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Continuous spatial semigroups of
completely positive maps of B(H)

Robert T. Powers

Abstract. This paper concerns the structure of strongly continuous one pa-
rameter semigroups of completely positive contractions of B(H) = B(K ⊗
L2(0,∞)) which are intertwined by translation. These are called CP-flows over
K. Using Bhat’s dilation result each unital CP-flow over K dilates to an Eo-
semigroup of B(H1) where H1 can be considered to contain B(K ⊗ L2(0,∞)).
Every spatial Eo-semigroup is cocycle conjugate to one dilated from a CP-
flow. Each CP-flow is determined by its associated boundary weight map
which determines the generalized boundary representation. The index of the
Eo-semigroup dilated from a CP-flow is calculated. Machinery for determining
whether two CP-flow dilate to cocycle conjugate Eo-semigroups is developed.
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1. Introduction

The goal of this paper is the construction of new spatial Eo-semigroups of B(H).
An Eo-semigroup of B(H) is a strongly continuous one parameter semigroup of
∗-endomorphisms of B(H). An Eo-semigroup is spatial if there is a one parameter
semigroup of intertwining isometries. If there are enough intertwining semigroups
to reconstruct the Eo-semigroup the semigroup is said to be completely spatial. The
first examples of spatial Eo-semigroups were given in [P1] and later Arveson [A1]
defined and completely classified the completely spatial Eo-semigroups. The index
first introduced and the additivity property suggested in [P1] and later correctly
defined and proved to be additive under tensoring by Arveson [A2] is a complete
cocycle conjugacy invariant for the completely spatial Eo-semigroups. In [P2] an
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example of a non spatial Eo-semigroups was first constructed and recently Tsirelson
[T2] has constructed a one parameter family of non isomorphic product systems of
type III in the context of Arveson’s theory of continuous tensor products of Hilbert
spaces and from Arveson’s representation theorem this implies the existence of a
one parameter family of non cocycle conjugate non spatial Eo-semigroups.

The first example of a spatial Eo-semigroup which is not completely spatial was
constructed in [P4]. Now Tsirelson [T1] has constructed a one parameter family
of non isomorphic product systems of type II and by Arveson’s theory of product
systems this implies the existence of a one parameter family of non cocycle conjugate
spatial Eo-semigroups of B(H).

In this paper we develop a way of constructing spatial Eo-semigroups of B(H).
This method can in principle construct all spatialEo-semigroups (see Theorem 4.0A).
We use the new technology developed by Bhat. Bhat showed in [Bh] that every uni-
tal CP-semigroup of B(K) can be dilated to an Eo-semigroup of B(H) where H can
be thought of as a larger Hilbert space containing K. A CP-semigroup of B(K) is
a strongly continuous one parameter semigroup of completely positive contractions
of B(K). Since CP-semigroups are much easier to construct than Eo-semigroups
Bhat’s result is extremely useful in constructing Eo-semigroups. In this paper we
study CP-flows over a Hilbert space K. A CP-flow is CP-semigroup of K⊗L2(0,∞)
which is intertwined by translation on L2(0,∞). We believe this is the simplest ob-
ject from which one can construct via Bhat’s dilation all the spatial Eo-semigroups.
We show how each CP-flow over K is determined from a boundary weight. We show
how to calculate the index of the Eo-semigroup obtained by dilation.

Although we construct no new examples of spatial Eo-semigroups we consider
the results of this paper to be a big success. In a subsequent paper we will discuss
the classification of Eo-semigroups obtained from CP-flows in the case where K
is one dimensional. In the case when K is two dimensional all sorts of new and
interesting problems arise. Since most of the basic problems reduce to questions
about completely positive maps of the two by two matrices into themselves we
believe these problems are tractable. The reason we have not given applications
of CP-flows to constructing Eo-semigroups of B(H) in this paper is that so many
different approaches suggest themselves that we are not sure which direction is
best. We can assure the reader that CP-flows lead to barrel loads of examples and
we believe that these examples will lead the way into developing a classification of
spatial Eo-semigroups of B(H).

The author wishes to thank the referee for pointing out numerous misprints,
omissions and for helpful suggestions.

2. Background, definitions and generators of semigroups

All Hilbert spaces which will be denoted by the characters such as H,K and M
are assumed to be separable unless otherwise stated. On Hilbert spaces we use the
physicist’s inner product (f, g) which is linear in g and conjugate linear in f. If H
is a Hilbert space we denote by B(H) the set of all bounded linear operators on H
and by B(H)∗ the pre dual of B(H). Every element ρ ∈ B(H)∗ can be represented
in the form ρ(A) = Σ∞

i=1(fi, Agi) where Σ∞
i=1‖fi‖ ‖gi‖ < ∞. If H1 and H2 are two

Hilbert spaces we denote by B(H1,H2) the space of bounded linear operators from
H2 to H1. Note if A ∈ B(H1,H2) then A∗A ∈ B(H2) and AA∗ ∈ B(H1).
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Definition 2.1. We say α is an Eo-semigroup of a von Neumann algebra M with
unit I if the following conditions are satisfied:
(i) αt is a ∗-endomorphism of M for each t ≥ 0.
(ii) αo is the identity endomorphism and αt ◦ αs = αt+s for all s, t ≥ 0.
(iii) For each f ∈ M∗ (the pre dual of M) and A ∈ M the function f(αt(A)) is a

continuous function of t.
(iv) αt(I) = I for each t ≥ 0(αt preserves the unit of M).

Definition 2.2. Suppose α and β are Eo-semigroups B(H1) and B(H2). We say
α and β are conjugate denoted α ≈ β if there is ∗-isomorphism φ of B(H1) onto
B(H2) so that φ ◦ αt = βt ◦ φ for all t ≥ 0. We say α and β are cocycle conjugate
denoted αt ∼ βt if α′ and β are conjugate where α and α′ differ by a unitary
cocycle (i.e., there is a strongly continuous one parameter family of unitaries U(t)
on B(H1) for t ≥ 0 satisfying the cocycle condition U(t)αt(U(s)) = U(t+ s) for all
t, s ≥ 0 so that α′

t(A) = U(t)αt(A)U(t)−1 for all A ∈ B(H1) and t ≥ 0).

Definition 2.3. Suppose α is an Eo-semigroup of B(H).We say α is spatial if there
exists a strongly continuous one parameter semigroup of isometries U(t) ∈ B(H)
which intertwine αt, i.e., U(t)A = αt(A)U(t) for all A ∈ B(H) and t ≥ 0.

The property of being spatial is a cocycle conjugacy invariant. If there are enough
intertwining semigroups to reconstruct the Eo-semigroup we say the semigroup is
completely spatial. In [A1] Arveson classified the completely spatial Eo-semigroups
of B(H). He showed that each completely spatial Eo-semigroup is cocycle conjugate
to a CAR flow of rank n for n = 1, 2, · · · and n = ∞. The CAR flows are Eo-
semigroups of B(H) constructed using representations of the CAR algebra.

The Eo-semigroups of B(H) themselves form a semigroup and the appropriate
group operation is tensoring. If α and β are Eo-semigroups of B(H) and B(K),
respectively, then one can form a new semigroup γ = α⊗β which acts on the tensor
product space H ⊗ K. Specifically, we define γt(A ⊗ B) = αt(A) ⊗ βt(B). In [A2]
Arveson showed the index is additive (i.e., the index of γ is the sum of the index of
α and the index of β). One of the important results of the theory of Eo-semigroups
obtained by Arveson is that if σ is a one parameter group of ∗-automorphisms of
B(H) (i.e., σt(A) = U(t)AU(t)−1 with U(t) a strongly continuous one parameter
unitary group) then σ acts like the unit under tensoring. This means that if α
is an Eo-semigroup and σ is one parameter group of ∗-automorphisms then α is
cocycle conjugate to α⊗ σ. Another result we state as a theorem (see Theorem 2.9
of [P4]) so we can refer to it later is that the restriction of an Eo-semigroup to
an invariant subspace yields an Eo-semigroup which is cocycle conjugate to the
original Eo-semigroup.

Theorem 2.4. Suppose α is a proper Eo-semigroup of B(H) (so αt(B(H)) �= B(H)
for t > 0) and E ∈ B(H) is an hermitian projection which is invariant under αt
(i.e., αt(E) = E for all t ≥ 0). Let M be the range of E and let QE be the set of all
operators A ∈ B(H) so that A = EAE. Note QE is ∗-isomorphic with B(M) the
algebra of all bounded operators on M and note if A ∈ QE then αt(A) ∈ QE for all
t ≥ 0. Let β be the restriction of α to QE so βt(A) = αt(A) for all A ∈ QE . Then
β is an Eo-semigroup of B(M) which is cocycle conjugate to α.

We assemble some of the standard facts about the semigroups of contractions.
Suppose X is a Banach space and t → S(t) is a strongly continuous one parameter



168 Robert T. Powers

semigroup of contractions of X into itself where by strong continuity we mean
‖S(t)x − x‖ → 0 as t → 0+ for each x ∈ X. The generator T of S is the linear
operator from the domain D(T ) into X given by

Tx = lim
x→0+

t−1(S(t)x− x)

and the domain is the set of x ∈ X so that the limit exists in the sense of norm
convergence. The domain D(T ) is norm dense in X and the generator T is closed
which means that if xn ∈ D(T ) for n = 1,2,· · · · , ‖xn−x‖ → 0 and ‖Txn− y‖ → 0
as n → ∞ then x ∈ D(T ) and Tx = y.

Definition 2.5. A densely defined operator T on a Banach space X is said to be
dissipative if for each f in the domain of T there is a linear functional F in the unit
ball of the dual of X (so that |F (h)| ≤ ‖h‖ for all h ∈ X) so that F (f) = ‖f‖ and
Re(F (Tf)) ≤ 0).

Lemma 2.6. If T is densely defined dissipative operator on a Banach space X then
T is closable and its closure is dissipative.

For the proof see Lemma 3.1.14 of Bratteli and Robinson [BR].

Theorem 2.7 (Lumer-Phillips). If T is a closed densely defined dissipative oper-
ator on a Banach space X and the range of (λI − T ) is dense in X for some real
λ > 0 then T is the generator of a strongly continuous one parameter semigroup
of contractions. Conversely, if T is the generator of a strongly continuous one pa-
rameter semigroup of contractions then T is a closed dissipative operator and the
range of (λI − T ) is all of X for every real λ > 0.

For the proof see Theorem 3.1.16 of [BR].
If T is the generator of a strongly continuous one parameter semigroup of con-

tractions we often refer to (I − T )−1 as the resolvent of T. Note the resolvent is a
one to one mapping of X onto the domain D(T ).

Theorem 2.8. Suppose T is the generator of a strongly continuous one parameter
semigroup S(t) of contractions of a Banach space X and t → x(t) is a differentiable
map of [0, s] into the domain D(T ) and

d

dt
x(t) = Tx(t).

Then x(t) = S(t)x(0) for t ∈ [0, s].

Proof. Assume the hypothesis and notation of the theorem. Let y(t) = S(t)x(0)−
x(t). Then y(t) is differentiable and

d

dt
y(t) = Ty(t)

for t ∈ [0, s]. We show ‖y(t)‖ is non increasing. Suppose t ∈ [0, s) and h > 0 and
t + h ≤ s. Since T is dissipative there is an element Ft ∈ X∗ of norm one with
Ft(y(t)) = ‖y(t)‖ and Re(Ft(Ty(t))) ≤ 0 for each t ∈ [0, s]. Then we have

‖y(t+ h)‖ − ‖y(t)‖ =Re(Ft+h(y(t+ h))− Ft(y(t)))

=Re((Ft+h − Ft)(y(t)) + hRe(Ft+h(Ty(t)))

+ Re(Ft+h(y(t+ h)− y(t)− hTy(t))).
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Now the first of the three terms is nonpositive and the third is o(h). So all we need to
show is that the limit superior of Re(Ft+h(Ty(t)) as h → 0+ is not positive. Suppose
the limit superior is a positive number λ. Then there is a decreasing sequence of
positive numbers hn so that hn → 0 and Re(Ft+hn(Ty(t))) → λ as n → ∞. Let
F be a weak limit point of the sequence Ft+hn . Since the ‖Ft+hn‖ = 1 we have
‖F‖ ≤ 1. We have

F (y(t)) =F (y(t)− y(t+ hn)) + (F − Ft+hn)(y(t+ hn)− y(t))

+ (F − Ft+hn)(y(t)) + ‖y(t+ hn)‖.
As n → ∞ the first two terms tend to zero and the last term tends to ‖y(t)‖.
Since F is a weak limit point there is a subsequence of the sequence hn converging
to zero so that the third term tends to zero for the subsequence. Hence, we have
F (y(t)) = ‖y(t)‖. Also we have Re(F (Ty(t)) = λ. Let g(s) = F (S(s)y(t)) for s ≥ 0.
Since y(t) ∈ D(T ) we have g is differentiable and g′(s) = F (S(s)Ty(t)). We have
‖S(s)y(t)‖ ≥ Re(g(s)) and since g(0) = ‖y(t)‖ and Re(g′(0)) = λ > 0 we have
‖S(s)y(t)‖ > ‖y(t)‖ for some s > 0. But this contradicts the fact that S(s) is a
contraction. Hence, we have

lim sup
h→0+

(‖y(t+ h)‖ − ‖y(t)‖)/h ≤ 0

and it follows that ‖y(t)‖ is a non increasing function of t. Since ‖y(0)‖ = 0 we
have y(t) = 0 for all t ∈ [0, s]. Hence, x(t) = S(t)x(0) for t ∈ [0, s]. �
Theorem 2.9. Suppose T is the generator of a strongly continuous one parame-
ter semigroup of contractions Θt of B(H)∗. Then Θt is positivity preserving (i.e.,
Θt(ρ) ≥ 0 if ρ ≥ 0 for all t ≥ 0 and ρ ∈ B(H)∗) if and only if ρ− λTρ ≥ 0 implies
ρ ≥ 0 for all λ ∈ (0, 1) and ρ ∈ D(T ).

Proof. This result can be dug out of Chapter 3 of [BR] (Bratelli and Robinson
work with groups but the arguments work for semigroups). A sketch of the proof is
as follows. Assume the hypothesis of the theorem and Θt is positivity preserving.
Then for λ > 0 we have

(I − λT )−1 =
1
λ

∫ ∞

0

e−t/λΘt dt

so (I − λT )−1 is positivity preserving for λ > 0. Hence ρ− λTρ ≥ 0 implies ρ ≥ 0
for all λ > 0 and ρ ∈ D(T ).

Conversely, suppose ρ− λTρ ≥ 0 implies ρ ≥ 0 for all λ ∈ (0, 1) and ρ ∈ D(T ).
Then (I −λT )−1 is positivity preserving for all λ ∈ (0, 1). As shown in calculations
in Chapter 3 of [BR] we have

Θt(ρ) = exp(tT )(ρ) = lim
n→∞(I − (t/n)T )−nρ

for each ρ ∈ B(H)∗ and t > 0. Since (I − (t/n)T )−1 is positivity preserving for
n > t−1we see Θt is the limit of positivity preserving maps and, hence, Θt is
positivity preserving. �

We will occasionally need the following lemma.

Lemma 2.10. Suppose ρ ∈ B(H)∗ and E ∈ B(H) is an orthogonal projection. Let
ρ1(A) = ρ(EAE) for A ∈ B(H). Then

‖ρ− ρ1‖2 ≤ 2‖ρ‖2 − 2‖ρ1‖2.
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Proof. We prove the lemma for the case when ‖ρ‖ = 1. The general case then
follows by linearity. Suppose ρ ∈ B(H)∗ and ‖ρ‖ = 1. Then ρ can be written in the
form

ρ(A) =
∑
i=1

λi(fi, Agi)

where the f ′s and g′s form an orthonormal set of vectors and the λi are posi-
tive numbers which sum to one. Let π be the countable direct sum of identity
representations of B(H) and let

F =
√
λ1f1 ⊕

√
λ2f2 ⊕ · · · and G =

√
λ1g1 ⊕

√
λ2g2 ⊕ · · · .

Then we have ρ(A) = (F, π(A)G) and ‖F‖ = ‖G‖ = 1. Let ρ1(A) = ρ(EAE)
for all A ∈ B(H). We have ρ1(A) = (π(E)F, π(A)π(E)G) and, hence, ‖ρ1‖ ≤
‖π(E)F‖ ‖π(E)G‖. Suppose A ∈ B(H) and ‖A‖ ≤ 1. Then

|ρ(A)− ρ1(A)| =|(F, π(A)(I − π(E))G) + ((I − π(E))F, π(A)π(E)G)|
≤‖G− π(E)G‖+ ‖F − π(E)F‖ ‖π(E)G‖.

Now ‖F − π(E)F‖2 = (F, (I − π(E))F ) = 1 − ‖π(E)F‖2 and, similarly we have
‖G − π(E)G‖2 = 1 − ‖π(E)G‖2. Combining these with the above inequality we
have

|ρ(A)− ρ1(A)| ≤
√
1− ‖π(E)G‖2 +

√
‖π(E)G‖2 − ‖π(E)G‖2‖π(E)F‖2.

Since
√
x+

√
y ≤ √

2x+ 2y for all x, y ∈ [0,∞) it follows that

|ρ(A)− ρ1(A)| ≤
√
2− 2‖π(E)G‖2‖π(E)F‖2

for all A ∈ B(H) with ‖A‖ ≤ 1. Hence, we have

‖ρ− ρ1‖2 ≤ 2− 2‖π(E)G‖2‖π(E)F‖2 ≤ 2− 2‖ρ1‖2,

where the second inequality in the line above follows from the inequality ‖ρ1‖ ≤
‖π(E)F‖‖π(E)G‖. Hence, we have proved the lemma for the case ‖ρ‖ = 1. For the
general case we first note that if ‖ρ‖ = 0 then ρ = ρ1 = 0 and the conclusion of the
lemma follows trivially. Then if ‖ρ‖ > 0 we simply apply the above inequality to
the functionals ‖ρ‖−1ρ and ‖ρ‖−1ρ1 and the inequality of the lemma follows. �

3. Subordinates of CP-semigroups

In this section we are interested in the order structure of CP-semigroups and the
Eo-semigroups they induce from a result of Bhat [Bh].

Definition 3.1. A CP-semigroup α of B(H) is a one parameter semigroup of com-
pletely positive contractions αt of B(H) into itself which are strongly continuous in
the sense that ‖αt(A)f −Af‖ → 0 as t → 0+ for all A ∈ B(H) and f ∈ H.

We are particularly interested in the order structure for CP-semigroups where
the order structure is in the sense of completely positive maps. A mapping φ from
one operator algebra A into B(H) completely positive if

n∑
i,j=1

(fi, φ(A∗
iAj)fj) ≥ 0

for Ai ∈ A, fi ∈ H for i = 1, 2, · · · , n and n = 1, 2, · · · . An important result of
Stinespring [St] states that if A has a unit I and φ completely positive from A into
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B(H) there is a ∗-representation π of A on B(K) and a operator V from H to K so
that

φ(A) = V ∗π(A)V
for all A ∈ A and the vectors π(A)V f for A ∈ A and f ∈ H span K. Furthermore,
this representation π is determined by these requirements up to unitary equivalence.
Note that for a completely positive map φ we have ‖φ‖ = ‖φ(I)‖. By requiring A
to have a unit we insure φ is bounded. Also, if γ is a second completely positive
map of A into B(H) and the mapping A → φ(A) − γ(A) for A ∈ A is completely
positive then there is a unique positive operator C ∈ π(A)′(C commutes with π(A)
for all A ∈ A) so that γ(A) = V ∗Cπ(A)V for all A ∈ A.

