ABSTRACT. In this article, we are concerned with the existence of positive radial solutions of the problem

$$(S^{+}) \begin{cases} -\Delta_{p}u = f(x, u, v) & \text{in } \Omega, \\ -\Delta_{q}v = g(x, u, v) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega, \end{cases}$$

where Ω is a ball in \mathbb{R}^N and f, g are positive functions satisfying f(x,0,0) = g(x,0,0) = 0. Under some growth conditions, we show the existence of a positive radial solution of the problem S^+ . We use traditional techniques of the topological degree theory. When $\Omega = \mathbb{R}^N$, we give some sufficient conditions of nonexistence.