u,v) = Sx(u,v)

with ||(u,v)|| = ¢ > 0. Notice that by definition of Sy we get ' < 0, v < 0 in
[0, R]. Hence ||(u,v)]| = u(0) + v(0). Thus, since

_1_
p—1

33w =17 | ! [tl-N / LN a(s) ()] + b<s>|v<s>|ﬂ>ds} d,

1

o) =7 [ " [th / N () u(s) 7 + d<s>|v<s>|5>ds} T,

we have
(34) u(0) < CAFT [(u(0))" + (0(0))°] 7
(3.5) 0(0) < OATT [(u(0))” + ((0))°] 7.

Moreover, from (H3), there exist two numbers £ > 0 and k > 0 such that
1 -1
. q

(3.6) i
Denote
(3.7) o = (u(0))¥ + (v(0))*,

Hence, from (3.4) and (3.5), we get

(3.8) (u(0))? < CATED [gl 4 g*F] =D
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(3.9) (0(0)F < CAFGTT [o) +Uk6]ﬁ_
Summing (3.8) and (3.9), we deduce that o satisfies

1
(3.10) 1< OATZD [af(a—f’“) + akﬂ_é(”_l)} R
1
L ONFGTD {thk(qq) i Uk(67q+1)} D

First Case: (H3)(i) is satisfied.

Here, (3.10) leads us to a contradiction for o sufficiently large.
Second Case: (H3)(ii) or (H3)(iii) is satisfied.

In this case we suppose that there exist some sequences {\,} and {(un,v,)}
satisfy (3.2), this implies that

—Apuy, = An@ ()t |un | + )\nb(fv)vn|vn\’871 in B(0, R),

(3.11) —Agvn = Anc(@)un|un| " + And(z)vn|oa” in B0, R),
Up =0, =0 on 9B(0, R),
and we suppose that ¢, = ||(un,vy)|| = +00 as n — +oo. Then, from (3.10), we

deduce easily that A\, — A > 0 as n — +o0o. We introduce new functions u,, and
Uy, in the following way:

where,
n = (n(0)) 7 + (v,(0)) .
Taking (i, 0,) in (3.11) we get, in B(0, R)

(312)  —Ayin(z) = 0, TP\ a(x) | (2)]* + on P DFRE N b(2) |5y, ()P

(3.13)  —Ayt,(x) = Un_]“(‘1_1)'~'Z'7)\,Lc(ac)|1]n(917)|7 + (7,#“(‘5'*'1_‘1))\nd(a:)|z~)n(9c)|57

Uy =0, =0 on 9JB(0,R),
Multiplying (3.12) by @, (3.13) by ¢, and by integrating, we infer

/ Vi@l = oA, [ alwlin(@) e
B
+o, = DFRE N / b(x) |0 (), () da
B

[ vm@l = et e, | i@ @
B B

+onk(5+1_q))\n/ d(z)| o (z)|° T da.

B

Observe that
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Thus (i, 7, ) converges weakly to some (i, 7) € W P (B(0, R))x Wy 4(B(0, R)).
On the other hand, it easy to see that

1Ay, < C, Vn € N,

|1A,D, ] < C, Vn e N

with some positive constant C' > 0 depending on (N, p, q, a, b, ¢, d). Therefore, for all
n we have (i, ¥,) € C*(B(0,R)) x C*(B(0, R)) and ||/ @,| < K and ||/, < K.
Now since ||(tn, 9y,)|| = 1 for all n, the Arzela-Ascoli theorem together with the weak
convergence of (i, 0,) to (@, ¥) ensure that (t,,7,) converges uniformly to (@, )
and that (@, ?) is not identically zero. Consequently, by passing to the limit it
follows that:

1. If (H3)(ii) is satisfied
—Ayi(z) = \a(x)|a(z) [P~ 2a(z) in B(0,R),

—A,0(x) = Ad(2)|5(x)|7 25(z) in B(0,R).
But from [|al| < A1) and [|d|| < A1,4) we get the contradiction.
2. If (H3)(iii) is satisfied, we obtain
—Ayi(z) = Aa(x)|a(z)[P2a(z) in B(0,R),
—A,0(z)=0 in B(0,R),
4=v=0 on 0B(0,R).
Then from |[|a|| < A1), we deduce the contradiction.