Another result concerning completely positive maps which we will often use is
that if φ is a completely positive contraction from a C∗-algebra A to B(H) and S ∈ A
is a contraction (‖S‖ ≤ 1) then if φ(S) is an isometry then φ(AS) = φ(A)φ(S) for
all A ∈ A and if φ(S∗) is an isometry then φ(SA) = φ(S)φ(A) for all A ∈ A. This
result follows easily from the Stinespring construction.

Arveson has described the completely positive maps of B(H) into B(K) which
we describe in the following definition. We use Arveson’s characterization to defines
the rank of such a map. In this section we denote by B(K,H) the space of bounded
linear operators from the Hilbert space H to the Hilbert space K. Note that if
A ∈ B(K,H) then A∗ ∈ B(H,K).

Definition 3.2. Suppose φ is a completely positive σ-weakly continuous contrac-
tion of B(H) into B(K). Arveson has shown that a completely positive σ-weakly
continuous contraction φ of B(H) into B(K) is of the form

φ(A) =
r∑
i=1

CiAC
∗
i

for A ∈ B(H) where r is a nonnegative integer or a countable infinity and the
Ci ∈ B(K,H) are linearly independent over +2(N) which means that for every
square summable sequence zi ∈ C for i ∈ [1, r + 1) if C is the operator given by

C =
r∑
i=1

ziCi

(one can show the sum converges in norm) then C = 0 if and only if each zi = 0
for i ∈ [1, r + 1). If φ is expressed in terms of a second linearly independent set of
operators C ′

i the number of terms r′ for the second sum is the same. We call r the
rank of φ.

We have the notion of when map φ dominates γ. Sometimes it is useful to have
a word for the maps γ which are dominated by φ. We call these maps subordinates
of φ.

Definition 3.3. Suppose φ is a σ-weakly continuous completely positive map of
B(H) into B(K). Then γ is a subordinate of φ if γ is a completely positive map
of B(H) into B(K) and the mapping for A ∈ B(H) given by A → φ(A) − γ(A)
is completely positive. In this situation we say φ dominates γ. The fact that φ
dominates γ or what is the same thing that γ is a subordinate of φ is denoted φ ≥ γ.
(Note γ is automatically σ-weakly continuous.) Suppose α is a CP-semigroup of
B(H). Then β is a subordinate of α if β is a CP-semigroup and A → αt(A)−βt(A)
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for A ∈ B(H) is completely positive for all t ≥ 0 (i.e., αt ≥ βt for each t ≥ 0). Again
we may express this same notion by saying α dominates β and this is denoted by
writing α ≥ β.

Suppose φ is a σ-weakly continuous complete positive map of B(H) into B(K)
and φ is given as in Definition 3.2. Then the extremal subordinates of φ are of the
form γ(A) = CAC∗ for A ∈ B(H) with

C =
r∑
i=1

ziCi with
r∑
i=1

|zi|2 = 1.

We see that the extremal subordinates of φ are isomorphic to the rank one
projections in a r-dimensional Hilbert space.

An important result of Bhat [Bh] is that each unital CP-semigroup α can be
dilated to an Eo-semigroup αd and if the dilation is minimal then αd is unique up
to cocycle conjugacy. The relation between the CP-semigroup α of B(H) and the
minimal dilation αd which is an Eo-semigroup of B(H1) is given by

αt(A) = W ∗αdt (WAW ∗)W

for all A ∈ B(H) where W is an isometry of H into H1 so that WW ∗ is an increasing
projection for αd (i.e., αdt (WW ∗) ≥ WW ∗ for all t ≥ 0) and αd is minimal over the
range of WW ∗. We use Arveson’s definition of minimal [A6] which is equivalent to
Bhat’s definition but easier to state which means the linear span of vectors of the
form

αdt1(WA1W
∗)αdt2(WA2W

∗) · · ·αdtn(WAnW
∗)Wf

with f ∈ H, Ai ∈ B(H), ti ≥ 0 for i = 1, · · · , n and n = 1, 2, · · · is dense in H1.
Arveson showed that αd is minimal if and only if the operators αdt (WAW ∗) for
A ∈ B(H) generate B(H1) so every vector is cyclic for the αdt (WAW ∗).

The minimal dilation αd is determined by α up to conjugacy. Because of the
importance of this construction we briefly describe the situation. Suppose αd in
a minimal dilation of the unital CP-semigroup of B(H) to an Eo-semigroup αd of
B(H1) and W is an isometry of H into H1 so that αd is minimal over the range of
W and

αt(A) = W ∗αdt (WAW ∗)W
for all A ∈ B(H) and t ≥ 0. The key to understanding why α determines αd is
seeing how the expression

Ξ =Ξ(A1, · · · , An, t1, · · · , tn)
=W ∗αdt1(WA1W

∗)αdt2(WA2W
∗) · · ·αdtn(WAnW

∗)W

is computable from α. Let us first take the case of two terms with t1 ≥ t2 so we set
s = t2 and t = t1 − t2. Then we have

W ∗αdt1(WAW ∗)αdt2(WBW ∗)W =W ∗αdt+s(WAW ∗)αds(WBW ∗)W

=W ∗αds(α
d
t (WAW ∗)WBW ∗)W

=W ∗αds(WW ∗)αds(α
d
t (WAW ∗)WBW ∗)W

=W ∗αds(WW ∗αdt (WAW ∗)WBW ∗)W

=W ∗αds(Wαt(A)BW ∗)W = αs(αt(A)B)
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where in the third line we used the fact that αds(WW ∗) ≥ WW ∗ so we have W ∗ =
W ∗αds(WW ∗). So for t1 ≥ t2 we have

W ∗αdt1(WA1W
∗)αdt2(WA2W

∗)W = αt2(αt2−t1(A1)A2).

And when t1 ≤ t2 a similar calculation shows

W ∗αdt1(WA1W
∗)αdt2(WA2W

∗)W = αt1(A1αt1−t2(A2)).

So in general we have

W ∗αdt1(WA1W
∗)αdt2(WA2W

∗)W = αto(αt1−to(A1)αt2−to(A2))

where to = min(t1, t2). For the case of n terms we find

W ∗αdt1(WA1W
∗)αdt2(WA2W

∗) · · ·αdtn(WAnW
∗)W

=W ∗αds(α
d
t1−s(WA1W

∗)αdt2−s(WA2W
∗) · · ·αdtn−s(WAnW

∗))W

where s = min(t1, t2, · · · , tn). So if tk is the minimum of the t′s we have

W ∗αdt1(WA1W
∗)αdt2(WA2W

∗) · · ·αdtn(WAnW
∗)W =

W ∗αs(αdt1−s(WA1W
∗) · · ·αdtk−1−s(WAk−1W

∗)WAkW
∗αdtk+1

(WAk+1W
∗)

· · ·αdtn−s(WAnW
∗))W.

In the expression above we can replace W ∗ by W ∗αs(WW ∗) on the left and W by
αs(WW ∗)W on the right. Then we have

W ∗αdt1(WA1W
∗)αdt2(WA2W

∗) · · ·αdtn(WAnW
∗)W = W ∗αds(WXAkYW ∗)W

where
X = W ∗αdt1−s(WA1W

∗) · · ·αdtk−1−s(WAk−1W
∗)W

and
Y = W ∗αdtk+1−s(WAk+1W

∗) · · ·αdtn−s(WAnW
∗)W.

Note the expressions for X and Y involve an expression Ξ with a smaller number
of terms. One sees that by using this procedure repeatedly one can successively
reduce the number to terms until the number of terms is two or less. In this way
one can evaluate Ξ in solely in terms of α. To give an example, for the product of
four terms with 0 ≤ t2 ≤ t1 ≤ t3 ≤ t4 we find

W ∗αdt1(WA1W
∗)αdt2(WA2W

∗)αdt3(WA3W
∗)αdt4(WA4W

∗)W

= αt2(αt1−t2(A1)A2αt3−t2(A3αt4−t3(A4))).

In [P4] we introduced the notion of a local cocycle for Eo-semigroups. If α is an
Eo-semigroup of B(H) then t → S(t) is a cocycle if S(t) is strongly continuous in
t, S(0) = I and S(t) satisfies the cocycle identity S(t)αt(S(s)) = S(t + s) for all
s, t ≥ 0. The family S(t) is a local cocycle if S(t) is a cocycle and S(t) commutes
with αt(A) for all A ∈ B(H) (i.e., S(t) ∈ αt(B(H))′ for all t ≥ 0). In Theorem 4.9 of
[P4] it was shown that the projection valued local cocycles with the order relation
E(t) ≥ F (t) for all t ≥ 0 form a complete lattice which is a cocycle conjugacy
invariant. The same argument shows that the positive local cocycles with the
obvious order relation are a cocycle conjugacy invariant. What is of interest is
that the positive contractive local cocycles of an Eo-semigroup α are in one to one
correspondence with the subordinates of α.
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Theorem 3.4. Suppose α is an Eo-semigroup of B(H). Suppose β is a subordinate
of α. Then there is a local cocycle t → C(t) with 0 ≤ C(t) ≤ I for t ≥ 0 and
βt(A) = C(t)αt(A) for all t ≥ 0 and A ∈ B(H). Conversely, if t → C(t) is a local
cocycle with 0 ≤ C(t) ≤ I for t ≥ 0 and if βt(A) = C(t)αt(A) for all t ≥ 0 and
A ∈ B(H) then β is a subordinate of α. Furthermore, the local cocycles t → C(t)
with 0 ≤ C(t) ≤ I for all t ≥ 0 with the obvious order relation are a cocycle
conjugacy invariant.

Proof. Suppose α is an Eo-semigroup of B(H) and β is subordinate of α. Suppose
t > 0. Since αt ≥ βt and αt is a ∗-isomorphism we have from the Stinespring
results concerning completely positive maps that βt(A) = αt(A)C(t) with C(t) ∈
αt(B(H))′ for each A ∈ B(H) and 0 ≤ C(t) ≤ I. Since β is a semigroup we have
for t, s ≥ 0 that

C(t+ s) = βt+s(I) = βt(βs(I)) = βt(C(s)) = C(t)αt(C(s)).

Conversely suppose t → C(t) is a local cocycle with 0 ≤ C(t) ≤ I for all t ≥ 0.
Then for each t > 0 we have

αt(A)− βt(A) = (I − C(t))αt(A) = (I − C(t))
1
2αt(A)(I − C(t))

1
2 .

Hence, the map A → αt(A)− βt(A) is completely positive for t ≥ 0.
Next suppose α and β are cocycle conjugate Eo-semigroups of B(H1) and B(H2),

respectively. This means there is a unitary operator W ∈ B(H1,H2) so that

βt(A) = W ∗S(t)αt(WAW ∗)S(t)−1W

for all A ∈ B(H2) and t ≥ 0 where t → S(t) is an α unitary cocycle. Suppose
t → C(t) is a local cocycle for α with 0 ≤ C(t) ≤ I for all t ≥ 0. Let D(t) =
W ∗S(t)C(t)S(t)−1W. We have 0 ≤ D(t) ≤ I for all t ≥ 0 and

D(t)βt(D(s)) =D(t)W ∗S(t)αt(WD(s)W ∗)S(t)−1W

=D(t)W ∗S(t)αt(S(s)C(s)S(s)−1)S(t)−1W

=W ∗S(t)C(t)αt(S(s))αt(C(s))S(t+ s)−1W

=W ∗S(t)αt(S(s))C(t)αt(C(s))S(t+ s)−1W

=W ∗S(t+ s)C(t+ s)S(t+ s)−1W = D(t+ s)

for all t, s ≥ 0. Hence, t → D(t) is a cocycle for β. Next note that

D(t)βt(A) =W ∗S(t)C(t)S(t)−1WW ∗S(t)αt(WAW ∗)S(t)−1W

=W ∗S(t)C(t)αt(WAW ∗)S(t)−1W

=W ∗S(t)αt(WAW ∗)C(t)S(t)−1W

=W ∗S(t)αt(WAW ∗)S(t)−1WW ∗S(t)C(t)S(t)−1W

=βt(A)D(t)

for all A ∈ B(H) and t ≥ 0. Hence t → D(t) is a local cocycle for β. Hence, the
cocycle conjugacy produces mapping from each positive contractive local cocycle
t → C(t) for α to a positive contractive local cocycle D(t) for β. Since this mapping
is invertible and preserves order it follows that we have an order isomorphism
from the local cocycles for α onto the local cocycles for β and from what we have



CP-Flows 175

shown above this gives and order isomorphism of the subordinates of α with the
subordinates of β. �

Theorem 3.5. Suppose α is a unital CP-semigroup of B(H) and αd in a minimal
dilation of α to an Eo-semigroup of B(H1). Then there is an order isomorphism
of the subordinates of α with the subordinates of αd given as follows. Suppose the
relation between αt and αdt is given by

αt(A) = W ∗αdt (WAW ∗)W

for all A ∈ B(H) and t ≥ 0 where W is an isometry of H into H1 with WW ∗ an
increasing projection for αd and αd is minimal over the range of WW ∗. Suppose
γ is a subordinate of αd and C(t) = γt(I) for t ≥ 0. Then β the subordinate of α
associated with γ under this isomorphism is given by

βt(A) = W ∗αdt (WAW ∗)C(t)W

for all A ∈ B(H) and t ≥ 0.

Proof. Assume the hypothesis and notation of the theorem. Suppose γ is a sub-
ordinate of αd and C(t) = γt(I) for all t ≥ 0. Let βt be as given in the statement
of the theorem. Note

βt(A) = W ∗αdt (WAW ∗)C(t)W = W ∗C(t)
1
2αdt (WAW ∗)C(t)

1
2W

and

αt(A)− βt(A) =W ∗αdt (WAW ∗)(I − C(t))W

=W ∗(I − C(t))
1
2αdt (WAW ∗)(I − C(t))

1
2W

for all A ∈ B(H) and t ≥ 0. From this it follows that A → βt(A) and A →
αt(A)−βt(A) are completely positive maps for all t ≥ 0. Note that βt is a semigroup
since

βt(βs(A)) =W ∗αdt (WW ∗αds(WAW ∗)C(s)WW ∗)C(t)W

=W ∗αdt (WW ∗)αdt+s(WAW ∗)αdt (C(s))αdt (WW ∗)C(t)W

=W ∗αdt (WW ∗)αdt+s(WAW ∗)C(t)αdt (C(s))αdt (WW ∗)W

=W ∗αdt (WW ∗)αdt+s(WAW ∗)C(t+ s)αdt (WW ∗)W

=W ∗αdt+s(WAW ∗)C(t+ s)W = βt+s(A)

for all A ∈ B(H) and t, s ≥ 0. (Note above we used the fact that αdt (WW ∗) ≥ WW ∗

which implies W ∗αdt (WW ∗) = W ∗ and αdt (WW ∗)W = W for all t ≥ 0.) Hence, β
is a subordinate of α.

Next we show the mapping just described from C(t) to β is one to one. In fact
we will show that the local cocycle C(t) can be reconstructed from β. We will show
how expressions like

Ξ = W ∗αdt1(WA1W
∗) · · ·αdtn(WAnW

∗)C(to)αds1(WB1W
∗) · · ·αdsm

(WBmW
∗)W

can be calculated from α and β. Since αd is minimal over the range of W it follows
that these expression determine C(t).We begin with some low order terms. Suppose
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0 ≤ t ≤ s and A ∈ B(H). Then

W ∗C(t)αds(WAW ∗)W =W ∗αds(WAW ∗)C(t)W

=W ∗αdt (WW ∗)C(t)αds(WAW ∗)αdt (WW ∗)W

=W ∗C(t)αdt (WW ∗)αds(WAW ∗)αdt (WW ∗)W

=W ∗C(t)αdt (WW ∗αds−t(WAW ∗)WW ∗)W

=W ∗C(t)αdt (Wαs−t(A)W ∗)W

=βt(αs−t(A)).

Suppose 0 ≤ s ≤ t and A ∈ B(H). Then

W ∗C(t)αds(WAW ∗)W =W ∗C(s)αds(C(t− s))αds(WAW ∗)W

=W ∗αds(WW ∗)C(s)αds(C(t− s))αds(WAW ∗)W

=W ∗C(s)αds(WW ∗C(t− s)WAW ∗)W

=W ∗C(s)αds(Wβt−s(I)AW ∗)W

=βs(βt−s(I)A).

Repeating the computation with C(t) on the right gives

W ∗αds(WAW ∗)C(t)W = βs(Aβt−s(I)).

Next we show how an expression Ξ given above can be calculated in terms of a Ξ
with fewer terms. Consider Ξ given above. Let t = min(t1, · · · , tm, to, s1, · · · , sm).
Suppose t = tk. Note that C(to) = C(t)αdt (C(to − t)) and C(t) commutes with
αds(WAW ∗) for s ≥ t and A ∈ B(H). Using this we find the expression for Ξ above
can be reduced as follows:

Ξ = W ∗C(t)αdt (α
d
t′1
(WA1W

∗) · · ·αdt′n(WAnW
∗)C(t′o)α

d
s′1
(WB1W

∗) · · ·
· · ·αds′m(WBmW

∗))W

for t′i = ti − t and s′j = sj − t for i = 0, 1, · · · , n and j = 1, · · · ,m. Since
αdt (WW ∗)W = W, W ∗αdt (WW ∗) = W ∗ and αdt (WW ∗) commutes with C(t) we
have

Ξ = W ∗C(t)αdt (WW ∗αdt′1(WA1W
∗) · · ·

· · ·αdt′k−1
(WAk−1W

∗)WAkW
∗αdt′k+1

(WAk+1W
∗) · · ·

· · ·αdt′n(WAnW
∗)C(t′o)α

d
s′1
(WB1W

∗) · · ·
· · ·αds′m(WBmW

∗)WW ∗)W.

Let
X = W ∗αdt′1(WA1W

∗) · · ·αdt′k−1
(WAk−1W

∗)W

and

Y = W ∗αdt′k+1
(WAk+1W

∗) · · ·αdt′n(WAnW
∗)C(t′o)α

d
s′1
(WB1W

∗) · · ·
· · ·αds′m(WBmW

∗)W.
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Note X,Y ∈ B(H) and X is computable in terms of α as described at the beginning
of this section and Y is of the form Ξ with a smaller number of terms. Then we
have

Ξ = W ∗C(t)αdt (WXAkYW ∗)W = βt(XAkY ).
Hence, we have shown that in this case Ξ can be computed from a knowledge of β
and Ξ with fewer terms.

Next suppose t = to. Then C(to) = C(t) commutes with all the other terms and
we have

Ξ = W ∗C(t)αdt (α
d
t′1
(WA1W

∗) · · ·αdt′n(WAnW
∗)αds′1(WB1W

∗) · · ·
· · ·αds′m(WBmW

∗))W

for t′i = ti−t and s′j = sj−t for i = 1, · · · , n and j = 1, · · · ,m. Since αdt (WW ∗)W =
W, W ∗αdt (WW ∗) = W ∗ and αdt (WW ∗) commutes with C(t) we have

Ξ =W ∗C(t)αdt (WW ∗αdt′1(WA1W
∗) · · ·

· · ·αdt′n(WAnW
∗)αds′1(WB1W

∗) · · ·αds′m(WBmW
∗)WW ∗)W.

Let

Z = W ∗αdt′1(WA1W
∗) · · ·αdt′n(WAnW

∗)αds′1(WB1W
∗) · · ·αds′m(WBmW

∗)W.

Note Z ∈ B(H) and Z can be computed from a knowledge of α. Hence, we have

Ξ = W ∗C(t)αdt (WZW ∗)W = βt(Z).

Hence, we have shown in this case Ξ can be calculated from a knowledge of β and
α.

