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The Geometry of Badly Approximable Vectors

Doug Hensley

Abstract. A vector v = (v1, v2, . . . , vk) in R
k is ε-badly approximable if for

all m, and for 1 ≤ j ≤ k, the distance ‖mvj‖ from mvj to the nearest integer

satisfies ‖mvj‖ > εm−1/k. A badly approximable vector is a vector that is
ε-badly approximable for some ε > 0. For the case of k = 1, these are just
the badly approximable numbers, that is, the ones with a continued fraction
expansion for which the partial quotients are bounded. One main result is
that if v is a badly approximable vector in Rk then as x → ∞ there is a
lattice Λ(v, x), said lattice not too terribly far from cubic, so that most of the

multiples kv mod 1, 1 ≤ k ≤ x, of v fall into one of O(x1/(k+1)) translates

of Λ(v, x). Each translate of this lattice has on the order of xk/(k+1) of these
elements. The lattice has a basis in which the basis vectors each have length
comparable to x−1/(k+1), and can be listed in order so that the angle between
each, and the subspace spanned by those prior to it in the list, is bounded below
by a constant, so that the determinant of Λ(v, x) is comparable to x−k/(k+1).

A second main result is that given a badly approximable vector v =
(v1, v2, . . . , vk), for all sufficiently large x there exist integer vectors nj , 1 ≤
j ≤ k + 1 ∈ Z

k+1 with euclidean norms comparable to x, so that the angle,
between each nj and the span of the ni with i < j, is comparable to x−1−1/k,
and the angle between (v1, v2, . . . , vk, 1) and each nj is likewise comparable

to x−1−1/k. The determinant of of the matrix with rows nj , 1 ≤ j ≤ k + 1 is
bounded. This is analogous to what is known for badly approximable numbers
α but for the case k = 1 we can arrange that the determinant be always 1.
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1. Introduction and notation

Given a list of k real numbers, we may ask how the successive multiples of
the list are distributed with respect to the integer lattice Z

k. Equivalently, we
may require that the original list consist of numbers 0 ≤ vj < 1 and observe the
successive locations of a point pn in the unit k-cube Ik, when the first point p0

is the origin and where the entry at position j in pn is the fractional part of nvj ,
which we will also denote nvj mod 1. If any of the entries vj is zero, the points
are confined to a single face of Ik. If any is rational, they are confined to a finite
number of hyperplanes parallel to one of those faces. If all entries are irrational,
the distribution is asymptotically uniform, but even in this case the points need
not spread themselves out as evenly as geometry will permit. The vectors for which
the resulting distribution is always reasonably even are precisely those for which
no integer multiple of the original v ever falls much nearer zero, mod 1, than need
be. These are the badly approximable vectors, and even in this case, the point set

P (v, x) := {nv mod 1 : 1 ≤ n ≤ x}
has large scale structures and regularities. It is these which we study here.

The badly approximable vectors are a generalization of badly approximable real
numbers. These are much better understood, for there is the characterization by
way of their continued fraction partial quotients. A real number α is badly approx-
imable if there exists ε > 0 so that for all positive integers m, the distance from
mα to the nearest integer is at least ε/m. Badly approximable real numbers are
precisely the real numbers for which the continued fraction expansion has bounded
partial quotients [13]. We now turn to establishing the notation.

For a real number α, we define ‖α‖ to be the distance from α to the nearest
integer. This distance function is subadditive but its scaling properties are not
those of a true norm:

‖cα‖ = c‖α‖ if and only if 0 ≤ c ≤ 1
2‖α‖ .

Given a real vector v = (v1, v2, . . . , vk), we define ‖v‖ to be the maximum value of
‖vj‖ for 1 ≤ j ≤ k.

Definition 1. An ε-badly approximable vector in R
k is a vector v = (v1, v2, . . . , vk)

so that for all m ≥ 1 and for all 1 ≤ j ≤ k, the distance ‖mvj‖ from mvj to the
nearest integer satisfies ‖mvj‖ > εm−1/k. Equivalently, ‖mv mod 1‖ > εm−1/k.
A badly approximable vector is a vector that is ε-badly approximable for some
ε > 0.

The angle between two vectors u,v is

arg[u,v] = cos−1

(
u · v

|u| · |v|
)

.

The span of {u1, . . . ,uk} ⊂ R
n is denoted by 〈u1, . . . ,uk〉. The angle between a

vector v and a subspace B of R
n is the minimum angle between v and a non-zero

vector b ∈ B. The minimizing b is the orthogonal projection of v onto B. A vector
v ∈ R

k is badly approximable if and only if for some ε′ > 0, the angle between the
vector (v1, v2, . . . , vk, 1) and every nonzero lattice vector (a1, a2, . . . , ak+1) ∈ Z

k+1

satisfies arg[v,a] ≥ ε′|a|−1−1/k. This observation prompts us to define a badly
approximable direction.
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Definition 2. For any nonzero vector v ∈ R
k+1, the direction or one-dimensional

subspace of R
k+1 determined by v, {c(v1, v2, . . . , vk+1) : c ∈ R}, is badly approx-

imable if and only if for some ε′ > 0, the angle between (v1, v2, . . . , vk, vk+1) and
every nonzero lattice vector (a1, a2, . . . , ak+1) satisfies arg[v,a] ≥ ε′|a|−1−1/k.

No entry of a badly approximable direction is zero. Permuting the entries, and
scaling the vector, has no effect on the geometry we study, so without loss of gen-
erality we restrict attention to those badly approximable directions in R

k+1 deter-
mined by vectors v with |v1|, . . . , |vk| ≤ 1 and vk+1 = 1. The vector (v1, v2, . . . , vk)
is badly approximable if and only if the direction determined by (v1, v2, . . . , vk, 1)
is a badly approximable direction, and the corresponding ε and ε′ are comparable.
That is, given k ≥ 1, there exists Ck > 0 so that if v ∈ R

k is ε-badly approximable
then {c(v1, v2, . . . , vk, 1) : c ∈ R} is an ε/Ck-badly approximable direction in R

k+1

and vice versa.
There is an explicit class of examples of badly approximable vectors of the form

(α1, α2) where the degree of the field extension [Q(α1, α2) : Q] = 3; a similar con-
struction provides badly approximable vectors of all dimensions [4]. Davenport [2]
shows that there are uncountably many such vectors; the proof is given in full de-
tail for dimension 2 but generalizes to arbitrary dimension. W. Schmidt [11, 12]
showed that the set of badly approximable vectors has full Hausdorff dimension.
Lagarias [6] gives an algorithm based on the Lenstra-Lenstra-Lovasz lattice reduc-
tion algorithm; his algorithm yields a sequence of tolerably close to best-possible
integer approximations to a given direction v = [v1, v2, v3]; equivalently it gives
simultaneous rational approximations to [v1/v3, v2/v3] by rational pairs [s/q, t/q].
See also [7]. Diamond and Pomerance [3] study the issue of very-nearly-parallel
integer vectors. Moschevitin [9] shows that for some vectors, all best integer ap-
proximations lie in a three-dimensional sublattice. These last two results treat as
it were the opposite extreme to the vectors we are concerned with here.

