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Zero Divisors and Lp(G), II

Peter A. Linnell and Michael J. Puls

Abstract. Let G be a discrete group, let p ≥ 1, and let Lp(G) denote the
Banach space {∑g∈G agg | ∑g∈G |ag |p < ∞}. The following problem will

be studied: Given 0 �= α ∈ CG and 0 �= β ∈ Lp(G), is α ∗ β �= 0? We will
concentrate on the case G is a free abelian or free group.
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1. Introduction

Let G be a discrete group and let f be a complex-valued function on G. We may
represent f as a formal sum

∑
g∈G agg where ag ∈ C and f(g) = ag. Thus L∞(G)

will consist of all formal sums
∑

g∈G agg such that supg∈G |ag| < ∞, C0(G) will
consist of those formal sums for which the set {g | |ag| > ε} is finite for all ε > 0,
and for p ≥ 1, Lp(G) will consist of those formal sums for which

∑
g∈G |ag|p < ∞.

Then we have the following inclusions:

CG ⊆ Lp(G) ⊆ C0(G) ⊆ L∞(G).

For α =
∑

g∈G agg ∈ L1(G) and β =
∑

g∈G bgg ∈ Lp(G), we define a multiplication
L1(G)× Lp(G) → Lp(G) by

α ∗ β =
∑
g,h

agbhgh =
∑
g∈G

(∑
h∈G

agh−1bh

)
g.(1.1)
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In this paper we consider the following:

Problem 1.1. Let G be a torsion free group and let 1 ≤ p ≤ ∞. If 0 �= α ∈ CG
and 0 �= β ∈ Lp(G), is α ∗ β �= 0?

Some results on this problem are given in [7, 8]. In this sequel we shall obtain
new results for the cases G = Zd, the free abelian group of rank d, and G = Fk,
the free group of rank k.

Part of this work was carried out while the first author was at the Sonder-
forschungsbereich in Münster. He would like to thank Wolfgang Lück for organizing
his visit to Münster, and the Sonderforschungsbereich for financial support.

2. Statement of main results

Let 0 �= α ∈ L1(G) and let 1 ≤ p ∈ R. We shall say that α is a p-zero divisor if
there exists β ∈ Lp(G) \ 0 such that α ∗ β = 0. If α ∗ β �= 0 for all β ∈ C0(G) \ 0,
then we say that α is a uniform nonzero divisor.

Let 2 ≤ d ∈ Z. It was shown in [8] that there are p-zero divisors in CZd for
p > 2d

d−1 . In this paper we shall show that this is the best possible by proving:

Theorem 2.1. Let 2 ≤ d ∈ Z, 1 ≤ p ∈ R, let 0 �= α ∈ CZd, and let 0 �= β ∈
Lp(Zd). If p ≤ 2d

d−1 , then α ∗ β �= 0.

Let Td denote the d-torus which, except in Section 4, we will view as the cube
[−π, π]d in Rd with opposite faces identified, and let p : [−π, π]d → Td denote the
natural surjection. For n ∈ Zd and t ∈ Td, let n · t indicate the dot product, which
is well defined modulo 2π. If α =

∑
n∈Zd ann ∈ L1(Zd), then for t ∈ Td its Fourier

transform α̂ : Td → C is defined by

α̂(t) =
∑

n∈Zd

ane
−i(n·t).

Let Z(α) = {t ∈ Td | α̂(t) = 0}. We say that M is a hyperplane in Td if there
exists a hyperplane N in Rd such that M = p([−π, π]d ∩ N). We will prove the
following theorem, which is an improvement over [8, Theorem 1].

Theorem 2.2. Let α ∈ CZd. Then α is a uniform nonzero divisor if and only if
Z(α) is contained in a finite union of hyperplanes in Td.