Finally suppose t = sk. Then the same sort of calculation we did for t = tk
shows that Ξ can be computed from a knowledge of α and β and Ξ with fewer
terms. Hence, we have shown in all cases Ξ can be computed from a knowledge of
α, β and Ξ with fewer terms. Then by iteration we can reduce the number of terms
in Ξ until the number of terms is down to two or one where we have shown how to
compute these terms from a knowledge of α and β. Hence, we have shown that all
the terms Ξ can be computed from a knowledge of α and β. Since αd is minimal
over the range of W it follows that for each t > 0 we can compute (F,C(t)G) where
F and G are linear combinations of vectors of the form

αdt1(WA1W
∗) · · ·αdtn(WAnW

∗)Wf

with f ∈ H, Ai ∈ B(H), ti ≥ 0 for i = 1, · · · , n. Since the closed span of such vectors
is all of H1 it follows that C(t) is determined from a knowledge of α and β. Hence,
the mapping C(t) → βt from positive contractive local cocycles to subordinates of
α is one to one.

Next we show the mapping is onto (i.e., it has range all subordinates of α).
Suppose then that β is a subordinate of α. Suppose t > 0. Since we have αt(A) =
W ∗αdt (WAW ∗)W for A ∈ B(H) and αdt is a ∗-representation of B(H1) the mapping
A → αdt (WAW ∗) is a ∗-representation of B(H) on αdt (WW ∗)Mt where Mt is
the closed linear span of {αdt (WAW ∗)Wf, f ∈ H, A ∈ B(H)} and let φt be the
restriction of A → αdt (WAW ∗) to Mt so φt(A)f = αdt (WAW ∗)f for all f ∈ Mt

and A ∈ B(H). Note αt(A) = W ∗φt(A)W for A ∈ B(H) and the span of φt(A)Wf
for A ∈ B(H) and f ∈ H is dense in Mt. Since αt ≥ βt it follows from the
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Stinespring analysis of completely positive maps that there is a unique operator
Z(t) ∈ φt(B(H))′ so that βt(A) = W ∗φt(A)Z(t)W for all A ∈ B(H).

To proceed further we need to know the relation between the unit I ∈ B(H1)
and WW ∗. Since WW ∗ is an increasing projection for αd we have αdt (WW ∗) ≥
αds(WW ∗) for t ≥ s. Note either WW ∗ = αdt (WW ∗) for all t ≥ 0 or αdt (WW ∗) �=
αds(WW ∗) if t �= s. In the first case αt is already an Eo-semigroup and in this case
the theorem is trivial and in the second case I − WW ∗ is of infinite rank since
αdn+1(WW ∗) − αdn(WW ∗) for n = 1, 2, · · · is a sequence of nonzero orthogonal
projections less than I − WW ∗. Hence, I − WW ∗ is of rank zero or infinity. In
the rank zero case the theorem is trivial so we assume I −WW ∗ is of infinite rank.
Then there exist an infinite sequence of partial isometries Ei1 ∈ B(H1) so that
E∗
i1Ei1 = E11 = WW ∗ and E∗

i1Ej1 = 0 for i �= j for i, j = 1, 2, · · · and
∞∑
i=1

Ei1E
∗
i1 = I.

Let Eij = Ei1E
∗
j1 for i, j = 1, 2, · · · . Note the Eij form a set of matrix units in

B(H1). Since Mt is a subspace of H1 any operator A ∈ B(Mt) can be interpreted
as an operator A1 in B(H1) by considering A1 in B(H1) to be given by (f,A1g) =
(f ′, Ag′) where f ′ and g′ are the orthogonal projections of f and g onto Mt. Then
let

Y (t) =
∞∑
i=1

αdt (Ei1)Z(t)α
d
t (E1i)

where we interpret Z(t) ∈ B(Mt) as an operator in B(H1) in the manner just
described. We will show W (t) ∈ αdt (B(H1))′. This is seen as follows. From the
formula given above one easily checks that Y (t) commutes with the αdt (Eij) for
i, j = 1, 2, · · · . Let Fij for i, j = 1, · · · , r be a complete set of matrix units for B(H)
(note r is the dimension of H). Then G(in)(jm) = Ei1WFnmW

∗E1j for i, j = 1, 2, · · ·
and n,m = 1, · · · , r form a complete set of matrix units for B(H1). Then C ∈
αdt (B(H1))′ if and only if C commutes with αdt (G(in)(jm)) for all values of the indices.
Since Y (t) commutes with αdt (Eij) for all i, j = 1, 2, · · · we have Y (t) ∈ αdt (B(H1))′

if and only if Y (t) commutes with αdt (WFnmW
∗) for n,m = 1, · · · , r. Suppose

1 ≤ n,m < r + 1. Since Z(t) ∈ φt(B(H))′ we have for f ∈ Mt

αdt (WFnmW
∗)Y (t)f =αdt (WFnmW

∗)Z(t)f = φt(Fnm)Z(t)f

=Z(t)φt(Fnm)f = Z(t)αdt (WFnmW
∗)f

=Y (t)αdt (WFnmW
∗)f

and since αdt (WFnmW
∗) = αdt (WF ∗

mnW
∗) maps Mt into itself αdt (WFmnW

∗) maps
M⊥
t the orthogonal complement of Mt into itself we have for f ∈ M⊥

t

αdt (WFnmW
∗)Y (t)f = αdt (WFnmW

∗)Z(t)f = 0

and
Y (t)αdt (WFnmW

∗)f = Z(t)αdt (WFnmW
∗)f = 0.

Since these Y (t) and αdt (WFnmW
∗) commute when applied to f ∈ Mt and to

f ∈ M⊥
t for all n,m = 1, · · · , r we have Y (t) ∈ αdt (B(H1))′. We are now we are

prepared to define a local cocycle C(t). We first define C(t) for t a dyadic rational
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(i.e., t = m2−n with n and m integers). Suppose t = m2−n. For n,m and p positive
integers consider the operators

C(m,n, p) = Y (s)αds(Y (s))αd2s(Y (s)) · · ·αdqs(Y (s))

where s = 2−p and q = m2max(p−n,0) − 1. Since the unit ball of B(H1) is σ-weakly
compact the above sequence of operators has a weak limit point as p → ∞. Since H1

is separable there is a subsequence of the above operators which converge weakly to
a limit. Since the dyadic rationals are countable there is by the diagonal sequence
argument a sequence {pk : k = 1, 2, · · · } tending to infinity so that C(m,n, pk)
converges σ-weakly to a limit as k → ∞ for all positive integers m and n. We define

C(m2−n) = lim
k→∞

C(m,n, pk).

Since Y (s) ∈ αds(B(H1))′ for s ≥ 0 a routine computation shows C(m,n, p) ∈
α(m2−n)(B(H1))′ for all p > 0. Hence, C(t) ∈ αt(B(H1))′ for t = m2−n. Next we
show C(t) is a cocycle. Before we begin we note that although multiplication is
not jointly continuous in the σ-weak topology in our case it is. Note that if M
is a type I factor then the mapping C = AB for A ∈ M and B ∈ M ′ is jointly
continuous in the σ-weak operator topology. To see this note we can represent our
Hilbert space K as the tensor product of K1 ⊗ K2 and represent M as B(K1) and
M ′ as B(K2) so we can express elements of M in the form A ⊗I and elements of
M ′ as I ⊗B. Note that for product vectors F = f1 ⊗ f2 and G = g1 ⊗ g2 we have

(F,CG) = (F, (A⊗B)G) = (f1, Ag1)(f2, Bg2)

and we see the above expression is jointly continuous in the σ-weak operator topol-
ogy. Since linear combinations of product vectors f1 ⊗ f2 are dense in K it follows
that multiplication is jointly continuous in A and B for A ∈ M and B ∈ M ′. The
same argument shows multiplication is jointly continuous in n variables (i.e., C =
A1A2 · · ·An) where Ai ∈ Mi with the Mi mutually commuting type I factors for
i = 1, · · · , n. Since αdt is σ-weakly continuous for each t ≥ 0 we have expression of
the form

A1αt1(A2)αt1+t2(A3) · · ·αt1+···+tn−1(An)

with Ai ∈ αti(B(H1))′ are jointly continuous in the Ai in the σ-weak topology.
We now show C(t) satisfies the cocycle condition on the dyadic rationals. Sup-

pose t = m2−n and s = k2−j . Note that for k sufficiently large we have

C(m,n, pk)αdt (C(k, j, pk)) = C(m2q−m + k2q−k, q, pk).

As k → ∞ the three terms above tend σ-weakly to C(t), αt(C(s)) and C(t+s) and
since multiplication is jointly continuous in this situation we have C(t)αdt (C(s)) =
C(t+ s).

Next we show W ∗C(t)αdt (WAW ∗)W = βt(A) for t a dyadic rational and A ∈
B(H). Suppose t = m2−n. Now we have for k sufficiently large (so that pk ≥ n) we
have

C(m,n, p)αdt (WAW ∗) = Y (s)αds(Y (s))αd2s(Y (s)) · · ·αd(q−1)s(Y (s))αdqs(WAW ∗)
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where s = 2−pk and q = m2pk−n. Since P = WW ∗ is an increasing projection for
αd and the fact that Y (s) ∈ αds(B(H))′ it follows that

W ∗C(m,n, pk)αdt (WAW ∗)W

=W ∗Y (s)αds(PY (s))αd2s(PY (s)) · · ·αdqs−s(PY (s))αdqs(WAW ∗)W

=W ∗Y (s)αds(PY (s))αd2s(PY (s)) · · ·αdqs−s(PY (s)αds(WAW ∗)P )W

=W ∗Y (s)αds(PY (s))αd2s(PY (s)) · · ·αdqs−2s(Y (s))αdqs−s(Wβs(A)W ∗)W

=W ∗Y (s)αds(PY (s))αd2s(PY (s)) · · ·αdqs−2s(Y (s)αds(Wβs(A)W ∗)P )W

=W ∗Y (s)αds(PY (s))αd2s(PY (s)) · · ·αdqs−2s(Wβ2s(A)W ∗)W
· · · · · · ·

=W ∗Y (s)αds(PY (s)αds(Wβqs−2s(A)W ∗)P )W

=W ∗Y (s)αds(Wβqs−s(A)W ∗)W = βqs(A) = βt(A).

Since C(n,m, pk) → C(t) as k → ∞ we have WC(t)αdt (WAW ∗)W = βt(A) for
all A ∈ B(H) and t a nonnegative dyadic rational. We now want to extend these
results from dyadic rationals to the real numbers. Since αdt is σ-strongly continuous
in t and C(t + s) = C(t)αt(C(s)) all for t and s nonnegative dyadic rationals all
we need is to show C(t) → I σ-weakly as t → 0+ in the dyadic rationals. (Note
since C(t+s) = C(t)αt(C(s)) ≥ C(t) for s and t positive dyadic rationals it follows
that C(t) is decreasing in t so if C(t) converges weakly to I as t → 0+ it converges
strongly.) Now we showed earlier how expressions of the form

Ξ = W ∗αdt1(WA1W
∗) · · ·αdtn(WAnW

∗)C(to)αds1(WB1W
∗) · · ·αdsm

(WBmW
∗)W

can be computed from a knowledge of α and β and if we restrict the variables ti
and sj to dyadic rationals the same rules apply and we can compute these terms
in terms of α and β. We do not actually have to carry out these computations in
detail to see that for an expression Ξ above there will be a finite number of βtj
expressions with tj ≤ to and since βs(A) → A σ-strongly as s → 0+ it follows that
as to → 0+ these expressions behave so that the limit will be the expression for Ξ
with C(to) replaced by the unit I. Hence, we have (F,C(t)G) → (F,G) as t → 0+
(t a dyadic rational) for F and G finite linear combination of vectors of the form

αdt1(WA1W
∗) · · ·αdtn(WAnW

∗)Wf

with f ∈ H and Ai ∈ B(H) for i = 1, · · · , n. Since αd is minimal over the range of
W these vectors are dense in H1 and since the C(t) are all of norm less than one
we have C(t) → I weakly as t → 0+ with t a dyadic rational. As we have seen this
implies C(t) is continuous in t so we can extend C(t) to all the nonnegative reals
by continuity and the cocycle condition C(t)αdt (C(s)) = C(t + s) and the relation
βt(A) = W ∗C(t)αdt (A)W holds for all A ∈ B(H) and for all t, s ∈ [0,∞). Hence,
we have shown for a subordinate β of α there is a subordinate γ of αd (and from
what we showed before it follows that γ is unique) so that γt(A) = C(t)αt(A) with
C(t) a local cocycle and βt(A) = W ∗C(t)αdt (A)W for all A ∈ B(H) and t ≥ 0. It
is routine to show the isomorphism γ ↔ β is an order isomorphism so the proof of
the theorem is complete. �



CP-Flows 181

The next lemma gives a way to determine if one CP-semigroup dominates an-
other.

Lemma 3.6. Suppose α and β are CP-semigroups of B(H). Let Θ be the semigroup
of B(H ⊕ H) given by

Θt

([
X11 X12

X21 X22

])
=
[
αt(X11) βt(X12)
βt(X21) βt(X22)

]

where Xij ∈ B(H) for i, j = 1, 2. Then α ≥ β if and only if Θt is completely positive
for each t ≥ 0.

Proof. Suppose α and β are CP-semigroups of B(H) and Θ is defined as above.
Note Θ is a semigroup. Using the notation above we have

Θt

([
X11 X12

X21 X22

])
=
[
αt(X11)− βt(X11) 0

0 0

]
+
[
βt(X11) βt(X12)
βt(X21) βt(X22)

]

for t ≥ 0. Hence, if α ≥ β the above equations shows that Θt is the sum of
two completely positive maps and, therefore, is completely positive. Conversely,
suppose Θt is completely positive for each t ≥ 0. Suppose t ≥ 0 and Ai ∈ B(H)
and fi ∈ H and let

Bi =
[
Ai Ai
0 0

]
and Fi =

[
fi
−fi

]

for i = 1, · · · , n. Then we have

n∑
i,j=1

(fi, (αt(A∗
iAj)− βt(A∗

iAj))fj) =
n∑

i,j=1

(Fi,Θt(B∗
iBj)Fj) ≥ 0

where the last inequality follows from the fact that Θt is completely positive. Hence,
A → αt(A)− βt(A) is completely positive for each t ≥ 0. �

When A. Connes introduced the notion of outer conjugacy [Co] which we now
call cocycle conjugacy one of the important observations Connes made was that
two automorphisms α and β of a factor R are outer conjugate if and only if there
is an automorphism Θ of M2 ⊗R of the form

Θ
([

X11 X12

X21 X22

])
=
[
α(X11) γ(X12)
γ∗(X21) β(X22)

]
.

We will make frequent use of Connes’ observation in developing criteria for de-
termining when the minimal dilations of two unital CP-semigroups are cocycle
conjugate. We introduce the following notation. If H1 and H2 are Hilbert spaces
then an elements X ∈ B(H1 ⊕ H2) (all bounded operators on the direct sum of H1

and H2) can be represented in matrix form as follows:

X =
[
X11 X12

X21 X22

]

where Xij ∈ B(Hi,Hj) for i, j = 1, 2.
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Definition 3.7. Suppose α and β are unital CP-semigroups of B(H1) and B(H2),
respectively. We say γ is a corner from α to β if γt is mapping of B(H1,H2) into
itself so that the mapping Θt given by

Θt

([
X11 X12

X21 X22

])
=
[
αt(X11) γt(X12)
γ∗
t (X21) βt(X22)

]

for t ≥ 0 where Xij ∈ B(Hi,Hj) for i, j = 1, 2 and γ∗
t (X21) = γt(X∗

21)
∗ is a

CP-semigroup of B(H1 ⊕ H2). Suppose γ is a corner from α to β and Θ is the
CP-semigroup defined above and Θ′ is a subordinate of Θ where the mapping Θ′

t

is given by

Θ′
t

([
X11 X12

X21 X22

])
=
[
α′
t(X11) γt(X12)

γ∗
t (X21) β′

t(X22)

]
for t ≥ 0 where Xij ∈ B(Hi,Hj) for i, j = 1, 2 and γ∗

t (X21) = γt(X∗
21)

∗. Then we
say γ is a maximal corner from α to β if for every subordinate Θ′ we have α′ = α
and we say γ is a hyper maximal corner from α to β if for every subordinate Θ′ we
have α′ = α and β′ = β.

We note that if γ is a corner from α to β then γ∗ is a corner from β to α and γ
is hyper maximal if and only both γ and γ∗ are maximal.

Lemma 3.8. Suppose α and β are Eo-semigroups of B(H1) and B(H2), respec-
tively. Then α and β are cocycle conjugate if and only if there is a corner γ from
α to β so that Θt defined by

Θt

([
X11 X12

X21 X22

])
=
[
αt(X11) γt(X12)
γ∗
t (X21) βt(X22)

]

where Xij ∈ B(Hi,Hj) for i, j = 1, 2 and for t ≥ 0 is an Eo-semigroup of B(H1 ⊕
H2).

Proof. Suppose αt and βt are Eo-semigroups of B(H1) and B(H2) which are co-
cycle conjugate. Then there is an αt unitary cocycle S(t) and a unitary operator
W ∈ B(H1,H2) so that βt(A) = W ∗S(t)αt(WAW ∗)S(t)∗W for all A ∈ B(H2) and
t ≥ 0. Define Θt by

Θt

([
X11 X12

X21 X22

])
=
[

αt(X11) αt(X12W
∗)S(t)∗W

W ∗S(t)αt(WX21) W ∗S(t)αt(WX22W
∗)S(t)∗W

]

where Xij ∈ B(Hi,Hj) for i, j = 1, 2. A routine computation shows that Θt is an
Eo-semigroup of B(H1 ⊕ H2) satisfying the conclusion of the theorem.

Conversely, suppose αt and βt are Eo-semigroups of B(H1) and B(H2) and Θt is
an Eo-semigroup of B(H1 ⊕H2) of the form given in the statement of the theorem.
Let Ei be the hermitian projection of H1 ⊕ H2 onto Hi. So E1 + E2 = I the unit
in B(H1 ⊕ H2) and Θt(Ei) = Ei for i = 1, 2 and t ≥ 0. From Theorem 2.4 we
have Θt is cocycle conjugate to αt and βt since αt and βt are obtained from Θt
by restricting Θt to E1B(H1 ⊕ H2)E1 = B(H1) and E2B(H1 ⊕ H2)E2 = B(H2),
respectively. Since αt and βt are both cocycle conjugate with Θt they are cocycle
conjugate with each other. �

Lemma 3.9. Suppose α and β are ∗-endomorphisms of B(H1) and B(H2), respec-
tively. Suppose Θ is a completely positive mapping of B(H1 ⊕H2) into itself of the
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form

Θ
([

X11 X12

X21 X22

])
=
[
α(X11) γ(X12)
γ∗(X21) β(X22)

]
.

Then

γ(X11X12X22) = α(X11)γ(X12)β(X22)(3.1)

for all Xij ∈ B(Hi,Hj) for i, j = 1, 2.

Proof. Suppose α and β are ∗-endomorphisms of B(H1) and B(H2), respectively,
and Θ is a completely positive mapping of B(H1 ⊕ H2) into itself of the form
given above. Then from the Stinespring construction there is a ∗-representation π
of B(H1 ⊕ H2) on a Hilbert space H3 and operator V ∈ B(H3,H1 ⊕ H2) so that
Θ(A) = V ∗π(A)V for all A ∈ B(H1 ⊕ H2) and H3 is the closed span of vectors
of the form π(A)V f with A ∈ B(H1 ⊕ H2) and f ∈ H1 ⊕ H2. Let Pi be the
orthogonal projection of H1 ⊕H2 onto Hi. Given the form of Θ given above we see
that Θ(Pi)Pi = Θ(Pi) for i = 1, 2. Suppose A ∈ B(H1) and B ∈ B(H2) and

X =
[
A 0
0 B

]
.

