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New Prime-Producing Quadratic Polynomials
Associated with Class Number One or Two

R.A. Mollin

Abstract. This article provides necessary and sufficient conditions for a real
quadratic field to have class number one or two in terms of a new set of prime-
producing quadratic polynomials
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1. Introduction

This section is devoted to the elucidation of several facts on ideal theory which
we will require in the balance of the paper.

Let D > 1 be a square-free positive integer and set:

σ =
{

2 if D ≡ 1 (mod 4),
1 otherwise.

Define ω∆ = (σ − 1 +
√
D)/σ, and ∆ = (ω∆ − ω′

∆)
2 = 4D/σ2. The value ∆

is called a fundamental discriminant or field discriminant with associated radicand
D, and ω∆ is called the principal fundamental surd associated with ∆.

There is a family of discriminants upon which we will concentrate in this paper,
defined as follows (see [9] for complete details on their properties and background).

Definition 1.1. If ∆ = �2 + r is a discriminant with r
∣∣ 4�, then ∆ is said to be of

extended Richaud-Degert type (ERD-type).
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Now we develop the notation required for the balance of our discussion. If
[α, β] = αZ+ βZ, then O∆ = [1, ω∆] is called the maximal order or ring of integers
of K = Q(

√
D). It may be shown that any Z-module I �= (0) of O∆ has a repre-

sentation of the form [a, b+ cω∆], where a, c ∈ N with 0 ≤ b < a. We will only be
concerned with primitive ones, namely those for which c = 1. In other words, I
is a primitive Z-submodule of O∆ if whenever I = (z)J for some z ∈ Z and some
Z-submodule J of O∆, then |z| = 1. Thus, a canonical representation of a primitive
Z-submodule of O∆ is obtained by setting σa = Q and b = (P − 1)/2 if σ = 2,
while b = P if σ = 1 for P,Q ∈ Z, namely

I = [Q/σ, (P +
√
D)/σ].(1.1)

A nonzero Z-module I as given in (1.1) is called a primitive O∆-ideal if and only
if P 2 ≡ D (mod Q) (see [11, Theorem 3.5.1, p. 173]). Henceforth, when we refer
to an O∆-ideal it will be understood that we mean a primitive O∆-ideal. Also, the
value Q/σ is called the norm of I, denoted by N(I). A reduced ideal I is one which
contains an element β = (P +

√
D)/σ such that I = [N(I), β], where β > N(I) and

−N(I) < β′ < 0. In fact, the following holds.

Theorem 1.1. If ∆ > 0 is a discriminant and I is an O∆-ideal with N(I) <√
∆/2, then I is reduced. Conversely, if I is reduced, then N(I) <

√
∆.

In particular, for ERD-types, we need to know what the norms of principal
reduced ideals happen to be as in the following, each of which can be verified using
[9, Theorem 3.2.1, pp. 78–80].

Theorem 1.2. Suppose that ∆ = 4(t2±2) = 4D with t > 3. Then I is a principal,
primitive O∆-ideal with N(I) <

√
D if and only if N(I) = 1 or N(I) = 2.

Theorem 1.3. If D = t2+4q ≡ 1 (mod 4) is a fundamental discriminant such that
t > 3 and |q| divides t, then I is a primitive principal OD-ideal with N(I) <

√
D/2

if and only if N(I) = 1 or N(I) = |q|.
Theorem 1.4. If D = 4t2 + q ≡ 1 (mod 4) is a fundamental discriminant with
q|t, then I is a primitive principal O∆-ideal if and only if N(I) is one of 1, |q|,
t+ (q − 1)/4, and if q > 0, also t− (q − 1)/4.

We will also need the following theorem on class groups of quadratic fields.

Theorem 1.5. If ∆ is the discriminant of a real quadratic field and C∆ is the class
group of Q(

√
∆), then C∆ is generated by the non-inert primitive prime ideals with

norm less than
√
∆/2.

Proof. See [9, Theorem 1.3.1, p. 15]. �

We will also be referring throughout to the exponent of C∆, denoted by e∆, which
is the smallest natural number such that Ie∆ = 1 for all I ∈ C∆. Ideals I, J in the
same class of C∆ are denoted by I ∼ J . The following will also be relevant to our
discussion in what follows.