In this work, the notation | · | will denote the Euclidean norm in real n-space,
| · |1 will be the L1 norm, and as already mentioned ‖ · ‖ will apply to real numbers
or vectors and denotes the distance or maximal coordinate distance to the nearest
integer or lattice point respectively. To say that A(·) � B(·) will mean that there
exist positive constants C1 and C2 so that in all cases, C1A < B < C2A. That is,
the two quantities are comparable.

One main result is that given an ε-badly approximable vector v ∈ R
k, and a

sufficiently large x, there exist geometric arrays, that is, translates of a subset of a
full-dimensional lattice, into which most of the elements of P (v, x) (the multiples
nv mod 1, 1 ≤ n ≤ x) fall. Each array has on the order of xk/(k+1) elements. The
differences between elements of any one of these arrays are themselves elements of
a full-dimensional lattice Λ(v, x) in R

k. This lattice has a lattice basis in which the
vectors each have length comparable to x−1/(k+1), and they can be listed in order
so that the dihedral angle between each, and the span of those listed previously, is
bounded below by a constant depending only on k and ε. These basis vectors are
congruent mod 1 to multiples of v.

Remark. This result can be illustrated in striking fashion for k = 3. Pick some
badly approximable vector v = (v1, v2, v3), and some x on the order of 1000, and
use a computer algebra system to display the list of multiples of v mod 1 as dots in
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a virtual cube. From most perspectives, the points will look rather well distributed,
but with the right twist, they can be seen to lie in a series of parallel arrays. The
Mathematica code snippets
v = N[{Sqrt[2], Sqrt[3], Sqrt[6]}, 20];
pts = Table[Map[# - Floor[#] &, n v], {n, 1, 1000}];

pts2 =Map[Point, pts];

lookat[u_] :=Show[Graphics3D[{PointSize[0.005], pts2}, ViewPoint
-> u]];

Do[lookat[10 Cos[n/60]{2, 2, 1} + 10 Sin[n/60]{2, -1, -2}], {n, 1,
300}]

serve nicely. The chosen v is a member of the class of explicit examples mentioned
above.

The result is reminiscent of G. Marsaglia’s famous observation [8] that (linear
congruential) random numbers fall mainly in the planes.

A second main result is analogous to what is known for badly approximable
numbers α. It is not hard to see that if α is a badly approximable number, then
the vector (α, 1) determines a badly approximable direction. Furthermore, for all x
there exists a unimodular integer basis {n1,n2} of R

2 so that |ni| � x. But in our
dimension k result, we only have that the determinant is bounded and non-zero.

2. Lemmas

No vector can escape approximation in direction entirely. The points on the unit
ball in R

k+1 representing the intersection of lines through the origin and another
lattice point are, after all, dense. Likewise, for any vector v ∈ R

k there exist
positive integers n for which ‖nv‖ is particularly small.

Lemma 1. Given a vector v = (v1, v2, . . . , vk) ∈ R
k, and x > 2k, there exists an

integer m, 1 ≤ m ≤ x, so that for all 1 ≤ j ≤ k, |mvj mod 1| < 2x−1/k.

Proof. take y := [ k
√
x], and partition the unit cube in R

k into yk cubes of side 1/y.
Since there are more integers in {0, 1, . . . , x} than cubes, some two multiples m1

and m2 of v must belong to the same cube mod 1. Thus, |(m1 −m2)vj | ≤ 1/y for
all j. Since y ≥ x1/k/2, ‖mv‖ ≤ 2x−1/k. �

Although our main results have to do with the geometry of the set of multiples
mv, 1 ≤ m ≤ x, taken mod 1 in the unit cube [0, 1)k, and so are independent of
the concept of badly approximable directions, our proofs are based on a discussion
of approximating integer vectors n ∈ Z

k+1 to the direction of the corresponding
vector (v, 1) := (v1, v2, . . . , vk, 1), and their geometry.

Given a nonzero vector w ∈ R
k+1, recall that {cw : c > 0} is a badly approx-

imable direction if there exists ε′ > 0 so that for all nonzero vectors n ∈ Z
k+1,

arg[v,n] > ε′|n|−1−1/k. As in the case of badly approximable vectors, no entry of
a vector w determining a badly approximable direction can be zero. Since scaling
and permutation of the entries of a badly approximable direction do not affect the
relevant geometric properties, without loss of generality we may and do require that
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vectors w determining a badly approximable direction satisfy the condition that
for 1 ≤ j ≤ k, 0 < |wj | ≤ 1, while wk+1 = 1. An elementary calculation shows
that if w determines a badly approximable direction, then the truncated vector
w′ = (w1, w2, . . . , wk) is a badly approximable vector, and conversely. The corre-
sponding values of ε need not be equal, but they are comparable to within a factor of
O(k). For v ∈ R

k, and a ∈ R, let (v, a) denote the vector (v1, v2, . . . , vk, a) ∈ R
k+1.

Lemma 2. If v = (v1, v2, . . . , vk) with |vi| < 1 for 1 ≤ i ≤ k, and if |mv − n| =
δ > 0, then

δ/(2
√
k + 1|(n,m)|) ≤ δ/(2

√
km) ≤ arg[(v, 1), (n,m)] ≤ 2δ/m(1)

≤ 2
√
k + 1δ/|(n,m)|.

Proof. Use the series expansion of arg[(v, 1), (n,m)] = cos−1(y) where y = (m(v, 1)·
(n,m))/|n+ (u,m)| · |(n,m)|, and u = mv − n so that |u| ≤ δ. �

The Dirichlet box-principle observation of Lemma 1 above has a formulation
involving angles.

