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A Simple Criterion for Solvability of Both
X2 − DY 2 = c and x2 − Dy2 = −c

R. A. Mollin

Abstract. This article provides a simple criterion for the simultaneous solv-
ability of the Diophantine equations X2 −DY 2 = c and x2 −Dy2 = −c when
c ∈ Z, and D ∈ N is not a perfect square.
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1. Introduction

Lagrange used simple continued fractions to solve the Pell equation x2 −Dy2 =
−1 (see [3, Corollary 5.3.3, p. 249] as well as Theorem 2.3 and Corollary 3.1 below).
Also, both Gauss and Eisenstein used simple continued fractions to examine the
solvability of x2 − Dy2 = −4 for gcd(x, y) = 1 (see [2, Exercise 2.1.15, p. 60] as
well as Lemma 3.1 below). Numerous authors have since employed the continued
fraction approach to study quadratic Diophantine equations. For instance, in [8],
H.C. Williams gives criteria for the solvability of |x2 −Dy2| = 4 with gcd(x, y) = 1
in terms of the simple continued fraction expansion of the quadratic irrational
(1 +

√
D)/2 for field discriminants D ≡ 5 mod 8. Also, in [1], P. Kaplan and K.S.

Williams use continued fractions to give criteria for the solvability of x2 −Dy2 =
−1,−4 in terms of simple continued fractions. In this article, we look at the mutual
solvability of the equations in the title using a combination of techniques related to
continued fractions. This continues work in [4], [5] and [7].
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2. Notation and preliminaries

We will be studying solutions of quadratic Diophantine equations of the general
shape

x2 −Dy2 = c,(2.1)

where D > 0 is not a perfect square and c ∈ Z. If x, y ∈ Z is a solution of (2.1),
then it is called positive if x, y ∈ N and it is called primitive if gcd(x, y) = 1. Among
the primitive solutions of (2.1), if such solutions exist, there is one in which both x
and y have their least values. Such a solution is called a fundamental solution. We
will use the notation

α = x+ y
√
D

to denote a solution of (2.1), and we let

N(α) = x2 −Dy2

denote the norm of α. (Note that solutions of (2.1) can be broken down into classes
where each class has a fundamental solution, so there are often several fundamental
solutions — see [3, pp. 298–307]). We will be linking such solutions to simple
continued fraction expansions that we now define.

Recall that a quadratic irrational is a number of the form

(P +
√
D)/Q

where P,Q,D ∈ Z with D > 1 not a perfect square, P 2 ≡ D mod Q, and Q �= 0.
Now we set:

P0 = P , Q0 = Q, and recursively for j ≥ 0,

qj =

⌊
Pj +

√
D

Qj

⌋
,(2.2)

Pj+1 = qjQj − Pj ,(2.3)

and

D = P 2
j+1 +QjQj+1.(2.4)

Hence, we have the simple continued fraction expansion:

α =
P +

√
D

Q
=

P0 +
√
D

Q0
= 〈q0; q1, . . . , qj , . . . 〉 ,

where the qj for j ≥ 0 are called the partial quotients of α.
To further develop the link with continued fractions, we make the initial (well

known) observation that a real number has a periodic continued fraction expansion
if and only if it is a quadratic irrational (see [3, Theorem 5.3.1, p. 240]). Fur-
thermore a quadratic irrational is said to have a purely periodic continued fraction
expansion if it has the form

α = 〈q0; q1, q2, . . . , q�−1〉
which means that qn = qn+� or all n ≥ 0, where � = �(α) is the period length of the
simple continued fraction expansion. It is known that a quadratic irrational α has
such a purely periodic expansion if and only if α > 1 and −1 < α′ < 0, where α′
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is the algebraic conjugate of α. Any quadratic irrational which satisfies these two
conditions is called reduced (see [3, Theorem 5.3.2, p. 241]).

We now need to develop a link between the solutions of quadratic Diophantine
equations with the Qj defined in Equations (2.2)–(2.4).

Let D0 > 1 be a square-free positive integer and set:

σ0 =
{

2 if D0 ≡ 1 mod 4,
1 otherwise.

