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Lifting Möbius Groups

J. O. Button

Abstract. We construct explicit examples of subgroups of PSL(2, C), PSU(2)
and PSL(2, R) with no elements of order 2 which cannot be lifted up to
SL(2, C).
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1. Introduction

Given a surjective homomorphism of groups π : G → H, we say that the sub-
group K ≤ H has a lift (to G via π) if there exists K ≤ G with π an isomorphism
from K to K. In other words, π−1(K) is a split extension (equivalently a semi-
direct product) of π−1(K) ∩ ker π. Of course in general lifts are not unique and
may not even exist but one case where they always do is when K is a free group.
The universal property of free groups means that for any π,G and H, a function
f : S → G sending each element of a free generating set S for K to any element
above it can be extended to a homomorphism of K, and this will be injective.
Throughout this paper we consider the case of π : SL(2,C) → PSL(2,C) with

ker π = {±I} which is an important and well studied example, fundamental to
the theory of Kleinian groups and hyperbolic geometry because PSL(2,C) is the
group of all Möbius transformations and SL(2,C) consists of matrix representatives
of those transformations. The first thing that can be said is that if K is a Möbius
group, namely a subgroup of PSL(2,C), with elements of order 2 then no lifts of
K can exist; this is most easily seen by noting that the only element in SL(2,C) of
order 2 is −I. As for cases where lifts exist, it is shown in [2] using covering space
theory that a discrete subgroup of PSL(2,C) with no elements of order 2 can be
lifted. Partial results of this nature have a long history; a thorough discussion is
given in [7] where it is shown that, especially in the case of the existence of a lift
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of a discrete subgroup of PSL(2,R) without elements of order 2, the same results
have often been rediscovered and republished.
However, surely there is a case left over which presents us with a question that is

crying out to be asked, namely: if Γ is an indiscrete subgroup of PSL(2,C) with no
elements of order 2 then does Γ possess a lift? Although it is easy to find examples
of specific indiscrete Möbius groups with lifts (merely take a indiscrete free group,
such as a cyclic group generated by an elliptic transformation of infinite order),
in this paper we show that the answer to our question is no in general. Moreover
we show how to create explicit examples of Möbius groups with no lifts and no
elements of order 2, or even with no elliptic elements, and we also find subgroups of
PSL(2,R) and PSU(2) (which is isomorphic to SO(3)) with no lifts and no elements
of order 2, and these can be torsion free.
The proof proceeds by considering a class of subgroups of PSL(2,C) which are

generated by four elements. It is easy to see that no member of this class possesses
a lift, but this is established without mention of elements of order 2. The hope
is then that something in the class has no elements of order 2, but in order to
prove this we first have to show that no word in the four generators can be of order
2 for all these subgroups, and then we use transcendental numbers, and the idea
of algebraic independence, to construct examples of specific groups in this class
without elements of order 2.
In the last section we review the difference between lifts of subgroups and lifts

of representations, which puts the results in Section 2 in a wider setting.

2. Results

The fact that given ±A,±B ∈ PSL(2,C) we are able to regard the commu-
tator ABA−1B−1 as a well-defined element of SL(2,C) can be useful for seeing
that a Möbius group G has no lifts. For instance in [8] (Example 3) it is pointed
out that if we take any subgroup Γ = 〈A,B,C,D〉 of SL(2,C) where the relation
ABA−1B−1CDC−1D−1 = −I holds then the projection πΓ (which will be a ho-
momorphic image of the closed surface group of genus 2) cannot be lifted, because
whatever matrices ±A,±B we choose to lie above πA and πB, the commutator of
±A and ±B will remain the same. This is also true for C and D, so π(ABA−1B−1)
and π(DCD−1C−1) are equal but any matrices lying above them cannot be. It is
not a priori evident that there must be elements of order 2 in πΓ, so we would
hope that examples of this type could be used to construct a Möbius group with
no elements of order 2.
Let

X = {(A,B,C,D) ∈ SL(2,C)4 : ABA−1B−1CDC−1D−1 = −I}
so that, from above, the image under π of any group generated by an element of X
cannot possibly have a lift. For each reduced word w in the free group on four ele-
ments we wish to show that there exists (A,B,C,D) ∈ X with w(πA, πB, πC, πD)
not an element of order 2. We might think that this would be straightforward by
evaluating w(A,B,C,D) using particular matrices such as the identity (for instance
if our relation above had I rather than −I on the right-hand side then putting all
four matrices equal to I would do it immediately), but the problem is that if one
of A,B,C,D is set equal to the identity then the defining relation of X requires
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that we need two elements of SL(2,C) with commutator −I. There is only one
pair of matrices with this property (up to simultaneous conjugation in SL(2,C)),
generating a quaternionic group, and they project down to two rotations of order
2 whose product is also of order 2. It can be assumed that the axes of these three
Möbius transformations pass through the centre of the Riemann sphere and are
mutually perpendicular. We now exploit this information while proceeding care-
fully in order to extract a contradiction from the assumption that there is a word
w with w(πA, πB, πC, πD) of order 2 for all (A,B,C,D) ∈ X.