Lemma 3. If (v, 1) ∈ R
k+1 with |vj | < 1 for 1 ≤ j ≤ k determines an ε-badly

approximable direction, then for all x > 0, there exists an integer vector (n,m) ∈
Z

k+1 so that

arg[(n,m), (v, 1)] ≤ 6k|(n,m)|−1−1/k and x ≤ |(n,m)| ≤ (5k)kε−kx.(2)

Proof. For any direction vector (v, 1) = (v1, v2, . . . vk, 1) with |vi| < 1 for 1 ≤ i ≤
k, and for any x > k, there exists an integer m ≤ (k + 1)−1/2(5k)kεkx so that for
the integer vector n nearest mv,

‖mv − n‖ = ‖m(v, 1)− (n,m)‖ ≤ 2(k + 1)−1/(2k)(5k)−1εx−1/k.

Since each |nj | ≤ m, |(n,m)| ≤ √
k + 1m ≤ (5k)kε−kx. Now |m(v, 1) − (n,m)| ≤

2
√
k(k + 1)−1/(2k)(5k)−1εx−1/k, so

arg[(v, 1), (n,m)] ≤ 1
2
(k + 1)−1/(2k)k−1/2εx−1/k|(n,m)|−1.

On the other hand, by hypothesis, (v, 1) is ε-badly approximable, meaning that
arg[(v, 1), (n,m)] ≥ ε|(n,m)|−1−1/k. Thus |(n,m)| ≥ 2k

√
k + 1kk/2ε−kx. Now

|(n,m)| ≤ (5k)kε−kx, so x−1/k ≤ 5k|(n,m)|−1/kε−1. Thus arg[(v, 1), (n,m)] ≤
(5/2)(k + 1)−1/(2k)k1/2|(n,m)|−1−1/k.

Hence arg[(v, 1), (n,m)] ≤ 3k1/2|(n,m)|−1−1/k and so x < 2k
√
k + 1kk/2ε−kx ≤

|n,m)| ≤ (5k)kε−kx. From this it follows that arg[(n,m), (v, 1)] ≤ 6k|(n,m)|−1−1/k

as claimed in (2). �
Lemma 4. The first k entries of a vector determining a badly approximable direc-
tion in R

k+1 are irrational if the last entry is 1.

Proof. If one of the other entries were rational, say v1 = a/b, then the set of
multiples {mbv : 1 ≤ m ≤ x/b} would include approximations to zero mod 1 with
error O((x/b)−1/(k−1)). For x sufficiently large, this will be less than εx−1/k. �
Lemma 5. Given linearly independent vectors u1, . . . ,uk ∈ R

n, where k ≤ n, the
image of the unit sphere in R

k, under the mapping which takes (c1, c2, . . . , ck) to∑k
1 ciui, is an ellipsoid. The maximum of the absolute value of the change in
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direction of the latter, divided by the change in direction of the former, is the ratio
of the longest to the shortest vector in this ellipsoid, which is the square root of
the ratio of the largest to least eigenvalue of the matrix U tU where the columns of
U are the vectors u1,u2, . . . ,uk. The eigenvectors of U tU corresponding to these
eigenvalues are orthogonal.

Proof. An ellipsoid in R
n may be defined as any translate of the set of all points∑m

1 xjej so that
∑k

1 x2
j ≤ 1 where the vectors ej are mutually orthogonal. Any

ellipsoid is the limit of, and a cross section of, a full-rank ellipsoid where m = n,
for we may supply additional short vectors ej ,m+1 ≤ j ≤ n. Any invertible linear
transformation L on R

n carries the unit ball in R
n to a full-rank ellipsoid: Let L be

the matrix of L with respect to the standard basis. Let M := (LtL)1/2. (That is,
M is the symmetric positive definite matrix so that M2 = LtL.) Then for any Lx
so that |x| = 1, there exists z so that Mz = Lx and |z| = 1: Take z = M−1Lx and
note that |z|2 = xtLtM−2Lx = xtx = 1. Any non-invertible linear transformation
L of rank m < n is nevertheless invertible when restricted to its own span, and
the image under L of the unit ball in R

n is equal to the image under L of the
intersection of that ball with the orthogonal complement of the null space of L.
This is an isometric embedding into R

n of the image under L′ of the unit ball in
R

m where L′ is the matrix of the restriction of L to this orthogonal complement,
with respect to an orthonormal basis {b̂j , 1 ≤ j ≤ m} of that complement of the
null space of L. But the image in R

k of the unit ball in R
k under L′ is, as we

have already seen, an ellipsoid, which makes its isometric embedding in R
n under

the mapping (c1, c2, . . . , cm) → ∑m
1 cjbj also an ellipsoid. The claim about angle

ratios is a consequence of the fact that if L is a linear transformation on R
n, if x is

a unit vector, and h is a vector orthogonal to x, if L is the matrix of L with respect
to the standard basis, and λ and Λ are the least and greatest eigenvalues of LtL
respectively, then

|Lh|2 = htLtLh ≤ |h|2Λ
while

|Lx|2 = xtLtLx ≥ |x|2λ
The derivative of arg[L(x+ th),Lx] with respect to t at t = 0 is at most |Lh|/|Lx|
while, for h normal to x and at t = 0, the derivative of arg[(x + th),x] is |h|/|x|
which completes the proof. �

Lemma 6. If v = (v1, v2, . . . , vk, 1) with |vj | < 1 for 1 ≤ j ≤ k determines a badly
approximable direction, if n1,n2 . . . ,nk ∈ Z

k+1 are linearly independent over R,
and if u1,u2, . . . ,uk ∈ R

k are given by uj = mjv − nj where mj is the (k + 1)st

(and last) entry of nj, then {u1,u2, . . . ,uk} are also linearly independent.

Proof. Suppose
∑k

1 cjuj = 0. Then
∑k

1 cj(mjv − nj) = 0 so that (
∑k

1 cjmj)v =∑k
1 cjnj . But v cannot be a linear combination of k integer vectors in R

k+1, for
it would then belong to a k dimensional subspace with an integer vector basis.
The coordinate vector v∗, with respect to this basis, of v would be a vector in
R

k and it would have integer approximations p in direction to within an angle of
O(|p|−1−1/(k−1)).