Define:

ω0 = (σ0 − 1 +
√
D0)/σ0, and ∆0 = (ω0 − ω′

0)
2 = 4D0/σ

2
0 .

The value ∆0 is called a fundamental discriminant or field discriminant with asso-
ciated radicand D0, and ω0 is called the principal fundamental surd associated with
∆0. Let

∆ = f2
∆∆0

for some f∆ ∈ N. If we set

g = gcd(f∆, σ0), σ = σ0/g, D = (f∆/g)2D0, and ∆ = 4D/σ2,

then ∆ is called a discriminant with associated radicand D. Furthermore, if we let

ω∆ = (σ − 1 +
√
D)/σ = f∆ω0 + h

for some h ∈ Z, then ω∆ is called the principal surd associated with the discriminant

∆ = (ω∆ − ω′
∆)

2.

This will provide the canonical basis element for certain rings that we now define.
Let [α, β] = αZ + βZ be a Z-module. Then O∆ = [1, ω∆], is an order in K =

Q(
√
∆) = Q(

√
D0) with conductor f∆. If f∆ = 1, then O∆ is called the maximal

order in K. The units of O∆ form a group which we denote by U∆. The positive
units in U∆ have a generator which is the smallest unit that exceeds 1. This selection
is unique and is called the fundamental unit of K, denoted by ε∆.

It may be shown that any Z-submodule I �= (0) of O∆ has a representation of
the form [a, b + cω∆], where a, c ∈ N with 0 ≤ b < a. We will only be concerned
with primitive ones, namely those for which c = 1. In other words, I is a primitive
Z-submodule of O∆ if whenever I = (z)J for some z ∈ Z and some Z-submodule J
of O∆, then |z| = 1. Thus, a canonical representation of a primitive Z-submodule
of O∆ is obtained by setting σa = Q and b = (P − σ + 1)/σ for P,Q ∈ Z, namely

I = [Q/σ, (P +
√
D)/σ].(2.5)

Now we set the stage for linking ideal theory with continued fractions by giving
a criterion for a primitive Z-module to be a primitive ideal in O∆. A nonzero Z-
module I as given in (2.5) is called a primitive O∆-ideal if and only if P 2 ≡ D mod
Q (see [3, Theorem 3.5.1, p. 173]). Henceforth, when we refer to an O∆-ideal it
will be understood that we mean a primitive O∆-ideal. Also, the value Q/σ is called
the norm of I, denoted by N(I). Hence, we see that I is an O∆-ideal if and only
if α = (P +

√
D)/Q is a quadratic irrational. Thus, we often write [α] to represent

the ideal [Q/σ, (P +
√
D)/σ] from which it follows that the conjugate ideal I ′ of I

is [α′] = [Q/σ, (P −√
D)/σ]. When I = I ′, we say that I is ambiguous.
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Given the notion of a reduced quadratic irrational discussed earlier, it is not
surprising that we define a reduced ideal I to be one which contains an element
β = (P +

√
D)/σ such that I = [N(I), β], where β > N(I) and −N(I) < β′ < 0,

since this corresponds exactly to the reduced quadratic irrational α = β/N(I) > 1
with −1 < α′ < 0, namely I = [α]. In fact, the following holds.

Theorem 2.1. Let ∆ be a discriminant with associated radicand D. Then I =
[Q/σ, (P +

√
D)/σ] is a reduced O∆-ideal if Q/σ <

√
∆/2. Conversely, if I is

reduced, then Q/σ <
√
∆. Furthermore, if 0 ≤ P − σ + 1 < Q < 2

√
D and

Q >
√
D, then I is reduced if and only if Q−√

D < P <
√
D.

Proof. See [2, Corollaries 1.4.2–1.4.4, p. 19]. �

The following result links solutions of quadratic Diophantine equations with the
Qj as promised above.

Theorem 2.2. Let ∆ be a discriminant with radicand D > 0 and let c ∈ N with
c <

√
∆/2. Then x2 −Dy2 = ±σ2c has a primitive solution if and only if c = Qj

for some j ≥ 0 in the simple continued fraction expansion of ω∆.