Lemma 1. For all words w in the free group on four elements, there exists an
element (A,B,C,D) ∈ X with w(πA, πB, πC, πD) not of order 2.

Proof. We proceed by considering the parity of the exponent sums a, b, c, d of
A,B,C,D in the word w which is claimed always to be of order two. We first
take matrices A,B,C,D with corresponding Möbius transformations α, β, γ, δ such
that A,B generate a quaternionic group, with γ an element of infinite order and
two fixed points equal to those of αβ, and D = I. Then we have a subgroup of
PSL(2,C) with presentation

〈α, β, γ, δ : α2 = β2 = δ = id, αβ = βα, αγα = βγβ = γ−1〉
and we now use the relations to put w(α, β, γ, δ) into one of the normal forms γk,
αγk, βγk, αβγk for k ∈ Z, noting that this does not change the parity of a, b or c.
But γk is not of order 2, and nor is αβγk unless k = 0. Thus if c is odd then exactly
one of a and b is odd, and if c is even then a and b are not both even. Repeating
the argument with C and D generating a quaternionic group, taking one of A,B
whose exponent sum has odd parity (there is at least one) to be of infinite order
with the same fixed points as γδ and the other the identity, we conclude that one
of c, d is odd (say c) and one is even. But going back to the first case, we now have
one of a, b is odd (say a) and one is even.
Finally we take the case where A and B again generate a quaternionic group,

with C chosen such that γ is an element of infinite order sharing the same fixed
points as α, and D = I. We now get the group of Möbius transformations

〈α, β, γ, δ : α2 = β2 = δ = id, αβ = βα, αγα = γ, βγβ = γ−1〉
again with normal forms γk, αγk, βγk, αβγk, and as the parity of a, b, c is preserved
throughout with a, c odd and b even, w(α, β, γ, δ) must be αγk. This has infinite
order unless k = 0, which is not the case as c is odd. �

It is the case that a Möbius transformation α has order two if and only if the
trace of either of the matrices above α is zero. If we knew that X was connected
then a Baire category argument along with Lemma 1 would establish our result but
it would not be constructive, unlike what follows.

Theorem 2. There exist subgroups of PSL(2,C) which contain no elements of or-
der two but which have no lifts to SL(2,C).

Proof. Note that in the proof of Lemma 1 we are free to take a conjugate of any
(A,B,C,D) which is used and that throughout the proof we never needed πA to
have just one fixed point; either we can assume it has two or A = I, so that by
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normalising we can assume that A fixes 0 and infinity. Therefore we define X0 to
be the subset of X where A is a diagonal matrix. Letting

A =
(

λ 0
0 1/λ

)
, B =

(
a b
c d

)
, C =

(
α1 β1

γ1 δ1

)
, D =

(
α2 β2

γ2 δ2

)

where λ �= 0 and ad − bc, αiδi − βiγi are equal to 1 for i = 1 and 2, we would like
to find what relations hold between the various entries to ensure that (A,B,C,D)
is in X. Let us set

CDC−1D−1 =
(

α β
γ δ

)
;

we will not need to know the exact expressions for α, β, γ, δ, just that they are
polynomials in αi, βi, γi, δi for i = 1, 2. By replacing ad with 1 + bc and solving for
λ2, then c, a and d, we find that setting

a = − β(1 + α)
b(α+ δ + 2)

, c = − (α+ 1)(δ + 1)
b(α+ δ + 2)

, d =
b(αδ − 1)
β(1 + α)

, λ2 = − 1 + δ

1 + α
(1)

for α+δ �= −2; b, β �= 0 and α, δ �= −1, we obtain matrices such that (A,B,C,D) ∈
X which can be easily checked. We define Y ⊆ X0 to be all (A,B,C,D) of this
form with βi nonzero for i = 1, 2 so that we can replace γi with (αiδi − 1)/βi.
If (A,B,C,D) ∈ Y then it is the case that all entries in A,B,C,D, and hence
all entries in all elements of Γ = 〈A,B,C,D〉, are rational functions of the eight
variables α1, β1, δ1, α2, β2, δ2, b, λ subject only to the above inequalities and λ2 =
−(1 + δ)/(1 + α). We then take the first seven variables to be complex numbers
that are algebraically independent (over Q), that is

p(α1, β1, δ1, α2, β2, δ2, b) �= 0
for any polynomial p ∈ Q[t1, . . . , t7] that is not identically zero. As a result we are
guaranteed that none of the problem equalities will hold.
Now let us suppose that there is a w with the rational function trw(A,B,C,D)=

