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Multiblock Problems for Almost Periodic Matrix
Functions of Several Variables

Leiba Rodman, Ilya M. Spitkovsky,
and Hugo J. Woerdeman

Abstract. In this paper we solve positive and contractive multiblock prob-
lems in the Wiener algebra of almost periodic functions of several variables.
We thus generalize the classical four block problem that appears in robust
control in many ways. The necessary and sufficient conditions are in terms of
appropriate Toeplitz (positive case) and Hankel operators (contractive case)
on Besikovitch space. In addition, a model matching interpretation is given,
and some more general patterns are treated as well.
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1. Introduction

The suboptimal four block problem can be stated as follows. We let L∞ and H∞
denote the Lebesgue space and Hardy space, with respect to the essential supremum
norm ‖ · ‖∞, on T = {z ∈ C : |z| = 1}, respectively. We denote by Xp×q the set
of p × q matrices with entries in the set X. Let f11 ∈ Ln1×m1∞ , f12 ∈ Ln1×m2∞ ,
f21 ∈ Ln2×m1∞ , and f22 ∈ Ln2×m2∞ be given. Find, if possible, φ ∈ Hn1×m2∞ so that

sup
|z|=1

∥∥∥∥∥
[
f11(z) f12(z) + φ(z)

f21(z) f22(z)

]∥∥∥∥∥ < 1.(1.1)
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Here ‖ · ‖ is the operator norm (=the largest singular value) of a matrix.
This problem, as well as many of its variations, including the optimal four block

problem (allowing equality in (1.1)) is ubiquitous in robust, or H∞, control. Its
solution is typically given in terms of appropriately defined Hankel-type operators.
The mathematical and engineering literature on the four block problem is extensive,
and we quote here only a representative sample of books [6], [13], [2], [7], [8], where
further information and references can be found.

The present paper grew out of the authors’ desire to provide a solution to a mul-
tivariable almost periodic analogue of the four block problem. In the multivariable
setting we impose a linear order on R

k through the use of a halfspace. This idea
goes back to the seminal papers [11], [12] in which it was recognized that several of
the results in one-variable Hardy space theory carry over to the setting of Hardy
spaces on linearly ordered groups.

A natural starting point for solving the four block problem in our setting is to
consider a related positive definite extension problem. While we treat the problem
in great generality in subsequent sections, it may be instructive to state here a new
problem that we solve which is most closely related to (1.1). This concerns 4 × 4
block matrix valued functions with entries in the Wiener algebra

W =

{
f(z) =

∞∑
i=−∞

fiz
i :

∞∑
i=−∞

‖fi‖ <∞
}

on the unit circle. Throughout the paper, a (bounded linear) Hilbert space operator
T : B → B is called positive definite (notation: T > 0) if 〈Tx, x〉 ≥ ε〈x, x〉 for every
x ∈ B, where ε > 0 is independent of x, and where 〈x, y〉 is the inner product in
the Hilbert space B.

Theorem 1.1. Let kij ∈ Wni×nj , i, j = 1, 2, 3, 4 be given. There exist φ ∈ Wn1×n4

with φ(z) =
∑∞
i=0 φiz

i so that

kext(z) =


k11(z) k12(z) k13(z) k14(z) + φ(z)

k21(z) k22(z) k23(z) k24(z)

k31(z) k32(z) k33(z) k34(z)

k41(z) + φ(z)∗ k42(z) k43(z) k44(z)

 > 0, |z| = 1,

if and only if the following Toeplitz-like operator T : B2 → B2 is positive definite.
Here the Hilbert space B2 is given by

B2 =


Hn1×n1

2 Ln1×n2
2 Ln1×n3

2 Ln1×n4
2 �Hn1×n4

2

0 Hn2×n2
2 Ln2×n3

2 Ln2×n4
2

0 0 Hn3×n3
2 Ln3×n4

2

0 0 0 Hn4×n4
2


where L2 and H2 are the Lebesgue and Hardy space on T, respectively, with respect
to the Hilbert space norm,

T (g) = PB2

(
(kij)4i,j=1g

)
, g = (gij)4i,j=1 ∈ B2,

and PB2 is the orthogonal projection of L(n1+n2+n3+n4)×(n1+n2+n3+n4)
2 onto B2.
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The Hilbert space structure in B2 is the standard one: If Xi,j , i = 1, . . . , p,
j = 1, . . . , q are Hilbert spaces, then the matrix X = [Xi,j ]p,qi,j=1 is a Hilbert space
with the inner product

〈[xi,j ]p,qi,j=1 , [yi,j ]
p,q
i,j=1〉 =

p∑
i=1

q∑
j=1

〈xi,j , yi,j〉Xi,j , xi,j , yi,j ∈ Xi,j ,

where 〈·, ·〉Xi,j is the inner product in Xi,j .
The above result is a special case of Theorem 2.3 corresponding to p = q = 3 and

periodic functions defined on R (as opposed to almost periodic functions defined on
R
k). Observe also that Theorem 2.3 deals with arbitrary representations of R

k as
unions of two halfspaces that overlap in the origin; for k = 1 there is essentially one
such representation: R = [0,∞)∪(−∞, 0]. Theorem 2.3 also gives (i) a construction
of a specific kext(z), that enjoys a maximum entropy; and (ii) a linear fractional
description of the set of all solutions.

Using Theorem 1.1 one may solve a four block problem by letting

kii(z) = Ini , i = 1, 2, 3, 4,

k12(z) = k21(z) = k34(z) = k43(z) = 0,
k13(z) = k31(z)∗ = f11(z), k14(z) = k41(z)∗ = f12(z),
k23(z) = k32(z)∗ = f21(z), k24(z) = k42(z)∗ = f22(z).

Note that this particular four block problem is in the Wiener algebra rather than
in L∞.

Our main results are stated and proved in the framework of algebras of almost
periodic matrix functions of several variables with Fourier spectrum in a given sub-
group (see the next section for definitions and basic properties). This generality
allows us to treat at once many particular situations, including the periodic case.
Related problems of factorizations, positive and contractive extensions (which may
be termed “one-block” problems in the context of the present paper) have been
studied and solved in [26], [24], [25] for almost periodic matrix functions of sev-
eral variables, and in earlier papers [28], [23] for almost periodic scalar and matrix
functions of one variable. This development was largely motivated by recent ap-
plications of almost periodic functions in convolution equations on finite intervals,
inverse scattering, and stochastic processes. We use in the present paper several
key results proved in [26], [24] and [25].

Abstract band methods served as key technical tools in [28], [23], [26], [24], [25].
A standard exposition of the abstract band method is found in Part IX of [10].
Another version of the abstract band method was developed and used in [25]. In
the present paper the abstract band method plays a key role as well. In Sections 2
and 3 we use the standard abstract band method (see, e.g., Part IX of [10]), while
in Section 5 we use the more general version constructed in [15].

The paper is organized as follows. In Section 2 we formulate and solve a general
banded almost periodic several variables positive extension problem of which The-
orem 1.1 is a very particular case. In Section 3 we apply the results of Section 2
to obtain solutions to a general contractive extension problem. The relation of the
results of Section 3 to those of Section 2 are based on the same principle that relates
the four block problem to the setting of Theorem 1.1. A class of problems of model
matching type is studied in Section 4. In Section 5 we shall solve positive extensions
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problems for a non-banded pattern, namely, a specific example of a whole class of
positive extension problems for almost periodic functions of several variables.

We use the standard notation C,R,T,Z, and N for the sets of complex num-
bers, of real numbers, of unimodular complex numbers, of integers, and of positive
integers, respectively.

2. The positive multiblock problem

We first introduce the concepts and notation concerning almost periodic func-
tions.

We let (AP k) denote the algebra of complex valued almost periodic functions
of k real variables, i.e., the closed subalgebra of L∞(Rk) (with respect to the
standard Lebesgue measure) generated by all the functions eλ(t) = ei〈λ,t〉, where
λ = (λ1, · · · , λk) ∈ R

k. Here the variable t = (t1, · · · , tk) ∈ R
k, and

〈λ, t〉 =
k∑
j=1

λjtj

is the standard inner product of λ and t. The norm in (AP k) will be denoted by
‖ · ‖∞. Recall that for any f ∈ (AP k) its Fourier series is defined by the formal
sum ∑

λ

fλe
i〈λ,t〉,(2.1)

where

fλ = lim
T→∞

1
(2T )k

∫
[−T,T ]k

e−i〈λ,t〉f(t)dt, λ ∈ R
k,(2.2)

and the sum in (2.1) is taken over the set σ(f) = {λ ∈ R
k : fλ �= 0}, called

the Fourier spectrum of f . The Fourier spectrum of every f ∈ (AP k) is at most
a countable set. The mean M{f} of f ∈ (AP k) is defined by M{f} = f0 =
limT→∞ 1

(2T )k

∫
[−T,T ]k

f(t)dt. The Wiener algebra (APW k) is defined as the set of
all f ∈ (AP k) such that the Fourier series of f converges absolutely. The Wiener
algebra is a Banach ∗-algebra with respect to the Wiener norm ‖f‖W =

∑
λ∈Rk |fλ|

(the multiplication in (APW k) and the involution are defined pointwise). Note that
(APW k) is dense in (AP k).

Denote by (AP k)m×n (resp., (APW k)m×n) the set, which is an algebra ifm = n,
of m × n matrices with entries in (AP k) (resp., (APW k)). The infinity norm in
(AP k)m×n is

‖f‖∞ = sup
t∈Rk

‖f(t)‖, f ∈ (AP k)m×n,

where ‖ · ‖ is the operator norm. The mean M{F} for F = [Fp,q]
m,n
p=1,q=1 ∈

(AP k)m×n is defined by M{F} = [M{Fp,q}]m,np=1,q=1. The Fourier spectrum σ(F )
of F ∈ (AP k)m×n is, by definition, the set of all λ ∈ R

k such that M{e−λF} �= 0.
In other words, σ([Fp,q]

m,n
p=1,q=1) = ∪m,np=1,q=1σ(Fp,q).

A matrix function f ∈ (AP k)n×n is called positive definite if f(t) is Hermitian
for every t ∈ R

k, and there exists an ε > 0 such that f(t) ≥ εIn for all t ∈ R
k,

where In is the n × n identity matrix. For the general theory of almost periodic
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functions of one and several variables we refer the reader to the books [3, 19, 20]
and to Chapter 1 in [22].

