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Zero Divisors and LP(G), 11
Peter A. Linnell and Michael J. Puls

ABSTRACT. Let G be a discrete group, let p > 1, and let LP(G) denote the
Banach space {}_ ,cqag9 | 2 e laglP < oo}. The following problem will
be studied: Given 0 # a € CG and 0 # B8 € LP(G), is a x 8 # 07 We will
concentrate on the case G is a free abelian or free group.
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1. Introduction

Let G be a discrete group and let f be a complex-valued function on G. We may
represent f as a formal sum ) . aqg where a4 € C and f(g) = ag. Thus L*>(G)
will consist of all formal sums 3 - ag9 such that supyeq |ag| < oo, Co(G) will
consist of those formal sums for which the set {g | |ag| > €} is finite for all € > 0,
and for p > 1, LP(G) will consist of those formal sums for which - [ag[? < oo.
Then we have the following inclusions:

CG C LP(G) C Cy(G) € L¥(G).

Fora=3} csa49 € LY(G) and 3 = >_gec bgg € LP(G), we define a multiplication
LY(G) x LP(G) — LP(G) by

(1.1) a*ﬂ:Zagbhgh: Z (Z aghlbh> g.
g,h

g€G \heG
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In this paper we consider the following:

Problem 1.1. Let G be a torsion free group and let 1 < p < oco. If0 # a € CG
and 0 #£ B € LP(G), isa*x [ #07?

Some results on this problem are given in [7, 8]. In this sequel we shall obtain
new results for the cases G = Z¢, the free abelian group of rank d, and G = F},
the free group of rank k.

Part of this work was carried out while the first author was at the Sonder-
forschungsbereich in Miinster. He would like to thank Wolfgang Liick for organizing
his visit to Miinster, and the Sonderforschungsbereich for financial support.

2. Statement of main results

Let 0 # o € LY(G) and let 1 < p € R. We shall say that « is a p-zero divisor if
there exists § € LP(G) \ 0 such that a* 3 =0. If ax 3 # 0 for all 8 € Cy(G) \ 0,

then we say that « is a uniform nonzero divisor.
Let 2 < d € Z. It was shown in [8] that there are p-zero divisors in CZ? for
D> dQTdr In this paper we shall show that this is the best possible by proving:

Theorem 2.1. Let 2 < d € Z, 1 <p R, let 0 # a € CZ%, and let 0 # 3 €
LP(ZY). Ifp < d%dl, then a x 3 # 0.

Let T? denote the d-torus which, except in Section 4, we will view as the cube
[, 7% in R? with opposite faces identified, and let p: [~ 7]¢ — T? denote the
natural surjection. For n € Z? and t € T¢, let n - t indicate the dot product, which
is well defined modulo 27. If a =Y .74 apn € LY(Z?), then for ¢t € T? its Fourier

transform &: T¢ — C is defined by

at) = Z ane” )
nezd
Let Z(a) = {t € T¢ | 4(t) = 0}. We say that M is a hyperplane in T¢ if there
exists a hyperplane N in R? such that M = p([—m,7]? N N). We will prove the
following theorem, which is an improvement over [8, Theorem 1].

Theorem 2.2. Let o € CZ%. Then o is a uniform nonzero divisor if and only if
Z(a) is contained in a finite union of hyperplanes in T?.

Let V = p((-m,m)9), let o € LY(Z%), let E = Z(a) NV, and let U be an

open subset of (—m,7)?"!. Let ¢: U — (—m,7) be a smooth map, and suppose
{p(z,d(x)) | x € U} C E. If the Hessian matrix

(av0)
83@,»8@3

of ¢ has constant rank d — 1 — v on U where 0 < v < d — 1, then we say that ¢ has
constant relative nullity . We shall say that Z(«) has constant relative nullity v if
every localization ¢ of E has constant relative nullity v [6, p. 64]. We shall prove:

Theorem 2.3. Let o € CZ%, let 1 <p € R, and let 2 < d € 7. Suppose that Z ()

is a smooth (d — 1)-dimensional submanifold of T% with constant relative nullity v

such that 0 <v < d—2. Then « is a p-zero divisor if and only if p > Z(_dl__uu)
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For k € Z>¢, let F, denote the free group on k generators. It was proven in [7]
that if « € CF \ 0 and 3 € L?(Fy) \ 0, then a * 3 # 0. We will give an explicit
example to show that if k& > 2, then this result cannot be extended to LP(F}) for
any p > 2. This is a bit surprising in view of Theorem 2.1. We will conclude this
paper with some results about p-zero divisors for the free group case.