0 when these particular seven values are inserted (and either of the two possible
values for λ). We must then have a polynomial p in our eight variables equal to
zero. Writing this as p(λ) = p0(λ2) + λp1(λ2), we have p2

0 − λ2p2
1 = 0 and as

we can replace the λ2 in terms of our seven algebraically independent variables,
this must be identically zero. This means that for all (A,B,C,D) ∈ Y , either
trw(A,B,C,D) = 0 or trw(−A,B,C,D) = 0 where −A occurs by replacing λ
with −λ, but trw(−A,B,C,D) = ±w(A,B,C,D) so the second case implies the
first anyway. We would now like to apply Lemma 1 to Y in order to show that
no word w can have trace identically zero throughout all of Y but a little care is
needed because it could be that for some of the Möbius transformations used in
the proof of the Lemma the problem equalities will be satisfied and so the matrix
entries will not be defined. We get round this by noting that we can certainly
apply the proof of Lemma 1 to X0 instead of X without change. Although in the
course of this proof we will take points p = (A,B,C,D) which lie in X0 − Y , we
can always find a sequence pn in Y with pn → p by ensuring that none of the
problem equalities hold for pn, so that the corresponding matrices will be of the
form in (1). Thus we can now apply Lemma 1 to the set Y , and if we have to use
(A,B,C,D) ∈ X0 − Y with trw(A,B,C,D) = t �= 0, then taking (An, Bn, Cn, Dn)
in Y tending to (A,B,C,D), we will have trw(An, Bn, Cn, Dn) → t so that for
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some point in Y the trace of w is not zero. This is a contradiction and so inserting
algebraically independent numbers into the matrices whose form is given in (1)
gives us explicit Möbius groups with no lifts but no elements of order 2. �
Note that all these groups with no lifts and no elements of order 2 must be

indiscrete by the result in [2], even though a priori we have no reason to suppose
this. Moreover there certainly exist discrete groups in X but their projections must
contain elements of order 2.
It might be asked how one knows the existence of and actually finds z1, . . . , zn ∈

C which are algebraically independent. We can do this by using a famous theorem
of Lindemann [1] from 1882, that if x1, . . . , xn are distinct algebraic numbers and
y1, . . . , yn are any algebraic numbers that are not all 0 then

n∑
i=1

yie
xi �= 0.

In particular, {xi} being algebraic numbers linearly independent overQ implies that
exi are algebraically independent over Q. Also n-tuples of C that are algebraically
independent are dense in Cn. This is a consequence of the following parallel of
the Steinitz exchange theorem (which can be found in [3] or most introductory
textbooks on Galois theory). If L : K is a field extension, C a subset of L which
is algebraically independent over K, and A a subset of L such that L : K(A) is
algebraic then the cardinality of C is no bigger than that of A and there exists a
set D with the same cardinality of A such that C ⊆ D ⊆ A ∪ C and L : K(D)
is algebraic. Therefore if C = {z1, . . . , zn} is a given algebraically independent set
over K = Q and we let L = Q(z1, . . . , zn, α1, . . . , αn) for any nonzero algebraic
numbers αi and A = {α1z1, . . . , αnzn}, then if A is not algebraically independent
we could remove elements until it was while still keeping L : K(A) algebraic, which
contradicts the above result.

Corollary 3. There exist subgroups of PSL(2,R) with no lift to SL(2,R) and no
elements of order 2.

Proof. Merely take seven algebraically independent real numbers and form the
above matrices; one has only to choose entries for C and D so that λ2 = −(1 +
δ)/(1 + α) is positive, and this property can be preserved by moving to six alge-
braically independent values that are suitably close. �
As a consequence of the famous inequality of Jørgensen [5], he shows in [6] that

if every elliptic element of a non-elementary subgroup of PSL(2,R) is of finite order
then the subgroup is discrete. However this does not hold for non-elementary sub-
groups of PSL(2,C), as was shown by Greenberg in 1962 in [4] where an indiscrete
group which is free on a countably infinite number of generators is constructed with
only the identity having a real trace. In our case, as all such subgroups of PSL(2,R)
that we create in Corollary 3 are indiscrete and non-elementary, they must contain
an elliptic element of infinite order even if it is not immediately apparent which
one.