Since Θ(X)∗Θ(X) = Θ(X∗X) we have V ∗π(X)∗V V ∗π(X)V = V ∗π(X)∗π(X)V.
Since V is a contraction we have V V ∗π(X)V = π(X)V and V ∗π(X) = V ∗π(X)V V ∗

for all X of the above form. Suppose T ∈ B(H1,H2). Then we have

Θ(XTX) = V ∗π(XTX)V = V ∗π(X)V V ∗π(T )V V ∗π(X)V = Θ(X)Θ(T )Θ(X).

Hence γ(ATB) = α(A)γ(T )β(B) for all A ∈ B(H1) and B ∈ B(H2). �

Next we show that a mapping satisfying (3.1) is automatically σ-strongly con-
tinuous.

Lemma 3.10. Suppose α and β are ∗-endomorphisms of B(H1) and B(H2), re-
spectively. Suppose γ is a linear mapping of B(H1,H2) into itself satisfying (3.1).
Then γ and γ∗ are σ-strongly continuous.

Proof. Suppose the hypothesis of the lemma is satisfied. First let us assume the
dimension of H1 does not exceed the dimension of H2. Then there is isometry W
on H1 into H2. Suppose ω is a normal state of B(H2). Then for T ∈ B(H1,H2) we
have γ(T ) = γ(W ∗WT ) = γ(W ∗)β(WT ) and

ω(γ(T )∗γ(T )) =ω(β(WT )∗γ(W ∗)∗γ(W ∗)β(WT )) ≤ ‖γ(W ∗)‖2ω(β(WT )∗β(WT ))

=‖γ(W ∗)‖2ω(β(T ∗W ∗WT )) = ‖γ(W ∗)‖2ω(β(T ∗T ))

=‖γ(W ∗)‖2β̂(ω)(T ∗T ).

Since β is σ-weakly continuous β̂(ω) is normal so we have ω(γ(T )∗γ(T )) < ε pro-
vided ‖γ(W ∗)‖2β̂(ω)(T ∗T ) < ε so γ is σ-strongly continuous.

Next suppose the dimension of H2 does not exceed the dimension of H1. Then
there is isometry W on H2 into H1. Suppose ω is a normal state of B(H2). Then
for T ∈ B(H1,H2) we have γ(T ) = γ(TW ∗W ) = α(TW ∗)γ(W ) and

ω(γ(T )∗γ(T )) = ω(γ(W )∗α(TW ∗)∗α(TW )γ(W )) = ω(γ(W )∗α(W ∗T ∗TW )γ(W )).
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Now ρ defined by ρ(A) = ω(γ(W )∗Aγ(W )) for A ∈ B(H1) is σ-weakly continuous
we have

ω(γ(T )∗γ(T )) = ρ(α(W ∗T ∗TW )) = α̂(ρ)(W ∗T ∗TW ).
Since α is σ-weakly continuous α̂(ρ) is σ -weakly continuous. Since the mappings
A → W ∗AW is σ-weakly continuous we have A → α̂(ρ)(W ∗AW ) is σ-weakly
continuous. Then ω(γ(T )∗γ(T )) < ε if α̂(ρ)(W ∗T ∗TW ) < ε so γ is σ-strongly
continuous.

The proof that γ∗ is σ-strongly continuous is the same as the proof for γ except
that the roles of α and β are interchanged. �

Lemma 3.11. Suppose α and β are ∗-endomorphisms of B(H1) and B(H2), re-
spectively. Suppose γ is a linear mapping of B(H1,H2) into itself satisfying (3.1).
Suppose W ∈ B(H1,H2) is a rank one operator normalized so that ‖W‖ = 1 (so
W is a partial isometry). Then γ(W ) = α(WW ∗)γ(W )β(W ∗W ). Conversely, sup-
pose S ∈ B(H1,H2) and S = α(WW ∗)Sβ(W ∗W ). Then there is a unique linear
mapping of B(H1,H2) into itself satisfying (3.1) so that γ(W ) = S.

Proof. Suppose α, β and W satisfying the conditions of the lemma. Suppose γ is
a linear mapping of B(H1,H2) into itself satisfying (3.1). Then

γ(W ) = γ(WW ∗WW ∗W ) = α(WW ∗)γ(W )β(W ∗W ).

Conversely, suppose is S ∈ B(H1,H2) and S = α(WW ∗)Sβ(W ∗W ). Let {ei :
i = 1, 2, · · · } and {fj : j = 1, 2, · · · } be an orthonormal bases for H1 and H2,
respectively, so that Wf1 = e1. We define matrix units Tijf = (fj , f)ei and Fijf =
(fj , f)fi for all f ∈ H2 and Eijf = (ej , f)ei for all f ∈ H1. We define γ(Tij) =
α(Ei1)Sβ(F1j) for all i and j in their appropriate range. Now suppose T is a finite
linear combination of the Tij and we define γ(T ) by linearity as

T =
∑
i,j=1

tijTij so γ(T ) =
∑
i,j=1

tijα(Ei1)Sβ(F1j).

Suppose ω is a normal state of B(H2). Then we have

ω(γ(T )∗γ(T )) =
∑

i,j,n,m=1

tnmtijω(β(Fn1)S∗α(E1m)α(Ei1)Sβ(F1j))

=
∑

j,n,m=1

tnmtmjω(β(Fn1)S∗Sβ(F1j))

=
∑
m=1

ω(β(Xm)∗S∗Sβ(Xm)) ≤ ‖S∗S‖
∑
m=1

ω(β(X∗
mXm))

where
Xm =

∑
j=1

tmjF1j .

We have
T ∗T =

∑
m=1

X∗
mXm

so we have ω(γ(T )∗γ(T )) ≤ ‖S‖2ω(β(T ∗T )). Suppose T ∈ B(H1,H2). Let

En =
n∑
i=1

Eii and Fn =
n∑
i=1

Fii and Tn = EnTFn.
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Then Tn → T in the σ-strong topology as n → ∞. Since the mapping C → β(C)
is continuous in the σ-strong topology and since

ω(γ(Tn − Tm)∗γ(Tn − Tm)) ≤ ‖S‖2ω(β((Tn − Tm)∗(Tn − Tm)))

we have γ(Tn) converges to a limit which we call γ(T ) σ-strongly as n → ∞.
We have by direct calculation that γ(EijTnmFrs) = α(Eij)γ(Tnm)β(Frs) and by
σ-strong continuity and linearity this relation extends to the relation γ(ATB) =
α(A)γ(T )β(B) for all A ∈ B(H1), B ∈ B(H2) and T ∈ B(H1,H2).

If γ′ is a second mapping satisfying (3.1) and such that γ′(W ) = S. Then recalling
the construction of γ we see that γ′(T ) = γ(T ) for all T which are finite linear
combinations of the Tij . From the previous lemma we know that γ′ is σ-strongly
continuous and so γ′ = γ. Hence, the mapping γ satisfying the stated conditions is
unique. �

Lemma 3.12. Suppose α and β are unital ∗-endomorphisms of B(H1) and B(H2),
respectively. Suppose Θ is a completely positive mapping of B(H1 ⊕ H2) into itself
of the form

Θ
([

X11 X12

X21 X22

])
=
[
α(X11) γ(X12)
γ∗(X21) β(X22)

]
.

Suppose W ∈ B(H1,H2) is unitary and γ(W ) ∈ B(H1,H2) is also unitary. Then Θ
is a unital ∗-endomorphism of B(H1 ⊕ H2) into itself. Conversely, if Θ is a unital
∗-endomorphism of B(H1 ⊕ H2) into itself then γ(W ) is unitary for every unitary
operator W ∈ B(H1,H2).

Proof. Suppose the hypothesis and notation of the lemma is satisfied. Below we
define S and compute Θ(S)

Θ(S) = Θ
([

0 W
W ∗ 0

])
=
[

0 γ(W )
γ(W )∗ 0

]
.

Since γ(W ) is unitary Θ(S) is unitary. As we pointed out at the beginning of this
section it then follows that Θ(XS) = Θ(X)Θ(S) and Θ(SX) = Θ(S)Θ(X) for all
X ∈ B(H1⊕H2). Applying this to the case where X has entries A ∈ B(H1) and B ∈
B(H2) in the upper left-hand corner and lower right-hand corner, respectively, and
the zero operator in the off diagonal entries we find γ(AW ) = α(A)γ(W ), γ(WB)
= γ(W )β(B), γ∗(BW ) = β(B)γ(W )∗ and γ∗(WA) = γ(W )∗α(A) for all A ∈
B(H1) and B ∈ B(H2). Now suppose A ∈ B(H1), B ∈ B(H2) and T ∈ B(H1,H2).
Then we have

γ(ATB) =γ(ATBW ∗W ) = α(ATBW ∗)γ(W ) = α(A)α(TBW ∗)γ(W )

=α(A)γ(TBW ∗W ) = α(A)γ(TB) = α(A)γ(WW ∗TB)

=α(A)γ(W )β(W ∗TB) = α(A)γ(W )β(W ∗T )β(B)

=α(A)γ(WW ∗T )β(B) = α(A)γ(T )β(B).

A similar calculation shows that if A ∈ B(H1), B ∈ B(H2) and T ∈ B(H1,H2) then
γ∗(BT ∗A) = β(B)γ∗(T ∗)α(A) = β(B)γ(T )∗α(A). Now suppose Xij ∈ B(Hi,Hj)
for i, j = 1, 2. Then we have

γ(X12)γ∗(X21) =γ(X12W
∗W )γ∗(W ∗WX21) = α(X12W

∗)γ(W )γ(W )∗α(WX21)

=α(X12W
∗)α(WX21) = α(X12W

∗WX21) = α(X12X21)
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and

γ∗(X21)γ(X12) =γ∗(X21WW ∗)γ(WW ∗X12) = β(X21W )γ(W )∗γ(W )β(W ∗X12)

=β(X21W )β(W ∗X12) = β(X21WW ∗X12) = β(X21X12).

Using the facts that α and β are ∗-endomorphisms and the properties of γ and
γ∗ established above it now just a matrix computation to show that Θ(X)Θ(Y ) =
Θ(XY ) for all X,Y ∈ B(H1 ⊕ H2).

Conversely, suppose Θ is a unital ∗-endomorphism of B(H1 ⊕ H2) and W ∈
B(H1,H2). It is now just a routine computation to show that γ(W ) is unitary. �

Theorem 3.13. Suppose α and β are unital CP-semigroups of B(H1) and B(H2)
with minimal dilations αd and βd to Eo-semigroups of B(H11) and B(H21), respec-
tively. Then αd and βd are cocycle conjugate if and only if there is a hyper maximal
corner γ from α to β where hyper maximal corners were defined in Definition 3.7.

Proof. Assume the notation given in the statement of the theorem and assume αd

and βd are cocycle conjugate. The relation between the CP-semigroup α of B(H1)
and the minimal dilation αd which is an Eo-semigroup of B(H11) is given by

αt(A) = W ∗
1 α
d
t (W1AW

∗
1 )W1

for allA ∈ B(H) whereW1 is an isometry of H into H1 so thatW1W
∗
1 is an increasing

projection for αd (i.e., αdt (W1W
∗
1 ) ≥ W1W

∗
1 for all t ≥ 0) and αd is minimal over

the range of W1W
∗
1 and the relation between β and βd is the same with W1 replaced

with W2. Since αd and βd are cocycle conjugate there is by Lemma 3.8 a corner γd

from αd to βd so that the mapping Θd given by

Θdt

([
X11 X12

X21 X22

])
=
[
αdt (X11) γdt (X12)
γ∗d
t (X21) βdt (X22)

]

where Xij is a bounded operator from Hj1 to Hi1 for t ≥ 0 is an Eo-semigroup
of B(H11 ⊕ H21). Let W be the isometry from H1 ⊕ H2 to H11 ⊕ H21 given by
W{f, g} = {W1f,W2g} for f ∈ H1 and g ∈ H2. Then since W1W

∗
1 is an increasing

projection for αd and W2W
∗
2 is an increasing projection for βd we have

Θdt (WW ∗) = Θdt

([
W1W

∗
1 0

0 W2W
∗
2

])
=
[
αdt (WW ∗) 0

0 β∗
t (W2W

∗
2 )

]
≥ WW ∗

for each t ≥ 0 so WW ∗ is an increasing projection for Θd. Note that since αd is
minimal over the range of W1 and βd is minimal over the range of W2 we see Θd

is minimal over the range of W. Let Θ be given by Θt(A) = W ∗Θdt (WAW ∗)W for
A ∈ B(H1 ⊕ H2) and t ≥ 0. We see that Θ is of the form

Θt

([
X11 X12

X21 X22

])
=
[
αt(X11) γt(X12)
γ∗
t (X21) βt(X22)

]

where Xij ∈ B(Hi,Hj) for i, j = 1, 2 and γt(X12) = W ∗
1 γ
d
t (W1X12W

∗
2 )W2 for

X12 ∈ B(H1,H2) and t ≥ 0. Now suppose Θ′ is a subordinate of the form given in
the statement of the theorem. Then from Theorem 3.5 there is a subordinate Θ′d

of Θd so that
Θ′
t(A) = W ∗Θ′d

t (WAW ∗)W
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for all A ∈ B(H11 ⊕ H21) and t ≥ 0 and from Theorem 3.4 there is a local cocycle
C so that Θ′d

t (A) = Θdt (A)C(t) for all A ∈ B(H11 ⊕ H21) and t ≥ 0. Now C(t) can
be written in matrix form so

C(t) =
[
C11(t) C12(t)
C21(t) C22(t)

]

for t ≥ 0. Writing out the equation C(t)Θdt (X) = Θdt (X)C(t) in matrix form one
obtains four equations with four variables Xij for i, j = 1,2. Examination of these
equation yields that facts C12(t) = 0, C21(t) = 0 and C22(t) = γdt (S)

∗C11(t)γdt (S)
where S is a unitary form H21 to H11. (Note γt(S) is also a unitary from H21 to H11

follows from the fact that Θd is a unital Eo-semigroup.) Since Θ′d
t (A) = C(t)Θdt (A)

for A ∈ B(H11 ⊕ H21) and the corner of Θ′ is γ by assumption we have γt(A) =
W ∗

1 C11(t)γdt (W1AW
∗
2 )W2 = W ∗

1 γ
d
t (W1AW

∗
2 )W2 for all t ≥ 0 and all bounded linear

operators A ∈ B(H1,H2). Consider the somewhat complicated expression below:

Ξ = W ∗
1 Θ

d
t1(W1A1W

∗
1 ) · · ·Θdtn(W1AnW

∗
1 )C(t)Θdt (Θ

d
s1(W1B1W

∗
1 ) · · ·

· · ·Θdsm
(W1BmW

∗
1 )W1AW

∗
2 Θ

d
x1(W2R1W

∗
2 ) · · ·

· · ·Θdxp
(W2RpW

∗
2 ))Θ

d
y1(W2S1W

∗
2 ) · · ·Θdyq

(W2SqW
∗
2 )W2

for A, Ai, Bj , Rk, Sl ∈ B(H1 ⊕H2) and t > 0 and ti ≥ 0, sj ≥ 0, xk ≥ 0, yl ≥ 0 for
i, j, k and l in there respective ranges. First we note that from a knowledge of all
such terms we can compute C11(t). This can be seen by noting that in the above
expression the linear combinations of the terms in the brackets following C(t)Θdt
are σ-strongly dense in the space of linear operators from H21 to H11 so we can
compute C(t)Θdt (X12) for X12 any operator from H21 to H11. Since this operator
is determined by C11(t) it follows that we can compute C11(t) from a knowledge of
the above terms.

Next note that

C(t)Θt(Θds1(W1B1W
∗
1 ) · · ·

· · ·Θdsm
(W1BmW

∗
1 )W1AW

∗
2 Θ

d
x1(W2R1W

∗
2 ) · · ·Θdxp

(W2RpW
∗
2 ))

= C(t)Θds′1(W1B1W
∗
1 ) · · ·

· · ·Θds′m(W1BmW
∗
1 )Θ

d
t (W1AW

∗
2 )Θ

d
x′1
(W2R1W

∗
2 ) · · ·Θdx′p(W2RpW

∗
2 )

= Θds′1(W1B1W
∗
1 ) · · ·

· · ·Θds′m(W1BmW
∗
1 )C(t)Θdt (W1AW

∗
2 )Θ

d
x′1
(W2R1W

∗
2 ) · · ·Θdx′p(W2RpW

∗
2 )

where a prime on a variable means the unprimed variable plus t (e.g., s′i = si + t).
Then we see that Ξ can be expressed in the simpler form

Ξ = W ∗
1 Θ

d
t1(W1A1W

∗
1 ) · · ·Θdtn(W1AnW

∗
1 )C(t)Θdt (W1AW

∗
2 )Θ

d
s1(W2B1W

∗
2 ) · · ·

· · ·Θdsn
(W2BnW

∗
2 )W2

where the new A′s are made of the original A′s and B′s and the new B′s are made
up of the original R′s and S′s and the new t′s are made up of the original t and
s′s and the new s′s are made up of the original t and x′s. Now in calculating Ξ by
the methods described earlier we see that Ξ can be calculated from a knowledge of

W ∗
1 Θ

d
t (W1AW

∗
1 )W1, W

∗
2 Θ

d
t (W2AW

∗
2 )W2
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and

W ∗
1 Θ

′d
t (W

∗
1 AW2)W2 = W ∗

1 C(t)Θdt (W
∗
1 AW2)W2

for A ∈ B(H1 ⊕ H2) and t ≥ 0. Now the first two are given by αt(A) and βt(A),
respectively. And the third one is given by γt(A) by the assumption of the theorem.
Hence, Ξ is computable from α, β and γ. Now if we calculate the expression for
Ξ and replace C(t) with the unit we get the same expression. Since in calculating
an expression which determines C11(t) we get the same expression if we replace
C11(t) with the unit it follows that C11(t) = I. At this point we can only conclude
C11(t) = I because in these expressions we have restricted our attention to terms
where C(t) lies between vectors in H11. Now we have seen that C12(t) = 0 and
C21(t) = 0 and

C22(t) = γdt (S)
∗C11(t)γdt (S) = γdt (S)

∗γdt (S) = βdt (S
∗S) = βdt (I) = I.

Hence, C(t) = I so Θ′ = Θ.
Now we prove the reverse implication. Suppose γ is a corner from α to β satis-

fying the condition of the theorem. Suppose Θ is given in terms of α, β and γ as
in Definition 3.7 and Θd is the minimal dilation of Θ to an Eo-semigroup of H3 so
we have a isometry W ∈ B(H3,H1 ⊕ H2) so WW ∗ is an increasing projection for
Θd and Θd is minimal over the range of W and Θt(A) = W ∗Θdt (WAW ∗)W for all
A ∈ B(H1 ⊕ H2) and t ≥ 0. Let P1 and P2 be the projections of H1 ⊕ H2 onto H1

and H2, respectively. Let W1 = WP1 and W2 = WP2. Since α is unital and α is
the top left corner of Θ we have Θt(P1) = P1 so we have

W1W
∗
1 Θ

d
t (W1W

∗
1 )W1W

∗
1 = W1W

∗
1 Θ

d
t (WP1W

∗)W1W
∗
1 = W1Θt(P1)W ∗

1 = W1W
∗
1

for t ≥ 0 so W1W
∗
1 is an increasing projection for Θd. Since β is unital we have by

the same argument that W2W
∗
2 is an increasing projection for Θd. Next we note

that Θt(W1W
∗
1 )Θs(W2W

∗
2 ) = 0 for all s, t ≥ 0. To see this first note that

Θt(W1W
∗
1 )W2W

∗
2 Θt(W1W

∗
1 ) ≤ Θt(W1W

∗
1 W2W

∗
2 W1W

∗
1 ) = 0

for all t ≥ 0. So Θt(W1W
∗
1 )W2W2 = 0 for all t ≥ 0. The same argument shows

Θt(W2W
∗
2 )W1W1 = 0 for all t ≥ 0. Then we have for 0 ≤ t ≤ s that

Θt(W1W
∗
1 )Θs(W2W

∗
2 ) = Θt(W1W

∗
1 Θs−t(W2W

∗
2 )) = 0.