Proof. This follows from the Continued Fraction Algorithm. for example, ee [3,
Theorem 5.5.2, pp. 261–266]. �

Remark 2.1. From the continued fraction algorithm cited in the proof of Theo-
rem 2.2, it follows that if

I = [Q/σ, (P +
√
D)/σ]

is a reduced O∆-ideal, then for � = �((P +
√
D)/Q), the set

{Q1/σ,Q2/σ, . . . , Q�/σ}
represents the norms of all reduced ideals equivalent to I. Hence, Theorems 2.1–
2.2 tell us precisely when norms of reduced ideals can be solutions of quadratic
Diophantine equations.

Lastly, we will have need of the following, which may be traced back to Lagrange.

Theorem 2.3. If ∆ > 0 is a discriminant, and � = �(
√
D) is the period length of

the simple continued fraction expansion of
√
D then

N(ε∆) = (−1)�.
Also, either

ε∆ ∈ Z[
√
D] or ε3∆ ∈ Z[

√
D].

Proof. See [2, Theorems 2.1.3, pp. 51–52]. �

3. Solutions of quadratic equations

Theorem 3.1. Let c ∈ Z and D ∈ N where D is not a perfect square and

gcd(c,D) = 1.(3.1)

If

x2 −Dy2 = −c(3.2)
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has a primitive positive solution x0 + y0

√
D, then

x2 −Dy2 = c(3.3)

has a primitive positive solution if and only if either �(
√
D) is odd, or there exists

a divisor d ∈ N, d �= 1, |c|, of c such that
x2 −Dy2 = −d2(3.4)

has a primitive solution X + Y
√
D with

gcd(x0X + y0Y D,Xy0 + x0Y ) = d,(3.5)

and

gcd(d, c/d)
∣∣ 2.(3.6)

Proof. Suppose that we have the primitive, positive solutions x0 + y0

√
D and

x1 + y1

√
D of Equations (3.2)–(3.3), respectively. Let

d0 = gcd(x0x1 − y0y1D,x0y1 − x1y0)(3.7)

and set
X = (x0x1 − y0y1D)/d0, and Y = (x0y1 − x1y0)/d0.

Then

X2 −DY 2 =
1
d2
0

[
(x0x1 − y0y1D)2 − (x0y1 − x1y0)2D

]
(3.8)

=
1
d2
0

[
(x2

0 − y2
0D)(x2

1 − y2
1D)

]
= −

(
c

d0

)2

,

so

N(X + Y
√
D) = −d2(3.9)

where c = d0d and we may assume without loss of generality that d ∈ N. By the
choice in (3.7), X + Y

√
D is primitive.

If �(
√
D) is even, then by Theorem 2.3 , d �= 1 since (3.9) holds. Now we show

that if �(
√
D) is even, d �= |c|.

Let
X(+) = x0x1 + y0y1D, Y(+) = y0x1 + x0y1,

X(−) = x0x1 − y0y1D, and Y(−) = y0x1 − x0y1.

Claim 3.1. gcd(X(+), Y(+)) = d

Since

N
(
X(+) + Y(+)

√
D
)
= −c2,(3.10)

gcd(X(+), Y(+))
∣∣ c. Now we demonstrate that c

∣∣ Y(+)Y(−) and c
∣∣ X(+)X(−).

Multiplying −x2
1 times x2

0 − Dy2
0 = −c and adding x2

0 times x2
1 − Dy2

1 = c we
get,

D(x2
1y

2
0 − x2

0y
2
1) = c(x2

0 + x2
1).(3.11)

Therefore, c
∣∣ (y2

0x
2
1 − x2

0y
2
1) = Y(+)Y(−), since gcd(c,D) = 1. Also,

X(+)X(−) = x2
0x

2
1 − y2

0y
2
1D

2 = x2
0x

2
1 − x2

1y
2
0D + x2

1y
2
0D − y2

0y
2
1D

2

= x2
1(x

2
0 − y2

0D) + y2
0D(x2

1 − y2
1D) = −c2(x2

1 − y2
0D),
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so c
∣∣ X(+)X(−). We have shown that dd0

∣∣ X(+)X(−) and dd0

∣∣ Y(+)Y(−). Given
that gcd(X(−), Y(−)) = d0, then gcd(X(+), Y(+)) = d, which is Claim 3.1.

