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Geometric quasi-isometric embeddings into
Thompson’s group F

Sean Cleary and Jennifer Taback

Abstract. We use geometric techniques to investigate several examples of
quasi-isometrically embedded subgroups of Thompson’s group F . Many of
these are explored using the metric properties of the shift map φ in F . These
subgroups have simple geometric but complicated algebraic descriptions. We
present them to illustrate the intricate geometry of Thompson’s group F as well
as the interplay between its standard finite and infinite presentations. These
subgroups include those of the form F m × Z

n, for integral m, n ≥ 0, which
were shown to occur as quasi-isometrically embedded subgroups by Burillo
and Guba and Sapir.
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1. Introduction

Bridson asked the question of whether a quasi-isometry exists between Thomp-
son’s group F and the group F × Z. Burillo [3] provides an example of a quasi-
isometric embedding of F×Z into F as possible evidence towards a negative answer
to this question. While investigating this question, we came across some interest-
ing examples of quasi-isometric embeddings into F which we describe below. These
quasi-isometric embeddings all have simple geometric interpretations, which are
often easier to express than the corresponding algebraic or group theoretic defini-
tions. We present these examples to illustrate the beautiful geometry evident in
Thompson’s group F . Our examples are based on the interaction between the finite
and infinite presentations of F and the representation of elements of F as pairs of
binary rooted trees. These embeddings use shift maps of F and provide concrete
geometric realizations of subgroups of F of the form Fm × Z

n which are known to
be quasi-isometrically embedded by work of Burillo [3] and Guba and Sapir [7, 8].

2. Thompson’s group F

Thompson’s group F has both finite and infinite presentations; it is usually
presented finitely as

F = 〈x0, x1 | [x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉

and infinitely as

P = 〈xk, k ≥ 0 | x−1
i xjxi = xj+1 if i < j〉.

The infinite presentation provides a set of normal forms for elements of F .
Namely, each w ∈ F can be written xr1

i1
xr2

i2
. . . xrk

ik
x−sl

jl
. . . x−s2

j2
x−s1

j1
where ri, si > 0,

and i1 < i2 · · · < ik and j1 < j2 · · · < jl. To obtain a unique normal form for each
element, we add the condition that when both xi and x−1

i occur, so does xi+1 or
x−1

i+1, as discussed by Brown and Geoghegan [2]. We will always mean unique nor-
mal form when we refer to a word w in normal form. We give a brief introduction
to F below; for a more detailed and comprehensive description, we refer the reader
to Cannon, Floyd and Parry [4] and Fordham [6].
Elements of F can be thought of equivalently in three different forms: in either

presentation above, as piecewise-linear homeomorphisms of [0, 1] whose break points
are dyadic rationals and whose slopes are powers of two, and as pairs of finite rooted
binary trees, each with the same number of exposed leaves. For the equivalence
of these representations, we refer the reader to Cannon, Floyd and Parry [4]. We
choose this last interpretation for work below, and begin with some basic vocabulary
related to these trees.
Let T be a rooted binary tree. An exposed leaf of T ends in a vertex of valence 1,

and the exposed leaves are numbered from left to right, beginning with 0. A node
together with its two leaves is called a caret. A caret C may have a right child; that
is, a caret which is attached to the right leaf of C. We can similarly define the left
child of the caret C. In a pair (T−, T+) of rooted binary trees, the tree T− is called
the negative tree and T+ the positive tree.
A pair of trees (T−, T+) is unreduced if both T− and T+ contain a caret with

two exposed leaves numbered m and m + 1. There are many tree pair diagrams
representing the same element of F but each element has a unique reduced tree
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Figure 1. The tree pair diagram for the generator x0 of F .