So, in the different cases there exists Cy > 0 sufficiently large such that Vp; > Cy
we have

deg(I — Sx, B(0,p1),0) = const VA € [0, 1].
Hence

(3.14) deg(I — S1,B(0,p1),0) = deg(I — So, B(0,p1),0) =1 Vp; > Cy.
The proof of Proposition 3.1 is complete. U

4. The blow up to isolate the trivial solution

We shall prove, under (H1), (H2), and (H4), that there exists some ps > 0 such
that

deg(I — T, B(0,p2),0) =0 Vr € [0,00].

Proposition 4.1. Under the assumptions (H1), (H2) and (H4) there exists some
p > 0 such that for all T € [0,00[ and for all fized points (u,v) € x\{(0,0)} of T
we have ||(u,v)|| > p. This implies that, for ps sufficiently small,

deg(I —T,, B(0,p),0) = const =0 V7 € [0, 00].
Proof. Firstly, from the maximum principle, it follows that the problem

(4.1) (u,v) = Ty ((u,v))
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is equivalent to find solutions u, v of

(42) = (NP @) =N [am)u)] + b)) + 717
(4.3) — (PN ()12 () = eV L) u(r)] + () o(r)]]
(4.4) W/ (0) = v'(0) = u(R) = ’U(R) = 0.

By integrating on [0, r] we get

(4.5) —u/(r) > Cr7 T (o(r) 4 7)7° T,

(4.6) /(1) = CraT (u(r)) 7T,

Hence, u’ < 0 and v' < 0 and it follows that 0 < u(r), 0 < v(r).
Thus, from (4.5), we have

(4.7) —'(r) > CrittriT,
By integrating (4.7) from 0 to R, we obtain that
(4.8) u(0) > C R# 7771,
Now, we introduce new functions @ and v in the following way:
(4.9) a(r) = %
i) = 20,
and make the change of variables
(4.10) y= g on [0, R]
where
(4.11) o = (u(0))" + (v(0))*

and £, k are positive numbers to be chosen below.
In this way we obtain the following equations for %(y) and ©(y) defined on interval
[0, £]:

o

d di |P7% da I
(4.12) ~dy (yN ! dy(y) dy@)) =yN 1 F(a(y), o(y)),

d do, |7% dv I
(4.13) ~d (yN ! dy( ) dy@)) =N G(aly), 9(y)),

dii i _ N
(4.14) @(0) = @(0) = u(R;) = 19(R;) =0,
where
T 18

(415) Pl 00) = oAl + onB i) + L[],

(4.16) G(a(y), o(y)) = [(/’(Uy))Clﬂ(y)l7 + d(oy))DIﬁ(yDIé] :
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and
(4.17) A = gpHile=—ptD) B = gP{(p= 1)+,
C = gitkla=1)+ty D= Uq+k(5*tJ+1)’
R
R, = =.
g
By choosing
p(qg—1)+ Bq q(p—1)+py
4.18 (= and k= ,
(4.18) (p—1)(g—1) =By (p—1)(g—1) =By
we obtain
(4.19) A=cgle# B=1 C=1, D=c""",
Note that (a,?) satisfies
di _
(4.20) @(y) <0, a(y) <1 Vye|0,R,],
do .
(4.21) @(y) <0, o(y)<1 Vyel0,R]
and
(4.22) (@(0))? + (5(0))* = 1.
Thus, we have
— (N () P2 () = yN T b(oy)|o(y)]°, on [0, Ry]
(4.23) —(yN M (y) |92 (y) > vV e(oy)|a(y)]”,  on [0, R,]

Integrating (4.23) on (0,y) and taking into account that (H4) holds, we have Yy €
[0, Ro]

(4.24) |a'(y)| > (
(4.25) ['(y)] =

From Lemma 2.1, we have for Vy € }0, R"]

- ~ 1 =T _p_ ~ _B_
(4.26) a(y) > Cnpylt' (y)] > Cnyp (N) yr1b|o(y)|? T,

| =
-

~

a2 o)z Cnali )2 O () el

Thus, from (4.26) and (4.27), we obtain

(p—=1)(g—1)—B~y

(4.29) (o) A 2 Cp we o 2],
By
2

(p=1)(g=1)—B~

(4.29) (i(y) TS > 0y, \fye}o,
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where here and henceforth C' > 0 denotes a positive constant depending only of
(a,b,c,d, N,p,q). Taking into account (4.20), (4.21) and since (@,?) are non in-
creasing functions on [0, R, |, we obtain

(4.30) y<C, Vye {0, R;} ,

where C := C(a,b,c¢,d, N,p,q). Then, as R, — oo when o — 0, (4.30) it is not true
for o sufficiently small. Consequently, since

o < pt+pk

where ||(u,v)|| = p, it follows, according the above argument, that for p sufficiently
small the equation (u,v) = T:((u,v)) has no solution on 0B(0, p) for 7 € [0, +o0].
Then, deg(I — T, B(0, p), 0) is well-defined and by properties of topological degree,
we get that

(4.31) deg(I — T,, B(0,p),0) = const, V7 >0.