Thus there would exist arbitrarily large integer vectors p ∈ Z
k for which

arg[v∗,p] � |p|−k/(k−1).
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Consider the angle between v and
∑k

1 pjnj . Consider also two objects: the k-
dimensional sphere Sn in R

k+1 which is the intersection of the unit sphere in R
k+1

with the span of n1,n2, . . . ,nk, and the unit sphere S∗ in R
k. The mapping which

takes a vector
∑k

1 cjnj ∈ Sn to the vector (c1, c2, . . . , ck)/
√∑k

1 c2j ∈ S∗ is continu-
ous and invertible. It also satisfies a Lipschitz condition: There are positive, finite
upper and lower bounds, depending on the vectors ni, to the ratio of the lengths
of the change in output to the change in input vectors.

Hence, for x sufficiently large, the good approximations in direction to v∗ by
integer vectors in R

k correspond to approximations to v by integer combinations
of the nj which are too good to be compatible with the definition of ‘badly approx-
imable’, which was to have been a property of v. �

3. The main results

Theorem 1. If e1, e2 . . . , ek ∈ R
n are linearly independent vectors, with 1 ≤ |ei| ≤

C for 1 ≤ i ≤ k, and if arg[ei, 〈e1, e2, . . . , ei−1〉] ≥ θ > 0 for 2 ≤ i ≤ k, then there
exists K1 = K1(C, k, θ) > 0 and K2(C, k, θ) > 0 so that for arbitrary (c1, . . . , ck) ∈
R

k,

K2
1

∣∣∣∣∣
k∑
1

ciei

∣∣∣∣∣
2

≤
k∑
1

c2i |ei|2 ≤ K2
2

∣∣∣∣∣
k∑
1

ciei

∣∣∣∣∣
2

.

Proof. For the lower bound, we have
k∑
1

c2i |ei|2 ≥ max
1≤i≤k

c2i |ei|2 ≥
(
k−1

k∑
1

|ciei|
)2

≥ k−2

∣∣∣∣∣
k∑
1

ciei

∣∣∣∣∣
2

.

Thus we may take K1 = k−1.
For the upper bound, we first put e′i := ei/|ei|, and bi := ci|ei|. Without loss of

generality we take
∑k

1 b2i = 1, and now we prove that |∑ bie′i|2 ≥ 1/K2. The lattice
with basis {e1, e2, . . . , ek} has determinant

∏k
1 |ei|

∏k
2 sin θi ≥ (sin θ)k−1

∏k
1 |ei|

(where θi is the angle between ei and 〈e1 . . . ei−1〉, so that θi ≥ θ). Now if bk ≥
(1/(K2 sin θ)), then |∑k

1 bie′i| ≥ 1/K2. If not, then bke′k + bk−1e′k−1 = bk−1e′k−1 +
Θ(1/(K2 sin θ)), where Θ(u) denotes a number of absolute value no greater than
|u|. So in this case, if |bk−1| ≥ (1/(K2 sin2 θ)+1/(K2 sin θ)), then the component of
bk−1e′k−1+bke′k normal to the span of the first k−2 e’s is ≥ 1/(K2 sin θ) and again
the whole sum is large enough. Continuing in this fashion, a necessary condition
for failure of the required inequality is that |bk−j | ≤ (1/K2)(z + z2 + · · · + zj+1)
where z = 1/ sin θ. But with K2 = k sin−k θ, this is impossible and the conclusion
must hold. �

Theorem 2. Suppose v = (v1, v2, . . . , vk, 1) with k ≥ 2 is a vector determining a
badly approximable direction, with |vj | < 1 for 1 ≤ j ≤ k, and suppose

arg[v,n] > ε|n|−1−1/k

for all non-zero n ∈ Z
k+1. Then there exist positive constants C, X, and λ, de-

pending only on k and ε, such that for each x > X one can find linearly independent
integer vectors n1,n2, . . . ,nk+1 so that:
(i) x ≤ |nj | ≤ Cx for 1 ≤ j ≤ k + 1.
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(ii) arg[nj , 〈n1,n2, . . . ,nj−1〉] ≥ λx−1−1/k for 2 ≤ j ≤ k + 1.
(iii) arg[nj ,v] ≤ 6k|nj |−1−1/k.

Proof. We have already seen the case j = 1 of this, in Lemma 1. There one
had C = (5k)5kε−k. We give a proof by induction, but starting from j = 2
which we prove from scratch. The inductive stage asserts that there exist con-
stants C1, C2, . . . , Cj and λ2, . . . , λj , depending on k and ε so that for x sufficiently
large,and for any ε-badly approximable v, there exist integer vectors n1, . . . ,nj so
that x ≤ |ni| ≤ Cix for 1 ≤ i ≤ j, while for 2 ≤ i ≤ j, arg[ni, 〈n1, . . . ,ni−1〉] ≥
λix

−(k+1)/k yet arg[ni,v] ≤ R|ni|−(k+1)/k.
Let R := 6k and Q := (5k)kε−k. Now for the case j = 2, take

K = (2R)k/(k+1)ε−k/(k+1)Q.

By Lemma 3, there exists n2 ∈ [Kx,QKx] so that arg[n2,v] ≤ R(Kx)−(k+1)/k.
But then

arg[n2,n1] ≥ arg[n1,v]− arg[n2,v]

≥
(
εQ−(k+1)/k −RK−(k+1)/k

)
x−(k+1)/k

≥ (ε/2)Q−(k+1)/k

which gets the induction started with λ2 = ε/2, C1 = Q, and C2 = KQx.
Now consider a general j, 2 ≤ j ≤ k, and assume that the inductive hypothesis

holds up to j. We will show that there are constants Cj+1 and λj+1 so that the in-
ductive assertion holds. Let w be the orthogonal projection of v onto 〈n1, . . . ,nj〉.
Let λ denote some constant less than λj/2. We note that λ2 < ε, and that
the λ’s will form a decreasing sequence. We consider two possibilities: Either
arg[v,w] > λx−(k+1)/k, or not. If so, then we take M so that RM−(k+1)/k = λ/6,
and by Lemma 1, we take n to be a vector with Mx ≤ |n| ≤ QMx so that
arg[n,v] < R|n|−(k+1)/k ≤ R(Mx)−(k+1)/k. The desired inequalities then follow
from arg[n, 〈n1, . . . ,nj〉] ≥ arg[v,w]− arg[n,w]. We can take nj+1 = n, λj+1 = λ,
and Cj+1 = QM .