Let ∆ be a non-empty subset of R
k. Denote

(AP k)∆ = {f ∈ (AP k) : σ(f) ⊆ ∆}, (APW k)∆ = {f ∈ (APW k) : σ(f) ⊆ ∆}.
(2.3)

If ∆ is an additive subgroup of R
k, then (AP k)∆ (resp. (APW k)∆) is a unital

subalgebra of (AP k) (resp. (APW k)).
Introduce an inner product on (AP k) by the formula

〈f, g〉 =M{fg∗}, f, g ∈ (AP k).(2.4)

Here and elsewhere we denote by g∗ the function g∗(t) = g(t); if g ∈ (AP k)m×n,
then g∗ ∈ (AP k)n×m is defined by g∗(t) = g(t)T , where T designates the transposed
matrix. The completion of (AP k) with respect to inner product (2.4) is called the
Besikovitch space and is denoted by (Bk). Thus (Bk) is a Hilbert space. For a
nonempty set Λ ⊆ R

k, define the projection

PΛ

 ∑
λ∈σ(f)

fλe
i〈λ,t〉

 =
∑

λ∈σ(f)∩Λ

fλe
i〈λ,t〉,

where f ∈ (APW k). The projection PΛ extends by continuity to the orthogonal
projection (also denoted PΛ) on (Bk). We denote by (Bk)Λ the range of PΛ, or,
equivalently, the completion of (AP k)Λ with respect to the inner product (2.4).
The matrix valued Besikovitch space (Bk)n×m consists of n × m matrices with
components in (Bk), with the standard Hilbert space structure:

〈(fi,j)n,mi=1,j=1, (gi,j)
n,m
i=1,j=1〉 =

n∑
i=1

m∑
j=1

〈fi,j , gi,j〉.(2.5)

Similarly, (Bk)n×mΛ is the Hilbert space of n × m matrices with components in
(Bk)Λ. In the periodic case (Λ = Z

k) we may identify (Bk)Λ with L2(Tk).
A subset S of R

k is called a halfspace if it has the following properties:
(i) R

k = S ∪ (−S);
(ii) S ∩ (−S) = {0};
(iii) if x, y ∈ S then x+ y ∈ S;
(iv) if x ∈ S and α is a nonnegative real number, then αx ∈ S.

Note that conditions (iii) and (iv) mean that S is a cone, and conditions (ii), (iii),
and (iv) together mean that S is a pointed cone. A standard example of a halfspace
is given by

Ek = {(x1, · · · , xk)T ∈ R
k \ {0} :

x1 = x2 = · · · = xj−1 = 0, xj �= 0 ⇒ xj > 0} ∪ {0}.
(The vectors in R

k are understood as column vectors.) One can show using basic
results on linearly ordered real vector spaces (see [5], Section IV.5 in [9]) that a set
S ⊆ R

k is a halfspace if and only if there exists a real invertible k × k matrix A
such that

S = AEk
def= {Ax : x ∈ Ek}.(2.6)

See Section 2 of [26] for more details.
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In this section we consider the following positive extension problem. Let S be a
halfspace in R

k and Λ an additive subgroup of R
k. Further, fix

p ∈ N, q ∈ {1, . . . , p}, and n0, n1, . . . , np ∈ N.

Given are:
fij = f∗ji ∈ (APW k)ni×nj

Λ for |j − i| < q,
and

f−ij = (f+
ji )

∗ ∈ (APW k)ni×nj

Λ∩(−S), for j − i = q.

Find, if possible,

f+
ij = (f−ji )

∗ ∈ (APW k)ni×nj

Λ∩(S\{0}), for j − i = q,

and
fij = f∗ji ∈ (APW k)ni×nj

Λ for |j − i| > q,
so that

(fij)
p
i,j=0 > 0,(2.7)

where
fij = f∗ji := f−ij + f+

ij for j − i = q.

The inequality in (2.7) is interpreted as follows:

(fij)
p
i,j=0(t) ≥ εI, for every t ∈ R

k,

where ε > 0 is independent of t. An analogous interpretation is given to inequalities
of the form G > 0 in the sequel. The necessary and sufficient condition for existence
of a solution (2.7) will be the positive definiteness of an appropriately defined
Toeplitz operator. In addition, in that case we shall construct a solution to the
problem that has a certain maximality property, and we shall construct a linear
fractional description for the set of solutions as well.

Before we can state and prove our theorems we do have to introduce some ad-
ditional notation and derive some auxiliary results. We start by quoting a result
from [26] (Corollary 5.3) that will be used extensively in the sequel.

Theorem 2.1. Let G ∈ (APW k)n×n and assume that the matrix G(t) is positive
definite for every t ∈ R

k, and detG(t) ≥ ε for every t ∈ R
k, where ε > 0 is

independent of t. Let also Λ′ be the minimal additive subgroup of R
k which contains

σ(G). Then G(t) admits canonical factorizations of the forms

G(t) = A+(t) · (A+(t))∗ = (Ã+(t))∗ · Ã+(t),(2.8)

where A±1
+ , Ã

±1
+ ∈ (APW k)n×nS∩Λ′ . The factors A±1

+ , Ã
±1
+ are defined up to a right/left

constant unitary multiple.

Let
M = (APW k)N×N

Λ , N = n0 + · · ·+ np,

M1 = M∗
4 =

{
(fij)

p
i,j=0 ∈M : fij = 0, j − i < q

and fij ∈ (APW k)ni×nj

Λ∩(S\{0}), j − i = q
}
,
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M0
2 = (M0

3)∗ =
{

(fij)
p
i,j=0 ∈M : fij = 0, j − i < 0; fii ∈ (APW k)ni×ni

Λ∩(S\{0}),

i = 0, . . . , p; fij ∈ (APW k)ni×nj

Λ∩(−S), j − i = q; and fij = 0, j − i > q
}
,

and
Md = C

n0×n0 ⊕ · · · ⊕ C
np×np .

We identify here C
nj×nj with (APW k)nj×nj

{0} . Then

e :=
p⊕
i=0

Ini×ni
∈Md,

M = M1+̇M0
2+̇Md+̇M0

3+̇M4,(2.9)

and the following multiplication table holds:

· M1 M0
2 Md M0

3 M4

M1 M1 M1 M1 M0
+ M

M0
2 M1 M0

+ M0
2 Mc M0

−

Md M1 M0
2 Md M0

3 M4

M0
3 M0

+ Mc M0
3 M0

− M4

M4 M M0
− M4 M4 M4

,(2.10)

where

M0
+ = (M0

−)∗ = M0
2+̇M1,

Mc = M0
2+̇Md+̇M0

3,

M+ = M∗
− = M0

++̇Md.

For example, M0
2M4 ⊆ M0

−. Note that M0
− and M0

+ are independent of q. We
shall use the letter e to also refer to identity matrices of smaller size as well, e.g.,
e =

⊕p−1
i=0 Ini . The appropriate interpretation should be clear from the context.

Notice that we may restate the positive extension problem formulated in this section
as follows: Given k = k∗ ∈Mc, find, if possible, m1 ∈M1 so that

k +m1 +m∗
1 > 0.

The element k+m1 +m∗
1 > 0 is called a positive extension of k, i.e., f is a positive

extension of k if and only if f > 0 and f − k ∈ M1+̇M4. It should be noted
that the problem is now completely formulated as in the general band method (see
Chapter XXXIV of [10] or [29]), except that we have to show that the notion of
positivity f > 0 coincides with the notion of positivity as required in the general
band method. This follows easily as a consequence of the next lemma.

Lemma 2.2. Let f ∈ M be so that f > 0. Then there exist f+ ∈ M0
+ and

fd ∈Md so that

f = (e+ f+)∗fd(e+ f+),(2.11)
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fd > 0, fd ∈ Md, e+ f+ is invertible in M and (e+ f+)−1 − e ∈ M0
+. Moreover,

this factorization is unique. In addition, f also allows the factorization

f = (e+ f−)∗f̃d(e+ f−),(2.12)

with f̃d > 0, f̃d ∈ Md and f−, (e + f−)−1 − e ∈ M0
−. Again, factorization (2.12)

is unique.

The factorizations (2.11) and (2.12) are referred to as the right and the left
canonical factorizations of f , respectively, with respect to the decomposition M =
M0

−+̇Md+̇M0
+.

Proof of Lemma 2.2. We do this by induction on the number of row and column
blocks p. Note that the statement of this lemma also makes sense when p = 0 (in
contrast with other parts of this section). In this case we interpret

M0
− = (APW k)n0×n0

Λ∩(−S\{0}), Md = C
n0×n0 , M0

+ = (APW k)n0×n0
Λ∩(S\{0}).

It will be most convenient for the proof to include the case p = 0.
When p = 0, the result of Lemma 2.2 follows from Theorem 2.1. Now assume

the result has been established up to p− 1. Letting f = (fij)
p
i,j=0 and writing

(fij)
p−1
i,j=0 = (e+ f (p−1)

+ )∗f (p−1)
d (e+ f (p−1)

+ ),

we get that the right canonical factors of f in (2.11) are given by

e+ f+ :=

[
e+ f (p−1)

+ 0

0 e+ g+

][
e h

0 e

]
,

fd :=

[
f

(p−1)
d 0

0 gd

]
.

Here h = [(fij)
p−1
i,j=0]−1(fip)

p−1
i=0 , and

fpp − (fpi)
p−1
i=0 [(fij)

p−1
i,j=0]−1(fip)

p−1
i=0 = (e+ g+)∗gd(e+ g+)

is a right canonical factorization with respect to the decomposition

(APW k)np×np

Λ∩(−S\{0})+̇C
np×np+̇(APW k)np×np

Λ∩(S\{0}).

Notice that
fpp − (fpi)

p−1
i=0 [(fij)

p−1
i,j=0]−1(fip)

p−1
i=0 > 0.

The uniqueness of the factorization follows using standard arguments (see, e.g.,
[26]). The proof of (2.12) is analogous. �

We shall formulate our necessary and sufficient condition in terms of a Hilbert
space operator. We thus start with introducing the appropriate Hilbert spaces. Let
B = (Bk)N×N , and let

B1, B0
2, B2, Bd, B0

3, B3, B4, B0
−, B0

+, B−, B+, Bd
be the closures of

M1,M0
2,M2 = M0

2+̇Md,Md,M0
3,M3 = M0

3+̇Md,

M4,M0
−,M0

+,M−,M+,Md
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in B, respectively. Alternatively, one may for example introduce B1 in the same way
M1 was defined with APW k replaced by Bk. Notice that we have the following
orthogonal sum decomposition

B = B1 ⊕ B0
2 ⊕ Bd ⊕ B0

3 ⊕ B4.