A similar argument gives the result for 0 ≤ s ≤ t. Hence, Θt(W1W
∗
1 )Θs(W2W

∗
2 ) = 0

for all t, s ≥ 0. Let Ni be the closed subspace of H3 spanned by the vectors

Yi(Ξ) = Θdt1(WiA1W
∗
i ) · · ·Θdtn(WiAnW ∗

i )Wif

for i = 1, 2, f ∈ H1⊕H2, tk ≥ 0, Ak ∈ B(H1⊕H2) for k = 1, · · · , n and n = 1, 2, · · · .
When we refer to Yi(Ξ) we mean the vector above. We give this vector a name
so we do not have to repeatedly repeat all the quantifiers associated with this
vector. Since Θdt (WiW

∗
i )Yi(Ξ) = Yi(Ξ) for t ≥ t1 for i = 1, 2 and Θdt (W1W

∗
1 )

and Θdt (W2W
∗
2 ) have orthogonal ranges it follows that N1 and N2 are orthogonal

subspaces. Let N be the span of N1 and N2 and let Q, Q1 and Q2 be the orthogonal
projections of H3 onto N, N1 and N2, respectively. We show Q1 is an increasing
projection for Θd. Consider the vector Y1(Ξ) above. Note Q1Y1(Ξ) = Y1(Ξ) for all
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such vectors Y1(Ξ). Let s = min(t1, · · · , tn). Suppose 0 ≤ t ≤ s. Then

Θdt (Q1)Y1(Ξ) =Θdt (Q1Θdt′1(W1A1W
∗
1 ) · · ·Θdt′n(W1AnW

∗
1 ))W1f

=Θdt (Q1Θdt′1(W1A1W
∗
1 ) · · ·Θdt′n(W1AnW

∗
1 )W1W

∗
1 )W1f

where t′k = tk − t for k = 1, · · · , n. Since
Q1Θdt′1(W1A1W

∗
1 ) · · ·Θdt′n(W1AnW

∗
1 )W1 = Θdt′1(W1A1W

∗
1 ) · · ·Θdt′n(W1AnW

∗
1 )W1

we have Θdt (Q1)Y1(Ξ) = Y1(Ξ) for 0 ≤ t ≤ s. Now suppose t ≥ s and tk = s. Then
we have

Θdt (Q1)Y1(Ξ) = Θds(Θ
d
t′(Q1)Θdt′1(W1A1W

∗
1 ) · · ·W1AkW

∗
1 · · ·Θdt′n(W1AnW

∗
1 ))W1f

where t′ = t − s and t′j = tj − s for j = 1, · · · , n. Hence, Θdt (Q1)Y1(Ξ) = Y1(Ξ)
provided

Θt′(Q1)Θdt′1(W1A1W
∗
1 ) · · ·Θdt′k−1

(W1Ak−1W
∗
1 )W1

=Θdt′1(W1A1W
∗
1 ) · · ·Θdt′k−1

(W1Ak−1W
∗
1 )W1.

And using this reduction formula repeatedly we can reduce to only one term so we
have Θdt (Q1)Y1(Ξ) = Y1(Ξ) if

Θdx(Q1)Θdy(W1BW ∗
1 )W1 = Θdy(W1BW ∗

1 )W1

for all x, y ≥ 0 and B ∈ B(H1 ⊕ H2). We have already shown that if x ≤ y the
above equality holds so we consider the case 0 ≤ y < x. But then we have

Θdx(Q1)Θdy(W1BW ∗
1 )W1 =Θdy(Θ

d
x−y(Q1)W1BW ∗

1 ))W1

=Θdy(W1BW ∗
1 )W1.

Since Q1Θdx−y(W1BW ∗
1 )W1 = Θdx−y(W1BW ∗

1 )W1 we have proved the above equal-
ity for all x, y ≥ 0 and, hence, Θdt (Q1)Y1(Ξ) = Y1(Ξ) for all t ≥ 0 and vectors
Y1(Ξ). Hence, Θdt (Q1) ≥ Q1 and Q1 is an increasing projection for Θd. The same
argument shows Q2 is an increasing projection for Θd. It follows that Q = Q1 +Q2

is an increasing projection for Θd. Now let Θb be the CP-semigroup of N given
by the compression of Θd to N so Θbt(A) = QΘdt (A)Q for all A ∈ B(N) where we
identify B(N) with the hereditary subalgebra of B(H3) of all operators A ∈ B(H3)
so that A = QAQ.

We see that Θb is an intermediate CP-semigroup between Θ and Θd. Note that
corresponding to the decomposition N = N1 ⊕N2 we have a matrix decomposition
of Θb in the form

Θbt

([
X11 X12

X21 X22

])
=
[
αdt (X11) ηt(X12)
η∗t (X21) βdt (X22)

]
where Xij is a bounded operator from Nj to Ni for t ≥ 0. Checking the construction
of the minimal dilation we see that the upper left-hand corner above is αd the
minimal dilation of α to an Eo-semigroup. Similarly the lower right-hand corner is
βd the minimal dilation of β. Also, one checks that the minimal dilation of Θb to
a Eo-semigroup is Θd. From Theorem 3.5 we have there is an order isomorphism
from the subordinates of Θ to the subordinates of Θd and an order isomorphism
from the subordinates of Θb to the subordinates of Θd and, therefore, there is an
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order isomorphism from the subordinates of Θ to the subordinates of Θb. Suppose
S is a unitary operator from N2 to N1. For each t ≥ 0 we define

Θct

([
X11 X12

X21 X22

])
=
[
αdt (X11) ηt(X12)
η∗t (X21) ηt(S)∗αdt (SX22S

∗)ηt(S)

]

where Xij is a bounded operator from Nj to Ni for i, j = 1, 2. In the following
argument when we write Xij we mean an arbitrary bounded linear operator from
Nj to Ni so we will not continually write out the specification for Xij . Similarly
when we write t we mean an arbitrary t ≥ 0. We will show Θc is a subordinate
of Θb. Note that ηt satisfies (3.1). In the calculations below we will use this fact
repeatedly. First note the bottom right term above can be rewritten as follows.

ηt(S)∗αdt (SAS
∗)ηt(S) = ηt(S)∗ηt(SA) = ηt(S)∗ηt(S)βdt (A)

for all A ∈ B(N2). Also we have

ηt(S)∗αdt (SAS
∗)ηt(S) =(αdt (SAS

∗)∗ηt(S))∗ηt(S)

=ηt(SA∗)∗ηt(S) = (ηt(S)βdt (A
∗))∗ηt(S)

=βdt (A)ηt(S)
∗ηt(S)

for all A ∈ B(N2). It follows that ηt(S)∗ηt(S) ∈ βdt (B(N2))′.
Next we show that Θc is a semigroup. The top diagonal and the off diagonal

terms in Θc are the same as Θb and since Θb is a semigroup these terms satisfy the
semigroup property. We only need to check the semigroup property for the bottom
right term in Θc. Suppose s, t ≥ 0. Then we have

ηt(S)∗ηt(S)βdt (ηs(S)
∗ηs(S)βs(A))

=ηt(S)∗ηt(S)βdt (ηs(S)
∗ηs(S))βt+s(A)

=ηt(S)∗ηt(Sηs(S)∗ηs(S))βt+s(A)

=ηt(S)∗αdt (Sηs(S)
∗)ηt(ηs(S))βt+s(A)

=ηt(S)∗αdt (Sηs(S)
∗)ηt+s(S)βt+s(A)

=(αdt (ηs(S)S
∗)ηt(S))∗ηt+s(S)βt+s(A)

=ηt(ηs(S))∗ηt+s(S)βt+s(A)

=ηt+s(S)∗ηt+s(S)βt+s(A)

for A ∈ B(N2). Hence, the bottom right term satisfies the semigroup property
so Θc is a semigroup. Next we show Θc is completely positive. We will need an
alternate expression for ηt(X12). Note that

ηt(X12) = ηt(X12S
∗S) = αdt (X12S

∗)ηt(S).

Also we have

η∗t (X21) = ηt(X∗
21S

∗S)∗ = (αdt (X
∗
21S

∗)ηt(S))∗ = ηt(S)∗αdt (SX21).

Recalling how we defined Θct we have

Θct

([
X11 X12

X21 X22

])
=
[

αdt (X11) αdt (X12S
∗)ηt(S)

ηt(S)∗αdt (SX21) ηt(S)∗αdt (SX22S
∗)ηt(S)

]
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where we have inserted the alternate expressions for ηt(X12) and its adjoint. We
show this map is completely positive by writing it as the product of three completely
positive maps. Let

R =
[
I 0
0 S

]
and T =

[
I 0
0 ηt(S)

]

and ∆ is the mapping

∆
([

X11 X12

X21 X22

])
=
[
αdt (X11) αdt (X12)
αdt (X21) αdt (X22)

]

for Xij ∈ B(N1) for i, j = 1, 2. Then one calculates that Θct(X) = T ∗∆(RXR∗)T
for all X ∈ B(N) so Θct is the product of three completely positive maps so Θct is
completely positive and Θc is a CP-semigroup. Note that Θc is a subordinate of
Θb since

Θbt

([
X11 X12

X21 X22

])
−Θct

([
X11 X12

X21 X22

])
=
[
0 0
0 (I − ηt(S)ηt(S))βt(X22)

]

and since ηt(S)∗ηt(S) ∈ βdt (B(N2))′ we have

(I − ηt(S)∗ηt(S))βdt (X22) = (I − ηt(S)∗ηt(S))
1
2βdt (X22)(I − ηt(S)∗ηt(S))

1
2

which makes it clear that the map X → Θbt −Θct is completely positive. Hence, Θc

is a subordinate of Θb. Since the subordinates of Θb are order isomorphic with the
subordinates of Θ, there is a subordinate Θ′ of Θ corresponding to Θc. Since the
off diagonal elements of Θc equal the off diagonal elements of Θb it follows that the
off diagonal elements of Θ′ match those of Θ. By the assumption of the theorem
we have Θ′ = Θ and by the order isomorphism we have Θc = Θb. Hence, we have
ηt(S)∗ηt(S) = I for all t ≥ 0.

Now let Θat be given by

Θat

([
X11 X12

X21 X22

])
=
[
ηt(S)βdt (S

∗X11S)ηt(S)∗ ηt(X12)
η∗t (X21) βdt (X22)

]
.

Repeating the argument we made for Θc we find Θa is a subordinate of Θb and
this time we find ηt(S)ηt(S)∗ = I. Note essentially all we are doing in this new
argument is interchanging the roles of α and β. Hence, ηt(S) is unitary for all t ≥ 0
and from Lemma 3.12 we find Θbt is a unital ∗-endomorphism of B(N) and from
Lemma 3.8 we have αd and βd are cocycle conjugate. �

The previous theorem shows the importance of analyzing corners between CP-
semigroup. This brings up the question if α is a unital CP-semigroup what do
the corners from α to α correspond to for the dilated Eo-semigroup. As we will
see these corners correspond to contractive local cocycles. We will also consider
matrices of corners.

Definition 3.14. Suppose α is a CP-semigroup of B(H) and n is a positive integer.
We say Θ is a positive (n × n)-matrix of corners from α to α if Θ is a matrix
with coefficients θ(ij) where the θ(ij) are strongly continuous semigroups of B(H)
for i, j = 1, · · · , n so that Θ is a CP-semigroup of B(⊕ni=1H) into itself and the
diagonal entries of Θ are subordinates of α.
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Definition 3.15. Suppose αd is a Eo-semigroup of B(H) and n is a positive integer.
We say C is a positive (n×n)-matrix of αd local cocycles if the coefficients Cij of C
are contractive local cocycles for αd for i, j = 1, · · · , n and the matrix C(t) whose
entries are Cij(t) is positive for all t ≥ 0.

We remark how the cocycle condition fits nicely with the notion of a positive
matrix of local cocycles. It is well-known that if A and B are positive matrices
with coefficients {aij} and {bij} in the complex numbers then the matrix C with
coefficients {aijbij} (C is known as the Schur product of A and B) is positive.
The same is true if the coefficients aij ∈ A where A is algebra of operators on
a Hilbert space and bij ∈ A′ the commutant of A. We see then that if C(t) is a
positive matrix with coefficients which are operators in αdt (B(H))′ and C(s) is a
positive matrix with coefficients in B(H) and if C(t+s) is a matrix with coefficients
Cij(t)αdt (Cij(s)) then C(t+ s) is a positive matrix. It follows then that in order to
check that C is a positive matrix of local cocycles it is only necessary to check the
positivity of C(t) for small t.

Theorem 3.16. Suppose α is a unital CP-semigroup of B(H) and αd is its Bhat
dilation to an Eo-semigroup αd of B(H1). The relation between α and αd is given
by

αt(A) = W ∗αdt (WAW ∗)W
for A ∈ B(H) and t ≥ 0 where W is an isometry from H to H1 and αd is minimal
over the range of W.
Suppose n is a positive integer and Θ is positive (n×n)-matrix of corners from α

to α. Then there is a unique positive (n× n)-matrix C of contractive local cocycles
Cij for αd for i, j = 1, · · · , n so that

θ
(ij)
t (A) = W ∗Cij(t)αdt (WAW ∗)W

for all A ∈ B(H) and t ≥ 0. Conversely, if C is a positive (n × n)-matrix of
contractive local cocycles for αd then the matrix Θ whose coefficients θ(ij) are given
above is a positive (n× n)-matrix of corners from α to α.

Proof. Assume the set up and notation of the theorem. Suppose C is a positive
(n×n)-matrix of αd local cocycles with coefficients Cij for i, j = 1, · · · , n and θ

(ij)
t

are given in terms of the Cij as given in the statement of the theorem. First we
check that Θ is a semigroup. To do this we need to show that the coefficients are
a semigroup. To save writing subscripts in our calculations suppose i and j are
integers in the interval [1, n] and C(t) = Cij(t) and γt = θijt for t ≥ 0. We have

γt(γs(A)) = W ∗C(t)αdt (WW ∗C(s)αs(WAW ∗)WW ∗)W

= W ∗C(t)αdt (WW ∗)αdt (C(s))αdt+s(WAW ∗)αdt (WW ∗)W

= W ∗αdt (WW ∗)C(t)αdt (C(s))αdt+s(WAW ∗)αdt (WW ∗)W

= W ∗C(t+ s)αdt+s(WAW ∗)W = γt+s(A)

for all t, s ≥ 0 and A ∈ B(H) where we have used the facts that WW ∗ is an
increasing projection for αd and C(t) is local. Hence, Θ is a semigroup. Let Θt be
the family of mappings in the statement of the theorem and W1 be the mapping
of ⊕ni=1H into ⊕ni=1H1 given by W1{f1, · · · , fn} = {Wf1, · · · ,Wfn}. Then we have
Θt = W ∗

1 ΞtW1 where Ξt are operators on ⊕ni=1H1 with coefficients Ξijt (Aij) =
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Cij(t)αdt (WAijW
∗) for Aij ∈ B(H) for i, j = 1, · · · , n. We show Ξt is completely

positive for t ≥ 0. Suppose t ≥ 0. The matrix C(t) with coefficients Cij(t) ∈
αdt (B(H1))′ is positive. For x ∈ [0, 1] we have

(1− x)
1
2 = 1− (1/2)x− (1/8)x2 − (1/16)x3 − (5/128)x4 − · · ·

where the series converges absolutely in the closed interval. Let X = I − C(t).
Then we have

C(t)
1
2 = (I −X)

1
2 = I − (1/2)X − (1/8)X2 − · · ·

where the series converges in norm. Since Cij(t) ∈ αdt (B(H1))′ we have D(t) =
C(t)

1
2 has coefficients Dij(t) ∈ αdt (B(H1))′. Since C(t) = D(t)∗D(t) we have

Ξijt (Aij) = Cij(t)αdt (WAijW
∗) =

n∑
k=1

Dki(t)∗Dkj(t)αdt (WAijW
∗)

=
n∑
k=1

Dki(t)∗αdt (WAijW
∗)Dkj(t)

for Aij ∈ B(H) for i, j = 1, · · · , n. Hence, Ξt is the sum of n completely positive
maps and since Θt = W ∗

1 ΞtW1 is follows that Θ is a CP-semigroup so Θ is a positive
(n× n)-matrix of corners from α to α.

Conversely, suppose Θ is a positive (n× n)-matrix of corners from α to α. The
proof of the exitance and uniqueness of the positive (n × n)-matrix C of contrac-
tive local cocycles for αd virtually a repetition of the proof in Theorem 3.5. The
uniqueness of the matrix coefficients Cij(t) is the same as the proof of the unique-
ness of the positive cocycle C(t) in Theorem 3.5. The proof of the existence of
the (n × n)-matrix C of contractive local cocycles for αd is the same as the proof
of the existence of the positive contractive cocycle C(t) in Theorem 3.5 with one
complication which we explain. Recall in the proof of Theorem 3.5 we found an
operator Z(t) ∈ φt(B(H))′ so that βt(A) = W ∗φt(A)Z(t)W for A ∈ B(H) where
φt was the restriction of A → αdt (WAW ∗) to Mt which was the closed linear span
of {αdt (WAW ∗)Wf : f ∈ H, A ∈ B(H)}. In our present case we find the same
operator Z(t) which is now a positive (n × n)-matrix of elements φt(B(H))′. The
existence of Z(t) in the proof of Theorem 3.5 was assured by Stinespring analysis of
completely positive maps. The existence of the matrix Z(t) in our case follows from
the following mild generalization of the Stinespring analysis which is the following.

Suppose η is a completely positive unital map of a C∗-algebra A into B(H) and π
is the Stinespring representation of A on B(H1) determined by η by the requirement
η(A) = V ∗π(A)V for A ∈ A and V is an isometry from H to H1 and the linear
span of the vectors π(A)V f for A ∈ A and f ∈ H is dense in H1. Now suppose γ is
positive (n× n)-matrix of corners from η to η where we take the notion of positive
from Definition 3.14. Then there is a unique positive (n× n)-matrix of contractive
operators Cij in π(A)′ so that γij(A) = V ∗Cijπ(A)V for A ∈ A and i, j = 1, · · · , n.
Unfortunately, we do not have a reference for this exact result but it a fairly routine
argument.

Using this result we construct Z(t) which is now a positive matrix with coeffi-
cients in φt(B(H))′. Then following the argument in Theorem 3.5 we construct Y (t)
which is now a positive (n×n)-matrix with coefficients in αdt (B(H))′. Then follow-
ing the argument in Theorem 3.5 we construct the positive (n×n)-matrix C(t) for
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t a dyadic rational and then show C(t) is continuous and can be extended to all
real positive t thereby producing the positive (n× n)-matrix of local cocycles. �
Corollary 3.17. Suppose α is a unital CP-semigroup of B(H) and αd is its Bhat
dilation and the relation between α and αd is as given in the previous theorem.
Suppose θ is a corner from α to α and C is the local contractive cocycle for αd

associated with θ. Then C(t) is an isometry for all t ≥ 0 if and only if θ is maximal
and C(t) is unitary for all t ≥ 0 if and only if θ is hyper maximal.

