ABSTRACT. A vector $\mathbf{v} = (v_1, v_2, \dots, v_k)$ in \mathbb{R}^k is ϵ -badly approx*imable* if for all m, and for $1 \leq j \leq k$, the distance $||mv_j||$ from mv_i to the nearest integer satisfies $||mv_i|| > \epsilon m^{-1/k}$. A badly approximable vector is a vector that is ϵ -badly approximable for some $\epsilon > 0$. For the case of k = 1, these are just the badly approximable numbers, that is, the ones with a continued fraction expansion for which the partial quotients are bounded. One main result is that if **v** is a badly approximable vector in \mathbb{R}^k then as $x \to \infty$ there is a lattice $\Lambda(\mathbf{v}, x)$, said lattice not too terribly far from cubic, so that most of the multiples $k\mathbf{v} \mod 1$, $1 \le k \le x$, of \mathbf{v} fall into one of $O(x^{1/(k+1)})$ translates of $\Lambda(\mathbf{v}, x)$. Each translate of this lattice has on the order of $x^{k/(k+1)}$ of these elements. The lattice has a basis in which the basis vectors each have length comparable to $x^{-1/(k+1)}$, and can be listed in order so that the angle between each, and the subspace spanned by those prior to it in the list, is bounded below by a constant, so that the determinant of $\Lambda(\mathbf{v}, x)$ is comparable to $x^{-k/(k+1)}$.

A second main result is that given a badly approximable vector $\mathbf{v} = (v_1, v_2, \ldots, v_k)$, for all sufficiently large x there exist integer vectors $\mathbf{n}_j, 1 \leq j \leq k + 1 \in \mathbb{Z}^{k+1}$ with euclidean norms comparable to x, so that the angle, between each \mathbf{n}_j and the span of the \mathbf{n}_i with i < j, is comparable to $x^{-1-1/k}$, and the angle between $(v_1, v_2, \ldots, v_k, 1)$ and each \mathbf{n}_j is likewise comparable to $x^{-1-1/k}$. The determinant of of the matrix with rows $\mathbf{n}_j, 1 \leq j \leq k + 1$ is bounded. This is analogous to what is known for badly approximable numbers α but for the case k = 1 we can arrange that the determinant be always 1.