In addition, we introduce P1, P 0
2 , etc., as the orthogonal projections of B onto B1,

B0
2, etc. It is not hard to see that if one of these projections is applied to a member

of M the result ends up in the appropriate subspace of M. So, for instance, if
m ∈M, then Pcm ∈Mc.

We will now state our main result. For f ∈ (APW k)m×m we denote

‖f‖∞ = sup
x∈Rk

‖f(x)‖,

where ‖X‖ is the operator norm of an operator or matrix X.

Theorem 2.3. Let k = k∗ ∈ Mc be given. Then the following statements are
equivalent:

(i) k has a positive extension;
(ii) the operator T : B2 → B2 defined by T (g) = P2(kg), is positive definite;
(iii) the operator T̃ : B3 → B3 defined by T̃ (g) = P3(kg), is positive definite.

In that case, let
x = T−1(e), y = T̃−1(e).

Then x−1 ∈M+, y−1 ∈M−, Pdx > 0, Pdy > 0, and

f0 := x∗−1(Pdx)x−1 = y∗−1(Pdy)y−1

is a positive extension of k. In fact, f0 is the unique positive extension of k with
f−1
0 ∈ Mc. Moreover, if we let u = x(Pdx)−

1
2 and v = y(Pdy)−

1
2 , then f is a

positive extension of k if and only if

f = (u+ vg)∗−1(e− g∗g)(u+ vg)−1,

for some (unique! ) g ∈ M1 with ‖g‖∞ < 1. Also, f is a positive extension of k if
and only if

f = (v + uh)∗−1(e− h∗h)(v + uh)
for some (unique! ) h ∈M4 with ‖h‖∞ < 1.

Lastly, if f is a positive extension of k with canonical factorizations

f = (e+ f+)∗fd(e+ f+) = (e+ f−)∗f̃d(e+ f−),

then

fd ≤ (Pdx)−1 and f̃d ≤ (Pdy)−1,(2.13)

i.e., the matrices (Pdx)−1 − fd and (Pdy)−1 − f̃d are positive semidefinite, and
equality holds in at least one of the two inequalities in (2.13) if and only if f = f0
(and thus both inequalities are equalities).

The “maximizing” property of f0 exhibited in (2.13) may also be presented as
follows. Let f ∈ (APW k)N×N be positive definite. From Proposition 2.3 in [26], it
follows that log(det f) belongs to (APW k). The number

∆(f) :=M{log(det f)}(2.14)

will be referred to as the entropy of f .
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Proposition 2.4. Let k = k∗ ∈ Mc be given and suppose that k has a positive
extension. Let f0 be defined as in Theorem 2.3. If f is a positive extension of k
then

∆(f) ≤ ∆(f0),

and equality holds if and only if f = f0.

The main effort in proving Theorem 2.3 lies in showing that x−1 ∈ M+ and
y−1 ∈ M− provided T > 0 and T̃ > 0. The remainder of the proof is a standard
application of the band method.

For the reader’s convenience, we state a result (that includes a particular case
of Theorem 2.1 of [24] and remarks thereafter) that will be used in the proof of
Theorem 2.3.

For g ∈ (APW k)m×n
Λ′ , where Λ′ is an additive subgroup of R

k, and for p ∈ Z

define the generalized Hankel operator

H(g)Λ′ : (Bk)n×pS∩Λ′ → (Bk)m×p
(−S)∩Λ′

by

H(g)Λ′h = P−S(gh), h ∈ (Bk)n×pS∩Λ′ .(2.15)

We suppress the dependence of H(g)Λ′ on S in our notation. It is not hard to see
that the norm of H(g)Λ′ is independent of the choice of the positive integer p.

Theorem 2.5. [24] Let f ∈ (APW k)m×n
(−S)∩Λ′ be given, where Λ′ is an additive

subgroup of R
k. Then the following two statements are equivalent:

(i) f has a strictly contractive extension h ∈ (APW k)m×n
Λ′ , i.e.,

‖h‖∞ := sup
t∈Rk

‖h(t)‖ < 1, and hλ = fλ, for λ ∈ (−S) ∩ Λ′.

(ii) The generalized Hankel operator H(f)Λ′ is a strict contraction.
When one (and thus both) of (i)–(ii) is satisfied, put

α̂(t) = [I −H(f)Λ′(H(f)Λ′)∗]−1 (e),

β̂(t) = H(f)Λ′ [I − (H(f)Λ′)∗H(f)Λ′ ]−1 (e),

γ̂(t) = (H(f)Λ′)∗ [I −H(f)Λ′(H(f)Λ′)∗]−1 (e),

δ̂(t) = [I − (H(f)Λ′)∗H(f)Λ′ ]−1 (e),

where e stands for matrix function on R
k that takes the constant identity matrix

value. Then α̂ is invertible in (APW k)m×m
Λ′ and M{α̂} is positive definite. Simi-

larly, δ̂ is invertible in (APW k)n×nΛ′ and M{δ̂} > 0. Also, α̂−1 ∈ (APW k)m×m
(−S)∩Λ′

and δ̂−1 ∈ (APW k)n×nS∩Λ′ .
Further, let

α(t) = α̂(t)M{α̂}− 1
2 , β(t) = β̂(t)M{δ̂}− 1

2 ;(2.16)

γ(t) = γ̂(t)M{α̂}− 1
2 , δ(t) = δ̂(t)M{δ̂}− 1

2 .(2.17)
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Then the function

h0(t) = β(t)δ(t)−1 = [α(t)∗]−1γ(t)∗, t ∈ R
k,(2.18)

is a strictly contractive extension in (APW k)m×n
Λ′ of f .

Proposition 2.6. Let T : B2 → B2 be as in Theorem 2.3 and suppose that T > 0.
Then x := T−1(e) is an invertible element of M+.

Proof. Since x ∈ B2 it has the form x = (xij)
p
i,j=0 with xij = 0 for j − i < 0;

xii ∈ (Bk)ni×nj

Λ∩S for i = 0, . . . , p; xij ∈ (Bk)ni×nj

Λ for 0 < j−i < q; xij ∈ (Bk)ni×nj

Λ∩(−S)

for j − i = q; and xij = 0 for j − i > q. It therefore suffices to show that
x±1
ii ∈ (APW k)ni×ni

Λ∩S and xij ∈ (APW k)ni×nj

Λ for j − i > 0.
Denote k = (kij)

p
i,j=0. First observe that by applying T to elements g =

(gij)
p
i,j=0 ∈ B2 with gij = 0 for (i, j) �= (0, 0) we get that the operator T00 :

(Bk)n0×n0
Λ∩S → (Bk)n0×n0

Λ∩S defined by

T00(g00) = PS(k00g00)

is positive definite. Here PS is the orthogonal projection of (Bk)m×m
Λ onto (Bk)m×m

Λ∩S .
It follows from Section 5 in [26] that k00 > 0, and therefore has a right canonical
factorization (Theorem 2.1)

k00 = (e+ k00,+)∗k00,d(e+ k00,+).

One easily checks that the equation x = T−1(e), or equivalently P2(kx) = e, implies
that x00 = (e+ k00,+)−1k−1

00,d, and therefore x±1
00 ∈ (APW k)n0×n0

Λ∩S .
Next (assuming q ≥ 2, otherwise this step is not necessary), observe that by

applying T to elements g = (gij)
p
i,j=0 ∈ B2 with gij = 0 for j �= 1 we obtain

positive definiteness of the operator[
M00 M∗

10

M10 T11

]
on (Bk)n0×n1

Λ ⊕ (Bk)n1×n1
Λ∩S . Here

M00(g0) = k00g0, M10(g0) = PS(k10g0), g0 ∈ (Bk)n0×n1
Λ ,

and
T11(g1) = PS(k11g1), g1 ∈ (Bk)n1×n1

Λ∩S .

We had already established that k00 > 0 and thus M00 > 0. Consequently, we get
that S11 := T11 −M10M

−1
00 M

∗
10 > 0. Observe that S11 is the operator

S11(g1) = PS((k11 − k10k−1
00 k

∗
10)g1),

and consequently (using again Section 5 in [26]) we obtain

k11 − k10k−1
00 k

∗
10 > 0.

Performing a right canonical factorization

k11 − k10k−1
00 k

∗
10 = (e+ s11,+)∗s11,d(e+ s11,+),

it is straightforward to check that

x11 = (e+ s11,+)−1s−1
11,d, and x01 = −k−1

00 k01x11.



128 Leiba Rodman, Ilya M. Spitkovsky, and Hugo J. Woerdeman

(Note: k∗10 = k01.) Thus x01 ∈ (APW k)n0×n1
Λ and x±1

11 ∈ (APW k)n1×n1
Λ∩S . Repeat-

ing this argument we obtain that xij ∈ (APW k)ni×nj

Λ for 0 ≤ i < j ≤ q − 1, and
x±1
ii ∈ (APW k)ni×ni

Λ∩S for i = 0, . . . , q − 1.
Let us now look at the qth column of x. For this, observe that by applying T to

elements g = (gij)
p
i,j=0 ∈ B2 with gij = 0 for j �= q we get that

T̃00 A H

A∗ M2 B∗

H∗ B Tqq

 > 0,

where

T̃00 : (Bk)n0×nq

Λ∩(−S) → (Bk)n0×nq

Λ∩(−S), T̃00(g0q) = P−S(k00g0q),

A : (Bk)Q×nq

Λ → (Bk)n0×nq

Λ∩(−S), A

 g1q
...

gq−1,q

 = P−S

(
q−1∑
r=1

k0rgrq

)
,

H : (Bk)nq×nq

Λ∩S → (Bk)n0×nq

Λ∩(−S), Hgqq = P−S(k0qgqq),

M2 : (Bk)Q×Q
Λ → (Bk)Q×Q

Λ , M2

 g1q
...

gq−1,q

 = [(kij)
q−1
i,j=1]

 g1q
...

gq−1,q

 ,

B : (Bk)Q×nq

Λ → (Bk)nq×nq

Λ∩S , B

 g1q
...

gq−1,q

 = PS

(
q−1∑
r=1

kqrgrq

)
,

Tqq : (Bk)nq×nq

Λ∩S → (Bk)nq×nq

Λ∩S , Tqqgqq = PS(kqqgqq),

and where Q = n1 + · · ·+ nq−1. Thus M2 > 0 and T̃00 −AM−1
2 A∗ H −AM−1

2 B∗

H∗ −BM−1
2 A∗ Tqq −BM−1

2 B∗

 > 0.(2.19)

Notice that T̃00 −AM−1
2 A∗ is the Toeplitz operator

g0q �→ P−S
(

(k00 − (k0i)
q−1
i=0 [(kij)

q−1
i,j=1]−1(ki0)q−1

i=0 )g0q
)
,

and thus its symbol

h1 = k00 − (k0i)
q−1
i=0 [(kij)

q−1
i,j=1]−1(ki0)q−1

i=0

is positive definite: h1 > 0. Likewise

h2 = kqq − (kqi)
q−1
i=1

[
(kij)

q−1
i,j=1

]
(kiq)

q−1
i=1 > 0.
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Write now the canonical factorizations (which exist by Theorem 2.1)

h1 = (e+ h1,−)∗h1,d(e+ h1,−), h2 = (e+ h2,+)∗h2,d(e+ h2,+),

where

h1,−, (e+ h1,−)−1 − e ∈ (APW k)n0×n0
Λ∩(−S\{0}), h1,d ∈ C

n0×n0 , h1,d > 0,

and

h2,+, (e+ h2,+)−1 − e ∈ (APW k)nq×nq

Λ∩(S\{0}), h2,d ∈ C
n1×n1 , h2,d > 0.