By (3.10) and Claim 3.1, if d = |c|, then

N

(
X(+)

d
+

Y(+)

d

√
D

)
= −1,

which is impossible if �(
√
D) is even by Theorem 2.3. We have shown that if �(

√
D)

is even, then d �= 1, |c|.
It remains to verify (3.5)–(3.6). We have:

x0X + y0Y D =
x1(x2

0 − y2
0D)

d0
= −cx1

d0
= −x1d,

and

Xy0 + x0Y =
y1(x2

0 − y2
0D)

d0
= −cy1

d0
= −y1d.

Thus, by the primitivity of x1 + y1

√
D, we have,

gcd(x0X + y0Y D,Xy0 + x0Y ) = d,

which is (3.5).
In order to establish (3.6), we need the following.

Claim 3.2. gcd(c, Y(+), Y(−))
∣∣ 2.

If p is a prime dividing both d and d0, then p divides both Y(+) and Y(−). Hence,
p
∣∣ 2y0x1. If p > 2, then p

∣∣ y0x1. If p
∣∣ x1, then p

∣∣ y1, given that p
∣∣ c = x2

1 − y2
1D

with gcd(c,D) = 1. This contradicts the primitivity of x1+y1

√
D. Similarly, p � y0

given the primitivity of x0 + y0

√
D. Thus, p = 2. If 2t| gcd(c, Y+, Y−), for some

t ∈ N, then both y0x1 ≡ x0y1 mod 2t and y0x1 ≡ −x0y1 mod 2t. Since x0y1 is odd
in this case, then we may take the modular multiplicative inverse to get,

−1 ≡ (x0y1)−1(y0x1) ≡ 1 mod 2t,

so t = 1. This establishes Claim 3.2.
Now (3.6) follows from Claims 3.1–3.2 and the fact that gcd(X(−), Y(−)) = d0.

This completes the proof of necessity of the conditions.
Conversely, suppose that there are X,Y ∈ Z such that (3.4)–(3.6) hold. Set

α =
(x0 + y0

√
D)(X + Y

√
D)

d
.

Then N(α) = c,

α =
x0X + y0Y D

d
+

x0Y + y0X

d

√
D = x1 + y1

√
D ∈ Z

[√
D
]

and gcd(x1, y1) = 1, since gcd(x0X + y0Y D, x0Y + y0X) = d. �

Remark 3.1. By Corollary 2.2, a primitive solution to either of Equations (3.2)
or (3.3) when |c| < √

D, necessarily implies the existence of a nonnegative integer
j < �(

√
D) such that Qj = |c| in the simple continued fraction expansion of

√
D.

We also have the following classic result.

Corollary 3.1 (Lagrange — see [3, pp. 269–270]). For D ∈ N not a perfect square,
x2 −Dy2 = −1 has a solution if and only if �(√D) is odd.
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Proof. Since c = 1 has no proper divisors, then the result follows from Theo-
rem 3.1. �

Example 3.1. Let D = 65, for which �(
√
D) = 1, so by Corollary 3.1, x2−65y2 =

−1 has a solution. The fundamental solution is 8+
√
65. However, x2 − 65y2 = −4

has no primitive solutions. The following result tells us when such equations do
have primitive solutions.

A well-known related result to Theorem 3.1 is the following.

Lemma 3.1 (Eisenstein — see [2, Footnote 2.1.10, p. 60]). If D ∈ N is odd and
not a perfect square, then both Pell equations

x2 −Dy2 = −4(3.12)

and

X2 −DY 2 = 4(3.13)

have primitive solutions if and only if εD �∈ Z[
√
D] and N(εD) = −1 = N(ε4D).