3. A characterization of p-zero divisors

Let G be a group, not necessarily discrete, and let L?(G) be the space of p-
integrable functions on G with respect to Haar measure. Let y € G and let f €
LP(G). The right translate of f by y will be denoted by f,, where f,(z) = f(zy™).
Define TP[f] to be the closure in LP(G) of all linear combinations of right translates
of f. A common problem is to determine when T?[f] = LP(G); see [3, 4, 11] for
background.

Now suppose that G is also discrete. Given 1 < p € R, we shall always let ¢
denote the conjugate index of p. Thus if p > 1, then ; + ¢ =1, and if p = 1 then
q = 0o. Sometimes we shall require p = 0o, and then ¢ = 1. Let a = deG agg €
LP(G), B =3 cq bgg € LU(G), and define a map (-,-): LP(G) x LY(G) — C by

<a7 B) = Z agg'
g€eG
Fix h € L9(G). Then (-, h) is a continuous linear functional on LP(G) and if p # oo,
then every continuous linear functional on LP(G) is of this form. We shall use the
notation 3 for deg byg~t, B for deGgg, and B* for decgg’l. Also the same
formula in Equation (1.1) gives a multiplication LP(G) x LY(G) — L*°(G). Then
we have the following elementary lemma, which roughly says that o x 8 = 0 if and
only if all the translates of « are perpendicular to (.

Lemma 3.1. Let 1 <p € R or p = o0, let a € LP(G), and let B € LY(G). Then
ax =0 if and only if ((@)y,5) =0 for ally € G.
Proof. Write o =3 sag9 and 8=3_ - bgg. Then
axfl= Z(Z ayg-1bg)y
yeG geG
and ((@)y, B) = > gec Ayg—1bg. The result follows. O
The following proposition, which is a generalization of [8, Lemma 1], character-

izes p-zero divisors in terms of their right translates (the statement of [8, Lemma 1]
should have the additional condition that p # 1).

Proposition 3.2. Let a € L'(G) and let 1 < p € R or p = co. Then « is a p-zero
divisor if and only if T?[a) # L1(G).

Proof. The Hahn-Banach theorem tells us that T¢[a] # L9(G) if and only if there
exists a nonzero continuous linear functional on L(G) which vanishes on T7[a].
The result now follows from Lemma 3.1. g

Remark 3.3. If p = 1 in the above Proposition 3.2, we would need to replace
L1(G) with Cy(G), and T?[a] with the closure in Cy(G) of all linear combinations
of right translates of a.
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4. A key proposition

In this section we prove a proposition that will enable us to prove Theorems 2.1,
2.2 and 2.3.

Let 1 <p€eR,let y € R? and let f € LP(R?). We shall use additive notation
for the group operation in R?; thus the right translate of f by y is now given by
fy = f(z —y). We say that f has linearly independent translates if and only if for
all ai,...,a, € C, not all zero, and for all distinct y1,...,ym € R?,

i=1
For the rest of this section we shall view T? as the unit cube [0, 1]¢ with opposite
faces identified. Let LP(T¢ x Z¢) denote the space of functions on T? x Z? which
satisfy
/ >t m)P dt < oo
teTe mezd
Then for « =Y, .74 ann € CZ* and f € LP(T* x Z%), we define af € LP(T¢ x Z4)
by
(af)(t,m) = Z anf(t,m —n),
nezd
and this yields an action of CZ% on LP(T? x Z%).