Moreover, from (4.8), T, has no solution in B(0, p) when 7 it is sufficiently large
than p, then we get

deg(I - TTlaB(Ovp)vo) =0

Consequently, from of the Leray-Schauder degree properties, we deduce that

deg(I — T+, B(0,p),0) = deg({ — T~,, B(0, p),0) = 0.

5. Proof of Theorem 1.1

The proof is an immediate consequence of Proposition 3.1 and Proposition 4.1.
By taking po sufficiently small, we may assume, from Proposition 4.1 and Leray-
Schauder degree properties, that

(5.1) deg(I — T,, B(0,p),0) = deg(I — Ty, B(0,p),0) = 0.
Thus, from Proposition 3.1, for p; > 0 sufficiently large we have
(5.2) deg(I — S1,B(0,p1),0) = 1.
Then, since

Sy =T,
by excision property we obtain

(5-3) deg(I — 51, B(0, p1)\B(0, p2),0) = +1.

Consequently S; admits at least one fixed point (u,v) # (0,0). Hence, we obtain
the results of Theorem 1.1.
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6. Nonexistence

In this section we study some nonexistence result for positive radial solutions for
quasilinear system of the form

(S.) —Apu > a(@)ulul* " + b(z)v|v]? ! in RV,
P —A > clz)ulu]” ™ + d(z)olu)* ! in RV,
First consider the semilinear case, i.e., p = ¢ = 2. When, b = ¢ = 0, the system
(Sp.q) reduced simply to the case of two single equations

—Au>u®, —Av> v* on RYN.
This prototype model has been studied quite extensively. For example, we survey
some results on a single equation, namely
—Au =u® on RYN.

In this case we give the results of Gidas and Spruck [10] where the authors prove

that if
N +2

N -2
then v = 0. A very elementary proof valid for

I<a<

0
<a<N—2

was given by Souto [15]. In fact his proof is valid for the case of u being a nonneg-
ative supersolution, i.e.,

—Au > u® on RN.
Always in the semilinear case, if a = d = 0 the system (S, 4) becomes

—Au > vﬁ, —Av >u7,

which is natural extension of the well known Lane-Emden equation and thus is
referred to as the Lane-Emden system. This case is studied by Serrin and Zou [13];
the authors give a nonexistence of positive solutions for system (S32) when the
exponents  and y are subcritical in the sense
1 n 1 - N -2
6+1 v+1 N
Moreover, in [14] the same authors prove the existence of positive (radial) solution
(u,v) on RY for the system under the following assumption
1 1 N -2
+ <
6+1 v+1 N
Let us now mention the key of our result concerning radial solutions of the quasi-
linear problem (S, ,) in RY.

Lemma 6.1. Letrg >0, N > m and w € C*([rg, +00[)NC?([rg, +00|) is a positive
supersolution of

(6.1) =N ()P () 20 on o, +ool.

Assume
w(r) >0 and w'(r)<0 Vr € [ro, +ool.
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Then there exists a nonnegative number C > 0 such that
Pt w(r) > C.

Proof. Since u satisfies (6.1) and w’(r) < 0, we deduce that vV~ w/(r)[P~1 is an
increasing function on [rg, co[. Hence there exists a non negative number Cy such
that

(6.2) PN (7)™ > Gy Y € [ro, 4ol

Thus, from Lemma 2.1, there exists a nonnegative number Cy ,, such that
(6.3) w(r) > Cn.m W' (r)] Vr € [rg, +ool.
Consequently, multiplying (6.3) by r=T we obtain

(6.4) T u(r) > CNom r%\w’(rﬂ Vr € [rg, 4+o0].