Proof. If x0 + y0

√
D is a primitive solution of Equation (3.12), then the value

(x0 + y0

√
D)/2 is a unit in Z[(1 +

√
D)/2], so εD �∈ Z[

√
D]. Also, N(εD) =

−1 = N(ε4D), since ε3D = ε4D by Theorem 2.3. Conversely, if εD �∈ Z[
√
D] and if

N(εD) = −1, then Equation (3.12) has a primitive solution, and so does Equation
(3.13). �

Remark 3.2. Lemma 3.1 fails ifD is even. For instance, ifD = 8, then x2−Dy2 =
−4 has primitive solution 2 +

√
8. However, εD = ε8 = 1 +

√
2 ∈ Z[

√
8] and

ε4D = ε32 = 3 +
√
8 = 3 +

√
8, with norm 1.

Now we may show that Corollary 3.1 and Lemma 3.1 are actually special cases
of the following.

Corollary 3.2. Suppose that D ∈ N, D > 1 not a perfect square, p is a prime not
dividing D, and a is a nonnegative integer. If

x2 −Dy2 = −pa(3.14)

has a primitive solution, then

X2 −DY 2 = pa(3.15)

has a primitive solution if and only if �(
√
D) is odd.

Proof. If �(
√
D) is odd, then Equation (3.15) has a primitive solution whenever

Equation (3.14) has such a solution. To see this we merely we multiply a primitive
solution of (3.14) by the fundamental unit of Z[

√
D] to get a primitive solution of

(3.15) via Theorem 2.3.
Conversely, assume that Equations (3.14)–(3.15) both have primitive solutions

x0 + y0

√
D and x1 + y1

√
D, respectively. Suppose that �(

√
D) is even. Then by

Theorem 3.1, there is a divisor d = pb of c with a > b > 0 such that

x2 −Dy2 = −d2(3.16)
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has a primitive solution X + Y
√
D. By (3.6) in Theorem 3.1, gcd(pb, pa−b) is 1 or

2. Hence, p = 2 and either b = 1 or a = b + 1. Also, since gcd(p,D) = 1, then D
is odd. In the case where b = 1, (3.16) implies that x2 −Dy2 = −4 has a primitive
solution X + Y

√
D. Hence, D ≡ 1 mod 4 and u = (x+ y

√
D)/2 ∈ Z[(1 +

√
D)/2]

is a unit with N(u) = N(u3) = −1. Since u3 ∈ Z[
√
D], then �(

√
D) is odd by

Theorem 2.3, a contradiction.
Now suppose that a = b + 1. Then as in the proof of (3.6) in Theorem 3.1,

gcd(x0x1 + y0y1D,x1y0 + x0y1) = d = pa−1. Since(
x0x1 + y0y1D

pa−1

)2

−
(
x1y0 + x0y1

pa−1

)2

D = −p2 = −4,

then by the above argument we again get a contradiction and the result is estab-
lished. �

The following example was provided by the author’s former graduate student,
Gary Walsh.

Example 3.2. For the radicandD = 34 and the value c = 33, 1+
√
34 is a primitive

solution to x2 −Dy2 = −c and 13+2
√
34 is a primitive solution to X2 −DY 2 = c.

Note that �(
√
34) = 4.

Notice that in Example 3.2, c is a product of two distinct primes. Hence, Corol-
lary 3.2 is the most that we can hope to achieve as a direct generalization of Corol-
lary 3.1 in the sense of the odd parity of �(

√
D) determining the mutual solvability

of the Equations (3.2)–(3.3).

Example 3.3. If D = 65 and c = 29, then x2
0 − y2

0D = 62 − 65 = −29 is a
primitive solution. Also, x2

1−y2
1D = 172−22 ·65 = 29 is a primitive solution. Here,

�(
√
65) = 1.

The following illustrates that under the hypothesis of Corollary 3.2, both �(
√
D)

is odd and the condition in Theorem 3.1 are satisfied.

Example 3.4. Let D = 145 and c = 26 = 2a. Here �(
√
145) = 1. We have the

primitive solutions

x2
0 − y2

0D = 92 − 145 = −26 and x2
1 − y2

1D = 372 − 33 · 145 = 26.

