New York Journal of Mathematics

New York J. Math. 8 (2002) 257-258.

Lifting Möbius Groups: Addendum

J. O. Button

ABSTRACT. We show that if Γ is a group with $H^2(\Gamma; \mathbb{Z}_2) = 0$ then every representation of Γ into $PSL(2, \mathbb{C})$ lifts to $SL(2, \mathbb{C})$, but the converse does not hold.

In [2] we consider the natural surjection $\pi : \mathrm{SL}(2, \mathbb{C}) \to \mathrm{PSL}(2, \mathbb{C})$ and we examine the question of when a subgroup of $\mathrm{PSL}(2, \mathbb{C})$ can be lifted to $\mathrm{SL}(2, \mathbb{C})$. In Section 3 of that paper we let Γ be an abstract group and ask when a representation $\rho : \Gamma \to \mathrm{PSL}(2, \mathbb{C})$ can be lifted to a representation $\overline{\rho} : \Gamma \to \mathrm{SL}(2, \mathbb{C})$; that is $\rho = \pi \overline{\rho}$. It is pointed out there that if ρ is a faithful representation then the question is the same as whether the subgroup $\rho(\Gamma)$ has a lift, but it is not the same in general. A question that has been raised on this topic is which groups Γ have the property that every representation $\rho \in \mathrm{Hom}(\Gamma, \mathrm{PSL}(2, \mathbb{C}))$ can be lifted; certainly any free group possesses this property.

We first show the following proposition which is known and is outlined in [3, p. 118], [4, p. 174] and [1, p. 755].

Proposition 1. If $H^2(\Gamma; \mathbb{Z}_2) = 0$ then every representation ρ of Γ into $PSL(2, \mathbb{C})$ can be lifted to $SL(2, \mathbb{C})$.

Proof. Given such a ρ , we seek a group $\hat{\Gamma}$ with $\hat{\Gamma}/\mathbb{Z}_2 = \Gamma$ and, if $\phi : \hat{\Gamma} \to \Gamma$ is the natural surjection, a representation $\hat{\rho} : \hat{\Gamma} \to \operatorname{SL}(2, \mathbb{C})$ with $\pi \hat{\rho} = \rho \phi$. If so then $\hat{\Gamma}$ is a central extension of \mathbb{Z}_2 by Γ , although note that $(\hat{\Gamma}, \phi, \hat{\rho})$ is not uniquely determined by these conditions: if ρ does lift to $\bar{\rho}$ and $\phi : \hat{\Gamma} \to \Gamma$ is any central extension of \mathbb{Z}_2 by Γ then setting $\hat{\rho} = \bar{\rho}\phi$ will do. In our case we define $\hat{\Gamma}$ using the pullback; this means that

$$\hat{\Gamma} = \{(\gamma, x) : \gamma \in \Gamma, x \in \pi^{-1}(\rho(\gamma))\},\$$

 $\phi(\gamma, x) = \gamma$ and $\hat{\rho}$ is the homomorphism from $\hat{\Gamma}$ to $\mathrm{SL}(2, \mathbb{C})$ defined by $\hat{\rho}(\gamma, x) = x$. Then if $\phi : \hat{\Gamma} \to \Gamma$ is the trivial central extension, so that $\hat{\Gamma} \cong \Gamma \times \mathbb{Z}_2$ and we can define the homomorphism $\phi^{-1} : \Gamma \to \Gamma \times \{I\}$, we get a lift of ρ by setting $\bar{\rho} = \hat{\rho}\phi^{-1}$. Moreover if ρ can be lifted to $\bar{\rho}$ then the function $(\gamma, x) \mapsto x(\bar{\rho}(\gamma))^{-1}$ is a surjective homomorphism from $\hat{\Gamma}$ to $\pm I$ with its kernel projecting down under ϕ to Γ , thus $\hat{\Gamma}$ must be the trivial central extension of Γ .

ISSN 1076-9803/02

Received December 16, 2002.

Mathematics Subject Classification. 30F40, 20H10.