Lemma 4.1. Let o € CZ%. Then there exists § € LP(Z%) \ 0 such that a % 3 =0
if and only if there exists f € LP(T? x Z9)\ 0 such that af = 0.

Proof. Let 8 € LP(Z%) \ 0 such that a * 3 = 0 and define a nonzero function
f € Lp(T? x Z4) by f(t,m) = B(m). For n € Z%, set b, = 3(n). Then

(@Ntm) = 3 anfltym—n)= 3 anf(m —n)

(4.1) nezd nezd
= Z anbmfn = (Oé * 6)<m> = 0.
nezd

Conversely suppose there exists f € LP(T¢ x Z%) \ 0 such that af = 0. This
means that (af)(t,n) = 0 for all n, for all ¢ except on a set Ty C T? of measure
zero. Also Y., ya | f(t,n)[P < oo for all t except on a set Tp C T of measure zero.
Since f # 0, we may choose s € T¢\ (T} U T3) such that f(s,n) # 0 for some n.
Now define 3(n) = f(s,n). Then 8 € LP(Z%)\ 0 and the calculation in Equation
(4.1) shows that ax 3 = 0. O

For a =3, yaayn € CZ% and f € LP(R?), we define of € LP(R?) by
(af)(x) = Y anf(x—n).
nezd
If @ # 0 and af = 0, then there is a dependency among the right translates of f,
i.e., f does not have linearly independent translates. We are now ready to prove:

Proposition 4.2. Let o € CZ%. Then « is a p-zero divisor if and only if there
exists f € LP(R?) \ 0 such that af = 0.
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Proof. Define a Banach space isomorphism (: LP(RY) — LP(T? x Z%) by the for-
mula (Cf)(t,n) = f(t+n) for f € LP(R?). We want to show that this isomorphism
commutes with the action of CZ¢. Clearly it will be sufficient to show that ¢
commutes with the action of Z¢. If m € Z%, then

(m(¢H)(tn) = ([Cf)(t.n—m) = f(t+n—m)
= (mf)(t+n) = (((mf))(t n).

Thus the action of CZ¢ commutes with . We deduce that for a € CZ?, there exists
f € LP(R?) \ 0 such that af = 0 if and only if there exists f' € LP(T¢ x Z%) \ 0
such that af’ = 0. The proposition now follows from Lemma 4.1. O

Remark 4.3. Replacing L?(R%) by Cy(R?) in the above arguments, we can also
show that « is a uniform nonzero divisor if and only if af # 0 for all f € Co(R%)\ 0.

5. Proofs of Theorems 2.1, 2.2, and 2.3

The proof of Theorem 2.1 is obtained by combining [11, Theorem 3] with Propo-
sition 4.2. The proof of Theorem 2.2 is obtained by combining [3, Theorem 2.12]
with Remark 4.3.

Before we prove Theorem 2.3, we will need to define the notion of a ¢-thin set.
See [4] for more information on this and other concepts used in this paragraph.
Let G be a locally compact abelian group and let X be its character group. Let
8 € L*°(G) and let 3 indicate the generalized Fourier transform of 3. The key
reason for using the generalized Fourier transform is that for o € L!(G), we have
@ = &8 which tells us that a * 8 = 0 if and only if supp 3 C Z(a). Let E C X.
We shall say that E is ¢-thin if § € Co(G) N LP(G) and supp 3 C E implies 8 = 0.
Recall that p is the conjugate index of q. The result of Edwards [4, Theorem 2.2]
says that if a € L'(Z%) and Z(«) is g-thin, then T9[a] = LI(G). Here our ¢ is used
in place of Edwards’s p, and our p is used in place of his p’.

We are now ready to prove Theorem 2.3. Suppose Z(«) satisfies the hypothesis

of the theorem. Let 3 € LP(Z?)\ 0 such that a * 3 = 0 and p < %. Since
% > 1 and increasing p retains the property 3 € LP(Z4), we may assume that
p > 1. Then a x* 5 = 0 and using Proposition 3.2, we see that T9[a] # L(Z%). But
[4, Theorem 2.2] tells us that Z(«) is not g-thin, and this contradicts [6, Theorem 1].