Also, if d = 32 = 25 = 2a−1, then

x2 −Dy2 = 512 − 52 · 145 = −(32)2 = −d2

is a primitive solution, where

d = 32 = gcd(x0x+ y0yD, xy0 + x0y) = gcd(1184, 96) = 32 gcd(37, 3).

Notice, however, that X2 − DY 2 = −(c/d)2 = −4 has no primitive solution by
Lemma 3.1 since εD = 12 +

√
145 ∈ Z[

√
D].

Remark 3.3. The existence of a solution to Equation (3.4) in Theorem 3.1 is
tantamount to the existence of a reduced quadratic irrational

γ = (x+
√
y2D)/d

with underlying radicand y2D. (To see that such a γ must be reduced, note that if
d > y

√
D, then −d2 < −y2D < x2 − y2D = −d2, a contradiction. Thus, d < y

√
D,
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so by Theorem 2.1, using the ideal [d, x+
√
y2D], γ is reduced.) Moreover, N(γ) =

−1. The existence of such a γ is equivalent to γ having pure symmetric period
namely γ = 〈q0; q1, . . . , q�〉 with qj = q�−j−1 for all integers j with 0 ≤ j ≤ � − 1,
which means that q0q1 . . . q� is a palindrome.1 Moreover, it is a fact that D is a
sum of two integer squares if and only if there is an element in Q(

√
D) of norm −1,

such as γ. Moreover, N(γ) = −1 is equivalent to the ideal class of [γ] in the class
group of Q(

√
D) having at most one ambiguous ideal. (See [6, Theorem 2.2, p. 105]

for verification of the above comments.) The following illustrates these comments.

Example 3.5. Returning to the radicand in Example 3.2, consider the reduced
quadratic irrational

γ =
P +

√
D

Q
=

5 +
√
34

3
= 〈3; 1, 1, 1, 1, 3〉.

Since x2
0 −Dy2

0 = 1− 34 = −33 = −c and x2 −Dy2 = 52 − 34 = −32 = −d2, with
gcd(x0x+y0yD, xy0+x0y) = gcd(39, 6) = 3 = d, then by Theorem 3.1, there exists
a primitive solution to x2

1 −Dy2
1 = 33 = c. This solution is obtained in the same

fashion as in the proof of Theorem 3.1, namely,

x1 + y1

√
D =

x0x+ y0yD

d
+

x0y + y0x

d

√
D = 13 + 2

√
34.

Also, with respect to Remark 3.3, it can be shown that the class of [γ] has no
ambiguous ideals in it using [2, Theorem 6.1.1, p. 189].

Example 3.6. Let D = 45305 = 5 ·13 ·17 ·41 and c = 7031 = 79 ·89. Suppose that
we want to investigate whether there are primitive solutions to x2 − Dy2 = ±c.
Using Theorem 3.1, we would need solutions to Equation (3.4) for some divisor
d �= 1, c given that �(

√
D) = 16. We have the two primitive solutions:

61722 − 292 · 45305 = −892,

and
13667082 − 64212 · 45305 = −792.

However, there are no solutions to either of x2 − Dy2 = ±c. This demonstrates
that we must first ensure the existence of a solution to Equation (3.2) in Theorem
3.1 before proceeding.

Suppose that we were to choose c = 79 or c = 89. Then we would still have no
solutions of either equation. Corollary 3.2 explains why.

Example 3.7. Let D = 845 = 5 · 133 and c = 29. Then

N(ε4D) = 122382 − 4212 · 845 = −1,
where

ε4D = 12238 + 421
√
845 =

(
29 +

√
845

2

)3

= ε3D.

We have the two primitive solutions,

N(α0) = N(436 + 15
√
845) = 4362 − 152 · 845 = −29 = −c,

1We should recall, as oft does my colleague, friend, and coauthor Alf van der Poorten, that a
palindrome is: never even. Indeed, it is: never odd or even. It is: a toyota.
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and
N(α1) = N(407 + 14

√
845) = 4072 − 142 · 845 = 29.