Proof. Assume the set up and notation of the corollary. Let Θ be the (2 × 2)-
matrix of semigroups so that the diagonal semigroups are α and the (12) entry is θ
and the (21) entry is θ∗ and let C be the positive (2×2)-matrix of local αd cocycles
associated with Θ by the previous theorem. Suppose Θ′ a subordinate of Θ whose
corner is θ and let C ′ be the positive (2× 2)-matrix associated with Θ′. One checks
that 0 ≤ C ′

11(t) ≤ I, 0 ≤ C ′
22(t) ≤ I, C ′

12(t) = C12(t) and C ′
21(t) = C21(t) = C12(t)∗

for all t ≥ 0. A matrix computation shows that C ′(t) given below satisfies

0 ≤ C ′(t) =
[
C12(t)∗C12(t) C12(t)

C12(t)∗ I

]
≤
[

I C12(t)
C12(t)∗ I

]
= C(t)

for t ≥ 0. Hence, if C12(t) is not an isometry then the top left entry of the above
matrix in not the unit so θ is not maximal. Conversely, suppose C12(t) is an
isometry for all t ≥ 0. If C ′(t) is positive for all t ≥ 0 we have

0 ≤
[
C ′

11(t) C12(t)
C12(t)∗ C ′

22(t)

]
≤
[
C ′

11(t) C12(t)
C12(t)∗ I

]
for all t ≥ 0. A straight forward computation shows matrix on the right above is
positive if and only if C ′

11(t) ≥ I and since C ′
11(t) ≤ I we have C ′

11(t) = I for all
t ≥ 0. Hence, θ is maximal. Now θ is hyper maximal if and only if both θ and θ∗

are maximal so θ is hyper maximal if and only if C(t) is unitary for all t ≥ 0. �

4. CP-flows

We consider the problem of finding all strongly continuous semigroups of com-
pletely positive contractions of the space of all bounded operators on K⊗L2(0,∞)
into itself which intertwine with the semigroup of right translation on K⊗L2(0,∞).
As we will see this is a problem in finding an extension of the differential operator
d = d/dx. The importance of this problem is that every Eo-semigroup can be in-
duced using the Bhat minimal dilation [Bh] from such a semigroup. We call such
semigroups CP-flows over K where K is a separable Hilbert space.

Definition 4.0. Suppose K is a separable Hilbert space and H = K⊗L2(0,∞) and
U(t) is right translations of H by t ≥ 0. Specifically, we may realize H as the space
of K-valued Lebesgue measurable functions with inner product

(f, g) =
∫ ∞

0

f(x)g(x) dx

for f, g ∈ H. The action of U(t) on an element f ∈ H is given by (U(t)f)(x) =
f(x − t) for x ∈ [t,∞) and (U(t)f)(x) = 0 for x ∈ [0, t). A semigroup α is a CP-
flow over K if α is a CP-semigroup of B(H) which is intertwined by the translation
semigroup U(t), i.e., U(t)A = αt(A)U(t) for all A ∈ B(H) and t ≥ 0. A semigroup
α is a CPκ-flow over K where κ ≥ 0 if α is intertwined by the translation semigroup
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U(t) and the semigroup A → e−κtαt(A) is a CP-semigroup of B(H). The constant
κ is called a growth bound for α.

Then next theorem shows that every spacial Eo-semigroup is cocycle conjugate to
an Eo-semigroup which is also a CP-flow so and complete classification of CP-flows
yields a complete classification of spatial Eo-semigroups.

Theorem 4.0A. Every spatial Eo-semigroup of B(H) is cocycle conjugate to an
Eo-semigroup which is also a CP-flow.

Proof. Suppose α is a spatial Eo-semigroup of B(H) and V is a one parameter
semigroup of isometries that intertwine α. For each one parameter semigroup of
isometries V acting on H there is the Wold decomposition of H = Ho⊕K⊗L2(0,∞)
so that V (t) is unitary on Ho and V (t) is the right shift on is K⊗L2(0,∞) for each
t ≥ 0. Note V (t)V (t)∗ → P as t → ∞ where P is the projection onto Ho so if
‖V (t)∗f‖ → 0 as t → ∞ for each f ∈ H then α is a CP-flow since V (t) is the
right shift on H = K ⊗ L2(0,∞) for each t ≥ 0. To prove the theorem we need to
show that every spatial Eo-semigroup is cocycle conjugate to a Eo-semigroup which
is intertwined by a semigroup V with the above property. From Theorem 2.13 of
[P4] it follows that every spatial Eo-semigroup is cocycle conjugate to a spatial
Eo-semigroup in standard form where an Eo-semigroup α is in standard form if it
has a pure absorbing state ωo which means that if ρ is any normal state of B(H)
then ρ(αt(A)) → ωo(A) as t → ∞ for all A ∈ B(H). It follows that an absorbing
state is invariant (i.e., ωo(αt(A)) = ωo(A) for all t ≥ 0 and A ∈ B(H)). Since
ωo is pure it follows that there is a unit vector fo ∈ H so that ωo(A) = (fo, Afo)
for all A ∈ B(H). One defines a strongly continuous one parameter semigroup of
isometries U(t) by the relation

U(t)Afo = αt(A)fo

for all A ∈ B(H) and t ≥ 0. The semigroup U intertwines α. It follows from proof of
Theorem 2.13 in [P4] that U(t) is a pure shift on the orthogonal complement of fo so
the Hilbert space H = Ho⊕H1 decomposes into a direct sum of the one dimensional
subspace Ho spanned by fo and the orthogonal complement H1 and the semigroup
U decomposes as a pure shift on the orthogonal complement H1 and U just the
identity on Ho (i.e., V (t)fo = fo for t ≥ 0). We will show that we can perturb the
Eo-semigroup α and obtain an Eo-semigroup β which is cocycle conjugate with α
and β is intertwined by a semigroup of pure shifts so β is a CP-flow.

Now since U is a pure shift on H1 we can represent H1 as K1⊗ L2(0,∞) and V
acts by translation. We can pick a unit vector h1 ∈ K1 and then let h be the vector
in H1 defined by the K1 valued function h(x) =

√
2h1e

−x for x ≥ 0. To specify
the vector h without referring to this representation of vectors as functions we can
simply say h ∈ H is a unit vector so that U(t)∗h = e−th for all t ≥ 0. Now let H
be the skew hermitian operator giving by

Hf = 1
2 (h, f)fo − 1

2 (fo, f)h

for all f ∈ H. Let −d be the generator of U(t) so U(t) = e−td for t ≥ 0. Let δ be
the generator of α and let

δ1(A) = δ(A) +HA−AH
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for all A ∈ D(δ). Now by Theorem 2.8 of [P3] (restated as Theorem 2.10 in [P4])
δ1 is the generator on an Eo-semigroup β which is cocycle conjugate to α and β
is intertwined by the semigroup of isometries V (t) = exp(−td1) = exp(−t(d−H))
for t ≥ 0 (where d1 = d−H). We show V is a pure shift. Suppose f ∈ H. We note
that for each t ≥ 0 we can uniquely decompose V (t)f in the form

V (t)f = a(t)fo + b(t)h+ g(t)

where g(t) is orthogonal to both fo and h. Note a(t) = (fo, V (t)f) and b(t) =
(h, V (t)f). Note fo, h ∈ D(d∗1) and

d∗1fo = d∗fo −H∗fo = − 1
2h and d∗1h = d∗h−H∗h = h+ 1

2fo.

Then we can differentiate a(t) and b(t) and obtain the equations

d

dt
a(t) = −(d∗1fo, V (t)f) = 1

2 (h, V (t)f) = 1
2b(t)

and
d

dt
b(t) = −(d∗1h, V (t)f) = ((−h− 1

2fo), V (t)f) = −b(t)− 1
2a(t)

for t ≥ 0. Solving these coupled differential equations one finds that

a(t) = (a+ 1
2 (a+ b)t)e−

1
2 t and b(t) = (b− 1

2 (a+ b)t)e−
1
2 t

for t ≥ 0 where a = a(0) = (fo, f) and b = b(0) = (h, f).
Now let M be the two dimensional subspace of H spanned by fo and h and let P

be the orthogonal projection of H onto M. We see from the above equations that if
f ∈ M⊥ (the orthogonal complement of M) then V (t)f ∈ M⊥ for all t ≥ 0 (since
if a = b = 0 then a(t) = b(t) = 0 for all t ≥ 0). Next we note that if f ∈ D(d) and
f ∈ M⊥ then d1f = df. Hence, for f ∈ D(d) and f ∈ M⊥ we have U(t)f = V (t)f
for all t ≥ 0. This extends to all f ∈ M⊥ by continuity. Armed with these facts
can now prove V (t) is a pure shift for each t > 0.

We have shown that

V (t) = V (t)P + V (t)(I − P ) = V (t)P + U(t)(I − P )

for t ≥ 0. Taking adjoints we have

V (t)∗ = PV (t)∗ + (I − P )U(t)∗

for t ≥ 0. Since U is a pure shift on f⊥
o and (I−P )U(t)∗fo = 0 for all t ≥ 0 it follows

that ‖(I − P )U(t)∗f‖ → 0 as t → ∞ for all f ∈ H. Then we have ‖V (t)∗f‖ → 0 as
t → ∞ for all f ∈ H if and only if ‖PV (t)∗f‖ → 0 as t → ∞ for all f ∈ H. Now
from the equations for a(t) and b(t) we have

‖PV (t)∗f‖2 = |(fo, V (t)∗f)|2 + |(h, V (t)∗f)|2 = |a(t)|2 + |b(t)|2
≤ (1 + t2)(|a|2 + |b|2)e−t = (1 + t2)‖Pf‖2e−t

for t ≥ 0. Hence, ‖PV (t)∗f‖ → 0 as t → ∞ for all f ∈ H so V (t) is a pure shift for
each t > 0. Hence, β is a CP-flow. �

The problem we pose is to describe all CP-flows over K. In the following when
working with a CP-flow over K we will assume that H = K ⊗ L2(0,∞) and U(t) is
the right translation operator described above. Note that a CPo-flow is a CP-flow.
We will prove that every CPκ-flow is a CP-flow. Also when we write CPκ-flow in
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the sequel we assume automatically assume that κ ≥ 0 and K is a separable Hilbert
space.

Lemma 4.1. Suppose α is a one parameter semigroup of positive linear mappings
of B(H) into B(H) and the semigroup U(t) of isometries intertwine α in that
U(t)A = αt(A)U(t) for all A ∈ B(H) and t ≥ 0. Let E(t) = I − U(t)U(t)∗. Then
for A ∈ B(H) we have E(s)αt(A) = αt(A)E(s) for all s and t with 0 ≤ s ≤ t < ∞
and

αt(A) = U(t)AU(t)∗ + E(t)αt(A)E(t).(4.1)

Proof. Suppose α satisfies the hypothesis of the lemma. Since αt is positive we
have αt(A∗) = αt(A)∗ for all A ∈ B(H) and all t ≥ 0. Since U(t) intertwines we
have U(t)A = αt(A)U(t) for all A ∈ B(H) and taking adjoints and replacing A by
A∗ we have AU(t)∗ = U(t)∗αt(A) for all A ∈ B(H) and t ≥ 0. It follows then that

αs(A)U(s)U(s)∗ = U(s)AU(s)∗ = U(s)U(s)∗αs(A)

for all A ∈ B(H) and s ≥ 0. Since for s ≤ t < ∞ we have αt(A) = αs(αt−s(A))
it follows that E(s)αt(A) = E(s)αt(A) for all A ∈ B(H) and s and t satisfying
0 ≤ s ≤ t < ∞. The last line of the lemma follows from the computation

αt(A) = αt(A)U(t)U(t)∗ + αt(A)E(t)2 = U(t)AU(t)∗ + E(t)αt(A)E(t)

for all A ∈ B(H) and t ≥ 0. �

Lemma 4.2. Suppose α is a CPκ-flow over K and recall U(t) are the right transla-
tions on H = K⊗L2(0,∞). Let δ be the generator of α and −d be the generator of
U(t)(d is the differential operator d/dx with the boundary condition that f(0) = 0).
Then each A ∈ D(δ) has property that AD(d) ⊂ D(d) and AD(d∗) ⊂ D(d∗) and
for f ∈ D(d) and g ∈ D(d∗) and A ∈ D(δ) we have

δ(A)f = Adf − dAf and δ(A)g = −Ad∗g + d∗Ag.(4.2)

Proof. Assume the hypothesis and notation of the lemma. Suppose A ∈ D(δ) and
f ∈ D(d). Using the fact that U(t)A = αt(A)U(t) we have

t−1(U(t)− I)Af =t−1(αt(A)−A)f + t−1A(U(t)− I)f

+ t−1(αt(A)−A)(U(t)− I)f.

Since the first two terms on the right-hand side of the above equation converges to
δ(A)f and −Adf respectively and the third term converges to zero it follows that
Af ∈ D(d) and −dAf = δ(A)f −Adf. Hence, we have proved the first equation of
the conclusion of the lemma. Now continuing to suppose f ∈ D(d) and A ∈ D(δ)
and suppose g ∈ D(d∗). Then we have −(dAf, g) = (δ(A)f, g) − (Adf, g). Since
A ∈ D(δ) implies A∗ ∈ D(δ) and δ(A∗) = δ(A)∗ we can replace A by A∗ and taking
adjoints we find (df,Ag) = (f,Ad∗g)+(f, δ(A)g). Since this is true for all f ∈ D(d)
we have Ag ∈ D(d∗) and d∗Ag = Ad∗g + δ(A)g. �

We introduce a ∗-derivation δ1 which is an extension of δ.

Definition 4.3. Let δ1 be the linear mapping of the domain D(δ1) into B(H)
where D(δ1) consisting of all A ∈ B(H) so that AD(d) ⊂ D(d), AD(d∗) ⊂ D(d∗)
and there is a B ∈ B(H) so that Bf = d∗Af −Ad∗f for all f ∈ D(d∗). If A ∈ B(H)
satisfies the above requirements then δ1(A) = B.
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Lemma 4.4. The domain D(δ1) is a ∗-algebra which is σ-strongly dense in B(H)
and δ1 is a σ-weakly closed ∗-derivation of D(δ1) into B(H). If δ is a generator
of strongly continuous one parameter semigroup α of completely positive maps of
B(H) into itself satisfying the hypothesis of Lemma 4.2 then δ1 is an extension of
δ in that D(δ1) ⊃ D(δ) and δ1(A) = δ(A) for all A ∈ D(δ).

Proof. Suppose h, g ∈ D(d) and Xf = (g, f)h for all f ∈ H. Note XD(d) ⊂ D(d)
and XD(d∗) ⊂ D(d) ⊂ D(d∗). Let Y f = −(g, f)dh − (dg, f)h for all f ∈ H. Then
one checks that X ∈ D(δ1) and δ1(X) = Y. It follows then that D(δ1) contains
all finite linear combinations of operators of the form X just given. Since D(d) is
dense in H these operators are σ-strongly dense in the finite rank operators. Since
the finite rank operators are σ-strongly dense in B(H) we have D(δ1) is σ-strongly
dense in B(H).

Suppose A ∈ D(δ1) and δ1(A) = B. Then Bf = d∗Af −Ad∗f for all f ∈ D(d∗).
Suppose g ∈ D(d). Then (A∗g, d∗f) = (g, (d∗A− B)f) = ((A∗dg − B∗g), f) for all
f ∈ D(d∗). Hence, A∗g ∈ D(d∗∗) = D(d) and we have shown that A∗D(d) ⊂ D(d).
Since AD(d) ⊂ D(d) and −d∗ ⊃ d we have Bf = Adf − dAf for all f ∈ D(d).
Suppose g ∈ D(d∗). Then we have (A∗g, df) = (g, (dA+B)f) = ((A∗d∗g+B∗g), f)
for all g ∈ D(d). Hence, we have shown that A∗D(d∗) ⊂ D(d∗) and B∗g = d∗A∗g−
A∗d∗g. for g ∈ D(d∗). Hence, A ∈ D(δ1) implies A∗ ∈ D(δ1) and δ1(A∗) = δ1(A)∗.

It is a routine computation to show that if A,B ∈ D(δ1) then AB ∈ D(δ1)
and δ1(AB) = δ1(A)B + Aδ1(B) so we have that D(δ1) is a ∗-algebra and δ1 is a
∗-derivation of D(δ1) into B(H). If δ is the generator of Lemma 4.2 it follows that
D(δ1) ⊃ D(δ) and δ1(A) = δ(A) for all A ∈ D(δ).

Finally, we show that δ1 is σ-weakly closed. Suppose then that An ∈ D(δ1)
and δ1(An) = Bn and An → A and Bn → B σ-weakly as n → ∞. Then A∗

n →
A∗ and δ1(A∗

n) → B∗ σ-weakly as n → ∞. Suppose f ∈ D(d) and g ∈ D(d∗).
Then (Af, d∗g) = limn→∞(Anf, d∗g) = limn→∞(Andf, g) − (Bnf, g) = ((Adf −
Bf), g). Hence, AD(d) ⊂ D(d∗∗) = D(d). Suppose f ∈ D(d∗) and g ∈ D(d). Then
(Af, dg) = limn→∞(Anf, dg) = limn→∞(f,A∗

ndg) = limn→∞(f, (dA∗
n + B∗

n)g) =
limn→∞((And∗ + Bn)f, g) = ((Ad∗f + Bf), g). Hence, we have Af ∈ D(d∗) and
Bf = d∗Af − Ad∗f for all f ∈ D(d∗). Hence, we have A ∈ D(δ1) and δ1(A) = B.
Hence, δ1 is σ-weakly closed. �

We define the boundary representation πo of D(δ1). As is well (see [DS], Lemma
10, p. 1227) known each element f ∈ D(d∗) can be uniquely decomposed in the
form f = fo+ f+ with fo ∈ D(d) and f+ ∈ D(d∗) and d∗f+ = f+. The vector f+ is
given by f+(x) = e−xf(0). Note that since f is differentiable f can be represented
by a continuous K-valued function f(x) and when we write f(0) we are of course
referring to a representation of f by a continuous function. We introduce the inner
product 〈f, g〉 on D(d∗) by the relation

〈f, g〉 = (d∗f, g) + (f, d∗g).

Note that if f, g ∈ D(d∗) then 〈f, g〉 = (f(0), g(0)) so 〈·, ·〉 is an inner product in
D(d∗) mod D(d). Now if A ∈ D(δ1) we have AD(d) ⊂ D(d) and AD(d∗) ⊂ D(d∗).
It follows that if f ∈ D(d∗) then (Af)(0) only depends on f(0). The mapping
f(0) → (Af)(0) is called the boundary representation of πo of D(δ1). One sees that
πo is a ∗-mapping and πo is a representation of D(δ1) since for A,B ∈ D(δ1) and
f ∈ D(d∗) we have πo(AB)f(0) = (ABf)(0) = πo(A)(Bf)(0) = πo(A)πo(B)f(0).
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Note πo is unital in that πo(I) = I. We show πo is a contraction of D(δ1) into
B(K). Since D(δ1) is not a C∗-algebra this in not an immediate consequence of the
fact that πo is unital. For λ > 0 let fλ = e−λxk where k ∈ K is a unit vector and
suppose A ∈ D(δ1). Note ‖fλ‖ = 1/

√
2λ. Then we have

‖πo(A)k‖2 =〈fλ, A∗Afλ〉 = (d∗fλ, A∗Afλ) + (fλ, d∗A∗Afλ)

=(d∗fλ, A∗Afλ) + (fλ, A∗Ad∗fλ) + (fλ, δ(A∗A)fλ)

=2λ‖Afλ‖2 + (fλ, δ(A∗A)fλ) ≤ ‖A‖2 + (2λ)−1‖δ(A∗A)‖.
Taking the limit as λ → ∞ we have ‖πo(A)‖ ≤ ‖A‖ for all A ∈ D(δ1).