Let V = p
(
(−π, π)d), let α ∈ L1(Zd), let E = Z(α) ∩ V , and let U be an

open subset of (−π, π)d−1. Let φ : U → (−π, π) be a smooth map, and suppose
{p(x, φ(x)) | x ∈ U} ⊆ E. If the Hessian matrix(

∂2φ

∂xi∂xj

)
of φ has constant rank d− 1− ν on U where 0 ≤ ν ≤ d− 1, then we say that φ has
constant relative nullity ν. We shall say that Z(α) has constant relative nullity ν if
every localization φ of E has constant relative nullity ν [6, p. 64]. We shall prove:

Theorem 2.3. Let α ∈ CZd, let 1 ≤ p ∈ R, and let 2 ≤ d ∈ Z. Suppose that Z(α)
is a smooth (d− 1)-dimensional submanifold of Td with constant relative nullity ν

such that 0 ≤ ν ≤ d− 2. Then α is a p-zero divisor if and only if p > 2(d−ν)
d−1−ν .
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For k ∈ Z≥0, let Fk denote the free group on k generators. It was proven in [7]
that if α ∈ CFk \ 0 and β ∈ L2(Fk) \ 0, then α ∗ β �= 0. We will give an explicit
example to show that if k ≥ 2, then this result cannot be extended to Lp(Fk) for
any p > 2. This is a bit surprising in view of Theorem 2.1. We will conclude this
paper with some results about p-zero divisors for the free group case.

3. A characterization of p-zero divisors

Let G be a group, not necessarily discrete, and let Lp(G) be the space of p-
integrable functions on G with respect to Haar measure. Let y ∈ G and let f ∈
Lp(G). The right translate of f by y will be denoted by fy, where fy(x) = f(xy−1).
Define T p[f ] to be the closure in Lp(G) of all linear combinations of right translates
of f . A common problem is to determine when T p[f ] = Lp(G); see [3, 4, 11] for
background.

Now suppose that G is also discrete. Given 1 ≤ p ∈ R, we shall always let q
denote the conjugate index of p. Thus if p > 1, then 1

p + 1
q = 1, and if p = 1 then

q = ∞. Sometimes we shall require p = ∞, and then q = 1. Let α =
∑

g∈G agg ∈
Lp(G), β =

∑
g∈G bgg ∈ Lq(G), and define a map 〈·, ·〉 : Lp(G)× Lq(G) → C by

〈α, β〉 =
∑
g∈G

agbg.

Fix h ∈ Lq(G). Then 〈·, h〉 is a continuous linear functional on Lp(G) and if p �= ∞,
then every continuous linear functional on Lp(G) is of this form. We shall use the
notation β̃ for

∑
g∈G bgg

−1, β for
∑

g∈G bgg, and β∗ for
∑

g∈G bgg
−1. Also the same

formula in Equation (1.1) gives a multiplication Lp(G) × Lq(G) → L∞(G). Then
we have the following elementary lemma, which roughly says that α ∗ β = 0 if and
only if all the translates of α are perpendicular to β.

Lemma 3.1. Let 1 ≤ p ∈ R or p = ∞, let α ∈ Lp(G), and let β ∈ Lq(G). Then
α ∗ β = 0 if and only if 〈(α̃)y, β〉 = 0 for all y ∈ G.

Proof. Write α =
∑

g∈G agg and β =
∑

g∈G bgg. Then

α ∗ β =
∑
y∈G

(
∑
g∈G

ayg−1bg)y

and 〈(α̃)y, β〉 =
∑

g∈G ayg−1bg. The result follows. �

The following proposition, which is a generalization of [8, Lemma 1], character-
izes p-zero divisors in terms of their right translates (the statement of [8, Lemma 1]
should have the additional condition that p �= 1).

Proposition 3.2. Let α ∈ L1(G) and let 1 < p ∈ R or p = ∞. Then α is a p-zero
divisor if and only if T q[α̃] �= Lq(G).

Proof. The Hahn-Banach theorem tells us that T q[α̃] �= Lq(G) if and only if there
exists a nonzero continuous linear functional on Lq(G) which vanishes on T q[α̃].
The result now follows from Lemma 3.1. �
Remark 3.3. If p = 1 in the above Proposition 3.2, we would need to replace
Lq(G) with C0(G), and T q[α̃] with the closure in C0(G) of all linear combinations
of right translates of α̃.
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4. A key proposition

In this section we prove a proposition that will enable us to prove Theorems 2.1,
2.2 and 2.3.