Introducing the operators

H1 : (Bk)n0×nq

Λ∩(−S) → (Bk)n0×nq

Λ∩(−S), H2 : (Bk)nq×nq

Λ∩S → (Bk)nq×nq

Λ∩S(2.20)

by
H1g = h

1
2
1,d(e+ h1,−)g, H2g = h

1
2
2,d(e+ h2,+)g,

we obtain the equalities

T̃00 −AM−1
2 A∗ = H∗

1H1, Tqq −BM−1
2 B∗ = H∗

2H2.

Observe that

H3 := H∗−1
1 (H −AM−1

2 B∗)H−1
2 : (Bk)nq×nq

Λ∩S → (Bk)n0×nq

Λ∩(−S)

is the operator defined by

H3g = P−S
(

(e+ h1,−)∗−1h
− 1

2
1,d φ(e+ h2,+)−1h

− 1
2

2,d g
)
, g ∈ (Bk)nq×nq

Λ∩S ,

where
φ = k0q − (k0i)

q−1
i=1

[
(kij)

q−1
i,j=1

]−1

(kiq)
q−1
i=0 .

By (2.19) we get that ‖H3‖ < 1. Applying now Theorem 2.5, we get that

β := H3(I −H∗
3H3)−1(e) ∈ (APW k)n0×nq

Λ∩(−S),

δ := (I −H∗
3H3)−1(e) ∈ (APW k)nq×nq

Λ∩S ,

δ−1 ∈ (APW k)nq×nq

Λ∩S and M{δ} > 0. It is now straightforward to check the equal-
ities

x0q = (e+ h1,−)−1h
− 1

2
1,d βh

− 1
2

2,d , xqq = (e+ h2,+)−1h
− 1

2
2,d δh

− 1
2

2,d ,(2.21)

and

(xiq)
q−1
i=1 = −M−1

2 (A∗x0q +B∗xqq)(2.22)

= −
[
(kij)

q−1
i,j=1

]−1 ([
(k0i)

q−1
i=1

]∗
x0q +

[
(kqi)

q−1
i=1

]∗
xqq

)
.

Indeed, to verify (2.21) and (2.22), notice that
T̃00 A H

A∗ M2 B∗

H∗ B Tqq



x0q

x1q

...
xqq

 =


0
0
...
e

 ,(2.23)

and substitute formulas (2.21) and (2.22) for xjq in (2.23). Now clearly,

x0q ∈ (APW k)n0×nq

Λ∩(−S), x
±1
qq ∈ (APW k)nq×nq

Λ∩S ,
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M{xqq} > 0, (xiq)
q−1
i=1 ∈ (APW k)Q×nq

Λ .

This yields that the qth column of x is of the required form. For columns q + 1,
. . . , p of x one uses the same reasoning with (kij)

q
i,j=0 replaced by (kij)

q+s
i,j=s, s =

1, . . . , p− q, respectively. This concludes the proof. �

Analogously to the proof of Proposition 2.6, one may prove the following.

Proposition 2.7. Let T̃ : B3 → B3 be as in Theorem 2.3 and suppose T̃ > 0. Then
y := T̃−1(e) is an invertible element of M−.

Now we may prove our main result.

Proof of Theorem 2.3. First assume (i), i.e., k has a positive extension f . Then
the multiplication operator g �→ fg is a positive definite operator on B. But then its
restrictions to B2 and B3 are also positive definite. Using the multiplication table
(2.10), one obtains easily that for g ∈ M2 we have that T (g) = P2(kg) = P2(fg).
But then the same holds for g ∈ B2. Consequently, it follows that T > 0. Likewise,
one shows that T̃ > 0.

Assume now that (ii) holds. By Proposition 2.6 we have that x := T−1(e) ∈M2,
fx ∈ e+M4+M0

3+M1, and x−1 ∈M+. In addition, it is easy to see that Pdx > 0.
By Theorem 1.1 in Chapter XXXIV of [10] we obtain that f has a positive extension
f0 (in fact, a so-called “band extension”), which is given by

f0 = x∗−1(Pdx)x−1.

But then (i) holds, and consequently (iii) holds as well. It follows by Proposition 2.7
and Theorems 1.2 and 1.3 in Chapter XXXIV of [10] that f0 may also be found via

f0 = y∗−1(Pdy)y−1.

This shows the first part of the theorem.
Next, observe that in the terminology of Chapter XXXIV of [10], M is “an

algebra with band structure (2.9) in the unital C∗-algebra B”. Furthermore, note
that Axiom (A) in Chapter XXXIV of [10] is satisfied; in other words, if F ∈ M+

is such that sup
t∈Rk

‖F (t)‖ < 1, then (I − F )−1 ∈ M+. Indeed, by Proposition 2.3

in [26] (with f = I − F and Ψ(z) = z−1) we obtain (I − F )−1 ∈ (APW )N×N ; on
the other hand, the series (I − F )−1 = I + F + F 2 + · · · converges in ‖ · ‖∞, hence
we have (I −F )−1 ∈M+ as required. Since Axiom (A) in Chapter XXXIV of [10]
holds, we may apply Theorem 2.1 of Chapter XXXIV in [10], yielding the linear
fractional description of the set of all positive extensions.

Next, we need to check that M with decomposition (2.9) satisfies Axioms (C1)
and (C2) in Chapter XXXIV, Section 4 of [10]. Indeed, if f ∈ M is positive then
Pdf is a positive semi-definite matrix, and Pdf equals zero if and only if f = 0.
Thus we may apply Theorems 1.3 and 4.2 in Chapter XXXIV in [10] to obtain the
last statement in the theorem. �

Proof of Proposition 2.4. Observe that if f has the right spectral factorization
(2.11), then

log(det f) = log(det(e+ f+)∗) + log det fd + log(det(e+ f+)).
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Notice: log(det(e + f+)) ∈ M+ (see Proposition 3.2 in [24]). Since (e + f+)±1 ∈
e+M0

+ we have that M{log(det(e+ f+))} = 0. Thus

∆(f) = log det fd.

But then it follows from (2.13) that

∆(f) = log det fd ≤ log det(Pdx)−1 = ∆(f0)

with equality if and only if f = f0 (since for matrices A �= B with A ≥ B > 0 we
have detA > detB; in the terminology of Section XXXIV.4 in [10], the function
“log det” is strictly B-monotone). The reasoning may also be applied to the other
inequality in (2.13). �

It should be noted that similar results may be obtained when the qth diagonal
of k does not solely consist of elements in (APW k)Λ∩(−S) but is per block in any
of

(APW k)Λ∩(−S), (APW k)Λ∩(−S\{0}),

(APW k)Λ, {0}, (APW k)Λ∩(ν−S),

or
(APW k)Λ∩(ν−(S\{0})),

where ν ∈ Λ. Each time a mixture of choices is made, the spaces M1, M0
2,

Md, M0
3, M4 should be appropriately defined and will result in different types of

Toeplitz operators, each time yielding an analogue of Theorem 2.3. The proofs of
such variations require the same type of simple modifications as the ones outlined
in [23, Section 10] and [25, Section 4.5]. We omit further details.

3. The contractive st-block problem

Fix s, t ∈ N, max{t − s, 0} ≤ q ≤ t + 1, a halfspace S of R
k and a subgroup

Λ of R
k. Our problem is the following. Let f = (fij)

s,t
i=1,j=1 be given so that

fij ∈ (APW k)ni×mj

Λ , j − i < q, and fij ∈ (APW k)ni×mj

Λ∩(−S), j − i = q. Find, if
possible,

f̃ = (f̃ij)
s,t
i=1,j=1 ∈ (APW k)(n1+···+ns)×(m1+···+mt)

Λ ,

so that
f̃ij = fij for j − i < q,

f̃ij − fij ∈ (APW k)ni×mj

Λ∩(S\{0}) for j − i = q,

and
‖f̃‖∞ < 1.

Such an f̃ is called a strictly contractive extension of f .
In order to state the results we introduce the following spaces. Let

A1 =
{
f = (fij)si,j=1 : fij ∈ (APW k)ni×nj

Λ for i < j;

fij ∈ (APW k)ni×nj

Λ∩S for i = j; fij = 0 for i > j

}
,
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A2 =
{
f = (fij)

s,t
i=1,j=1 : fij ∈ (APW k)ni×mj

Λ for j − i < q;

fij ∈ (APW k)ni×mj

Λ∩(−S) for j − i = q; fij = 0 for j − i > q
}
,

A3 =
{
f = (fij)ti,j=1 : fij ∈ (APW k)mi×mj

Λ for i < j;

fij ∈ (APW k)mi×mj

Λ∩S for i = j; fij = 0 for i > j

}
,

A4 =
{
f = (fij)

s,t
i=1,j=1 : fij = 0 for j − i < q;

fij ∈ (APW k)ni×mj

Λ∩(S\{0}) for j− i = q; fij ∈ (APW k)ni×mj

Λ for j− i > q
}
.