Conversely, let T be a smooth, nonzero mass density on Z(a) vanishing near
the boundary of Z(«). Using [6, Theorem 3], we can construct 8 € LP(R%)\ 0 for
D> Z(_df_”g such that § = T. Then supp  C Z(«), that is @8 = 0. An application

of Proposition 4.2 completes the proof of Theorem 2.3.

6. Free groups and p-zero divisors

Throughout this section, 2 < k € Z. In [7] it was proven that if 0 # o € CFy,
then « is not a 2-zero divisor. In this section we will give explicit examples to show
that this result cannot be extended to LP(F}) for any p > 2. We will conclude this
section by giving sufficient conditions for elements of L!(Fy), the radial functions
of L'(F}) as defined below, to be p-zero divisors.
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Any element x of F} has a unique expression as a finite product of generators
and their inverses, which does not contain any two adjacent factors ww ™! or w™lw.
The number of factors in z is called the length of x and is denoted by |z|.

A function in L% (Fy) will be called radial if its value depends only on |z|.
Let E, = {x € Fy | |x| = n}, and let e, indicate the cardinality of E,. Then
en = 2k(2k — 1)~ for n > 1, and ¢g = 1. Let x, denote the characteristic
function of E,,, so as an element of CF}, we have x,, = Z\wlzn x. Then every radial

function has the form Y °  a,X, where a, € C. Let L2(F}) denote the radial
functions contained in LP(F}) and let (CF}), denote the radial functions contained
in CF). Then L2(F}) is the closure of (CFy), in LP(F}). Let w = v/2k — 1. It was
shown in [5, chapter 3] that

X1 * X1 = X2 + 2k * X0
X1 % Xn = Xnt1 + @ Xno1, 7> 2,

hence LL(F}) is a commutative algebra which is generated by xo and x;.
Later we will need the following elementary result.

Lemma 6.1. Let z,y € F), with |z| = |y|, and let 0 < m,n € Z. Then

<Xm * $7Xﬂ> = <Xm *Y, Xn>~

Proof. We have (x. * 2, Xn) = (T, X5 *Xn) = (T, Xm * Xn)- By the above remarks,
Xm * Xn is a sum of elements of the form y,. Therefore we need only prove that

<anr> = <anT>' But
)1 if x| =
@) = {0 if |x| #r,

and the result follows. O

Let « be a complex-valued function on Fj. Set
1
an(a) = — Y a(x)
€n xeE,

and denote by P(«) the radial function Y " ; an(a)xn-

Lemma 6.2. Let 1 <p € R orp = oo, let a € L:(Fy), and let 8 € LP(Fy). If
ax =0, then ax P(8) = 0.

Proof. Let f,h € CF). It was shown in [9, Lemma 6.1] that P(f) * P(h) =
P(P(f) = h). Write 3 =3 cp bgg. If p# 0o and 0 < ay,...,a, € R, then by
Jensen’s inequality [10, p. 189] applied to the function a? for z > 0,

)

n

<a1+~--+an)P<aﬁ’+~-+ag
- n

consequently

p
- 1
PG =_en|— D by <> Ibg” =I5l
n=0

" gl=n gEF),
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Therefore P is a continuous map from LP(F}) into LP(Fy) for p # oo. It is also
continuous for p = co. The lemma follows because the map L' (G) x LP(G) — LP(G)
is continuous; specifically |la * B, < ||a||1|8]lp- O

For n € Z>¢, define polynomials P,, by
Py(z) =1, Pi(2)=2 Py(z)=2*—2k
and P,y1(2) = 2P, (2) —w?P,_1(2) for n>2.
Let o = Y77 anXn € L}(Fr). In [9], Pytlik shows the following.
L X={z+iyeC| (&) + (555)* < 1} is the spectrum of L; (Fy).
2. The Gelfand transform of « is given by a(z) = Y. anPa(z) for z € X.