Figure 2. The tree pair diagram for the generator x1 of F .

pair diagram representing it. When we write (T−, T+) to represent an element of
F , we are assuming that the tree pair is reduced. The tree pair diagrams for the
generators x0 and x1 are given in Figures 1 and 2.
Group multiplication of w = (T−, T+) and v = (S−, S+) is accomplished by

creating temporary unreduced representatives (T ′
−, T ′

+) of w and (S′
−, S′

+) of v in
which T ′

+ = S′
−. The product wv is defined to be the tree pair (T ′

−, S′
+) which

may be unreduced. This method is used to compute the distance with respect to
the word metric induced by the standard finite generating set {x0, x1} between
elements w and v, namely, d(w, v) = |w−1v|.
2.1. Tree pair diagrams and the normal form. There is a bijective correspon-
dence between the tree pair diagrams described above and the normal form of an
element. The leaf exponent of an exposed leaf numbered n in T− or T+ is defined
to be the length of the maximal path consisting entirely of left edges from n which
does not reach the right side of the tree, and is written E(n). Note that E(n) = 0
for an exposed leaf labelled n which is a right leaf of a caret, as there is no path
consisting entirely of left edges originating from n. In Figure 3, the exponents of
the left-hand tree T− are as follows: E(0) = 1, E(1) = 0, E(2) = E(3) = 1 and
E(4) = E(5) = 0.
Once the exponents of the leaves in T− and T+ have been computed, the normal

form of the element w = (T−, T+) is easily obtained. The positive part of the
normal form of w is

x
E(0)
0 x

E(1)
1 · · ·xE(m)

m

where m is the number of exposed leaves in either tree, and the exponents are
obtained from the leaves of T+. The negative part of the normal form of w is
similarly found to be

x−E(m)
m x

−E(m−1)
m−1 · · ·x−E(0)

0

where the exponents are now computed from the leaves of T−. Note that many of
the exponents in the normal form as given above may be zero.

2.2. Word length in F . Fordham [6] presents a remarkable method of calculating
the word length of an element w ∈ F with respect to the standard finite generating
set {x0, x1} based solely on the trees representing w. In [5] we prove the following
theorem, which follows from Fordham’s result, and approximates the word length
of w ∈ F using only the number of carets in either tree of the reduced tree pair
diagram representing w.
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Figure 3. Tree pair diagram for the element w = x2
0x1x

−1
3 x−1

2 x−1
0 .

Figure 4. Tree pair diagram for φ2(w) = x2
2x3x

−1
5 x−1

4 x−1
2 , where

the word w = x2
0x1x

−1
3 x−1

2 x−1
0 is depicted in Figure 3.

Theorem 2.1 ([5] Theorem 3.1). Let w = (T−, T+) and N(w) be the number of
carets in T−. Then

N(w)− 2 ≤ |w| ≤ 4N(w)− 4.

3. Quasi-isometric embeddings

Let X and Y be metric spaces, and K ≥ 1 and C ≥ 0 be constants. A (K,C)-
quasi-isometric embedding f : X → Y is a map satisfying the following property:

1
K

dX(x, y)− C ≤ dY (f(x), f(y)) ≤ KdX(x, y) + C

for all x, y ∈ X, where dX (resp. dY ) represents the metric in X (resp. Y ). When
considering a quasi-isometric embedding between groups, we use the word metric on
each group induced by a particular set of generators. A quasi-isometric embedding
is a quasi-isometry if there is a constant C ′ so that NbhdC′(f(X)) = Y .
Quasi-isometries need not be continuous maps, nor are they required to pre-

serve any algebraic structure. Below we give several examples of quasi-isometric
embeddings of Fm × Z

n into F , for nonnegative integers m and n, which, though
homomorphisms, are algebraically cumbersome but can easily be described geo-
metrically in terms of tree pair diagrams. We call these geometric quasi-isometric
embeddings.

3.1. The shift map φ. We begin with an example of a quasi-isometric embed-
ding F → F which is easily understood either algebraically or geometrically. There
is a shift map φ : F → F defined on Thompson’s group in the infinite pre-
sentation P which increases the index of each generator by 1. For example, if
w = x2

3x5x13x
−1
10 x−4

9 , then φ(w) = x2
4x6x14x

−1
11 x−4

10 . Thus if w is in normal form, so
is φ(w). We show that any power of φ is a quasi-isometric embedding.

Theorem 3.1. Any positive integral power φn : F → F of the shift map φ : F → F
is a quasi-isometric embedding.
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Figure 5. Tree pair diagram for ψ2(w) = x4
0x1x4x

−1
3 x−2

2 x−3
0 ,

where the word w = x2
0x1x

−1
3 x−1

2 x−1
0 is depicted in Figure 3.