Further, let

(A∗
1)d = C

n1×n1 ⊕ · · · ⊕ C
ns×ns , (A3)d = C

m1×m1 ⊕ · · · ⊕ C
mt×mt .

We let C1, C2, and C3 denote the closures of A1, A2, and A3 in (Bk)(Σni)×(Σni)
Λ ,

(Bk)(Σni)×(Σmi)
Λ , and (Bk)(Σmi)×(Σmi)

Λ , respectively. Also, C∗1 and C∗2 stand for the
closures of A∗

1 and A∗
2 in (Bk)(Σni)×(Σni)

Λ and (Bk)(Σmi)×(Σni)
Λ , respectively. For a

closed subspace C of (Bk)N×M the symbol PC stands for the orthogonal projection
of (Bk)N×M onto C.

Theorem 3.1. Let f ∈ A2 be given. Then the following statements are equivalent:
(i) f has a strictly contractive extension.
(ii) The operator H : C3 → C2 defined by H(g) = PC2(fg), is a strict contraction.
(iii) The operator H̃ : C∗2 → C∗1 defined by H̃(g) = PC∗

1
(fg), is a strict contraction.

In that case, let

α̂ = (I − H̃H̃∗)−1(e), δ̂ = (I −H∗H)−1(e).

Then α̂−1 ∈ A∗
1, δ̂−1 ∈ A3, and P(A∗

1)d
(α̂) > 0 and P(A3)d

(δ̂) > 0. Further, put

α = α̂[P(A∗
1)d

(α̂)]−
1
2 , δ = δ̂[P(A3)d

(δ̂)]−
1
2 ,

β = H(δ) and γ = H̃∗(α). Then

h0 := βδ−1 = α∗−1γ∗

is a strictly contractive extension of f . In fact, h0 is the unique strictly contractive
extension with h0(e−h∗0h0)−1 ∈ A2. Moreover, h is a strictly contractive extension
of f if and only if

h = (αg + β)(γg + δ)−1,

for some (unique! ) g ∈ A4 with ‖g‖∞ < 1. Also, h is a strictly contractive
extension of f if and only if

h = (α∗ + gβ∗)−1(γ∗ + gδ∗),

for some (unique! ) g ∈ A∗
4 with ‖g‖∞ < 1.
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In addition, let h be a strictly contractive extension of f , and perform factoriza-
tions

I − h∗h = (e+ h+)∗h1,d(e+ h+),(3.1)

and

I − hh∗ = (e+ h−)∗h2,d(e+ h−),(3.2)

with h+, (e + h+)−1 ∈ A3; P(A3)d
(h+) = 0; h1,d ∈ (A3)d; h−, (e + h−)−1 ∈ A∗

1;
P(A∗

1)d
(h−) = 0, and h2,d ∈ (A1)d. Then

h1,d ≤ P(A3)d
(δ̂), h2,d ≤ P(A1)d

(α̂),

and equality occurs in one of the inequalities if and only if h = h0 (and thus both
inequalities are equalities).

Finally,

‖h0‖Bk ≤ ‖f‖Bk√
1− ‖H‖2 =

‖f‖Bk√
1− ‖H̃‖2

,(3.3)

where

‖g‖Bk = [traceM{g∗g}]1/2 , g ∈ (Bk)(
∑
nj)×(

∑
mj)(3.4)

is the Besikovitch norm.

Proof. It is straightforward that (i) ⇒ (ii) and (i) ⇒ (iii) hold. Indeed, if fext is
a strictly contractive extension of f , then the map

g �→ fextg
is a strictly contractive operator acting (Bk)(Σmi)×�

Λ → (Bk)(Σni)×�
Λ , where 2 ∈ N

(in particular, we shall use it for the cases when 2 = Σmi or 2 = Σni). But then
so are any restrictions of this multiplication operator. In particular, it follows that
‖H‖ < 1 and ‖H̃‖ < 1.

Let us show (ii) ⇒ (i). So assume that ‖H‖ < 1. Let Q = n1 + . . . + ns and
R = m1 + . . .+mt. Put

M = (APW k)(Q+R)×(Q+R)
Λ = M1+̇M0

2+̇Md+̇M0
3+̇M4,(3.5)

where

M1 =
[

0 A4

0 0

]
, M0

2 =
[ A0

1 A2

0 A0
3

]
,

Md =
[

(A∗
1)d 0
0 (A3)d

]
, M0

3 = (M0
2)∗, M4 = (M1)∗,

with
A0
r = {f = (fjk)j,k ∈ Ar : M{fii} = 0 for all i}, r = 1, 3.

Furthermore, let

k =
[
e f
f∗ e

]
.

Now we are in the setting of Theorem 2.3. Moreover, with k as defined above, we
find that the operator T in Theorem 2.3(ii) corresponds to

T =
[
I H
H∗ I

]
.
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Thus we apply Theorem 2.3(ii) and obtain that k has a positive extension

kext =
[
e fext
f∗ext e

]
,

where fext− f ∈ A4. But then it follows that f has a strictly contractive extension
fext. This shows (ii) ⇒ (i).

In the same manner one may show (iii) ⇒ (i) using Theorem 2.3.
In particular, the equivalence of (ii) and (iii) shows that ‖H‖ = ‖H̃‖.
Next we observe that with T and T̃ as in Theorem 2.3 with the above choice of

k, we have that

T

[
e −β̂
0 δ̂

]
=

[
e 0
0 e

]
, T̃

[
α̂ 0
−γ̂ e

]
=

[
e 0
0 e

]
,

where β̂ = H(δ̂) and γ̂ = H̃∗(α̂). Thus when we apply Theorem 2.3 with the above
choice of k, we find that x and y defined in Theorem 2.3 correspond to

x =

[
e −β̂
0 δ̂

]
, y =

[
α̂ 0
−γ̂ e

]
.

Thus we obtain from the properties of x and y that α̂−1 ∈ A∗
1, δ̂−1 ∈ A3, and

P(A∗
1)d

(α̂) > 0 and P(A3)d
(δ̂) > 0. Next, when we introduce u and v as in Theo-

rem 2.3, and let

g =
[

0 g̃
0 0

]
∈M1,

then we get that

(u+ vg)∗−1(e− g∗g)(u+ vg)−1 =
[

e (αg̃ + β)(γg̃ + δ)−1

[(αg̃ + β)(γg̃ + δ)−1]∗ e

]
.

This yields the first linear fractional description of the set of all solutions. Likewise,
using the linear fractional description (v+uh)∗−1(e−h∗h)(v+uh)−1 of Theorem 2.3
yields the second linear fractional description.

Note also that it follows from Theorem 2.3 that

f−1
0 =

[
I h0

h∗0 I

]−1

=
[ ∗ h0(I − h∗0h0)−1

∗ ∗
]
∈M0

2 �Md �M0
3.

Thus h0(I − h∗0h0)−1 ∈ A2. In addition, the statement regarding the inequalities

h1,d ≤ P(A3)d
(δ̂), h2,d ≤ P(A1)d

(α̂),

follows directly by applying (2.13).
Finally for the last statement, we use a similar type of argument as in the proof of

Theorem 7.1 in [24]. Indeed, without loss of generality we may assume that ‖H‖ �=
0, excluding the trivial case f = 0. Let ε = 1

‖H‖ . Let now f̃(t) = β(t)δ(t)−1 − f(t).
Using the easily derived inequality

traceM∗M ≤ − log det(I −M∗M),
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which holds for every M ∈ C
Q×R with ‖M‖ < 1, we have:

‖f + f̃‖2Bk = lim
T→∞

1
(2T )k

∫
[−T,T ]k

trace
[(

(f + f̃)(t)
)∗

(f + f̃)(t)
]
dt

≤ − lim
T→∞

1
(2T )k

∫
[−T,T ]k

log det
(
I − ((f + f̃)(t))∗(f + f̃)(t)

)
dt

= − lim
T→∞

1
(2T )k

∫
[−T,T ]k

log det
(
I − (β(t)δ(t)−1)∗β(t)δ(t)−1

)
dt.

Since
(
δ(t)P(A3)d

(δ)−1
)±1 ∈ e+A0

3 we get the equality

M
{

log det
(
δ(t)P(A3)d

(δ)−1
)}

= 0.

Also

I − (β(t)δ(t)−1)∗β(t)δ(t)−1 = δ(t)−1∗(δ(t)∗δ(t)− β(t)∗β(t))δ(t)−1 = δ(t)−1∗δ(t)−1.

Using the last two equalities, we obtain

‖f + f̃‖2Bk ≤M {log det (δ(t)δ(t)∗)} = log det(P(A3)d
(δ̂)) = trace(logP(A3)d

(δ̂)).
(3.6)

Note that

P(A3)d
(δ̂) = P(A3)d

((I−H∗H)−1(I∑ mi
)) = P(A3)d

(I+H∗(I−HH∗)−1H)(I∑ mi
)).

From the inequality log(1 + r) ≤ r valid for r ≥ 0 we get that

log detP(A3)d
(δ̂) ≤ trace

[
P(A3)d

(H∗(I −HH∗)−1H)
]
.(3.7)

Since ‖H‖ = ε, it follows from (3.6) and (3.7) that

‖f + f̃‖2Bk ≤ 1
1− ε−2

traceM
{

(H∗H) (I∑ mi
)
}

=
ε2

ε2 − 1
‖f‖2Bk .

This proves the inequality in (3.3). The equality there follows because ‖H‖ =
‖H̃‖. �

Also in the contractive setting we may state an entropy result along the lines of
Proposition 2.4. Its proof is based on the same observations and we will omit it.

Proposition 3.2. Let f ∈ A2 be given and suppose that f has a strictly contractive
extension. Let h0 be defined as in Theorem 3.1. If h is a strictly contractive
extension of f then

∆(I − h∗h) ≤ ∆(I − h∗0h0),

and equality holds if and only if h = h0.

Analogously to the observation made at the end of Section 2, the same methods
apply for other situations in which the elements of f in the qth diagonal, per block,
are taken from one of the sets

(APW k)Λ∩(−S), (APW k)Λ∩(−S\{0}),

(APW k)Λ, {0}, (APW k)Λ∩(−S+ν),

(APW k)Λ∩((−S\{0})+ν),
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where ν ∈ Λ. For each selection of one of the above sets for every block on the q-th
diagonal, a theorem results which is analogous to Theorem 3.1. The corresponding
analogs of Proposition 3.2 hold true as well.