Let 1 ≤ p ∈ R, let y ∈ Rd and let f ∈ Lp(Rd). We shall use additive notation
for the group operation in Rd; thus the right translate of f by y is now given by
fy = f(x− y). We say that f has linearly independent translates if and only if for
all a1, . . . , am ∈ C, not all zero, and for all distinct y1, . . . , ym ∈ Rd,

m∑
i=1

aifyi �= 0.

For the rest of this section we shall view Td as the unit cube [0, 1]d with opposite
faces identified. Let Lp(Td × Zd) denote the space of functions on Td × Zd which
satisfy ∫

t∈Td

∑
m∈Zd

|f(t,m)|p dt < ∞.

Then for α =
∑

n∈Zd ann ∈ CZd and f ∈ Lp(Td ×Zd), we define αf ∈ Lp(Td ×Zd)
by

(αf)(t,m) =
∑

n∈Zd

anf(t,m− n),

and this yields an action of CZd on Lp(Td × Zd).

Lemma 4.1. Let α ∈ CZd. Then there exists β ∈ Lp(Zd) \ 0 such that α ∗ β = 0
if and only if there exists f ∈ Lp(Td × Zd) \ 0 such that αf = 0.

Proof. Let β ∈ Lp(Zd) \ 0 such that α ∗ β = 0 and define a nonzero function
f ∈ Lp(Td × Zd) by f(t,m) = β(m). For n ∈ Zd, set bn = β(n). Then

(αf)(t,m) =
∑

n∈Zd

anf(t,m− n) =
∑

n∈Zd

anβ(m− n)

=
∑

n∈Zd

anbm−n = (α ∗ β)(m) = 0.
(4.1)

Conversely suppose there exists f ∈ Lp(Td × Zd) \ 0 such that αf = 0. This
means that (αf)(t, n) = 0 for all n, for all t except on a set T1 ⊂ Td of measure
zero. Also

∑
n∈Zd |f(t, n)|p < ∞ for all t except on a set T2 ⊂ Td of measure zero.

Since f �= 0, we may choose s ∈ Td \ (T1 ∪ T2) such that f(s, n) �= 0 for some n.
Now define β(n) = f(s, n). Then β ∈ Lp(Zd) \ 0 and the calculation in Equation
(4.1) shows that α ∗ β = 0. �

For α =
∑

n∈Zd ann ∈ CZd and f ∈ Lp(Rd), we define αf ∈ Lp(Rd) by

(αf)(x) =
∑

n∈Zd

anf(x− n).

If α �= 0 and αf = 0, then there is a dependency among the right translates of f ,
i.e., f does not have linearly independent translates. We are now ready to prove:

Proposition 4.2. Let α ∈ CZd. Then α is a p-zero divisor if and only if there
exists f ∈ Lp(Rd) \ 0 such that αf = 0.
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Proof. Define a Banach space isomorphism ζ : Lp(Rd) → Lp(Td × Zd) by the for-
mula (ζf)(t, n) = f(t+n) for f ∈ Lp(Rd). We want to show that this isomorphism
commutes with the action of CZd. Clearly it will be sufficient to show that ζ
commutes with the action of Zd. If m ∈ Zd, then(

m(ζf)
)
(t, n) = (ζf)(t, n−m) = f(t+ n−m)

= (mf)(t+ n) = (ζ(mf))(t, n).

Thus the action of CZd commutes with ζ. We deduce that for α ∈ CZd, there exists
f ∈ Lp(Rd) \ 0 such that αf = 0 if and only if there exists f ′ ∈ Lp(Td × Zd) \ 0
such that αf ′ = 0. The proposition now follows from Lemma 4.1. �

Remark 4.3. Replacing Lp(Rd) by C0(Rd) in the above arguments, we can also
show that α is a uniform nonzero divisor if and only if αf �= 0 for all f ∈ C0(Rd)\0.