Definition 1.2. If I = [a, (b+
√
∆)/2] is an O∆-ideal, then the ideal I ′ = [a, (b−√

∆)/2] is called the conjugate of I. When I = I ′, I is called an ambiguous ideal,
and if I ∼ I ′, then I is said to be in an ambiguous class of ideals.
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Remark 1.1. It is possible that an ambiguous class of ideals may not contain an
ambiguous ideal. This phenomenon and its consequences are explored in detail in
[9, Chapter 6, pp. 187–198]. See also the 1989 paper by Louboutin [2].

2. Prime-producers and class number one

This section is devoted to class number one criteria for real quadratic fields of
ERD-type in terms of a new family of prime-producing quadratic polynomials. In
[12], we provided class number one criteria for arbitrary discriminants in terms of
certain prime-producing quadratic polynomials. The results of this section extend
those results. However, for ease of exposition, we state our results for only funda-
mental discriminants. The reader may use the techniques of [12] and the theory
developed therein to generalize these results to arbitrary discriminants.

Theorem 2.1. Let ∆ = 4D be a fundamental discriminant with radicand D =
t2 ± 2, for some natural number t > 3. Then h∆ = 1 if and only if

ft(x) = −2x2 + 2tx± 1

is prime for all natural numbers x < t. Also, ft(x) has discriminant ∆.

Proof. To begin, we notice that the prime ideal (t+
√
D) over the rational prime 2

is principal. If h∆ > 1, then by Theorem 1.5 there exists a non-principle primitive
ideal J of odd norm a where 1 < a <

√
D. Set I = (t +

√
D) and write I =

[2a, b +
√
D] with −a ≤ b < a. Hence, with −t < b < t and a natural number x

with x < t, we may let b = t − 2x, since b ≡ t (mod 2) given that 2a
∣∣ (b2 − D).

Since I �∼ 1, then there exists a c > 1 such that N(b+
√
D) = −2ac, for otherwise

we would have I = (b+
√
D) ∼ 1. Therefore,

2ac = D − b2 = −4x2 + 4tx± 2 = 2ft(x),

so ft(x) = ac is composite. We have shown that when ft(x) is prime for all natural
numbers x < t, h∆ = 1.

Conversely, if ft(x) = −2x2 + 2tx ± 1 is composite for some natural number
x < t, then c = c1c2 = ft(x) with 1 < c1 ≤ c2. Let α = 2x − t +

√
D, which is

primitive with norm N(α) = −2c. Thus, I = [c1, α] is a primitive O∆-ideal with
N(I) = c1. If c1 >

√
D, then 2c > c > D, so −4x2 + 4tx ± 2 > t2 ± 2 from which

it follows that 0 > (2x− t)2, a contradiction. Hence, by Theorem 1.1, I is reduced.
If I ∼ 1, then it follows from Theorem 1.2 that 2c1 = 2, contradicting that c1 > 1.
Hence, I �∼ 1, so h∆ > 1. �

In [13], we provided criteria for arbitrary discriminants to have cyclic subgroups
in the class groups of real quadratic orders. The following extends the ideas used
therein.

Theorem 2.2. If D = t2 ± 2, t > 3, is a fundamental radicand and if there exists
an x ∈ N such that −2x2 + 2tx ± 1 = cn for some integers c > 1 and n > 1 with
gcd(D, c) = 1, then C∆ has a cyclic subgroup of order n.

Proof. Set α = 2x−t+
√
D. ThenN(α) = −2cn and I = [c, α] is an O∆-ideal where

∆ = 4D. Since gcd(D, c) = 1, then In = [cn, α]. Also, since [2, α] = (t+
√
D) ∼ 1,

then In ∼ 1 ∼ [2cn, α] = [2, α][cn, α]. By the same reasoning as in the above
proof, cn/2 <

√
D. If there exists a j

∣∣ n with j �= n such that Ij ∼ 1, then since
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cj ≤ cn/2 <
√
D, Ij is reduced. Since t > 3, it follows from Theorem 1.2 that

cj = 1, a contradiction. Therefore, the smallest value of j such that Ij ∼ 1 is
j = n, so C∆ has a cyclic subgroup of order n. �
Remark 2.1. The above is related to results obtained by this author in 1987 (see
[5], as well as [9, Theorem 4.2.4, p. 132], and [15, Theorems 2.2–2.3, p. 475]) as
follows. For D = t2 ± 2 a fundamental discriminant, let δ be defined by

δ =
{

1 if D ≡ 3 (mod 4),
0 if D ≡ 2 (mod 4).