We state as an example the variation where the elements of f in the qth diagonal
are all taken from (APW k)Λ∩(−S\{0}). This variation will be used in the next
section.

Introduce

Â2 =
{
f = (fij)

s,t
i=1,j=1 : fij ∈ (APW k)ni×mj

Λ for j − i < q;

fij ∈ (APW k)ni×mj

Λ∩(−S\{0}) for j − i = q; fij = 0 for j − i > q
}
,

Â4 =
{
f = (fij)

s,t
i=1,j=1 : fij = 0 for j − i < q;

fij ∈ (APW k)ni×mj

Λ∩S for j − i = q; fij ∈ (APW k)ni×mj

Λ for j − i > q
}
,

and let Ĉ2 and Ĉ∗2 denote the closures in (Bk)(Σni)×(Σmi)
Λ and (Bk)(Σmi)×(Σni)

Λ of
Â2 and Â∗

2, respectively. The spaces A3, C3, A∗
1, and C∗1 are defined as before.

Theorem 3.3. Let f ∈ Â2 be given. Then the following statements are equivalent:
(i) f has a strictly contractive extension, i.e., there exists an

f̃ ∈ (APW k)(n1+···+ns)×(m1+···+mt)
Λ ,

such that PÂ2
(f̃) = f and ‖f̃‖∞ < 1.

(ii) The operator H0 : C3 → Ĉ2 defined by H0(g) = PĈ2
(fg), is a strict contraction.

(iii) The operator H̃0 : Ĉ∗2 → C∗1 defined by H̃0(g) = PC∗
1
(fg), is a strict contrac-

tion.
In that case, let

α̂ = (I − H̃0H̃
∗
0 )−1(e), δ̂ = (I −H∗

0H0)−1(e).

Then α̂−1 ∈ A∗
1, δ̂−1 ∈ A3, and P(A∗

1)d
(α̂) > 0 and P(A3)d

(δ̂) > 0. Further, put

α = α̂[P(A∗
1)d

(α̂)]−
1
2 , δ = δ̂[P(A3)d

(δ̂)]−
1
2 ,

β = H0(δ) and γ = H̃∗
0 (α). Then

h0 := βδ−1 = α∗−1γ∗

is a strictly contractive extension of f . In fact, h0 is the unique strictly contractive
extension with h0(e−h∗0h0)−1 ∈ Â2. Moreover, h is a strictly contractive extension
of f if and only if

h = (αg + β)(γg + δ)−1,

for some (unique! ) g ∈ Â4 with ‖g‖∞ < 1. Also, h is a strictly contractive
extension of f if and only if

h = (α∗ + gβ∗)−1(γ∗ + gδ∗),

for some (unique! ) g ∈ Â∗
4 with ‖g‖∞ < 1.
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In addition, let h be a strictly contractive extension, and perform factorizations
(3.1) and (3.2), with h+, (e+ h+)−1 ∈ A3; P(A3)d

(h+) = 0; h1,d ∈ (A3)d; h−, (e+
h−)−1 ∈ A∗

1; P(A∗
1)d

(h−) = 0, and h2,d ∈ (A1)d, as in Theorem 3.1. Then

h1,d ≤ P(A3)d
(δ̂), h2,d ≤ P(A1)d

(α̂),

and equality occurs in one of the inequalities if and only if h = h0 (and thus both
inequalities are equalities). Finally,

‖h0‖Bk ≤ ‖f‖Bk√
1− ‖H0‖2

=
‖f‖Bk√

1− ‖H̃0‖2
,

where ‖ · ‖Bk is given by (3.4).

The proof of Theorem 3.3 requires a modification of the proof of Theorem 3.1
(and thus implicitly, of the proof of Theorem 2.1). These modifications are of the
same type as the ones in [23, Section 10], [24, Section 4], and [25, Section 4.5]. We
omit further details.

4. Model matching

It is well-known that solutions of the standard four block (as well as one-block
and two-block) problems lead, when using frequency domain approach, to results
concerning model matching, a key problem in control systems. This approach to
model matching has been extensively studied in the the engineering literature (see,
for example, [4], [7], and references there), especially for one-dimensional systems,
and see [27] for some recent results in this direction for multidimensional systems.
In this section we provide an interpretation of Theorem 3.3 in the context of model
matching. We consider filters acting on square summable sequences indexed by an
additive group in R

k. The case of the group Z in R is the familiar case, treated
extensively in the literature (see, e. g., [21]).

Let Λ be an additive subgroup of R
k. For ∆ ⊆ Λ we let 2N2 (∆) denote the Hilbert

space of sequences (vλ)λ∈∆ where at most countably many vλ ∈ C
N are nonzero

and which are square summable in norm, i.e.,
∑
λ∈∆ ‖vλ‖2 < ∞. By 2N×M

1 (∆)
we denote the Banach space of sequences (fλ)λ∈∆ where at most countably many
fλ ∈ C

N×M are nonzero and which are summable in norm, i.e.,
∑
λ∈∆ ‖fλ‖ <∞.

Fix a halfspace S of R
k. With S we associate an ordering ≤S on Λ by q ≤S p if

and only if p−q ∈ S. We shall use the interval notation with the usual conventions.
So, for instance, S ∩ Λ = [0,∞). With an element f ∈ 2N×M

1 ([0,∞)), we associate
a filter Σf : 2M2 ([0,∞)) → 2N2 ([0,∞)), defined by

Σf ((uλ)λ∈[0,∞)) = (yλ)λ∈[0,∞), yλ =
∑
α∈[0,λ]

fαuλ−α.

We shall depict the filter as

✲ ✲Σ
u y

Figure 1
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and call (uλ)λ the input and (yλ)λ the output of the filter. The concatenation of
two filters results in the product filter ΣhΣf . The difference filter Σf − Σh may be
depicted as in Figure 2.

✲

✲

✻
✲

Σh

Σf

Figure 2

With an element f = (fλ)λ∈[0,∞) ∈ 2N×M
1 ([0,∞)) we may associate a member

of (APW k)N×M
Λ∩S , which with a slight abuse of notation we shall also denote by f ,

and which is defined via

f(t) =
∑

λ∈[0,∞)

fλeλ(t), t ∈ R
k.

Note that ΣhΣf = Σhf and Σh−Σf = Σh−f . For a filter Σf we define its norm by

‖Σf‖ = sup
u �=0

‖Σf (u)‖
‖u‖ .

It is not hard to see that ‖Σf‖ = ‖f‖∞ := supt∈Rk ‖f(t)‖.
The model matching problem for linear filters is the following. Given are filters

Σf1 , Σf2 , Σf3 , find a filter Σh so that the filter Σf1 −Σf2ΣhΣf3 depicted in Figure
3 has minimal possible norm.

✲

✲ ✲ ✲

✻
✲

Σh

Σf1

Σf3 Σf2

Figure 3

Equivalently, given f1 ∈ (APW k)N×M
Λ∩S , f2 ∈ (APW k)N×P

Λ∩S and f3 ∈ (APW k)Q×M
Λ∩S ,

find h ∈ (APW k)P×Q
Λ∩S so that ‖f1 − f2hf3‖∞ is as small as possible.

We shall assume that f2 and f3 allow factorizations

f2 = H2

[
G2 0
0 0

]
K2, f3 = H3

[
G3 0
0 0

]
K3,(4.1)
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where H2 ∈ (APW k)N×N
Λ∩S , H−1

2 ∈ (APW k)N×N
Λ , K±1

2 ∈ (APW k)P×P
Λ∩S , H±1

3 ∈
(APW k)Q×Q

Λ∩S ,K3 ∈ (APW k)M×M
Λ∩S ,K−1

3 ∈ (APW k)M×M
Λ , andG2∈ (APW k)k2×k2Λ∩S ,

G−1
2 ∈ (APW k)k2×k2Λ , G3 ∈ (APW k)k3×k3Λ∩S , G−1

3 ∈ (APW k)k3×k3Λ , for some k2, k3 ∈
N. It follows in particular that f2(t) and f3(t) have constant ranks k2 and k3,
respectively, for every t ∈ R

k.
Under these assumptions we shall provide a solution to the suboptimal problem:

Let
ν > inf

h
‖f1 − f2hf3‖∞,

construct one/all h ∈ (APW k)P×Q
Λ∩S such that

‖f1 − f2hf3‖∞ < ν.(4.2)

We emphasize that our setting of the suboptimal problem, including factorizations
(4.1), involves almost periodic functions with Fourier spectrum in Λ only. A sub-
optimal problem of the above type, but under the more restrictive hypotheses that
f2 and f3 are square size and invertible, was solved in [24]. We solve the above
suboptimal problem by reducing it to a contractive four block problem and subse-
quently applying the results of Section 3. For the reduction we follow closely the
ideas of [8].

We first need the following auxiliary result.

Proposition 4.1. Let f2 and f3 satisfy the condition (4.1). Then there exist

f2,i ∈ (APW k)N×k2
Λ∩S , f2,o ∈ (APW k)k2×PΛ∩S ,

f3,ci ∈ (APW k)Q×k3
Λ∩S , f3,co ∈ (APW k)M×k3

Λ∩S ,

such that

f2 = f2,if2,o, f3 = f3,cof3,ci, f∗2,if2,i ≡ I, f3,cif
∗
3,ci ≡ I,(4.3)

f2,o has a right inverse f†2,o ∈ (APW k)P×k2
Λ∩S , and f3,co has a left inverse f†3,co ∈

(APW k)k3×QΛ∩S .

Factorizations (4.3) of f2 an f3 are to be understood as inner/outer factoriza-
tions, where the inner factor is “energy conserving” and the outer factor is “stably
invertible”.

Proof. We shall prove the statement regarding f2. Applying then this result to
f3(−t)∗ will yield the factorization for f3.

Let

F = H2

[
G2

0

]
.

Then F ∗F is a positive definite element of (APW k)k2×k2Λ . By Theorem 2.1 there
exists an invertible element g of (APW k)k2×k2Λ∩S so that F ∗F = g∗g. Let

f2,i = Fg−1, f2,o =
[
g 0

]
K2, f†2,o = K−1

2

[
g−1

0

]
.