The alternative is that for all λ > 0 there exist ε-badly approximable vectors
v, arbitrarily large values of x, and corresponding choices of n1, . . . ,nj , so that
arg[v,w] ≤ λx−(k+1)/k. This, however, cannot happen, because w sits in a j-
dimensional lattice and thus has good lattice vector approximations. These are
so nearly parallel to w that, if w were in turn nearly parallel to v, this would
violate the defining condition for ε-badly approximable vectors. There is a catch,
though. The lattice generated by the n’s is not a cubic lattice, and is in fact
rather far from it. The Dirichlet principle, and Lemma 1, only guarantee good
approximations within a cubic lattice. We will have to have information specific to
the lattice Λ generated by n1, . . . ,nj , and some way to relate it to cubic lattices.
Not surprisingly, Lenstra-Lenstra-Lovasz reduced bases play a key rôle here.

Let Λ be the j-dimensional lattice in R
k+1 generated by the integer vectors

n1,n2, . . . ,nj . The assumptions in force are that x ≤ |ni| ≤ Cix for 1 ≤ i ≤ j, and
that arg[ni, 〈n1, . . . ,ni−1〉] ≥ λix

−1−1/k for 1 ≤ i ≤ j, while

arg[ni, 〈n1, . . . ,ni−1〉] ≤ arg[ni,ni−1] ≤ arg[ni,v] + arg[v,ni−1]

≤ R|ni|−1−1/k +R|ni−1|−1−1/k < 2Rx−1−1/k.
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Thus,

detΛ =
j∏
1

|ni|
j∏
2

sin arg[ni, 〈n1, . . . ,ni−1〉] ≤ (2R)j−1Qx1−(j−1)/k.

On the other hand, if {e1, e2, . . . , ej} is a LLL-reduced lattice basis for Λ, then
2−j(j−1)/4

∏j
1 |ei| ≤ detΛ ≤∏j

1 |ei|. Furthermore, for such a basis,

sin arg[ei, 〈e1, . . . , ei−1〉] ≥ 2−(i−1)/2

[1, p. 84].
Thus,

j∏
1

|ei| ≤ 2j(j−1)/4 detΛ ≤ 2j(j−1)/4(2R)j−1Qx1−(j−1)/k.

Keeping w = proj [v, 〈n1, . . . ,ni−1〉], write w =
∑j

1 βiei. Let αi = βi/
∑j

1 |βn||en|,
so that

∑j
1 |αi| |ei| = 1.

We now introduce y and z := (ε/2)−(j−1)(2y)(j−1)/k(4(j− 1))j−1, taking y large
enough that 16j−1z < y. Let bi := 4z−1/(j−1)|ei|−1, and let ui,n := [(n− 1)bi, nbi).
Partition the unit cube [0, 1)j−1 by partitioning the ith axis, 2 ≤ i ≤ j, into intervals
ui,n, 1 ≤ n ≤ 1+ �1/bi�. Since each ei is a nonzero integer vector, |ei| ≥ 1 for all i,
so that bi ≤ 1/4. Thus, there are between 4−(j−1)z

∏j
2 |ei| and (5/16)j−1z

∏j
2 |ei|

boxes. Our choice of z thus means that there are no more than

(5/4)j−1(ε/2)−(j−1)(j − 1)j−1(2y)(j−1)/k

j∏
2

|ei|

boxes in the partition. If |α1|y is greater than this, then there must be two non-
negative integers l1 and l2, both less than |α1|y so that (li/|α1|)(

∑j
2 αiei) mod 1

belong to the same box. Taking l := |l2 − l1|, this gives

(l/|α1|)
j∑
1

αiei =
j∑
1

miei +
j∑
2

δiei

where mi ∈ Z, δ1 = 0, and |δi| ≤ 4z−1/(j−1)|ei|−1 for 2 ≤ i ≤ j so that with
δ :=

∑j
1 δiei,

|δ| ≤ 4(j − 1)z−1/(j−1).

The same would hold if, instead of using |α1|y as the upper bound for l, and
partitioning the product of the last j − 1 unit intervals, we used |αr| in place of
|α1|. Thus, the only way to avoid the existence of an l ≤ |αr|y and δ satisfying the
bound above, would be that for 1 ≤ r ≤ j,

|αr|y < (5/16)j−1z

j∏
i �=r

|ei|.

But then,

y =
j∑
1

|αi||ei|y < j(5/16)j−1z

j∏
1

|ei|.
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Yet we took z = (ε/2)−j−1(2y)(j−1)/k(4(j − 1))j−1, so this would mean that

y < j(5/16)j−1(ε/2)−j−1(2y)(j−1)/k(4(j − 1))j−1

j∏
1

|ei|.

Now
j∏
1

|ei| ≤ 2j)j−1)/4 detΛ ≤ 2j(j−1)/4(2R)j−1Qx1−(j−1)/k

so this gives y < Mx where M is a constant that depends on j, ε, and k only. That
is, the only way to avoid the existence of such a δ and l is to choose y < Mx. Thus,
we take y = 2Mx and the existence of the δ and l is assured. That is, there exists
a positive integer l, an integer 1 ≤ r ≤ k, and a vector δ ∈ R

k+1 so that l ≤ |αr|y
and lv =

∑j
1 miei + δ, and

|δ| ≤ 4(j − 1)z−1/(j−1).

Now by Theorem 1, |∑j
1 miei| is comparable to

∑j
1 |mi||ei|. From the definition

of z and the now-chosen value of y = 2Mx, we have |δ| ≤ (ε/2)(4Mx)−1/k. Now
with m =

∑j
1 miei, we have a multiple of w, namely l

∑j
1(αi/αr)ei, which is equal

to m to within an error δ with |δ| ≤ 4(j − 1)z−1/(j−1) = (ε/2)(4Mx)−1/k. But

|m| ≤
k∑
1

|mi||ei| ≤ (1 + o(1))
j∑
1

|lαi/αr||ei|.

Since l ≤ |αr|y, |mi| ≤ |αi|y so that |m| ≤ y. Thus,

arg[w,m] ≤ (ε/2)|m|−1−1/k.

Together with arg[w,v] ≤ λx−1−1/k, this gives

arg[v,m] ≤ (ε/2)|m|−1−1/k + λx−1−1/k.

But now since |m| ≤ 4Mx, we have

arg[v,m] ≤ (ε/2 + (4M)1+1/kλ)|m|−1−1/k

and for λ sufficiently small, (in terms of M and ε, and thus ultimately in terms of
j, k, and ε), we have

arg[v,m] < ε|m|−1−1/k.