Notice that if we perform the translation x → x+ (t− δ)/2 on ft(x) = −2x2 +
2tx±1, we get f∆(x) = −2x2+2δx+(D−δ)/2. The aforementioned result obtained
in 1987 is that f∆(x) is 1 or prime for all x ∈ N with x < (

√
D + δ)/2 if and only

if h∆ = 1. This translates into the result in Theorem 2.1.

In the 1989 publication [16] (see also [9, Conjecture 4.2.1, p. 140]) we posed the
following.

Conjecture 2.1 (Mollin-Williams–1989). Let D = pq ≡ 5 (mod 8) where p ≡ q ≡
3 (mod 4) with q < p are primes. Then the following are equivalent.
(a) |fq(x)| = |qx2 + qx + (q − p)/4| is 1 or prime for all nonnegative integers

x <
√
D/4− 1/2.

(b) hD = 1 and D is of the form D = q2s2±4q or D = 4q2s2− q for some s ∈ N.

Remark 2.2. In [3], Louboutin proved that (a) implies hD = 1 and D is of the
formD = q2s2±4q if we extend the range of values of x to 0 ≤ x ≤ √

D/2−1/2, and
states: “This result is our first step towards Mollin-Williams’ conjecture...” Then
in [3, Theorem 10] and [4, Theorem 10′] it is proved that if the range of x is 0 ≤
x ≤ √

D/3−1 in (a), then (b) holds. However, in [21], Srinivasan (unconditionally)
proved that if (a) holds, then hD = 1 and the period length of the simple continued
fraction expansion of

√
D is at most 10. This implies, she notes as a corollary,

that Conjecture 2.1 holds with one possible exceptional value of D, whose existence
would be a counterexample to the GRH, since for this value ofD, (b) would hold but
not (a). More recently, in [22], Srinivasan proved (modulo the GRH assumption)
that if q is allowed to be any divisor of D and Fq(x) = |(p− qx2)/4| is 1 or prime
for all odd positive integers x <

√
D/5, then D ≤ 4245. (Note that fq(x) and

Fq(x) are equivalent since fq(x) = ((2x + 1)2q − p)/4.) This establishes (modulo
GRH) a conjecture made by this author in [8, Conjecture 3.1, p. 359] (see also [9,
Conjecture 4.2.2, p. 143]). It also shows that if (a) of Conjecture 2.1 holds, then
hD = 1 and D is of ERD type (modulo GRH). She also proved, unconditionally,
that if q is any divisor of D and Fq(x) is 1 or prime for all odd positive integers
x <

√
D/5, then either hD ≤ 2 or D is of ERD type. Under the assumption of

the GRH, she proved that if q is any divisor of D and Fq(x) is 1 or prime for all
odd positive integers x <

√
D/5, then hD ≤ 2. Another result of interest that

she verified (without the GRH assumption) is that if Fq(x) is 1 or prime for all
odd positive integers x <

√
D/2 and there exists at least one split prime less than√

D/2, then hD ≤ 2 or hD = 4.

A complete list (with one possible GRH-ruled-out exception) of ERD-types hav-
ing class number one is given in [9, Theorem 5.4.3, p. 176], which first appeared
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in the 1990 publication [17], although the announcement of it was made in a note
added in proof at the end of the 1987 paper [6].

We address the class number two problem in the next section.

3. Prime-producers and class number two

We begin with a result that provides necessary and sufficient conditions for
h∆ ≤ 2 and extends the result in [7, Proposition 3.1, p. 89] where continued fraction
techniques were used.