Let Z(a) = {z € X | &(2) = 0}. For z € X we define ¢, € L°(F}), the space of
continuous linear functionals on LL(F}) [1, p. 34], by

¢z = Z Pr;(z) Xn-

n

n=0

‘We can now state:

Lemma 6.3. Let o € LL(F}) and let = € X. Then ax ¢, = 0 if and only if
z € Z(a).

Proof. Let § € L}(F;) and write 8 =3~ byXm. Then

(B, =) = Z%”(Z)Ocm,xr&

n

=3 buPu(z) = B2).

Applying this in the case 8 = a * x,,, we obtain {(a * xp, ¢.) = &(2)P,(z). Using
Lemma 6.1, we deduce that if y € F), and |y| = n, then (axy, ¢.) = &(2)Pn(z)/en.
Since a = @, the result now follows from Lemma 3.1. O

If @ € LL(Fy), we shall say that a * y,, is a radial translate of a. We then set
TR[a] equal to the closure in LL(Fy) of the set of linear combinations of radial
translates of a.

Proposition 6.4. Let o € LL(Fy). Then ax 3 # 0 for all 3 € L>(Fy) \ 0 if and
only if Z(a) = 0.

Proof. If z € Z(a), then ¢, € L>(F;) \ 0 and a * ¢, = 0 by Lemma 6.3.
Conversely suppose there exists § € L*(Fy) \ 0 such that o« * § = 0. Then
B(y) # 0 for some y € Fy, so replacing 3 with 3 * y~!, we may assume that
P(B) #0. If y = 3, then a*7% = 0 and P(v) # 0. Using Lemma 6.2 we see that
a* P(y) = 0, and we deduce from Lemma 3.1 that (e, P(y)) = 0 for all y € F. Tt
follows that (a* Xy, P(7y)) = 0 for all n € Z>o, consequently TR'[a] # L} (Fy). Let
J be a maximal ideal in LL(F}) which contains TR'[a]. By Gelfand theory there

exists z € X such that J = {6 € LL(Fy) | 6(z) = 0}, so z € Z(v). O
We can now state:

Example 6.5. Let k> 2. Then x1 is a p-zero divisor for all p > 2.



56 P. A. Linnell and M. J. Puls

Proof. Since 0 € Z(x1), we see from Lemma 6.3 that x1 * ¢o = 0. Of course
oo # 0. We now prove the stronger statement that ¢y € LP(Fy) for all p > 2. We
have

n=0 €n n=0 (Qk a 1)"
Therefore
> eon L 2k(2k — 1)%n 1
P — 1 - 1
D lo@P =1+ @1 +) @ D
gEFy n=1 n=1
p) - 1
=1
+ 2k —1 ;::1 (2k — 1)n(r=2)
and the result follows. O

We can use the above result to prove that the nonsymmetric sum of generators
in F} is a p-zero divisor for all p > 2 in the case k is even and k > 2. Specifically
we have

Example 6.6. Let k > 3 and let {x1,...,2} be a set of generators for Fy,. If k
is even, then x1 + - - - 4+ xk is a p-zero divisor for all p > 2.

To establish this, we need some results about free groups.

Lemma 6.7. Let 0 < n € Z and let F be the free group on x1,...,z,. Then
no nontrivial word in the 2n — 1 elements %, ..., 32, 2102, T2X3, ..., Tp_1Ty is the
identity; in particular these 2n — 1 elements generate a free group of rank 2n — 1.

Proof. The result is clearly true if n = 1, so we may suppose that n > 1.
We shall use induction on n, so assume that the result is true with n — 1 in
place of n. Let T denote the Cayley graph of F' with respect to the generators

Z1,...,Tn. Thus the vertices of T are the elements of F', and f,g € F are joined
by an edge if and only if f = gacijEl for some i. Suppose a nontrivial word in
22, ..., 22 X129, 223, . .., Tp_1T, is the identity, and choose such a word w with

shortest possible length.