Then, from (6.2)and (6.4), we deduce that

1

r%w(r) >CNm r%|w’(r)| > CnmCy ™t Yr € [ro, +00l.
Hence the proof of the lemma. ([
Our main result is the following:
Theorem 6.1. Let u,v € CY(RY) N C?(RN\0) be nonnegative radial solutions of

{ —Apu > byv?,

—Agv > ciu?,

where by > 0 and ¢y > 0. Assume

(H5) max{p,q} <N, [B>q—1, and yv>p-—1,
1 1 N-—p N —q

(H6) 57y Np-1) Ng-1

Then u=1v = 0.

Proof. Since (u,v) is supposed to be radial positive solution, then (u,v) satisfies
(Y (2 () 2 N (),

(6.5) = (N ()72 (1) = N e u ()],
u'(0) = v'(0) = 0.

Integrating (6.5) on (0,7) and taking into account that v’ < 0, v’ < 0, we get

1

(6.6) ! (r)| > (%)f [ ()] 77, r>0

(6.7) W)= (5) e @)L v >0

Thus, from Lemma 2.1, we have

1
1

17T 1
(6.8) u(r) > Cnpr|u'(r)] > Cnyp (N) rr—1 [blvﬁ(r)] >0

1
-1 1

(6.9) v(r) > Cnypr|v'(r)] > Cnyp <]1[) B [ciu?(r)]a T, r>0.
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Then, from (6.8) and (6.9), we deduce
(6.10) lu(r)|P~t > CrPbivP(r), Vr >0
(6.11) lo(r)|7t > Criciu?(r), Vr > 0.

Hence, easily we obtain

(6.12) r8 a1 \re=ty(r) >Crato(r), ¥Yr>0
= —p
(6.13) r et rg:lqv(r) 7> Crv=t u(r), ¥r>0.
Multiplying (6.12) by (6.13), we get
_N | N—g-N, Nep N_g y—q+1 Nep B=p+1
(6.14) B et S T > O et o(r) =1 u(r) , Vr>0.

Consequently, from (H5) and Lemma 6.1, there exists a number C' > 0 such that
for all » > rg > 0 we have

T—TN+quﬂ+pr

q—1 ~ p—1 > C.
Then, from (H6), we obtain a contradiction. This concludes the proof of the The-

orem 6.1. O
Theorem 6.2. We make the following assumptions:
() max(p, q) < N.
Gi) {p—lZa, q—1>§ or

(p—1(g—1) = B.
Gii) a,b,c,d : [0,+o00[— [0,400] are continuous functions such that

inf  (a(s),b(s),c(s)d(s)) > 0.

s€[0,400[

Under these assumptions, the problem
(Sy0) { —Apu > a(m)u|u|0‘__11 + b(x)v|v|f__11 m RN,
—Agv > c(z)ulu|”” +d(z)v|v] in RN,
has no radial positive solutions in C*(R™) N C2(RN\0).

Proof. By contradiction, let (u,v) be radial positive solution of (S, ). Then (u,v)
satisfies

N ()R () >
(6.15) —(rN=H! (r) 920" (r) > PN

u'(0) =o'(0) = 0.
Arguing as in proof of Theorem 6.1, we deduce from (jjj) that there exits a non-
negative number C such that

(6.16) lu(r)[P~t > Cr? [ayu®(r) + bwﬁ(r)] , Vr>0
(6.17) ()97 = Cr? [eyu (r) + dlv‘s(r)] , Vr>0.

[[G(T)IU(T)I“ +b(r)v(r)|°],
e(r)u(r)[" +d(r)o(r)°],
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Consequently:

Casel. a<p—1landéd<qg-—1.

From (6.16) and (6.17) we obtain
(6.18) [u(0)[P~17% > Ju(r)[P~1 > > OrP,  Vr >0,
(6.19) lw(0)|97170 > u(r)|971 0 > Cre,  Vr > 0.

Since w and v are nonincreasing, (6.18) and (6.19) lead us to a contradiction.

Case 2. (p—1)(g—1) > 3.

(6.20) lu(r)[P~t > C b (r), Vr >0,
(6.21) lo(r)|97t > C ricyu(r), Vr > 0.
Thus, from (6.20) and (6.21)

(6.22) (v(r))% >Cr, VYr>0o0,
(6.23) (u(r)) “Fa=FE " > Cr, Ve >0,

By an argument like that in Case 1, (6.22) and (6.23), provide a contradiction. This
concludes the proof of Theorem 6.2. O
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