Proof. Let w = (T−, T+). Using the notion of leaf exponents discussed in §2.1,
we see that if φ(w) = (S−, S+), then S± is the tree composed of a root caret with
T± as the right subtree of the root caret. Thus if v, w ∈ F , the tree pair diagram
representing the product φ(w)−1φ(v) has one more caret in each tree than the tree
pair diagram representing the product w−1v. Applying Theorem 2.1, we obtain

1
4
|w−1v| ≤ |φ(w)−1φ(v)| ≤ 4|w−1v|+ 8.

Thus φ is a quasi-isometric embedding, and it follows that φn is as well. �

3.2. The reverse shift map ψ. Given the simple geometric representation of the
shift map φ mentioned in the proof of Theorem 3.1, it is natural to define a “reverse
shift map”, which we denote ψ, in which the original trees become left subtrees
of the root caret rather than right subtrees. See, for example, Figure 5, which
depicts the tree pair diagram for ψ2(w). Geometrically, it is completely natural to
consider ψ as well as φ. However, in the literature, ψ is rarely mentioned, likely
because it is algebraically cumbersome, unlike φ, in the following way. If w ∈ F is
written in normal form, then the normal form of φ(w) is easily determined, whereas
for ψ the situation is quite different. Let w = (T−, T+) and ψ(w) = (S−, S+).
Then leaves with exponent 0 which are the exposed left leaves of right carets in
T− or T+ will have leaf exponent 1 in S− and S+, respectively, and thus cause
new generators to appear in the normal form of ψ(w). It is difficult to predict
solely from the normal form of w which additional generators will appear in the
normal form of ψ(w). For example if w = x2

0x1x
2
5x

−1
4 x−1

3 x−1
1 x−1

0 then ψ(w) =
x3

0x1x4x
3
5x

−1
7 x−1

6 x−1
4 x−2

3 x−1
1 x−1

0 .
Unsurprisingly from the geometric point of view, we obtain a theorem for ψ

analogous to Theorem 3.1 for φ.

Theorem 3.2. Any integral power ψn : F → F of the reverse shift map ψ : F → F
defined above is a quasi-isometric embedding.

Proof. We express ψ geometrically in terms of the tree pair diagrams using the
shift map φ and the outer automorphism α of F , which performs a vertical reflection
on each tree pair diagram. Brin [1] showed α to be the unique outer automorphism
of F . It is easily seen that α maps the generators x0 and x1 of F to an alternate
generating set {x−1

0 , x0x1x
−2
0 } of F . Thus α is a quasi-isometry of F . We note

that the composition α ◦ φ ◦ α is exactly the reverse shift map ψ. Since α is a
quasi-isometry and φ is a quasi-isometric embedding, the composition is again a
quasi-isometric embedding, as is ψn for integral n. �
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We note that Theorem 3.2 can be proven identically to Theorem 3.1, since the
tree pair diagram representing ψ(w)−1ψ(v) will again have one more caret in each
tree than the tree pair diagram representing w−1v.

3.3. Clone subgroups of F . The maps φn and ψn are shown to be quasi-
isometric embeddings because an element and its image are represented by tree
pair diagrams which differ by a finite number of carets. This idea can be general-
ized as follows. Let p denote the composition

p = fn ◦ fn−1 ◦ · · · ◦ f1

where each fi is either φ or ψ. A clone subgroup is the image of F under p. The
simplest examples of clone subgroups are φn(F ) and ψn(F ). Clone subgroups can
be understood in a number of equivalent ways.
Let p be as above, and consider the clone subgroup p(F ). We can describe this

subgroup using a binary address. A node in a binary tree is given an address using
the following inductive method. The root node has the empty label. Given a node
with label s, the left child of the node is labelled s0 and right child of the node
labelled s1. For example, the right child of the right child of the left child of the
right child of the root has address 1011.
Given p as above, and w = (T−, T+) ∈ F , let p(w) = (S−, S+). From the

definitions of φ, ψ and p, we know that the tree T− will be a subtree of S−, and T+

will be a subtree of S+. We consider the address s = εn . . . ε2ε1 of the root caret of
T− as a subtree of S− and use s to give an “address” for the clone subgroup p(F ).
Namely, we can uniquely refer to p(F ) as Cs. For example, the subgroup C1011 is
the image φ(ψ(φ2(F ))).
We can also describe clone subgroups by their representation as piecewise linear

homeomorphisms of the unit interval. Each dyadic subinterval of the form [ i
2n , i+1