This contradicts the definition of a badly-approximable vector, and shows that the
angle between v and the span of the j nearly-parallel vectors n1, . . . ,nj must exceed
some λj+1x

−1−1/k. This completes the induction. �

4. Lattice-like structures in the set of multiples mod 1 of a
badly approximable vector

We now come to the topic of why it is that there is a lattice structure to the
set of points nv mod 1 in the cube [0, 1)k. We maintain our convention that the
standard form for vectors v determining our ε-badly approximable directions have
entries (v1, v2, . . . , vk, 1), with all entries but the last of absolute value less than 1.
This imposes no real constraint.

Let P (v, x) := {nv mod 1 : 1 ≤ n ≤ x} ⊆ [0, 1)k. According to Theorem 2,
there exist constants C1(k, ε) > 0, C2(k, ε) > 0 so that for all y sufficiently large,
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there exist integer vectors n1, . . . ,nk ∈ R
k+1 so that y ≤ |nj | ≤ C1(k, ε)y and

so that ‖mjv‖ ≤ C2(k, ε)y−1/k, where ‖w‖ denotes the maximum distance of any
entry to the nearest integer, and where mj denotes the (k + 1) entry of nj . Note
also that ‖mjv‖ � εy−1/k from the definition of ε-badly approximable vectors and
from the comparability of the lengths of the nj to y. Without loss of generality
we may require that C1(k, ε) ≥ 2C2(k, ε), and it will be convenient to impose this
condition for later use.

Consider the remainder vectors rj := mjv−nj . We first observe that {r1, . . . , rk}
is linearly independent over R, because if

∑k
1 cjrj = 0 we would have

∑k
1 cjmjv =∑k

1 cjnj . But this puts v in the span of a set of k integer vectors {n1, . . . ,nk}.
The coefficient vector u = (u1, . . . , uk) of v with respect to this set has integer ap-
proximations in direction that are accurate to within an angle of O(|u|)−1−1/(k−1)).
From Lemma 3 though, angles between underlying vectors are no greater than a
bounded multiple of angles between the corresponding coefficient vectors. Thus,
because 1/(k − 1) > 1/k, v itself would eventually have integer approximations in
direction more accurate than allowed an ε-badly approximable direction.

A more exact and quantitative version of this line of thought shows that in
fact the vectors rj are not only linearly independent over R, but that there exists
a positive constants C4(k, ε) so that for x sufficiently large, and for any ε-badly
approximable direction determined by a v in standard form, there exist vectors
rj = mjv − nj so that

arg[rj , 〈r1, . . . , rj−1〉] ≥ C4(k, ε)

for 2 ≤ j ≤ k That is, the vectors r1, . . . , rk form a basis for R
k in which the

lengths are all comparable and the angles between the next vector, and the span
of the previous ones, are all bounded below by a constant that depends on ε and k
but on nothing else. But before proving this, we show that most points nv mod 1,
1 ≤ n ≤ x fall into a relatively few lattice equivalence classes. Given a lattice
Λ ⊂ R

k, a fixed vector v = (v1, v2, . . . , vk, 1), and integers m1 and m2, we say
m1 ≡ m2 mod (Λ,v) if ((m1(v1, . . . , vk)) mod 1)−((m2(v1, . . . , vk)) mod 1) ∈ Λ.
The equivalence class [m,Λ,v] denotes {m′ : m′ ≡ m mod (Λ,v)}.
Theorem 3. Given a vector v = (v1, v2, . . . , vk, 1) ∈ R

k+1 determining an ε-badly
approximable direction, for sufficiently large x there exists a lattice Λ = Λ(v, x) ⊂
R

k of determinant comparable to x−k/(k+1) with the following property: For almost
all m ≤ x,

[m,Λ,v] ∩ {1, 2, . . . , x}
has on the order of x1−1/(k+1) elements. In more detail, the result reads: For ε > 0
and k ≥ 1, there exist positive constants X,K1, and K2, and a function zk,ε(x)
tending to zero as x → ∞ so that for all x ≥ X there are at least x(1 − zk,ε(x))
integers between 1 and x for which [m,Λ, v]∩{1, 2, . . . , x} has between K1x

1−1/(k+1)

and K2x
1−1/(k+1) elements.

Proof. We continue to use the notation about mi, ri, and ni of the discussion
above. Our lattice is the lattice with basis r1, . . . , rk from the discussion above,
taking y = xk/(k+1). One half of the assertion about its determinant is evident; the
basis vectors each have length comparable to x1/(k+1) so detΛ � x−k/(k+1). That
it is comparable to this, follows from Theorem 4 below.
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For the proof of the other assertions, consider

T (n,v, y) :=
{
(l1, l2, . . . , lk) ∈ Z

k : 1 ≤ n+
k∑
1

limi ≤ y and
k∑
1

li‖ri‖ ≤ 1/2
}
.

Since mi ≤ C1(k, ε)yk/(k+1), if two conditions on li are satisfied, that

li ≤ 1
2kC2(k, ε)

y1/(k+1) and that
1− n

k
≤ c1(k, ε)yk/(k+1)li ≤ y − n

k

then l ∈ T (n,v, y). There are on the order of yk/(k+1) choices of l which satisfy
the second condition, and since C1 ≥ 2C2, these also satisfy the first condition.
Thus, there are at least on the order of yk/(k+1) points in R

k, arranged in lattice
array, equivalent modulo the lattice to nv, and all within the cube nv mod 1 +
[−1/2, 1/2]k.

For most n ≤ x, a sizeable proportion of these points will be within the unit
cube [0, 1). Thus, most points nv mod 1, 1 ≤ n ≤ x belong to a class of points,
equivalent modulo this lattice, all of the form n′v mod 1 with 1 ≤ n′ ≤ x, with on
the order of xk/(k+1) elements. �

Remark, In one dimension already this makes sense. Most of the fractional parts of
n
√
2 for which 1 ≤ n ≤ x belong to one of O(x1/2) arithmetic progressions of points

(n′+ l1m1)
√
2 mod 1 in which m1 is comparable to x1/2, ‖m1

√
2‖ is comparable to

x−1/2, and l1 ranges through an interval of length comparable to x1/2. If we allow
one ‘wraparound’, then all the points belong to such an arithmetic progression.