Corollary 4. There exist subgroups of

PSU(2) =
{(

a b

−b a

)
: a, b ∈ C, aa+ bb = 1

}
/± I

which contain no elements of order two but which have no lifts to SU(2).
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Proof. We require seven algebraically independent complex numbers α1, β1, δ1, α2,
β2, δ2, b such that all four matrices created will lie in SU(2). To see this can be
done, choose xi, yi, ui for i = 1, 2 to be six algebraically independent reals such
that x2

i + y2
i + u2

i < 1, let vi be either square root of 1 − x2
i − y2

i − u2
i and define

αi = xi + iyi, βi = ui + ivi, δi = xi − iyi. This implies that C,D are now in SU(2)
and thus so is −DCD−1C−1. Note that (α+ 1)(δ + 1)/(α+ δ + 2) = µ is real and
between 0 and 1, because |α| < 1 and δ = α. We now choose b1 ∈ R so that b21 < µ
and with xi, yi, ui, b1 algebraically independent. Setting b2 to be a square root of
µ− b21 and b = b1 + ib2, we can now solve for a, c, d and λ to form the matrices A
and B which we can check by a straightforward calculation will lie in SU(2). To
see that our seven complex numbers are again algebraically independent, we form
the extension field k by adjoining all of them to the rationals, whence we will have
xi, iyi ∈ k, as well as ui (because βi, βi are in k) and the entries of CDC−1D−1.
This will imply that |b|2 (= −bc), thus b and then b1, lie in k too.
Thus k contains l = Q(xi, iyi, ui, b1) and as Q(xi, iyi, ui, b1, i) = Q(xi, yi, ui, b1, i)

is an algebraic extension of both l and the field Q(xi, yi, ui, b1), we have algebraic
independence. �
We finish by displaying a stronger property of our examples already constructed,

which follows by the same techniques.

Theorem 5. There exist subgroups of PSL(2,R) (respectively PSU(2)) with no lifts
to SL(2,R) (respectively SU(2)) which are torsion free. There also exist subgroups
of PSL(2,C) with no lifts to SL(2,C) which contain no elliptic elements.

Proof. For SL(2,R) and SU(2), take any of the examples that we have constructed
above. Suppose in such a group we have a matrix of finite order, then it has a trace
that is an algebraic number α ∈ (−2, 2). Thus we have a word w on four letters
A,B,C,D with

trw(A,B,C,D) = r(α1, β1, δ1, α2, β2, δ2, b, λ) = α

where r is a rational function in these variables, as before. Thus taking an ir-
reducible f ∈ Z[X] with f(α) = 0, we have f(r(λ)) = 0 (suppressing the other
variables temporarily). We can write f(r(λ)) = γ0(λ2) + λγ1(λ2) where γ0 and γ1

are also rational functions, and note that

r(−λ) = trw(−A,B,C,D) = ±trw(A,B,C,D).
Then f(r(λ))f(r(−λ)) is (on substituting for λ2) a rational function of seven al-
gebraically independent numbers, thus is identically zero. This means that for all
values of our variables either trw(A,B,C,D) or trw(−A,B,C,D) is a root of f .
But making A,B generate a quaternionic group and C = D = I, we obtain a group
〈A,B,C,D〉 whose only traces are equal to 0 or ±2. Thus these are the only possi-
ble values for α, but we already know that our groups have no elements with trace
0.
To obtain an example in PSL(2,C) with no elliptics, we take 14 algebraically

independent reals which make up the real and imaginary parts of our seven complex
numbers (which will then also be algebraically independent). If we had a word
w with real trace in our group then splitting trw(A,B,C,D)trw(−A,B,C,D) =
u+iv into real and imaginary parts, we have that because v is zero for our particular
chosen values, it must be the case that v is identically zero. But tr(w) is an analytic
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function of these variables and so must be real and constant. So using the same
group as above, our traces can only be 0 and ±2, with 0 already eliminated. �

As a byproduct we obtain examples of non-elementary indiscrete subgroups of
PSL(2,C) with no elliptic elements, which provide a finitely generated version of
Greenberg’s counterexample. We can also use algebraic independence to construct
finitely generated free groups having no elliptic elements which are non-elementary
and indiscrete. Such groups will possess lifts whereas our examples in Theorem 5
are non-free groups without lifts, thus providing an indirect proof of indiscreteness.