Definition 4.5. The mapping πo defined above is called the boundary representa-
tion of D(δ1) on K.

If one looks for the solutions to the equation δ1(A) = A one is lead to the
operators Λ(B) defined below.

Definition 4.6. For λ ≥ 0 and A ∈ B(K) we define Λλ(A) on H = K ⊗ L2(0,∞)
by the relation (Λλ(A)f)(x) = e−λxAf(x) for all f ∈ H. If we write Λ(A) with no
subscript we mean Λ1(A) (i.e., λ = 1) and we simply write Λ for Λ(I) = Λ1(I).

Note that for λ ≥ 0 the mapping A → Λλ(A) is a contraction of B(K) into B(H).
One easily checks that

Λλ(A)∗ =Λλ(A∗)

U(t)Λλ(A) =eλtΛλ(A)U(t)

U(t)∗Λλ(A) =e−λtΛλ(A)U(t)∗

for A ∈ B(K) and t ≥ 0. Note that for λ, µ ≥ 0 we have

Λλ(A)Λµ(B) = Λλ+µ(AB)

for A,B ∈ B(K).

Lemma 4.7. If δ1 is the ∗-derivation defined in Definition 4.3 and λ ≥ 0 then
δ1(A) = λA if and only if A = Λλ(B) for some B ∈ B(K).

Proof. If B ∈ B(K) one sees immediately that Λλ(B) ∈ D(δ1) and δ1(Λλ(B)) =
λΛλ(B). Conversely, suppose A ∈ D(δ1) and δ1(A) = λA. For s > 0 let Ds be the
subspace of all f ∈ D(d∗) so that d∗f = sf. It is well known that Ds consists of
all vectors f ∈ H of the form f(x) = e−sxfo where fo ∈ K. Suppose f ∈ D1. Since
δ1(A) = λA we have from the definition of δ1 that λAf = δ1(A)f = −Ad∗f +d∗Af
and, hence, d∗Af = (1 + λ)Af. Hence, A maps D1 into D1+λ. Since the mapping
f → f(0) is continuous and has a continuous inverse both for f ∈ D1 and for
f ∈ D1+λ it follows that if f(x) = e−xk with k ∈ K then (Af)(x) = e−(1+λ)xBk
where B is a bounded linear operator determined by A. Suppose B is this operator
determined by A. Let C = A− Λλ(B). We claim C = 0.

We have C ∈ D(δ1) and δ1(C) = λC and Cf = 0 for f ∈ D1. From the definition
of δ1 we have Cf = δ1(C)f = −dCf+Cdf for all f ∈ D(d). Now suppose f ∈ D(d).
Let g(t) = eλtCU(t)f. Since U(t)f ∈ D(d) for all t ≥ 0 and −d is the generator of
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U(t) we have

d

dt
g(t) =λg(t)− eλtCdU(t)f

=λg(t)− eλtdCU(t)f − λeλtCU(t)f = −dg(t).

Since −d is the generator of U(t) we have g(t) = U(t)g(0) = U(t)Cf or U(t)Cf =
eλtCU(t)f for all f ∈ D(d) and t ≥ 0. For each fixed t both sides of this equation are
norm continuous in f so we can extend this equation to all f ∈ H. In particular we
can apply this equation to vectors g1 given by g(x) = e−xk in D1 and since Cf = 0
for f ∈ D1 we have CU(t)g1 = 0 for all k ∈ K and t ≥ 0. Note (g1−e−tU(t)g1)(x) =
qt(x)k where qt(x) = e−x for x ∈ [0, t] and qt(x) = 0 for x > t. The linear span of
the functions qt are dense in L2(0,∞) for if h ∈ L2(0,∞) where orthogonal to all
the qt we would have e−xh(x) = 0 almost everywhere. Since the linear span of the
qt are dense in L2(0,∞) we have the linear span of the vectors U(t)g1 with g1(x) =
e−xk with k ∈ K and t ≥ 0 are dense in H. Hence, Ch = 0 for a dense set of vectors
so C = 0. Hence, A = Λλ(B). �

Next we introduce the operator Γ which solves the equation A− δ1(A) = B.

Definition 4.8. Suppose λ > 0. For c > 0 we define

Γcλ(A) =
∫ c

0

λe−λtU(t)AU(t)∗ dt and Γλ(A) =
∫ ∞

0

λe−λtU(t)AU(t)∗ dt

for all A ∈ B(H). If we write Γ(A) with no subscript we mean Γ1(A) (λ = 1). When
we write Γλ we always assume λ > 0.

We see Γλ is a everywhere defined bounded operator and Γλ is σ-weakly con-
tinuous since Γcλ is σ-weakly continuous and Γcλ(A) converges in norm to Γλ(A) as
c → ∞.

Lemma 4.9. Suppose λ > 0. For A ∈ B(H) we have Γλ(A) ∈ D(δ1) and

Γλ(A)− λ−1δ1(Γλ(A)) = A.

For A ∈ D(δ1) we have

Γλ(A− λ−1δ1(A)) = A− Λλ(πo(A)).

Proof. Suppose Γλ is as defined above. Suppose A ∈ B(H). Then we have

Γλ(A)− e−λtU(t)Γλ(A)U(t)∗ =
∫ t

0

λe−λsU(s)AU(s)∗ ds.

Dividing by t and taking the limit as t → 0+ we find

t−1(U(t)Γλ(A)U(t)∗ − Γλ(A)) → λ(Γλ(A)−A)

in the strong operator topology as t → 0 + . Now suppose f ∈ D(d). Then

t−1(U(t)− I)Γλ(A)f =t−1U(t)Γλ(A)U(t)∗(U(t)− I)f

+ t−1(U(t)Γλ(A)U(t)∗ − Γλ(A))f.

As t → 0+ the first term on the right-hand side converges to −Γλ(A)df and the
second term converges to λ(Γλ(A)f −Af). Hence, Γλ(A)f ∈ D(d) and

−dΓλ(A)f = −Γλ(A)df + λ(Γλ(A)f −Af).
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Note the above equation holds with A replaced by A∗. Then for f ∈ D(d) and
g ∈ D(d∗) we have

−(g, dΓλ(A∗)f) = −(g,Γλ(A∗)df) + λ(g,Γλ(A∗)f)− λ(g,A∗f)

and rearranging we have

(Γλ(A)g, df) = (Γλ(A)d∗g, f) + λ(Γλ(A)g, f)− λ(Ag, f).

It follows that Γλ(A)g ∈ D(d∗) and

d∗Γλ(A)g = Γλ(A)d∗g + λ(Γλ(A)g −Ag).

Hence, it follows from the definition of δ1 that Γλ(A) ∈ D(δ1) and δ1(Γλ(A)) =
λ(Γλ(A)−A). Hence, Γλ(A)− λ−1δ1(Γλ(A)) = A.

Now suppose A ∈ D(δ1) and f, g ∈ D(d∗). Since δ1(A)U(t)∗f = d∗AU(t)∗f −
Ad∗U(t)∗f and (d/dt)U(t)∗h = −d∗U(t)∗h and recalling that 〈f, g〉 = (d∗f, g) +
(f, d∗g) we have

(f,Γcλ(A− λ−1δ1(A))g) =
∫ c

0

λe−λt(U(t)∗f, (A− λ−1δ1(A))U(t)∗g) dt

= −
∫ c

0

e−λt〈U(t)∗f,AU(t)∗g〉+ d

dt
e−λt(U(t)∗f,AU(t)∗g) dt

= −
∫ c

0

e−λt(f(t), πo(A)g(t)) dt+ (f,Ag)− e−λc(U(c)∗f,AU(c)∗g)

= (f, (A− Λλ(πo(A)))g)− e−λc(U(c)∗f, (A− Λλ(πo(A)))U(c)∗g).

Note both sides of the above equation are norm continuous in f and g and since
D(d∗) is dense in H the above equation is valid for all f, g ∈ H. Hence, we have

Γcλ(A− λ−1δ1(A)) = A− Λλ(πo(A))− e−λcU(c)(A− Λλ(πo(A)))U(c)∗.

As c → ∞ the second term on the right-hand side of the above equation converges
strongly to zero and the result of the lemma follows. �

The next lemma characterizes the domain of δ1 and δ̂1. We recall that if φ is a
linear mapping which is σ-weakly closed then φ̂ is the associated mapping on the
predual.

Lemma 4.10. Suppose λ > 0. We have A ∈ D(δ1) if and only if A is of the form
A = Λλ(B)+Γλ(C) with B ∈ B(K) and C ∈ B(H). We have ρ ∈ D(δ̂1) if and only
if ρ = Γ̂λ(ω) for some ω ∈ B(H)∗ with Λ̂λ(ω) = 0. Note ρ satisfies ρ−λ−1δ̂1(ρ) = ω.

Proof. Suppose λ > 0. From the previous lemmas it follows that if A = Λλ(B) +
Γλ(C) with B ∈ B(K) and C ∈ B(H) then A ∈ D(δ1). Now suppose A ∈ D(δ1).
Let C = A − λ−1δ1(A). Then from Lemma 4.9 we have Γλ(C) = A − Λλ(πo(A))
and, hence, A = Λλ(πo(A)) + Γλ(C).

Next suppose ρ ∈ D(δ̂1). Let ω = ρ−λ−1δ̂1(ρ). Then ω(A) = ρ(A)−λ−1ρ(δ1(A))
for all A ∈ D(δ1). Since Λλ(B) ∈ D(δ1) and δ1(Λλ(B)) = λΛλ(B) for all B ∈ B(K)
we have ω(Λλ(B)) = 0 for all B ∈ B(K) so Λ̂λ(ω) = 0. Since ω(A) = ρ(A) −
λ−1ρ(δ1(A)) for all A ∈ D(δ1) and by the properties of Γλ proved in the previous
lemma we have ω(Γλ(A)) = ρ(A) for all A ∈ B(H). But this means ρ = Γ̂λ(ω).
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Now, suppose ω ∈ B(H)∗ and Λ̂λ(ω) = 0. Let ρ = Γ̂λ(ω). Suppose A ∈ D(δ1).
Then from the previous lemma we have

ρ(A− λ−1δ1(A)) = ω(Γλ(A− λ−1δ1(A))) = ω(A− Λλ(πo(A))) = ω(A)

where the last equality follows from the fact that Λ̂λ(ω) = 0. Hence, ρ ∈ D(δ̂1) and
ρ− λ−1δ̂1(ρ) = ω. �

In the next definition we introduce notation we will use repeatedly in our analysis
of CP-flows.

Definition 4.11. Recall H = K ⊗ L2(0,∞) and U(t) is the translation semigroup
on H. Let E(t) = (I − U(t)U(t)∗) and E(s, t) = E(t) − E(s) for 0 < s < t and
E(t,∞) = U(t)U(t)∗ = I − E(t) for t ≥ 0. Let

θt(A) = U(t)AU(t)∗, ξt(A) = U(t)∗AU(t) and ζt(A) = E(t)AE(t)

for all A ∈ B(H).
For λ > 0 let Qλ be the isometry from K to H given by (Qλk)(x) =

√
λe−

1
2λxk

for x ≥ 0 and k ∈ K. Let Φλ be the mapping of B(H) into B(H) given by

Φλ(A) = Q∗
λAQλ

for A ∈ B(H). Note if we write Φ without a subscript we mean Φλ with λ = 1.

Note θt and ξt are semigroups and

ξt(θt(A)) = A and θt(ξt(A)) = E(t,∞)AE(t,∞)

for all A ∈ B(H) and t ≥ 0. It follows that θ̂t(ξ̂t(η)) = η for all η ∈ B(H)∗. Note
ξt(Λλ(A)) = e−λtΛλ(A) for all A ∈ B(H) and t, λ ≥ 0. Also, we have

Φλ(Λλ(A)) =
1
2
A and Φλ(Γλ(A)) =

1
2
Φλ(A)

for A ∈ B(H) and λ > 0. Using these identities a direct calculation establishes the
formulae

Λ̂λ(ξ̂t(η)) = e−λtΛ̂λ(η)(4.3a)

eλtΓ̂λ(ξ̂t(η)) = Γ̂λ(η) +
∫ t

0

λeλsξ̂s(η) ds(4.3b)

θ̂t(Γ̂λ(ξ̂t(η))) = Γ̂λ(η)(4.3c)

Λ̂λ(Φ̂λ(ρ)) =
1
2
ρ(4.3d)

Γ̂λ(Φ̂λ(ρ)) =
1
2
Φ̂λ(ρ)(4.3e)

Γλ(Λo(A)) = Λo(A)− Λλ(A)(4.3f)

Γ(I) = I − Λ(4.3g)

which are valid for all t, λ > 0, η ∈ B(H)∗, ρ ∈ B(K)∗ and A ∈ B(H).
We establish the last two equations. Suppose f, g ∈ H and so we can represent

f and g as K-valued functions f(x) and g(x) for x ≥ 0. Then for A ∈ B(K) and
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λ > 0 we have

(f,Γλ(Λo(A))g) =
∫ ∞

0

λe−λt(f, U(t)Λo(A)U(t)∗g) dt

=
∫ ∞

0

λe−λt
∫ ∞

t

(f(x), Ag(x)) dx dt.

Integrating by parts we arrive at the formula

(f,Γλ(Λo(A))g) =
∫ ∞

0

(f(x), Ag(x)) dx−
∫ ∞

0

e−λt(f(t), Ag(t)) dt

= (f, (Λo(A)− Λλ(A))g).

Hence, we have established (4.3f). Since Λo(I) = I and Λ1(I) = Λ(I) = Λ (4.3g)
follow from the previous equation when one sets A = I and λ = 1.

Lemma 4.12. With ζt and θt as above we have ‖η‖ ≥ ‖ζ̂t(η)‖ + ‖θ̂t(η)‖ for all
t > 0 and η ∈ B(H)∗.

Proof. Assume t > 0 and η ∈ B(H)∗. Suppose A and B are in the unit ball of B(H)
and ζ̂t(η)(A) = ‖ζ̂t(η)‖ and θ̂t(η)(B) = ‖θ̂t(η)‖. Let C = E(t)BE(t)+U(t)AU(t)∗.
Note

C∗C =E(t)B∗E(t)BE(t) + U(t)A∗AU(t)∗

≤E(t)B∗BE(t) + U(t)U(t)∗ ≤ E(t) + U(t)U(t)∗ = I.

Hence, ‖C‖ ≤ 1. Now we have

‖η‖ ≥ |η(C)| = |ζ̂t(η)(B) + θ̂t(η)(A)| = ‖ζ̂t(η)‖+ ‖θ̂t(η)‖
which concludes the proof of the lemma. �

Suppose α is a CPκ-flow over K. Suppose δ is the generator of α. In the analysis
of α an important tool is the resolvent Rλ of δ which is defined for λ > κ where κ
is a growth bound for α by the formula

Rλ(A) =
∫ ∞

0

λe−λtαt(A) dt

for A ∈ B(H). If we speak of the resolvent R (with no subscript) we mean the
resolvent R1 where λ = 1. If α is a CP-semigroup the resolvent is defined for all
λ > 0 (in fact all complex λ with Re(λ) > 0) but because ‖αt(A)‖ can grow like eκt

we see that convergence of above integral is only assured for λ > κ. The resolvent
is the inverse of the map A → A − λ−1δ(A) for A ∈ D(δ). Precisely, we have for
λ > κ the resolvent maps B(H) onto the domain D(δ) and

Rλ(A)− λ−1δ(Rλ(A)) = A

for all A ∈ B(H). Also, we have

Rλ(A)− λ−1Rλ(δ(A)) = A

for all A ∈ D(δ). The semigroup α can be recovered from the resolvent in a variety
of ways. One formula we will use is the formula

αt(A) = lim
n→∞(Rn/t)n(A)

for A ∈ B(H) and t ≥ 0 where the convergence is in the σ-strong topology and
is uniform for t in a bounded interval. We use the convention R∞(A) = A. For a
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discussion of the resolvent we refer to Chapter 3 of [BR]. Now from Equation (4.1)
we recall that

αt(A) = E(t)αt(A)E(t) + U(t)AU(t)∗

for A ∈ B(H). Then we have

Rλ(A) =
∫ ∞

0

λe−λtE(t)αt(A)E(t) dt+ Γλ(A)

so we see that the resolvent is the sum of two terms the second of which is directly
computable and the first term contains the information about the particular CPκ-
flow. The next definition allows us to focus on this first term. Our definition is not
just the first term above but a what you obtain after applying Φλ to it. Our reason
for this will become clear with Theorem 4.14.

Definition 4.13. Suppose α is a CPκ-flow over K with a growth bound κ ≥ 0.
Suppose λ > κ. The boundary resolvent for α denoted by σλ is a completely positive
σ-weakly continuous mapping of B(H) into B(K) given by

σλ(A) = 2Φλ(Rλ(A))− Φλ(A)

= 2
∫ ∞

0

λe−λtΦλ(E(t)αt(A)E(t)) dt

for A ∈ B(H) where Rλ is the resolvent for α. In terms of the maps on the predual
we have

σ̂λ(ρ) = 2R̂λ(Φ̂λ(ρ))− Φ̂λ(ρ)

= 2
∫ ∞

0

λe−λtα̂t(ζ̂t(Φ̂λ(ρ))) dt

for ρ ∈ B(K)∗. If we refer to σ (with no superscript) as the boundary resolvent of
a CP-flow we mean σλ with λ = 1.

Theorem 4.14. Suppose α is a CPκ-flow over K and suppose κ ≥ 0 is a growth
bound for α. Suppose λ > κ and σλ is the boundary resolvent of α. Then

R̂λ(η) = σ̂λ(Λ̂λ(η)) + Γ̂λ(η)(4.4)

for η ∈ B(H)∗ where Rλ is the resolvent of α. We have

α̂t(σ̂λ(Λ̂λ(η)) + eλtΓ̂λ(ξ̂t(η))) = eλt(σ̂λ(Λ̂λ(η)) + Γ̂λ(η))(4.5)

for all η ∈ B(H)∗ and t ≥ 0 and for arbitrary ν ∈ B(H)∗ we have

α̂t(ν − ζ̂t(ν)) = θ̂t(ν).(4.6)

Proof. Assume the hypothesis and notation of the theorem. We begin with (4.6).
Assume ν ∈ B(H)∗. We have from Lemma 4.1 that

α̂t(ν − ζ̂t(ν))(A) = ν(αt(A)− E(t)αt(A)E(t)) = ν(U(t)AU(t)∗) = θ̂t(ν)(A)

for all A ∈ B(H) and t ≥ 0. Hence, Equation (4.6) is established.
Next we establish Equation (4.4). Let δ be the generator of α and δ̂ its preadjoint

which is the generator of α̂. Suppose η ∈ B(H)∗. Let ρ = Λ̂λ(η) and let η1 = η −
2Φ̂λ(ρ). Since 2Λ̂λ(Φ̂λ(ρ)) = ρ we have Λ̂λ(η1) = 0. Then we have from Lemma 4.9
that Γ̂λ(η1) ∈ D(δ̂1) and λΓ̂λ(η1) − δ̂1(Γ̂λ(η1)) = λη1. From Lemma 4.4 we have
that δ1 is an extension of δ so δ̂ is an extension of δ̂1. Hence, Γ̂λ(η1) ∈ D(δ̂) and
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δ̂(Γ̂λ(η1)) = λΓ̂λ(η1) − λη1. In terms of resolvents this means R̂λ(η1) = Γ̂λ(η1).
Let σλ be the boundary resolvent of α. Since 2Φ̂λ(ρ) = η − η1 it follows from
Definition 4.13 that

R̂λ(η − η1) = σ̂λ(ρ) + Φ̂λ(ρ).