Notice that,

γ =
α0

α1
=

2 +
√
845

29
= 〈1, 14, 58, 14, 1〉

is a reduced quadratic irrational with N(γ) = −1. Moreover, in the simple contin-
ued fraction expansion of γ, we get that

I3 = [Q2, P2 +
√
D] = [1, 29 +

√
845] = I ′3

is the only ambiguous ideal in the class of [γ]. See [2, Theorem 6.1.1, p. 189].

Example 3.8. Returning to the radicand in Example 3.6, D = 45305, we choose
c = 89 · 151 = 13439 this time. We have the primitive solution,

x2
0 − y2

0D = N(α0) = 178792 − 842 · 45305 = −c = −13439.
Since we know, from Example 3.6, that

x2 − y2D = 61722 − 292 · 45305 = −892 = −d2,

and since

gcd(x0x+ y0yD, x0y + xy0) = gcd(220712168, 1036939) = 89 = d,

then by Theorem 3.1, we know that we have a solution to x2
1 − y2

1D = c. Indeed,
we have,

N(α1) = x2
1 − y2

1D = 24799122 − 116512 · 45305 = c = 13439.

Observe that in Example 3.5, D = 52 + 32 where d = 3. This does not happen in
general. In other words, it is not always possible to get the value of d in Equation
(3.4) from a representation of D as a sum of two integer squares. For instance, in
this example, there exist exactly eight distinct representations of D, up to order
and sign, as a sum of two integer squares (see [3, Theorem 6.1.3, pp. 279–280]).
They are:

D = 45305 = 192 + 2122 = 1492 + 1522 = 2112 + 282 = 1812 + 1122 =

= 1732 + 1242 = 1072 + 1842 = 832 + 1962 = 2032 + 642,

and none of these has d = 89 as a divisor. Notice, as well, that

γ =
α1

α0
=

2479912 + 11651
√
45305

17879 + 84
√
45305

=
6172 +

√
292 · 45305
89

,

which is a reduced quadratic irrational with N(γ) = −1 having underlying radicand
D = 38101505 = 292 · 45305.
Remark 3.4. Notice that if both Equations (3.2)–(3.3) have primitive solutions
x2

0 − y2
0D = −c and x2

1 − y2
1D = c, respectively, then by Equation (3.11),

D
∣∣ (x2

0 + x2
1) and c

∣∣ (x2
0y

2
1 − x2

1y
2
0).

For instance, in Example 3.5, D = 34, c = 33,

x2
0 + x2

1 = 12 + 132 = 170 = 5D,

and
x2

0y
2
1 − y2

0x
2
1 = 12 · 22 − 12 · 132 = −165 = −5c.
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In Example 3.7, D = 845, c = 29,

x2
0 + x2

1 = 4362 + 4072 = 355745 = 421D,

and
x2

0y
2
1 − y2

0x
2
1 = 4362 · 142 − 152 · 4072 = −12209 = −421c.

The question naturally arises: For which values of D (if any) does it hold that
D = x2

0 + x2
1. The answer is that it does hold, but only in the most trivial of cases.

To see this, assume that we have the two aforementioned primitive solutions. Then
by adding the two equations (3.2)–(3.3), we get x2

0 + x2
1 −D(y2

0 + y2
1) = 0. Thus,

if D = x2
0 + x2

1, we get that y2
0 + y2

1 = 1 for which only the case c = 1, y0 = 1,
y1 = 0, and D = x2

0 + 1 holds (if we allow x1 + y1

√
D = 1 + 0

√
D as a primitive

solution). For instance, D = 5 = 22+1 is such a value. Such values of D are called
narrow Richaud-Degert (RD)-types. These types and their generalizations have
been studied extensively from not only the perspective of solutions of Diophantine
equations, but also for the study of class numbers of quadratic orders (see [2, pp.
77–87]).

Although D �= x2
0 + x2

1 in all except the narrow RD-types, the above argument
shows that x2

0 + x2
1 = D(y2

0 + y2
1) and x2

0y
2
1 − x2

1y
2
0 = −c(y2

0 + y2
1).
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