5. Proofs of Theorems 2.1, 2.2, and 2.3

The proof of Theorem 2.1 is obtained by combining [11, Theorem 3] with Propo-
sition 4.2. The proof of Theorem 2.2 is obtained by combining [3, Theorem 2.12]
with Remark 4.3.

Before we prove Theorem 2.3, we will need to define the notion of a q-thin set.
See [4] for more information on this and other concepts used in this paragraph.
Let G be a locally compact abelian group and let X be its character group. Let
β ∈ L∞(G) and let β̂ indicate the generalized Fourier transform of β. The key
reason for using the generalized Fourier transform is that for α ∈ L1(G), we have
α̂ ∗ β = α̂β̂ which tells us that α ∗ β = 0 if and only if supp β̂ ⊆ Z(α). Let E ⊆ X.
We shall say that E is q-thin if β ∈ C0(G) ∩ Lp(G) and supp β̂ ⊆ E implies β = 0.
Recall that p is the conjugate index of q. The result of Edwards [4, Theorem 2.2]
says that if α ∈ L1(Zd) and Z(α) is q-thin, then T q[α] = Lq(G). Here our q is used
in place of Edwards’s p, and our p is used in place of his p′.

We are now ready to prove Theorem 2.3. Suppose Z(α) satisfies the hypothesis
of the theorem. Let β ∈ Lp(Zd) \ 0 such that α ∗ β = 0 and p ≤ 2(d−ν)

d−1−ν . Since
2(d−ν)
d−1−ν > 1 and increasing p retains the property β ∈ Lp(Zd), we may assume that
p > 1. Then α̃ ∗ β̃ = 0 and using Proposition 3.2, we see that T q[α] �= Lq(Zd). But
[4, Theorem 2.2] tells us that Z(α) is not q-thin, and this contradicts [6, Theorem 1].

Conversely, let T be a smooth, nonzero mass density on Z(α) vanishing near
the boundary of Z(α). Using [6, Theorem 3], we can construct β ∈ Lp(Rd) \ 0 for
p > 2(d−ν)

d−1−ν such that β̂ = T . Then supp β̂ ⊆ Z(α), that is αβ = 0. An application
of Proposition 4.2 completes the proof of Theorem 2.3.

6. Free groups and p-zero divisors

Throughout this section, 2 ≤ k ∈ Z. In [7] it was proven that if 0 �= α ∈ CFk,
then α is not a 2-zero divisor. In this section we will give explicit examples to show
that this result cannot be extended to Lp(Fk) for any p > 2. We will conclude this
section by giving sufficient conditions for elements of L1

r(Fk), the radial functions
of L1(Fk) as defined below, to be p-zero divisors.



54 P. A. Linnell and M. J. Puls

Any element x of Fk has a unique expression as a finite product of generators
and their inverses, which does not contain any two adjacent factors ww−1 or w−1w.
The number of factors in x is called the length of x and is denoted by |x|.

A function in L∞(Fk) will be called radial if its value depends only on |x|.
Let En = {x ∈ Fk | |x| = n}, and let en indicate the cardinality of En. Then
en = 2k(2k − 1)n−1 for n ≥ 1, and e0 = 1. Let χn denote the characteristic
function of En, so as an element of CFk we have χn =

∑
|x|=n x. Then every radial

function has the form
∑∞

n=0 anχn where an ∈ C. Let Lp
r(Fk) denote the radial

functions contained in Lp(Fk) and let (CFk)r denote the radial functions contained
in CFk. Then Lp

r(Fk) is the closure of (CFk)r in Lp(Fk). Let ω =
√
2k − 1. It was

shown in [5, chapter 3] that

χ1 ∗ χ1 = χ2 + 2k ∗ χ0

χ1 ∗ χn = χn+1 + ω2χn−1, n ≥ 2,

hence L1
r(Fk) is a commutative algebra which is generated by χ0 and χ1.