Theorem 4. If v ∈ R
k+1 determines an ε-badly approximable direction in R

k+1,
and if n1,n2, . . . ,nk+1 are integer approximations to v in direction, with x ≤ |ni| ≤
Cx, linearly independent, and satisfying arg[ni,v] ≤ 6k|ni|−1−1/k, then the angles
arg[ri, 〈r1, . . . , ri−1〉] are bounded below, independently of v and of x. Here, C is
the constant in the statement of Theorem 2. Both C, and the bounds of this result,
do depend on k and ε.

Remark. Thus, the lattice in Theorem 3 has generating vectors which are not
far from being a reduced basis, and which correspond to values of m comparable
to x. There is a related result, due to Lagarias [7, Theorem 5.1], that bounds
the determinant of the matrix whose columns are consecutive best approximations
to a given vector. The determinant is � exp(O(k2 log(1/ε))), with finitely many
exceptions.

Proof. We first recall that all the ri have lengths comparable to x−1/(k+1), and
that the implicit constant in “comparable” depends only on k and ε. We note
further that for any remainder vector nv mod 1 we have ‖nv‖ � εn−1/k.

Now let θ2 := arg[r1, r2]. Let r′2 be the orthogonal projection of r2 onto r1. Then
for all positive integers N , there exists n, 1 ≤ n ≤ N and n′ so that |nr′2 − n′r1| ≤
|r1|/N . Let nr′2 mod r1 := nr′2 − n′r1. Then

|nr2 − n′r1|2 = |nr′2 mod r1|2 + (n|r2| sin θ2)2.

On the other hand, nr2 − n′r1 = (nm2 ± n′m1)v mod 1 � Nxk/(k+1). Hence

|nr2 − n′r1| � (Nxk/(k+1))−1/k.
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Thus
n2|r2|2 sin2 θ2 +O(N−2x−2/(k+1)) � N−2/kx−2/(k+1)

from which it follows that

sin2 θ2 +O(N−2) � N−2/k.

Whatever the implicit constant in the O and in the �, there exists a choice of N
on the order of 1 which maximizes this lower bound for sin2 θ2 and the resulting
bound is on the order of 1. That is, there exists ε2(k, ε) so that for all sufficiently
large x, for all ε-badly approximable v, and for all linearly independent choices
of n1,n2 with y = xk/(k+1) and y ≤ m1,m2 ≤ C(k, ε)y and ri = miv − ni with
|riK(k, ε)x−1/(k+1), arg[r1, r2] ≥ θ2(k, ε).

This begins an induction. We will now proceed with freer use of O and �, it
being understood that the implicit constants claimed are uniform over choices of x
and v and the vectors ni of length comparable to y that approximate v in direction,
but do depend, (quite strongly, in fact), on k and ε.

Fix ε and k. Assume we have ε2, . . . , εj−1 so that for sufficiently large x, for
arbitrary ε-badly approximable v, with y = xk/(k+1), approximating integer vectors
ni, 1 ≤ i ≤ j with corresponding last entries m1, . . . ,mj , so that y ≤ mi ≤ Cy for
1 ≤ y ≤ j. Assume ri = miv − ni for 1 ≤ i ≤ j . Then arg[ri, 〈r1, . . . , ri−1〉] ≥ εi

for 1 ≤ i ≤ j− 1. We must show that there exists also εj with the same properties.
Consider r′j , the orthogonal projection of rj onto 〈r1, . . . , rj−1〉. For arbitrary

large N , but now taking N also to be the kth power of an integer, there exists
1 ≤ n ≤ N so that nr′j =

∑j−1
1 airi +

∑j−1
1 uiri where the ai are integers and

|ui| ≤ N−1/(j−1). We first claim that
∑j−1

1 |ai| � N .
Otherwise, there would be instances in which some |ai|/N was arbitrarily large.

But |nr′j | ≤ |nrj | � Nx−1/(k+1), while |∑j−1
1 airi|2 satisfies the following inequal-

ities: ∣∣∣∣∣
j−1∑
1

airi

∣∣∣∣∣
2

≥ a2
j−1|rj−1|2 sin2 εj−1

∣∣∣∣∣
j−1∑
1

airi

∣∣∣∣∣
2

≥ (|aj−2||rj−2 sin εj−2 − |aj−1||rj−1|rj−1|)2

∣∣∣∣∣
j−1∑
1

airi

∣∣∣∣∣
2

≥ (|aj−3|rj−3| sin εj−3 − |aj−1|rj−1| − |aj−2||rj−2)2,

etc.
But |∑j−1

1 airi| � |nr′j | � Nx−1/(k+1). Thus

N2x−2/(k+1) � a2
j−1|rj−1|2 sin2 εj−1

N2x−2/(k+1) � (|aj−2||rj−2 sin εj−2 − |aj−1||rj−1|rj−1|)2
and so on. From the first of these inequalities we conclude that |aj−1| � N since
|rj−1| � x−1/(k+1). The next inequality gives

x−2/(k+1) �
(aj−2

N
|rj−2| sin εj−2 −O(x−1/(k+1))

)2
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Now if |aj−2|/N cannot be arbitrarily large because this would contradict the
bound |rj−2| � x−1/(k+1). Continuing in this way we see that for each i, 1 ≤ i ≤
j − 1, |ai|/N is bounded. Thus,

∑j−1
1 |ai| � N as claimed. But now we have∣∣∣∣∣nrj −

j−1∑
1

airi

∣∣∣∣∣
2

=

∣∣∣∣∣nr′j −
j−1∑
1

airi

∣∣∣∣∣
2

+ |nrj |2 sin2 θj

The first term on the right is� N−2/(j−1)x−2/(k+1), while on the left the expression
is � (nmj +

∑j−1
1 |ai|mi)−2/k since(

nrj −
j−1∑
1

airi

)
=

(
nmi −

j−1∑
1

aimi

)
v − n

where n is an integer vector. Thus∣∣∣∣∣nrj −
j−1∑
1

airi

∣∣∣∣∣
2

� (Nxk/(k+1))−2/k = N−2/kx−2/(k+1).

On the other hand, the right side of the equation above is

O(N−2/(j−1)x−2/(k+1)) +O(x−2/(k+1) sin2 θj).