Note that w must involve 2%, because F is the free product of the group generated
by xa,...,x, and the group generated by x125. By conjugating and taking inverses
if necessary, we may assume without loss of generality that w begins with z7.

Write w = w ... wpm,, where w; = 27, and each of the w; are one of the above
2n — 1 elements. Let us consider the path whose (2i+ 1)th vertex is w ... w;. Note
that w =1, but wy ... w; # 1 for 0 < i < m.

Observe that the path of length 2 from 2?2 to x2w, cannot go through z; (just
go through the 4n — 2 possibilities for ws, noting that wy # 1'1_2). Now remove the
edge joining z1 and x2. Since T is a tree [2, 1.8.2 Theorem], the resulting graph
will become two trees; one component 77 containing 1 and the other component
T, containing z%. Since the length 2 path from 2% to 23ws did not go through 1,
for i > 1 the path wjws ... w; remains in Ty at least until it passes through 2
again. Also the path must pass through x? again in order to get back to 1. Since
the paths w; ... w; all have even length (all the w; are words of length 2), it follows
that wy ... w; = x% for some [ € Z, where 2 <[ < m. We deduce that wy...w; =1,
which contradicts the minimality of the length of w. O
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Corollary 6.8. Let n € Z>y and let F' be the free group on x1,...,x,. Then no
nontrivial word in the 2n — 1 elements 23, ..., 12, xflwg, m51x3, el m;ilxn is the
identity; in particular these 2n — 1 elements generate a free group of rank 2n — 1.

Proof. This follows immediately from Lemma 6.7: replace x;x;41 with x;zxixiﬂ
for all i < n. [l

Corollary 6.9. Let n € Z>1 and let ' be the free group on x1,...,xn,w. Then
the elements wxy, wgc;l7 e WTy, wT, L generate a free subgroup of rank 2n.

Proof. The above elements generate the subgroup generated by

2 2, —1 -1 -1
Xlyeeey Ty Ty T2y Ty T3y.n.y Ty 1Ty, WTT.
The result follows from Corollary 6.8. (]

Proof of Example 6.6. Let G = F}, and let F' be the free group on y1, ..., yx, w.
By Corollary 6.9 there is a monomorphism 6: G — F' determined by the formula

O0(x1) = wy1, O(xz2) = wyl_l, ceey B(zp) = wyk_/lz.

Note that 6§ induces a Banach space monomorphism LP(G) — LP(F). Set a =
wyy + wyfl + ot wyg2 + wy;/g. Since y; + yfl +oF Ype + y,;/IQ is a p-zero
divisor by Example 6.5, we see that « is a p-zero divisor, say a x § = 0 where
0# B € LP(F). Write F' = |J,cp 0(G)t where T is a right transversal for 6(G) in
F. Then 8 =), .p fit where 3; € LP(0(G)) for all t. Also a * 3; = 0 for all t and
Bs # 0 for some s € T. Define v € LP(G) by 6(y) = Bs. Then 0 # v € L?(G) and
(x1 4+ xk) *v = 0 as required. O

We conclude with some information on the existence of p-zero divisors in L} (F}).
Let o € LL(Fy) and define p(a) as follows. If Z(a) N (—2k,2k) = 0, then set
p(a) = oo. If Z(a)N(—2k, 2k) # (), then set m(«) = min{|¢t| | t € Z(a)N(—2k, 2k)}.
If m(a) € [0,2w], then set p(a)) = 2. Finally if m(a) € (2w, 2k), then let p(a) be
the positive root of the following equation in p:

m(a) = v2k —1((2k —1)2 77 + (2k —1)7~

We can now state:

Nl=

).

Proposition 6.10. Let o € LL(Fy). Then « is a p-zero divisor for all p > p(«).

Proof. Let t € (—2k,2k) such that m(«) = |t| and suppose p > p(«). Since ¢; is
a positive definite function by [9, Lemma 6.1], we can apply [1, Theorem 2(a)] to
deduce that ¢y € LP(F}). By Lemma 6.3 o * ¢, = 0 and the result is proven. [
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