Later we will need the following elementary result.

Lemma 6.1. Let x, y ∈ Fk with |x| = |y|, and let 0 ≤ m,n ∈ Z. Then

〈χm ∗ x, χn〉 = 〈χm ∗ y, χn〉.
Proof. We have 〈χm ∗x, χn〉 = 〈x, χ∗

m ∗χn〉 = 〈x, χm ∗χn〉. By the above remarks,
χm ∗ χn is a sum of elements of the form χr. Therefore we need only prove that
〈x, χr〉 = 〈y, χr〉. But

〈x, χr〉 =
{
1 if |x| = r

0 if |x| �= r,

and the result follows. �

Let α be a complex-valued function on Fk. Set

an(α) =
1
en

∑
x∈En

α(x)

and denote by P (α) the radial function
∑∞

n=0 an(α)χn.

Lemma 6.2. Let 1 ≤ p ∈ R or p = ∞, let α ∈ L1
r(Fk), and let β ∈ Lp(Fk). If

α ∗ β = 0, then α ∗ P (β) = 0.

Proof. Let f, h ∈ CFk. It was shown in [9, Lemma 6.1] that P (f) ∗ P (h) =
P (P (f) ∗ h). Write β =

∑
g∈Fk

bgg. If p �= ∞ and 0 ≤ a1, . . . , an ∈ R, then by
Jensen’s inequality [10, p. 189] applied to the function xp for x > 0,(

a1 + · · ·+ an

n

)p

≤ ap
1 + · · ·+ ap

n

n
,

consequently

‖P (β)‖p
p =

∞∑
n=0

en

∣∣∣∣∣∣ 1en

∑
|g|=n

bg

∣∣∣∣∣∣
p

≤
∑
g∈Fk

|bg|p = ‖β‖p
p.
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Therefore P is a continuous map from Lp(Fk) into Lp
r(Fk) for p �= ∞. It is also

continuous for p = ∞. The lemma follows because the map L1(G)×Lp(G) → Lp(G)
is continuous; specifically ‖α ∗ β‖p ≤ ‖α‖1‖β‖p. �

For n ∈ Z≥0, define polynomials Pn by

P0(z) = 1, P1(z) = z, P2(z) = z2 − 2k

and Pn+1(z) = zPn(z)− ω2Pn−1(z) for n ≥ 2.

Let α =
∑∞

n=0 anχn ∈ L1
r(Fk). In [9], Pytlik shows the following.

1. X = {x+ iy ∈ C | ( x
2k )

2 + ( y
2k−2 )

2 ≤ 1} is the spectrum of L1
r(Fk).

2. The Gelfand transform of α is given by α̂(z) =
∑∞

n=0 anPn(z) for z ∈ X.
Let Z(α) = {z ∈ X | α̂(z) = 0}. For z ∈ X we define φz ∈ L∞

r (Fk), the space of
continuous linear functionals on L1

r(Fk) [1, p. 34], by

φz =
∞∑

n=0

Pn(z)
en

χn.

We can now state:

Lemma 6.3. Let α ∈ L1
r(Fk) and let z ∈ X. Then α ∗ φz = 0 if and only if

z ∈ Z(α).

Proof. Let β ∈ L1
r(Fk) and write β =

∑∞
m=0 bmχm. Then

〈β, φz〉 =
∑
m,n

bmPn(z)
en

〈χm, χn〉

=
∑

n

bnPn(z) = β̂(z).

Applying this in the case β = α ∗ χn, we obtain 〈α ∗ χn, φz〉 = α̂(z)Pn(z). Using
Lemma 6.1, we deduce that if y ∈ Fk and |y| = n, then 〈α ∗ y, φz〉 = α̂(z)Pn(z)/en.
Since α = α̃, the result now follows from Lemma 3.1. �

If α ∈ L1
r(Fk), we shall say that α ∗ χn is a radial translate of α. We then set

TR1[α] equal to the closure in L1
r(Fk) of the set of linear combinations of radial

translates of α.