For N sufficiently large, the term involving N−2/(j−1) becomes negligible in com-
parison to the other term, so the right side is O(x−2/(k+1) sin2 θj). But we can
take N large enough to bring to prominence this term, while keeping N bounded,
and then x−2/(k+1) sin2 θj � N−2/kx−2/(k+1) ⇒ sin2 θj � 1. Thus, there exists a
constant εj(k, ε) > 0, independent of x, v, or the various ni. This completes the
induction and proves Theorem 4. �

There is a converse to all of this:

Theorem 5. If a vector v ∈ R
k+1 has the property that for all x there exist

k+1 linearly independent integer vectors that approximate v in direction, to within
Rx−1−1/k in angle, and that are comparable in length to x, then it is ε-badly ap-
proximable for some positive ε.

To prove this theorem we first establish Lemma 7 below, which contains the bulk
of the work. Fix v, and for arbitrary large x let n1,n2, . . . ,nk+1 be the linearly
independent integer approximations to v in direction. The absolute value of the
determinant of the matrix N with columns ni, 1 ≤ i ≤ k + 1, is a positive integer,
and so is at least one. On the other hand, it is (k + 1)! times the volume of the
simplex with vertices ni, 1 ≤ i ≤ k + 1 together with the origin.

Scaling these vectors each to length exactly x (multiplying by ci say) will not
affect the volume by more than a bounded factor, but the volume of the resulting
simplex is bounded by (k + 1)−1 times the k-dimensional volume of the simplex
with vertices cini, 1 ≤ i ≤ k + 1. For each of these, the distance to any of the
others is O(x−1/k). Thus the k-dimensional volume of this simplex is O(x−k/k) so
that the volume of the k + 1-dimensional simplex is O(1). Thus detN � 1.

Lemma 7. If n has length comparable to x, and if arg[n,v] � x−(k+1)/k, then the
coefficients ci in n =

∑k+1
1 cini are bounded. More precisely, suppose C1 > 1 and

C2 are positive constants. Then there exists a positive constant C3 so that if x ≥ 2+
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2C2, if n ∈ Z
k+1 with x ≤ |n| ≤ C1x, if v �= 0 ∈ R

k+1 with arg[n,v] ≤ C2x
−1−1/k,

and if there exist k+1 linearly independent integer vectors nj , 1 ≤ j ≤ k+1 so that
x ≤ |nj | ≤ C1x and arg[nj ,v] ≤ C2x

−1−1/k for 1 ≤ j ≤ k+ 1, then the coefficients
ci in the representation of n =

∑k+1
1 cini all satisfy |ci| ≤ C3.

Proof. Without loss of generality, |v| = 1. Let y = n ·v. Since arg[n,v] ≤ 1/2 and
|n| ≥ x, x/2 ≤ y ≤ C1x. Let ñj = ((n ·v)/(nj ·v))nj , so that ñj ·v = n ·v. It will
suffice to show that the coefficients c̃j in n =

∑k+1
j=1 c̃jñj are bounded (independent

of x, n and the nj ; the bound will depend on C1 and C2 and k.) We note that∑k+1
1 c̃j = 1. Now |det[n1 . . .nk+1]| ≥ 1 so |det[ñ1 . . . ñk+1]| � 1. The ñj all lie in

a certain hyperplane orthogonal to v. Let S denote the convex hull of these points.
Then the volume of the k + 1-dimensional simplex with base S and extra vertex 0
is � 1 so that the k-dimensional volume of S is � x−1 and that of x1/kS is � 1.
This prompts us to consider the vectors pj defined to be the component of x1/kñ
orthogonal to v. Because arg[nj,v] � x−1−1/k, |pj | � 1.

Now let ej = c̃j − 1/(k + 1) for 1 ≤ j ≤ k + 1, so that
∑k+1

1 ej = 0. It
will suffice now to prove that |ek+1| � 1. First we note that the component of n
orthogonal to v has norm � x−1−1/k by hypothesis, so that

∣∣∣∑k+1
1 c̃jpj

∣∣∣� 1. Now

let u =
∑k+1

1 ejpj =
∑k+1

1 c̃jpj − (k + 1)−1
∑k+1

1 pj . Since |pj | � 1, |u| � 1.
But

∑k
1 ejpj = u− ek+1pk+1 so that

pk+1 =
−1
ek+1

u+
k+1∑
j=1

(
ej∑k
i=1 ei

)
pj .

The last term in this identity is an affine combination of the vertices of one face of
S so that the distance from that face, to the opposite vertex pk+1, is � 1/|ek+1|.
But the edges of the face in question have bounded length so the k− 1 dimensional
volume of that face is bounded. Thus the distance to the opposite face cannot be
arbitrarily small, from which it follows that the |ej | cannot be arbitrarily large, nor
can the |cj |. This is what was claimed. (A more detailed calculation along these
lines shows that |ej | ≤ 22k+1C2k+1

1 Ck
2 so that |cj | ≤ 22k+2C2k+2

1 Ck
2 + C1.) �

To recapitulate: the result of the lemma is that if v has the property that for
all x there exist integer vectors ni, 1 ≤ i ≤ k + 1, linearly independent, of length
comparable to x, and all within an angle of Rx−1−1/k of v, then if n is another
vector (integer or not) similarly near to parallel to v and also of length comparable
to x , then in the representation n =

∑k+1
1 cini, the |ci| are bounded. This bound

will depend upon the dimension, and upon the implicit constant in the premise
about lengths ‘comparable to x’, but not upon v or x or the ni’s themselves.

Proof of Theorem 5. Assume to the contrary that for all ε > 0, there exists
an integer vector n so that arg[n,v] ≤ ε|n|−1−1/k. Let x := ε−k/(k+1)|n|, and
consider the integer vectors ni, 1 ≤ i ≤ k + 1 of length comparable to x and
with arg[ni,v] � x−1−1/k � ε|n|−1−1/k given by our premise on v. Let n′ :=
ε−k/(k+1)n. According to the lemma, in the representation n′ =

∑k+1
1 cini, the |ci|

are bounded. But that would mean that for the integer vector n, the coefficients
c′i = ciε

k/(k+1) in n =
∑k+1

1 c′ini were all small (arbitrarily close to zero). Yet
the determinant D of the matrix with columns ni is bounded, so that any integer
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vector’s representation in terms of the ni must have coefficients which are integer
multiples of 1/D. This contradiction shows that there cannot be integer vectors n
for which |n|1+1/k arg[n,v] is arbitrarily small, and that is Theorem 5. �
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