It is straightforward to check that f2,i, f2,o, and f†2,o have the required properties.
�
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Theorem 4.2. Let f1 ∈ (APW k)N×M
Λ∩S , f2 ∈ (APW k)N×P

Λ∩S and f3 ∈ (APW k)Q×M
Λ∩S

be given so that (4.1) is satisfied. Introduce f2,o, f3,co, f2,i and f3,ci as in Proposi-
tion 4.1. Also, let ν > 0. Write

1
ν

[
f∗2,i

I − f2,if∗2,i

]
f1

[
I − f∗3,cif3,ci f∗3,ci

]
=

[
f11 f12
f21 f22

]
,

and let s = t = 2 and q = 1. Then the suboptimal model matching problem (4.2) is
solvable if and only if [

f11 P−S\{0}(f12)
f21 f22

]
(4.4)

has a strictly contractive extension. In that case, for every strictly contractive
extension [

f11 f̃12
f21 f22

]
(4.5)

of (4.4) we have that

h := νf†2,o(f12 − f̃12)f†3,co

is a solution to the suboptimal model matching problem (4.2). Conversely, if h is a
solution to the suboptimal model matching problem (4.2) then[

f11 f12 − 1
ν f2,ohf3,co

f21 f22

]
is a strictly contractive extension of (4.4).

Proof. First let (4.5) be a strictly contractive extension of (4.4), i.e.,∥∥∥[f11 f̃12
f21 f22

]∥∥∥
∞
< 1

and P−S\{0}(f̃12) = P−S\{0}(f12). Letting h := νf†2,o(f12 − f̃12)f†3,co, we get that
h ∈ (APW k)P×Q

Λ∩S , and

‖f1 − f2hf3‖∞ =
∥∥∥[ f∗2,i
I − f2,if∗2,i

]
(f1 − f2hf3)

[
I − f∗3,cif3,ci f∗3,ci

]∥∥∥
∞

;

the equality follows because V :=
[

f∗2i
I − f2if∗2i

]
is an isometry, i.e., V ∗V = I, and[

I − f∗3,cif3,ci f∗3,ci
]

is a co-isometry. Thus,

‖f1 − f2hf3‖∞ =
∥∥∥ν [f11 f12

f21 f22

]
−

[
0 f2,ohf3,co
0 0

]∥∥∥
∞

= ν
∥∥∥[f11 f12
f21 f22

]
−

[
0 f12 − f̃12
0 0

]∥∥∥
∞
< ν.
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For the converse, let h be a solution to the suboptimal model matching problem
(4.2), and let f̃12 = f12 − 1

ν f2,ohf3,co. Then P−S\{0}(f̃12) = P−S\{0}(f12) and∥∥∥[f11 f12 + (f̃12 − f12)
f21 f22

]∥∥∥
∞

=
1
ν

∥∥∥f1 − [
f2,i I − f2,if∗2,i

] [0 f2,ohf3,co
0 0

] [
I − f∗3,cif3,ci

f3,ci

]∥∥∥
∞

=
1
ν
‖f1 − f2hf3‖∞ < 1.

�

By using Theorem 3.3 it is now straightforward to obtain a full solution to
the suboptimal model matching problem in terms of Hankel type operators on
Besikovitch space. The solution to the classical model matching problem (k = 1,
Λ = Z) may be found in [8, Section 8.1] for rational matrix functions.

Note that Theorem 4.2 together with Theorem 3.3 provide frequency–domain
formulas for solutions of the suboptimal problem. These formulas may be not
computationally practical. One might anticipate that a conversion to state space
formulas, if possible, would give more practical formulas. However, this must remain
a subject for future research.

One may wonder whether there exist systems in time domain giving rise to
transfer functions that are of the type f ∈ (APW k)N×M

Λ∩S as above. It has been
known since the 80s that delay systems give rise to almost periodic transfer functions
(see, e.g., [18]). Another source are multidimensional systems; [1] is a general
reference. We mention here also the following example (see [16], [17]), which is
relevant to the periodic case (Λ = Z

k); for notational simplicity, we let k = 2:

Σ :



x(n1, n2) = A1x(n1 − 1, n2) +A2x(n1, n2 − 1)+
+B1u(n1 − 1, n2) +B2u(n1, n2 − 1)

y(n1, n2) = C1x(n1 − 1, n2) + C2x(n1, n2 − 1)+
+D1u(n1 − 1, n2) +D2u(n1, n2 − 1)

x(n1, n2) = 0 for (n1, n2) ∈ Z
2 such that n1 ≤ 0, and n1 + n2 = 0;

x(n1, n2) = 0 for (n1, n2) ∈ Z
2 such that n1 ≥ 1, and n1 + n2 = 1

Here A1, A2, B1, B2, C1, C2, D1, and D2 are constant matrices of appropriate
sizes. It should be noted that the initial conditions on x are slightly different from
those in [16]. The vectors u(n), x(n) and y(n), where n = (n1, n2), are usually
referred to as the input, state and output vectors, respectively. We now apply the
z-transform, as follows. Let S be the halfspace

S = {(v1, v2) ∈ R
2 : either v1 + v2 > 0 or v1 ≤ 0 and v1 + v2 = 0}.

Letting
x̂(z1, z2) =

∑
(n1,n2)∈S∩Z2

x(n1, n2)zn1
1 z

n2
2 ,

ŷ(z1, z2) =
∑

(n1,n2)∈S∩Z2+(0,1)

y(n1, n2)zn1
1 z

n2
2 ,
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û(z1, z2) =
∑

(n1,n2)∈S∩Z2

u(n1, n2)zn1
1 z

n2
2 ,

and solving for ŷ in terms of û, we obtain that

ŷ(z1, z2) = f(z1, z2)û(z1, z2),(4.6)

where

f(z1, z2) = z1D1 + z2D2 + (z1C1 + z2C2)(I − z1A1 − z2A2)−1(z1B1 + z2B2).

(To make (4.6) precise, one has to assume that u(0, 0) = 0.) The function f is
known as the transfer function of the system Σ. Assuming that A1 and A2 are such
that the spectral radius of z1A1 + z2A2 is less than one for every z1, z2 ∈ T, upon
the substitution zj = eitj , j = 1, 2, we obtain that f ∈ (APW 2)N×M

Z2∩S .

5. Multiblocks having more general patterns: An example

Using the semi-band structure version of the band method developed in [15]
instead of the standard band method we used in previous sections, we are able to
treat more general positive extension problems. In this section we shall treat one
example illustrating the main ideas. Though far more general results can be stated
and proved (the theory developed in [14] gives an indication how to produce the
most general setup), the notational complexity of doing this is so overwhelming
that we restrict ourselves to the following situation only.

Fix a halfspace S ⊂ R
k, an additive subgroup Λ ⊆ R

k and a vector ν ∈ S. Let
now

∆+ = (ν − S) ∩ S ∩ Λ, and ∆ = ∆+ ∪ (−∆+).
A positive extension problem can be stated as follows: Given

k11 ∈ (APW k)n1×n1
Λ , k−12 = (k+21)∗ ∈ (APW k)n1×n2

Λ∩(−S), k22 ∈ (APW k)n2×n2
Λ ,

k−24 = (k+42)∗ ∈ (APW k)n2×n4
Λ∩(−S), k

c
33 ∈ (APW k)n3×n3

∆ , k34 = k∗43 ∈ (APW k)n3×n4
Λ ,

k44 ∈ (APW k)n4×n4
Λ ,

find
k = (kij)4i,j=1 ∈ (APW k)(n1+···+n4)×(n1+···+n4)

Λ ,

so that

k > 0, P−S(k12) = k−12, P−S(k24) = k−24, P∆(k33) = kc33.

We call k a positive extension of

kc =


k11 k−12 0 0

k+21 k22 0 k−24
0 0 kc33 k34

0 k+42 k43 k44

 .
In order to use the framework of [15] we need to introduce several subspaces

of A := (APW k)Q×Q
Λ , where Q = n1 + · · · + n4. In the following formulas we

shall omit the subscript Λ (for example, (APW k)∆+\{0} is to be understood as
(APW k)(∆+\{0})∩Λ), as well as the sizes of the individual blocks as they are clear
from the block’s position in a matrix.
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Let

A0
+ = (A0

−)∗

=



(APW k)S\{0} (APW k) (APW k) (APW k)

0 (APW k)S\{0} (APW k) (APW k)

0 0 (APW k)S\{0} 0

0 0 (APW k) (APW k)S\{0}


,

Ãd = Ad =


(APW k){0} 0

. . .

0 (APW k){0}

 ,

A0
2 =



(APW k)S\{0} (APW k)−S 0 0

0 (APW k)S\{0} 0 (APW k)−S

0 0 (APW k)∆+\{0} 0

0 0 (APW k) (APW k)S\{0}


,

Ã∗
4 = A1 =



0 (APW k)S\{0} (APW k) (APW k)

0 0 (APW k) (APW k)S\{0}

0 0 (APW k)S\∆+ 0

0 0 0 0


,

Ã0
− = (Ã0

+)∗

=



(APW k)−S\{0} 0 0 0

(APW k) (APW k)−S\{0} 0 0

(APW k) (APW k) (APW k)−S\{0} 0

(APW k) (APW k) (APW k) (APW k)−S\{0}


,

Ã0
3 =



(APW k)−S\{0} 0 0 0

(APW k)S (APW k)−S\{0} 0 0

0 0 (APW k)−∆+\{0} 0

0 (APW k)S (APW k) (APW k)−S\{0}


,
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A2 = A0
2+̇Ad, Ã3 = Ã0

3+̇Ãd,
A∗

− = A+ = A0
++̇Ad, Ã− = Ã∗

+ = Ã0
−+̇Ãd.

It is straightforward to check that the following multiplication tables hold:

· A0
− Ad A0

+

A0
− A0

− A0
− A

Ad A0
− Ad A0

+

A0
+ A A0

+ A0
+

· Ã0
− Ãd Ã0

+

Ã0
− Ã0

− Ã0
− Ã

Ãd Ã0
− Ãd Ã0

+

Ã0
+ Ã Ã0

+ Ã0
+

.(5.1)

Moreover, we have:
A+ = A1+̇A2, Ã− = Ã4+̇Ã3,

and
A1A+ ⊆ A1, A2Ad ⊆ A2, A∗

1A2 ⊆ A0
−,

Ã4Ã− ⊆ Ã4, Ã3Ãd ⊆ Ã3, Ã∗
4Ã3 ⊆ Ã0

+,

Ã−A2 ⊆ A0
−+̇A2, A2A− ⊆ A0

−+̇A2, Ã∗
3A− ⊆ A0

−+̇A2.