Proposition 6.4. Let α ∈ L1
r(Fk). Then α ∗ β �= 0 for all β ∈ L∞(Fk) \ 0 if and

only if Z(α) = ∅.
Proof. If z ∈ Z(α), then φz ∈ L∞(Fk) \ 0 and α ∗ φz = 0 by Lemma 6.3.

Conversely suppose there exists β ∈ L∞(Fk) \ 0 such that α ∗ β = 0. Then
β(y) �= 0 for some y ∈ Fk, so replacing β with β ∗ y−1, we may assume that
P (β) �= 0. If γ = β, then α ∗ γ = 0 and P (γ) �= 0. Using Lemma 6.2 we see that
α ∗P (γ) = 0, and we deduce from Lemma 3.1 that 〈αy, P (γ)〉 = 0 for all y ∈ Fk. It
follows that 〈α∗χn, P (γ)〉 = 0 for all n ∈ Z≥0, consequently TR1[α] �= L1

r(Fk). Let
J be a maximal ideal in L1

r(Fk) which contains TR1[α]. By Gelfand theory there
exists z ∈ X such that J = {δ ∈ L1

r(Fk) | δ̂(z) = 0}, so z ∈ Z(γ). �

We can now state:

Example 6.5. Let k ≥ 2. Then χ1 is a p-zero divisor for all p > 2.



56 P. A. Linnell and M. J. Puls

Proof. Since 0 ∈ Z(χ1), we see from Lemma 6.3 that χ1 ∗ φ0 = 0. Of course
φ0 �= 0. We now prove the stronger statement that φ0 ∈ Lp(Fk) for all p > 2. We
have

φ0 =
∞∑

n=0

Pn(0)
en

χn =
∞∑

n=0

(−1)n
(2k − 1)n

χ2n.

Therefore ∑
g∈Fk

|φ0(g)|p = 1 +
∞∑

n=1

e2n

(2k − 1)pn
= 1 +

∞∑
n=1

2k(2k − 1)2n−1

(2k − 1)pn

= 1 +
2k

2k − 1

∞∑
n=1

1
(2k − 1)n(p−2)

and the result follows. �
We can use the above result to prove that the nonsymmetric sum of generators

in Fk is a p-zero divisor for all p > 2 in the case k is even and k > 2. Specifically
we have

Example 6.6. Let k > 3 and let {x1, . . . , xk} be a set of generators for Fk. If k
is even, then x1 + · · ·+ xk is a p-zero divisor for all p > 2.

To establish this, we need some results about free groups.

Lemma 6.7. Let 0 < n ∈ Z and let F be the free group on x1, . . . , xn. Then
no nontrivial word in the 2n− 1 elements x2

1, . . . , x
2
n, x1x2, x2x3, . . . , xn−1xn is the

identity; in particular these 2n− 1 elements generate a free group of rank 2n− 1.

Proof. The result is clearly true if n = 1, so we may suppose that n > 1.
We shall use induction on n, so assume that the result is true with n − 1 in
place of n. Let T denote the Cayley graph of F with respect to the generators
x1, . . . , xn. Thus the vertices of T are the elements of F , and f, g ∈ F are joined
by an edge if and only if f = gx±1

i for some i. Suppose a nontrivial word in
x2

1, . . . , x
2
n, x1x2, x2x3, . . . , xn−1xn is the identity, and choose such a word w with

shortest possible length.
Note that w must involve x2

1, because F is the free product of the group generated
by x2, . . . , xn and the group generated by x1x2. By conjugating and taking inverses
if necessary, we may assume without loss of generality that w begins with x2

1.
Write w = w1 . . . wm, where w1 = x2

1, and each of the wi are one of the above
2n−1 elements. Let us consider the path whose (2i+1)th vertex is w1 . . . wi. Note
that w = 1, but w1 . . . wi �= 1 for 0 < i < m.