Key words and phrases. lift, group.

However the central extensions of \mathbb{Z}_2 by Γ are described by the group $H^2(\Gamma; \mathbb{Z}_2)$ and so if $H^2(\Gamma; \mathbb{Z}_2) = 0$ then there is only the trivial central extension which means that from above every representation of Γ into $PSL(2, \mathbb{C})$ must lift. \Box

A good source to look for examples of groups Γ with $H^2(\Gamma; \mathbb{Z}_2) = 0$ is the fundamental group $\pi_1 X$ of an aspherical 3-manifold X, in which case the (co)homology groups of X are the same as those of $\pi_1 X$. We know for M a compact aspherical 3-manifold with boundary that

$$H^{2}(\pi_{1}M;\mathbb{Z}_{2}) = H^{2}(M;\mathbb{Z}_{2}) = H_{1}(M,\partial M;\mathbb{Z}_{2})$$

by Poincaré duality. If such a 3-manifold has one boundary component that is a torus and $H_1(M;\mathbb{Z}) = \mathbb{Z} + G$ for G odd and finite then $H_1(M, \partial M;\mathbb{Z}_2) = 0$ and so all representations can be lifted; included in these are all knot complements in S^3 . If M is a closed aspherical 3-manifold then $H^2(\pi_1M;\mathbb{Z}_2) = H_1(M;\mathbb{Z}_2)$ which is 0 if and only if $H_1(M;\mathbb{Z})$ is finite and has odd order. We know of one example: the Siefert-Wieber dodecahedral space is hyperbolic, thus aspherical, and has $H_1(M;\mathbb{Z}) = (\mathbb{Z}_5)^3$ (see [5]) so every representation of its fundamental group lifts.

This begs the question: if all representations of Γ lift then is $H^2(\Gamma; \mathbb{Z}_2) = 0$? The obvious candidates for counterexamples are simple groups that do not embed in PSL(2, \mathbb{C}) so that the only representation is the identity.

Proposition 2. The alternating groups A_n for $n \ge 8$ have every $PSL(2, \mathbb{C})$ -representation liftable but $H^2(A_n; \mathbb{Z}_2) \neq 0$.

Proof. For $n \geq 5$ we know that A_n is simple, and although A_5 is a subgroup of $PSL(2, \mathbb{C})$ so that its faithful representation cannot be lifted, A_n is certainly not a subgroup of $PSL(2, \mathbb{C})$ for $n \geq 6$ so that here only the identity representation exists which certainly can be lifted. The Schur multiplier of A_n is \mathbb{Z}_2 for $n \geq 8$, which means that there exists a non-trivial central extension of \mathbb{Z}_2 by A_n . Thus $H^2(A_n; \mathbb{Z}_2) \neq 0$ but every representation lifts. \Box

References

- S. Boyer and X. Zhang, On Culler-Shalen seminorms and Dehn filling, Ann. of Math. (2) 148 (1998), 737–801, MR 2000d:57028.
- [2] J. O. Button, *Lifting Möbius groups*, New York J. Math. 8 (2002), 181–188.
- [3] D. Cooper and D. D. Long, An undetected slope in a knot manifold, Topology '90 (Columbus, OH, 1990), de Gruyter, Berlin, 1992, 111–121, MR 93i:57022, Zbl 0771.57006.
- H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, The arithmeticity of the figure eight knot orbifolds, Topology '90 (Columbus, OH, 1990), de Gruyter, Berlin, 1992, 169–183, MR 93k:57012, Zbl 0767.57004.
- J. Hempel, Orientation reversing involutions and the first Betti number for finite coverings of 3-manifolds, Invent. Math. 67 (1982), 133-142, MR 83m:57010, Zbl 0494.57003.

SELWYN COLLEGE, CAMBRIDGE, CB3 9DQ, U.K. jb128@dpmms.cam.ac.uk http://www.dpmms.cam.ac.uk/site2000/Staff/button01.html

This paper is available via http://nyjm.albany.edu:8000/j/2002/8-17.html.

258