We shall let B1, B0
2, etc., denote the closures of A1, A0

2, etc., in B = (Bk)Q×Q
Λ .

In addition, P1, P 0
2 , etc., are the orthogonal projections of B onto B1, B0

2, etc.,
respectively. We observe that when k > 0 is in A, then we have that k allows the
factorizations

k = (e+ k+)∗kd(e+ k+),(5.2)

where k+, (e+ k+)−1 − e ∈ A0
+ and kd ∈ Ad. Indeed, applying a constant permu-

tation matrix that interchanges the third and fourth blocks, the factorization (5.2)
is reduced to that of Lemma 2.2.

We are now ready to state the main result in this section.

Theorem 5.1. Let kc = k∗c ∈ A0
2+̇Ad+̇A0∗

2 = Ã0
3+̇Ãd+̇Ã0∗

3 be given. Then the
following are equivalent:

(i) kc has a positive extension.
(ii) The operator T : B2 → B2 defined by T (g) = P2(kcg) is positive definite.
(iii) The operator T̃ : B̃3 → B̃3 defined by T̃ (g) = P3(kcg) is positive definite.

In that case, let
x = T−1(e), y = T−1(e).

Then
k0 = x∗−1Pd(x)x−1 = y∗−1P̃d(y)y−1

is a positive extension of kc. Moreover, if we let u = xPd(x)−
1
2 and v = yP̃d(y)−

1
2 ,

then k is a positive extension of kc if and only if

k = (vg + u)∗−1(e− g∗g)(vg + u)−1

for some (unique! ) g ∈ A1 with ‖g‖∞ < 1. Lastly, if k is a positive extension of kc
with factorization (5.2), then

kd ≤ Pd(x)−1,

and equality holds if and only if k = k0.
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Proof. As before, the main effort goes into showing that x−1 ∈ A+ and y−1 ∈ Ã−.
We proceed analogously to the proof of Proposition 2.6.

Observing that T > 0 when applied to g = (gij)4i,j=1 ∈ B2 with gij = 0, j �= 1,
yields that k11 > 0, and one checks that x11 = (e+ k11,+)−1k−1

11,d, where

k11 = (e+ k11,+)∗k11,d(e+ k11,+)

is a right canonical factorization.
Next observe that by applying T to elements g = (gij)4i,j=1 ∈ B2 with gij = 0

for j �= 2, we get that the operator[
T̃11 H12

H∗
12 T22

]
,(5.3)

on (Bk)n1×n2
Λ∩(−S) ⊕ (Bk)n2×n2

Λ∩S is positive definite. Here

T̃11(g1) = P−S(k11g1), g1 ∈ (Bk)n1×n2
Λ∩(−S),

and
H12(g2) = P−S(k−12g2), T22(g2) = PS(k22g2), g2 ∈ (Bk)n2×n2

Λ∩S .

Since T̃11 > 0 and T22 > 0, it follows that their symbols k11 and k22 are positive
definite. Write the canonical factorizations (which exist by Theorem 2.1)

k11 = (e+ k1,−)∗k1,d(e+ k1,−), k22 = (e+ k2,+)∗k2,d(e+ k2,+),

where

k1,−, (e+ k1,−)−1 − e ∈ (APW k)n1×n1
Λ∩(−S\{0}), k1,d ∈ C

n1×n1 , k1,d > 0,

and

k2,+, (e+ k2,+)−1 − e ∈ (APW k)n2×n2
Λ∩(S\{0}), k2,d ∈ C

n2×n2 , k2,d > 0.

Introducing the operators

H1 : (Bk)n1×n2
Λ∩(−S) → (Bk)n1×n2

Λ∩(−S) and H2 : (Bk)n2×n2
Λ∩S → (Bk)n2×n2

Λ∩S

by the formulas

H1g = k
1
2
1,d(e+ k1,−)g, H2g = k

1
2
2,d(e+ k2,+)g,

we get that
T̃11 = H∗

1H1, T22 = H∗
2H2.

Consider the operator

H3 := H∗−1
1 H12H

−1
2 : (Bk)n2×n2

Λ∩S → (Bk)n1×n2
Λ∩(−S).

We have

H3g = P−S
(

(e+ k1,−)∗−1k
− 1

2
1,d k

−
12(e+ k2,+)−1k

− 1
2

2,d g
)
, g ∈ (Bk)n2×n2

Λ∩S .

Since the operator (5.3) is positive definite, it follows that ‖H3‖ < 1. Applying
Theorem 2.5, we get that

β := H3(I −H∗
3H3)−1(e) ∈ (APW k)n1×n2

Λ∩(−S),

δ := (I −H∗
3H3)−1(e) ∈ (APW k)n2×n2

Λ∩S ,
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δ−1 ∈ (APW k)n2×n2
Λ∩S and M{δ} > 0. It is now straightforward to check, analo-

gously to (2.21) and (2.22), that

x12 = (e+ k1,−)−1k
− 1

2
1,d βk

− 1
2

2,d , x22 = (e+ k2,+)−1k
− 1

2
2,d δk

− 1
2

2,d ,

and moreover

x12 ∈ (APW k)n1×n2
Λ∩(−S), x±1

22 ∈ (APW k)n2×n2
Λ∩S , M{x22} > 0.

In order to obtain that x33 is of the desired form, observe that T applied to
(gij)4i,j=1 ∈ B2 with gij = 0, j �= 3, yields that[

T33 M∗
43

M43 M44

]
> 0,

where
T33g3 = P∆+(kc33g3), M43g3 = k43g3, g3 ∈ (Bk)n3×n3

∆+
,

M44g4 = k44g4, g4 ∈ (Bk)n4×n3 .

Notice that operator T33 −M∗
43M

−1
44 M43 is positive definite, and(

T33 −M∗
43M

−1
44 M43

)
g3 = P∆+

(
(kc33 − k34k−1

44 k43)g
)
, g3 ∈ (Bk)n3×n3

∆+
.

It follows from (the proof of) Theorem 4.4.1 in [25] that

x33 = (T33 −M∗
43M

−1
44 M43)−1(In3),

has the property that x33 ∈ (APW k)n3×n3
∆+

, x−1
33 ∈ (APW k)n3×n3

Λ∩S andM{x33} > 0.
In addition,

x43 = −k−1
44 k43x33 ∈ (APW k)n4×n3

Λ .

For the fourth column of x observe that T applied to (gij)4i,j=1 ∈ B2 with gij = 0,
j �= 4, yields that [

T̃22 H24

H∗
24 T44

]
> 0,

where
T̃22(g2) = P−S(k22g2), g2 ∈ (Bk)n2×n4

Λ∩(−S),

H24(g4) = P−S(k−24g4), T44(g4) = PS(k44g4), g4 ∈ (Bk)n4×n4
Λ∩S .

The same reasoning as for the second column of x yields that x24 and x44 are of
the required form.

We are now in a position to complete the proof of Theorem 5.1, by applying
Theorems 1.1, 1.3, 1.4, 1.6, 1.10 in [15] to the current setting. The only additional
observation that needs to be made is the following equality (in the notation of
Theorem 1.6 of [15]):

(−c∗vg + cu)(vg + u)−1 + (vg + u)∗−1(−c∗vg + cu)∗

= (vg + u)∗−1[−g∗v∗c∗vg + g∗v∗cu− u∗c∗vg + u∗cu

−g∗v∗cvg + u∗c∗vg − g∗v∗cu+ u∗c∗u](vg + u)−1

= (vg + u)∗−1(−g∗g + e)(vg + u)−1,

where we used that c+ c∗ = u∗−1u−1 = v∗−1v−1. �
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We may state an analog of Proposition 2.4 in the current setting as well.

Proposition 5.2. Let kc = k∗c ∈ Mc be given and suppose that kc has a positive
extension. Let k0 be defined as in Theorem 5.1. If k is a positive extension of kc
then

∆(k) ≤ ∆(k0),
and equality holds if and only if k = k0.

The proof of this proposition is analogous to the proof of Proposition 2.4, and is
left to the reader.
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Birkhäuser, Basel, 1996, MR 97g:47012, Zbl 872.47008.

[3] C. Corduneanu, Almost Periodic Functions, J. Wiley & Sons, 1968, MR 58 #2006,
Zbl 175.09101.

[4] J. C. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory, Macmillan Publishing
Company, New York, 1992, MR 93k:93002.

[5] J. Erdös, On the structure of ordered real vector spaces, Publ. Math. Debrecen 4 (1956),
334–343, MR 18,137b, Zbl 070.33601.
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Periodic Functions, J. Funct. Anal. 115 (1993), 281–293, MR 94f:47020, Zbl 796.42009.

[29] H. J. Woerdeman, Matrix and Operator Extensions, CWI Tract 68. Centre for Mathematics
and Computer Science, Amsterdam, The Netherlands, 1989, MR 91d:47001.

Department of Mathematics, P. O. Box 8795, The College of William and Mary,
Williamsburg VA 23187-8795
lxrodm@math.wm.edu http://www.math.wm.edu/˜lxrodm/

Department of Mathematics, P. O. Box 8795, The College of William and Mary,
Williamsburg VA 23187-8795
ilya@math.wm.edu http://www.math.wm.edu/˜ilya/

Department of Mathematics, P. O. Box 8795, The College of William and Mary,
Williamsburg VA 23187-8795
hugo@math.wm.edu http://www.math.wm.edu/˜hugo/

This paper is available via http://nyjm.albany.edu:8000/j/2001/7-9.html.

http://www.ams.org/mathscinet-getitem?mr=84g:34004
http://www.emis.de/cgi-bin/MATH-item?499.43005
http://www.ams.org/mathscinet-getitem?mr=92f:35002
http://www.emis.de/cgi-bin/MATH-item?712.34001
http://www.ams.org/mathscinet-getitem?mr=98h:47023
http://www.emis.de/cgi-bin/MATH-item?896.42005
http://www.ams.org/mathscinet-getitem?mr=2001c:93009
http://www.ams.org/mathscinet-getitem?mr=94f:47020
http://www.emis.de/cgi-bin/MATH-item?796.42009
http://www.ams.org/mathscinet-getitem?mr=91d:47001
mailto:lxrodm@math.wm.edu
http://www.math.wm.edu/~lxrodm/
mailto:ilya@math.wm.edu
http://www.math.wm.edu/~ilya/
mailto:hugo@math.wm.edu
http://www.math.wm.edu/~hugo/
http://nyjm.albany.edu:8000/j/2001/7-9.html