Observe that the path of length 2 from x2
1 to x2

1w2 cannot go through x1 (just
go through the 4n− 2 possibilities for w2, noting that w2 �= x−2

1 ). Now remove the
edge joining x1 and x2

1. Since T is a tree [2, I.8.2 Theorem], the resulting graph
will become two trees; one component T1 containing 1 and the other component
T2 containing x2

1. Since the length 2 path from x2
1 to x2

1w2 did not go through x1,
for i ≥ 1 the path w1w2 . . . wi remains in T2 at least until it passes through x2

1

again. Also the path must pass through x2
1 again in order to get back to 1. Since

the paths w1 . . . wi all have even length (all the wi are words of length 2), it follows
that w1 . . . wl = x2

1 for some l ∈ Z, where 2 ≤ l < m. We deduce that w2 . . . wl = 1,
which contradicts the minimality of the length of w. �
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Corollary 6.8. Let n ∈ Z≥1 and let F be the free group on x1, . . . , xn. Then no
nontrivial word in the 2n− 1 elements x2

1, . . . , x
2
n, x

−1
1 x2, x

−1
2 x3, . . . , x

−1
n−1xn is the

identity; in particular these 2n− 1 elements generate a free group of rank 2n− 1.

Proof. This follows immediately from Lemma 6.7: replace xixi+1 with x−2
i xixi+1

for all i < n. �

Corollary 6.9. Let n ∈ Z≥1 and let F be the free group on x1, . . . , xn, w. Then
the elements wx1, wx

−1
1 , . . . , wxn, wx

−1
n generate a free subgroup of rank 2n.

Proof. The above elements generate the subgroup generated by

x2
1, . . . , x

2
n, x

−1
1 x2, x

−1
2 x3, . . . , x

−1
n−1xn, wx1.

The result follows from Corollary 6.8. �

Proof of Example 6.6. Let G = Fk and let F be the free group on y1, . . . , yk, w.
By Corollary 6.9 there is a monomorphism θ : G → F determined by the formula

θ(x1) = wy1, θ(x2) = wy−1
1 , . . . , θ(xk) = wy−1

k/2.

Note that θ induces a Banach space monomorphism Lp(G) → Lp(F ). Set α =
wy1 + wy−1

1 + · · · + wyk/2 + wy−1
k/2. Since y1 + y−1

1 + · · · + yk/2 + y−1
k/2 is a p-zero

divisor by Example 6.5, we see that α is a p-zero divisor, say α ∗ β = 0 where
0 �= β ∈ Lp(F ). Write F =

⋃
t∈T θ(G)t where T is a right transversal for θ(G) in

F . Then β =
∑

t∈T βtt where βt ∈ Lp(θ(G)) for all t. Also α ∗ βt = 0 for all t and
βs �= 0 for some s ∈ T . Define γ ∈ Lp(G) by θ(γ) = βs. Then 0 �= γ ∈ Lp(G) and
(x1 + · · ·+ xk) ∗ γ = 0 as required. �

We conclude with some information on the existence of p-zero divisors in L1
r(Fk).

Let α ∈ L1
r(Fk) and define p(α) as follows. If Z(α) ∩ (−2k, 2k) = ∅, then set

p(α) = ∞. If Z(α)∩(−2k, 2k) �= ∅, then setm(α) = min{|t| | t ∈ Z(α)∩(−2k, 2k)}.
If m(α) ∈ [0, 2ω], then set p(α) = 2. Finally if m(α) ∈ (2ω, 2k), then let p(α) be
the positive root of the following equation in p:

m(α) =
√
2k − 1

(
(2k − 1)

1
2− 1

p + (2k − 1)
1
p− 1

2
)
.

We can now state:

Proposition 6.10. Let α ∈ L1
r(Fk). Then α is a p-zero divisor for all p > p(α).

Proof. Let t ∈ (−2k, 2k) such that m(α) = |t| and suppose p > p(α). Since φt is
a positive definite function by [9, Lemma 6.1], we can apply [1, Theorem 2(a)] to
deduce that φt ∈ Lp

r(Fk). By Lemma 6.3 α ∗ φt = 0 and the result is proven. �
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