3. Lifts of representations

We finish by discussing the difference between lifting of subgroups and lifting
of representations. If π : G → G is a surjective homomorphism of groups and
Hom(Γ, G) is the set of all representations from the group Γ to G then we say that
the representation ρ ∈ Hom(Γ, G) has a lift if there exists ρ ∈ Hom(Γ, G) with
ρ = πρ. This does not imply in general that the subgroup ρ(Γ) of G has a lift to G
via π but we do obtain a lift ρ(Γ) if ρ is faithful, for then π is injective from ρ(Γ)
to ρ(Γ). However, taking our usual π : SL(2,C)→ PSL(2,C) and Γ = Z4k to be a
cyclic group, we can lift the representation ρ : Z4k → Z2k ≤ PSL(2,C) to SL(2,C)
but ρ(Γ) has elements of order 2. The “basic observation” equivalent to the fact
that a subgroup of PSL(2,C) with elements of order 2 does not lift is probably that
a representation ρ : Γ → PSL(2,C) does not lift if there exists γ ∈ Γ of order 2
which is not in ker ρ, for then πρ(γ) being of order 2 would imply that ρ(γ) was of
order 4.
Conversely though, if ρ is any representation in Hom(Γ, G) with the subgroup

ρ(Γ) having a lift L to G then we can obtain a lift ρ of ρ by setting ρ = π−1ρ from
Γ to G, so that ρ(Γ) = L.
In specialising to our case of π : SL(2,C)→ PSL(2,C), we have that if ρ is any

lift of the representation ρ ∈ Hom(Γ,PSL(2,C)) then all lifts above ρ are of the
form ε ·ρ (multiplication) for ε : Γ→ ker π any homomorphism. But assuming that
ρ(Γ) can be lifted to L = ρ(Γ), the subgroup ε ·ρ(Γ) of G is a lift of ρ(Γ) if and only
if ker ρ ≤ ker ε, as only then will π be injective on ε · ρ(Γ). This process provides
new lifts of the subgroup ρ(Γ) and all such lifts can be obtained in this way.
The result in [2] that a discrete subgroup of PSL(2,C) with no elements of

order 2 has a lift is set in the general framework of Γ being an abstract group,
G a connected topological group and G a covering space of G with a compatible
group structure, in which case Hom(Γ, G) has the subspace topology induced by the
topology on the relevant product of G. It is also shown under these circumstances
that the representation ρ lifts to G if and only if every representation in the path
component of ρ in Hom(Γ, G) lifts. For examples using π : SL(2,C) → PSL(2,C),
if Γ has torsion then Hom(Γ, G) will not be connected if there exists a faithful
representation of Γ in G because ρ �→ |tr(ρ(γ))| is continuous with discrete image
(including 2 and another point) for γ(�= 1) of finite order. But if Γ is the free group
Fk then Hom(Fk,PSL(2,C)) = PSL(2,C)k which is (path) connected, so that every
PSL(2,C)-representation of a finitely generated free group lifts to SL(2,C) (which
we effectively saw earlier by sending a free generating set {γi} of Fk to matrices
above ρ(γi) and extending to a homomorphism) because the trivial homomorphism
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always lifts. However, clearly there are plenty of (unfaithful) ρ ∈ PSL(2,C)k with
the subgroup ρ(Γ) not possessing a lift.
We can now see that the space X in Section 2 is really obtained by taking

Y = Hom(Γ,PSL(2,C)) for Γ the fundamental group of the closed surface of genus
2 with presentation

〈α, β, γ, δ : αβα−1β−1γδγ−1δ−1 = 1〉
and noting that the function f : Y → ±I that sends ρ to ABA−1B−1CDC−1D−1

(where A,B,C,D are either of the matrices above ρ(α), ρ(β), ρ(γ), ρ(δ)) is well-
defined because every generator has even exponent sum in the relation. Therefore
we have been considering those ρ with f(ρ) = −I, so that none of these representa-
tions have a lift and hence no subgroup ρ(Γ) can be lifted. We can try to generalise
this argument for Γ a group with a given finite presentation

〈γ1, . . . , γk : r1 = · · · = rl = I〉
by taking the (abelianised) l × k presentation matrix over Z2, and if the columns
do not span Zl

2 (such as if l > k) then a suitable change of some of the appearances
of I to −I in the presentation for Γ provides us as before with representations into
PSL(2,C) with no lifts to SL(2,C), but for this to work we require that there do
actually exist matrices in SL(2,C) satisfying the new equations. Luckily in our case
there are, so that we then had plenty of non-liftable representations of Γ available
in our search for ones with no elements of order 2 in their image.
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