Theorem 3.1. Let ∆ = 4D = 4(t2 ± 2) be a fundamental discriminant, set

S = {odd primes p <
√
D : (D/p) �= −1}

where the symbol on the right is the Legendre symbol, and let

ft(x) = −2x2 + 2tx± 1.

Then the following are equivalent.
(a) Either h∆ = 1 and S = ∅, or h∆ = 2.
(b) For each p ∈ S there exists an x ∈ N with x ≤ t/2 such that ft(x) = prp where

rp is a prime which is the norm of O∆-ideal Rp in an ambiguous class and
Rp ∼ Rp′ for all p, p′ ∈ S.

Also, ft(x) has discriminant ∆.

Proof. Given that the result is vacuously true when t ≤ 3 (since in those cases
h∆ = 1 and S = ∅), we will assume throughout that t > 3.

First suppose that (b) holds. If h∆ = 1, then by Theorem 2.1, S = ∅. Thus,
we may assume that h∆ > 1. By Theorem 1.5, C∆ is generated by the non-inert
primitive prime ideals Pp with N(Pp) = p <

√
D. Since [2, t+

√
D] = (t+

√
D) ∼ 1,

then we may assume that p ∈ S. Given such a p, the hypothesis tells us that
there exists a natural number x ≤ t/2 such that ft(x) = prp for some prime rp

which is the norm of an ambiguous O∆-ideal. If we set b = t − 2x and consider
[2rpp, b +

√
D] = (b +

√
D) ∼ 1, then PpRp ∼ 1 where Rp = [2rp, b +

√
D] and

Pp = [p, b+
√
D]. Therefore, by (b), Rp ∼ R′

p ∼ PpRpR
′
p ∼ Pp. Since (b) also tells

us that Rp ∼ Rp′ for all p, p′ ∈ S, then Pp ∼ Pp′ for all p, p′ ∈ S. Moreover, since
R2

p ∼ 1 for each p ∈ S, then P2
p ∼ 1 for all p ∈ S. Hence, h∆ = 2 (since the only

ideals in the principal class of C∆ with norms less than
√
D are the trivial ideal

and the ideal over 2 by Theorem 1.2, which we may invoke since t > 3). We have
shown that (b) implies (a).

Conversely, we may assume that (a) holds and that S �= ∅ since the result
is vacuously true otherwise. Thus, h∆ = 2. Let p ∈ S and set [2p, b +

√
D] ∼

[p, b+
√
D] = P with 0 ≤ b < p, which is a generator of C∆ by Theorem 1.5. Since

p <
√
D, then b < 2t, so we may set b = t−2x where 1 ≤ x ≤ t. Since P �∼ 1, then as

in previous arguments, there exists a c > 1 such that 2pc = D−b2 = −4x2+4xt±2,
so pc = −2x2 + 2xt± 1 = ft(x).

We now show that c is prime. If c = c1c2 with 1 < c1 ≤ c2, then we may
set α = 2x − t +

√
D and it follows that I = [c1, α] is a primitive O∆-ideal with

N(I) = c1. If c1 >
√
D, then c1c2 = c ≥ c21 > D. However, D ≥ 2ft(x), so c > 2pc,

a contradiction. Thus, c1 <
√
D which means that I is reduced by Theorem 1.1.
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If I ∼ 1, then by Theorem 1.2, c1 = 1 or c1 = 2, both of which are contradictions
since c1 > 1 by choice and c is odd. Hence, I �∼ 1. Since [pc, α] ∼ 1, then

[p, α] ∼ [c, α],(3.2)

given that h∆ = 2. Since [c, α] = [c1, α][c2, α], then if [c2, α] �∼ 1, we must have
that [c, α] ∼ 1 since h∆ = 2. However, this contradicts that P �∼ 1 in view of
(3.2). Hence, [c2, α] ∼ 1. Assume that c2 >

√
D. If pc1 >

√
D, then D <

pc1c2 = pc = ft(x) ≤ D/2, a contradiction, so pc1 <
√
D. Given that P �∼ 1,

[c1, α] �∼ 1, and h∆ = 2, then [pc1, α] ∼ 1. Thus, by Theorems 1.1–1.2, pc1 ∈ {1, 2},
a contradiction. Hence, c2 <