2n ]
is affinely equivalent to the standard unit interval [0, 1] by an affine map with dyadic
coefficients. For a fixed clone subgroup Cs where s has length n, there is a dyadic
subinterval I ′ ⊆ [0, 1] which contains the x-coordinates of all the breakpoints of
elements of Cs. The length of I ′ is 2−n and the endpoints of I ′are i

2n and i+1
2n . The

endpoints can be computed easily from the address s. Furthermore, any element of
F whose breakpoints all lie in the interval [ i

2n , i+1
2n ] will be an element of Cs. For

example, in the subgroup C1011, the dyadic interval containing the all breakpoints
of its elements is [ 1116 ,

3
4 ]

It is easy to see that any clone subgroup Cs = p(F ) is isomorphic to F . If
w = (T−, T+) and p(w) = (S−, S+), we know by definition that the tree pair
(T−, T+) is reduced. From the definitions of φ and ψ, and thus p, no additional
reduction can occur when the tree pair (S−, S+) is formed. Thus each element of F
produces a unique element of Cs, and it is clear that p(x0) and p(x1) must generate
Cs.
The following theorem is a consequence of Theorems 3.1 and 3.2.

Theorem 3.3. Any clone subgroup of F is quasi-isometrically embedded.

Proof. The clone subgroup Cs is determined by p = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 where
each fi is either the map φ or ψ. We know from Theorems 3.1 and 3.2 that φ and
ψ are quasi-isometric embeddings into F ; it immediately follows that the above
composition is also a quasi-isometric embedding. �
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Theorem 3.3 can be proved geometrically by noting that if p = fn ◦ fn−1 ◦ · · · ◦
f2 ◦ f1 as above, the trees representing w = (T−, T+) and p(w) = (S−, S+) differ
by n carets. Theorem 2.1 can then be applied to show that p is a quasi-isometric
embedding, and obtain the quasi-isometry constants.

3.4. Quasi-isometrically embedded products. We now show that F contains
a family of quasi-isometrically embedded subgroups of the form Fm × Z

n for
n,m ≥ 0. These examples include those of Burillo [3], who presents a family of
subgroups of F of the form F ×Z

n which are quasi-isometrically embedded. Guba
and Sapir [7, 8], using the approach of diagram groups, also show that Fm×Z

n oc-
cur as quasi-isometrically embedded subgroups of F and furthermore show that all
abelian subgroups and centralizers of elements are quasi-isometrically embedded.
We present an alternate geometric proof that some concrete geometric realizations
of the subgroups Fm × Z

n are quasi-isometrically embedded, using the shift maps
described above.

Theorem 3.4 ([3, 7, 8]). For each integral pair m,n ≥ 0, Thompson’s group F
contains an infinite family of quasi-isometrically embedded subgroups of the form
Fm × Z

n.

We first note that using Theorem 3.3 above and the clone subgroups C0 and C1,
it is easy to see that F × F quasi-isometrically embeds in F . Theorem 3.4 is an
immediate consequence of this fact and Burillo’s examples of quasi-isometrically
embedded subgroups of the form F × Z

n.
These quasi-isometrically embedded Fn×Z

m subgroups are viewed geometrically
as follows. Let s1, s2, · · · sm, sm+1 be binary addresses of nodes in a binary rooted
tree, subject to the condition that pairwise, no si is a prefix of sj . Then for each i
with 1 ≤ i ≤ m, we have that Csi

is a clone subgroup of F , and by construction, no
two of these clone subgroups intersect in a nonidentity element. Thus the product
Cs1 × · · · × Csm

is isomorphic to Fm, and is quasi-isometrically embedded.
Let pm+1 be the product of maps φ and ψ corresponding to the binary ad-

dress sm+1. In the final clone subgroup Cm+1 = pm+1(F ), we produce a quasi-
isometrically embedded copy of Zm. Burillo [3] provides generators for the quasi-
isometrically embedded Z

m which he describes. The image of these generators un-
der the map pm+1 will produce a quasi-isometrically embedded copy of Z

m inside
of Cm+1. Since the clone subgroups C1, · · · , Cm+1 are distinct, we have produced
the required quasi-isometrically embedded copy of Fn × Z

m.
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