√
D and [c2, α] ∼ 1, so as above, c2 = 1 or c2 = 2,

both of which are contradictions. We have therefore shown that c = rp is prime.
By (3.2), Rp = [rp, α] ∼ P. Since t > 3, we may invoke Theorem 1.2 which tells us
that no element of S can be the norm of a principal O∆-ideal, this then is sufficient
to show that (a) implies (b). �

Remark 3.1. In 1991, we established class number 2 criteria for ERD-types in [7],
using the polynomial f∆(x) defined in Remark 2.1, which involved simple continued
fraction expansions of quadratic irrationals. However, the criterion did not include
the types D = t2 ± 2, which were problematic for the continued fraction approach.
Recently, in [14], we were able to provide such continued fraction criteria for the
latter types as well as some new such criteria for other ERD-types. However, some of
the ERD-types were also excluded in [14], namely those of the form D = t2±2 = 2p
where p is prime. The reason is that these types are those for which there exist
ambiguous classes of ideals in O∆ without ambiguous ideals in them. The approach
given in Theorem 3.1 does not suffer from this defect and so is more general. Thus,
as with the class number one criteria given in the previous section, we have new
class number two criteria in terms in the polynomials ft(x).

In [14], we posed the conjecture that if ∆ = 4(t2 ± 2) = 4D is a fundamen-
tal discriminant, then h∆ = 2 if and only if D is one of 34, 66, 102, 119, 123, 146,
194, 258, 287, 402, 482, 527, 623, 678, 782, 843, 902, 1022, 1298. Moreover, given the
aforementioned techniques, we know that the list is complete with one GRH-ruled-
out exception. Given the comments in Remark 1.1, it is worthy of note that the
only values of D in the aforementioned list where the class group is generated by
an ambiguous class without ambiguous ideals are D ∈ {34, 146, 194, 482}.

We now look at criteria for class number two for the remaining ERD-types in
terms of quadratic polynomials which behave in a fashion similar to Theorem 3.1.
We do not provide proofs for the following since the arguments are analogous to
those presented above by using Theorems 1.3–1.4.

Theorem 3.2. If ∆ = t2 + 4q ≡ 5 (mod 8) is a fundamental discriminant with
q

∣∣ t, and S = {primes p �= |q| < √
∆/2 : (∆/q) �= −1}, then the following are

equivalent.
(a) Either h∆ = 1 and S = ∅ or h∆ = 2.
(b) For all p ∈ S there exists a natural number x < t/2 such that

|ft(x)| = | − x2 + tx+ q| = prp,

where rp is a prime that is the norm of an ideal Rp in an ambiguous class of
C∆ and Rp ∼ Rp′ for all p, p′ ∈ S.
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Theorem 3.3. If ∆ = 4t2 + q ≡ 1 (mod 4) is a fundamental discriminant with
|q| ∣∣ t and

S = {primes p <
√
∆/2 : p �= |q|, t± (q − 1)/4, and (∆/p) �= −1},

then the following are equivalent.
(a) Either h∆ = 1 and S = ∅ or h∆ = 2.
(b) For all p ∈ S there exists a natural number x ≤ t such that

ft,q(x) = −x2 ++(2t+ 1)x+ (q − 4t− 1)/4 = prp,

where rp is a prime that is the norm of an ideal Rp in an ambiguous class of
C∆ and Rp ∼ Rp′ for all p, p′ ∈ S.

Also, ft,q(x) has discriminant ∆.

In the 1991 publication [18] (see also [9, Table A9, p. 286]) we established the
complete list of ERD type discriminants ∆ with h∆ = 2 (with one GRH-ruled out
exception). The largest of these is ∆ = 14405 and the second largest is ∆ = 9005.
Also, in [19]–[20], we established under the assumption of the GRH that if ∆ is any
fundamental discriminant, h∆ ≤ 2, and the period length of the simple continued
fraction expansion of ω∆ is at most 25, then ∆ ≤ 248093 (see also [9, Table A3,
pp. 274–277]).

Acknowledgements. We thank the referee who made comments that resulted in
a more concise and polished version of the paper.
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