Since R̂λ(η1) = Γ̂λ(η1) and ρ = Λ̂λ(η) we find from the above equation that

R̂λ(η) = σ̂λ(Λ̂λ(η)) + Γ̂λ(η) + Φ̂λ(Λ̂λ(η))− 2Γ̂λ(Φ̂λ(Λ̂λ(η))).

From Equations (4.3f) the last two terms cancel and we have established Equation
(4.4) of the theorem.

Finally, we establish Equation (4.5). Suppose t > 0 and η ∈ B(H)∗. From
Equation (4.4) applied to eλtξt(η) instead of η we have

R̂λ(eλtξ̂t(η)) = σ̂λ(Λ̂λ(η)) + Γ̂λ(η) +
∫ t

0

λeλsξ̂s(η) ds

= R̂λ(η) +
∫ t

0

λeλsξ̂s(η) ds = eλtνt

where we have used Equations (4.3a,b) to compute Λ̂λ(ξ̂t(η)) and Γ̂λ(ξ̂t(η)) where
the last equality in the second line is just the definition of νt. In terms of the
generator δ̂ this means νt ∈ D(δ̂)

λνt − δ̂(νt) = λξt(η) or δ̂(νt) = λ(νt − ξt(η))

for t ≥ 0. Since

νt = e−λt(R̂λ(η) +
∫ t

0

λeλsξ̂s(η)ds)

we see that νt is differentiable and
d

dt
νt = −λ(νt − ξt(η)).

Suppose to > 0 and ϑt = νto−t for t ∈ [0, to]. We see that ϑt ∈ D(δ̂) and ϑt is
differentiable for t ∈ [0, to] and

d

dt
ϑt = δ̂(ϑt)

so from Theorem 2.8 we have ϑt = α̂t(ϑo) for t ∈ [0, to] and for t = to we have
ϑto = α̂to(ϑo) which says

e−λtoαto(R̂λ(η) +
∫ to

0

λeλsξ̂s(η)ds) = R̂λ(η)

for to ≥ 0. Multiplying this equation by eλto and using Equation (4.4) yields Equa-
tion (4.5). �

We found the next theorem a surprise. It says that CPκ-flows are CP-flows.

Theorem 4.15. Suppose α is a CPκ-flow over K. Then α is a CP-flow over K.

Proof. Suppose α is a CPκ-flow over K and κ ≥ 0 is a growth bound for α. Suppose
λ > κ and σ̂λ is the boundary resolvent of α.We will first show that σλ(ρ)(I) ≤ ρ(I)
for all positive ρ ∈ B(K)∗. Then we will use this to show α is a CP-flow.
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Assume t > 0 and ρ ∈ B(K)∗. Applying Equation (4.5) to 2Φ̂λ(ρ) and using
Equations (4.3) we find

α̂t(σ̂λ(ρ) + 2eλtΓ̂λ(ξ̂t(Φ̂λ(ρ)))) = eλt(σ̂λ(ρ) + 2Γ̂λ(Φ̂λ(ρ))).

Applying this to the unit I and noting that αt(I) = I + ζt(αt(I) − I) and using
Equations (4.3) we find

(eλt − 1)σ̂λ(ρ)(I) =σ̂λ(ρ)(ζt(αt(I)− I)) + (eλt − 1)ρ(I)

+ 2eλtΓ̂λ(ξ̂t(Φ̂λ(ρ)))(ζt(αt(I)− I)).

Now we assume ρ ∈ B(K)∗ is positive. We have κ is a growth bound for α so
αt(I) ≤ eκtI and

ζt(αt(I)− I) ≤ (eκt − 1)ζt(I) = (eκt − 1)E(t).

Since σλ, Γλ, ξt and Φλ are completely positive and ρ is positive if we substitute
(eκt − 1)E(t) for ζt(αt(I)− I) in the equation above we obtain the inequality

(eλt − 1)σ̂λ(ρ)(I) ≤ (eκt − 1)σ̂λ(ρ)(E(t)) + (eλt − 1)ρ(I)

+ 2(eκt − 1)eλtΓ̂λ(ξ̂t(Φ̂λ(ρ)))(E(t)).

A direct computation shows the last term in the above inequality is (eκt− 1)(eλt−
1)ρ(I) so after dividing by (eλt − 1) we have

σ̂λ(ρ)(I) ≤ eκt − 1
eλt − 1

σ̂λ(ρ)(E(t)) + eκtρ(I).

Since σ̂λ(ρ) is normal we have σ̂λ(ρ)(E(t)) → 0 as t → 0 + . Then taking the limit
as t → 0+ we find

σ̂λ(ρ)(I) ≤ ρ(I)

for all positive ρ ∈ B(K)∗. Now suppose η ∈ B(H)∗ and η is positive. Then we
have from Equation (4.4) that

R̂λ(η)(I) = σ̂λ(Λ̂λ(η))(I) + Γ̂λ(η)(I) ≤ (Λ̂λ(η))(I) + η(I − Λλ(I)) = η(I).

Hence, Rλ(I) ≤ I. Suppose t > 0 and n = 1, 2, · · · . Since Rt/n is completely
positive we have

(Rt/n)n(I) ≤ (Rt/n)n−1(I) ≤ · · · ≤ Rt/n(I) ≤ I.

Since
αt(I) = lim

n→∞(Rt/n)n(I)

we have αt(I) ≤ I for all t ≥ 0. Since αt is completely positive we have αt is a
contraction for all t ≥ 0 so α is a CP-semigroup. �

The mappings Λλ, Γλ, σλ, Φλ and Rλ have a subscript λ. For CP-flows we will
only need computations with a fixed λ = 1. While working with CPκ-flows it was
necessary to be able to choose λ > κ where κ is a growth bound. Now that we
know that CPκ-flows are CP-flows so that κ = 0 is a growth bound we are free to
fix λ = 1. So in the sequel we will write Λ, Γ, σ, Φ and R without a subscript and
we remind the reader that this means we have set λ = 1. One exception to this
general rule is Λo which we will need occasionally.
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Now we begin our analysis of the boundary resolvent σ with no subscript so
we mean σ1. We begin with a definition of boundary weights. As we will see the
boundary resolvent is the integral of a boundary weight.

Definition 4.16. Suppose K is a separable Hilbert space and H = K ⊗ L2(0,∞).
Suppose U(t) for t ≥ 0 is translation on H and the mappings θ, ζ, Λ, Γ and Φ are
as defined in Definitions 4.6, 4.8 and 4.11. We define the null boundary algebra
A(H) of B(H) as the algebra of all operators of the form

A = (I − Λ)
1
2B(I − Λ)

1
2

with B ∈ B(H). We say ω is a boundary weight on B(H) if ω ∈ A(H)∗ or more
explicitly ω a linear functional on A(H) and there is a normal functional µ ∈ B(H)∗
so that

ω((I − Λ)
1
2A(I − Λ)

1
2 ) = µ(A)

for all A ∈ B(H). The weight norm of ω is the norm of µ above. When we speak
of the norm of a weight ω or say ω is bounded and do not explicitly say the weight
norm we mean the usual norm of ω which can be infinite as opposed to weight norm
which is always finite. If ω is a boundary weight then the truncated boundary weight
ωt defined for t > 0 is the normal functional ωt ∈ B(H)∗ so that

ωt(A) = ω((I − E(t))A(I − E(t)))

for A ∈ B(H). The mapping ρ → ω(ρ) defined for ρ ∈ B(K)∗ is a boundary weight
map if this mapping is a linear mapping of B(K)∗ into boundary weights on B(H)
and this mapping is a completely bounded with the norm on B(K)∗ the usual norm
and the norm on the boundary weights is the boundary weight norm. A boundary
weight map is positive if it is completely positive. A boundary weight map ω is
unital if ω(ρ)(I − Λ) = ρ(I) for all ρ ∈ B(K)∗.

Maintaining the notation of the above definition we note that U(t)AU(t)∗ ∈ A(H)
for all A ∈ B(H) and t > 0. Recall the mapping Γ defined in Definition 4.8. Since Γ
is completely positive and Γ(I) = I−Λ so Γ(I) ∈ A(H) it follows that Γ(A) ∈ A(H)
for all A ∈ B(H). This may be seen as follows. Suppose A ∈ B(H) and 0 ≤ A ≤ I.

Then we have 0 ≤ Γ(A) ≤ I − Λ. Then for f, g ∈ D((I − Λ)−
1
2 ) the bilinear form

〈f, g〉 = ((I − Λ)−
1
2 f,Γ(A)(I − Λ)−

1
2 g)

is well-defined and 0 ≤ 〈f, f〉 ≤ (f, f) so there is a bounded operator B ∈ B(H) so
that (f,Bg) = 〈f, g〉 for all f, g ∈ D((I − Λ)−

1
2 ). Then we have

(f,Γ(A)g) = ((I − Λ)
1
2 f,B(I − Λ)

1
2 g)

for all f, g ∈ D((I − Λ)−
1
2 ). If follows that

Γ(A) = (I − Λ)
1
2B(I − Λ)

1
2

and Γ(A) ∈ A(H). Since each operator A ∈ B(H) is the linear combination of
four positive operators it follows that Γ maps B(H) into the null boundary algebra
A(H). Note that if ω is a boundary weight then η(A) = ω(Γ(A)) defined for all
A ∈ B(H) defines an element η ∈ B(H)∗ so if ω is a boundary weight then Γ̂(ω) is
a well-defined element of B(H)∗.
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Theorem 4.17. Suppose α is a CP-flow over K and σ is the boundary resolvent
of α. Recall θt(A) = U(t)AU(t)∗ for A ∈ B(H) and t ≥ 0. Then for each t > 0 the
mapping

ρ → σ̂(ρ)− e−tθ̂t(σ̂(ρ))(4.7)

is completely positive mapping of B(K)∗ into B(H)∗. The boundary resolvent sat-
isfies the normalization inequality σ̂(ρ)(I) ≤ ρ(I) for all positive ρ ∈ B(K)∗ and
σ̂(ρ)(I) = ρ(I) for all ρ ∈ B(K)∗ if and only if α is unital.
Suppose σ is a completely positive σ-weakly continuous contraction of B(H) into

B(K) so that the mapping (4.7) is completely positive for all t > 0. Then there is a
completely positive boundary weight map ρ → ω(ρ) of B(K)∗ into A(H)∗ (boundary
weights on B(H)) so that

σ̂(ρ)(A) =
∫ ∞

0

e−tω(ρ)(U(t)AU(t)∗) dt = Γ̂(ω(ρ))(A)(4.8)

for A ∈ B(H). And ω satisfies the normalization condition

ω(ρ)(I − Λ) = σ̂(ρ)(I) ≤ ρ(I)(4.9)

for ρ positive.
Conversely, if ρ → ω(ρ) is a completely positive boundary weight map B(K)∗

into A(H)∗ satisfying the normalization condition (4.8) and σ̂(ρ) is defined by (4.7)
then the mapping (4.7) is completely positive for all t > 0 and this mapping satisfies
the normalization condition σ̂(I)(ρ) ≤ ρ(I) for ρ ∈ B(K)∗ positive.

Proof. Suppose α is a CP-flow over K and σ is the boundary resolvent of α. We
will show the mapping (4.7) is completely positive for t > 0. From Definition 4.13
we recall

σ̂(ρ)(A) =
∫ ∞

0

e−tΦ̂(ρ)(E(t)αt(A)E(t)) dt

for all A ∈ B(H).
Suppose t > 0. Let ϑ̂t(ρ) = σ̂(ρ) − e−tα̂t(σ̂(ρ)) for ρ ∈ B(K)∗. We show the

mapping ρ → ϑ̂t is completely positive. Suppose ρ ∈ B(K)∗, A ∈ B(H) and s > 0.
We have with repeated use of Lemma 4.1 that

e−sσ̂(ρ)(αs(A)) =2
∫ ∞

0

e−t−sΦ̂(ρ)(E(t)αt+s(A)E(t)) dt

=2
∫ ∞

0

e−t−sΦ̂(ρ)(E(t)αt+s(A)) dt

=2
∫ ∞

0

e−t−sΦ̂(ρ)(E(t+ s)αt+s(A)− E(t, t+ s)αt+s(A)) dt

=2
∫ ∞

s

e−tΦ̂(ρ)(E(t)αt(A)E(t)) dt

− 2
∫ ∞

0

e−t−sΦ̂(ρ)E(t, t+ s)αt+s(A)E(t, t+ s) dt.
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Hence, we have

ϑ̂s(ρ)(A) =2
∫ s

0

e−tΦ̂(ρ)(E(t)αt(A)E(t)) dt

+ 2
∫ ∞

0

e−t−sΦ̂(ρ)(E(t, t+ s)αt+s(A)E(t, t+ s)) dt.

Since all the mappings in the above formula for ϑ̂s are completely positive in their
dependence on ρ the mapping ρ → ϑ̂s is completely positive. Then from Lemma 4.1
we have

σ̂(A)− e−tσ̂(U(t)AU(t)∗) = ϑ̂t(A) + νt(A)

where
νt(A) = e−tσ̂(ρ)(E(t)αt(A)E(t)).

Since αt and the mapping ρ → σ̂(ρ) are completely positive we see that the mapping
ρ → νt is completely positive. Hence, for each t > 0 the mapping ρ → σ̂(ρ) −
e−tθ̂t(σ̂(ρ)) is the sum of two completely positive maps and, hence, it is completely
positive.

The normalization inequality σ̂(ρ)(I) ≤ ρ(I) for all positive ρ ∈ B(K)∗ was
established in the proof of Theorem 4.15. Recalling Equation (4.4) of Theorem 4.14
we have

R̂(η) = σ̂(Λ̂(η)) + Γ̂(η)(4.4)

for η ∈ B(H)∗ where R is the resolvent of α. Suppose α is unital. Then R is unital
and setting η = 2Φ(ρ) for ρ ∈ B(K)∗ in the above equation and using Equations
(4.3) we have σ̂(ρ)(I) = ρ(I). Conversely, if σ̂(ρ)(I) = ρ(I) for all ρ ∈ B(K)∗ then
from Equation (4.4) above and Equations (4.3) we have

η(R(I)) = η(Λ) + η(I − Λ) = η(I)

for all η ∈ B(H)∗. Hence, R(I) = I and we have∫ ∞

0

e−t(I − αt(I)) dt = 0.

Since the integrand above is positive we have αt(I) = I for all t ≥ 0 so α is unital.
Now suppose σ satisfies the conclusion of the first paragraph of the theorem so

the mapping (4.7) is completely positive. We begin by constructing ω for fixed ρ.
Assume ρ ∈ B(K)∗ is positive. Since ρ will be fixed for the first part of our argument
we will write expressions like σ(ρ) and ω(ρ) as σ and ω to simplify notation. If I
is the interval [a, b) let

ηI(A) = e−aσ̂(U(a)AU(a)∗)− e−bσ̂(U(b)AU(b)∗)

for all A ∈ B(H). Since for A ∈ B(H) we have

ηI(A) = e−aσ̂(U(a)AU(a)∗ − e−(b−a)U(b− a)U(a)AU(a)∗U(b− a)∗)

it follows that ηI is positive. From the definition of ηI and the properties of σ̂ we
have

η[a+t,b+t)(A) = e−tη[a,b)(U(t)AU(t)∗)

η[a+t,b+t)(I) ≤ e−tη[a,b)(I) ≤ η[a,b)(I)
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for all numbers a, b, c and t satisfying 0 ≤ a ≤ b ≤ c and t ≥ 0 and all A ∈ B(H).
We use the same convention used in the definite integral, namely, η[a,b) = −η[b,a).

Suppose a > 0 and n is a positive integer. Then

η[0,a)(I) =
n−1∑
k=0

η[ka/n,(k+1)a/n)(I) ≥ nη[a,a+a/n)(I).

And if n and m are positive integers we have

η[a,a+ma/n)(I) =
m−1∑
k=0

η[a+ka/n,a+(k+1)a/n)(I) ≤ mη[a,a+a/n)(I).

Then combining these two inequalities we have

η[a,a+ma/n)(I) ≤ ma

n
a−1η[0,a)(I)

for all a > 0 and positive integers n and m. Hence, η[a,a+t)(I) ≤ (t/a)η[0,a)(I) for
all positive t so that t/a is rational. Since η[a,b)(I) is continuous in b it follows that

η[a,a+t)(I) ≤ (t/a)η[0,a)(I) ≤ (t/a)σ̂(I)(4.10)

for all t, a > 0. It follows that for every A ∈ B(H) and a, t > 0 the function
q(t) = η[a,a+t)(A) satisfies a Lipschitz condition of order one. Hence, the derivative
dq/dt exists almost everywhere and

η[a,b)(A) =
∫

[a,b)∩S(A)

d

dt
η[a,a+t)(A) dt

where S(A) is the set of t for which the derivative exists. Suppose a > 0. Let Cn be
a sequence of hermitian compact operators whose finite linear span is norm dense
in the compact operators and let Co = I. Let S = ∩∞

n=0S(Cn). Let N be the set of
operators which are finite linear combinations of the Cn for n = 1, 2, · · · . For t ∈ S
let ωt be the linear functional on N given by

ωt(A) =
d

ds
η[a,a+s)(A)|s=t

and for t /∈ S we define ωt(A) = 0 for all A ∈ N. Note from inequality (4.10) it
follows that for A ∈ N we have |ωt(A)| ≤ ‖A‖σ̂(I)/t for t ∈ S and for t /∈ S we
have ωt.(A) = 0. Since N is norm dense in the compact operators and ωt is norm
continuous ωt has a unique norm continuous extension to the compact operators
which we also denote by ωt and ‖ωt‖ ≤ σ̂(I)/t.

We note that ωt is positive. To see this suppose A is a positive compact operator
and t ∈ S. Suppose {An} is a sequence of operators in N converging in norm to A.
Let Bn = 1

2An +
1
2A

∗
n and Dn = Bn + ‖A−Bn‖I. Since Dn ≥ A ≥ 0 we have

ωt(Bn) + so‖A−Bn‖ = lim
h→0

h−1η[a+t,a+t+h)(Dn) ≥ 0.

where so = (d/dt)η[a,a+t)(I) ≥ 0. Recall that we have adopted the convention
that η[x,y)(A) = −η[y,x)(A) which is how we interpret the above expression when
h < 0. Hence, ωt(Bn) ≥ −so‖A − Bn‖. Then we have ωt(A) = limn→∞ ωt(Bn) ≥
limn→∞ −so‖A − Bn‖ = 0. Hence, ωt is a bounded positive functional on the
compact operators for t ∈ S.

Suppose 0 < s < t and s, t ∈ S and C ∈ B(H) is compact. We show ωt(C) =
es−tωs(U(t − s)CU(t − s)∗). Suppose ε > 0. Let κ = 2σ̂(I)/s. Then for [a, b) ⊂
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[s/2,∞) we have from inequality (4.10) and the positivity of η[a,b) that ‖η[a,b)‖ ≤
(b − a)κ. Also we have ‖ωx‖ < κ for x ∈ S and x ≥ s. Since N is dense in the
compact operators there is an operator C1 ∈ N with ‖C−C1‖ < (4κ)−1ε. Then we
have

|ωt(C)− ωt(C1)| < ε/4.
Now for h �= 0 we have

h−1η[t,t+h)(C1) = h−1es−tη[s,s+h)(U(t− s)C1U(t− s)∗).

Since C1 ∈ N we have the limit of the left-hand side of the above equation tends
to ωt(C1) and, therefore, the right-hand side also tends to ωt(C1) as h → 0. Since
U(t− s)C1U(t− s)∗ is compact there is a an operator C2 ∈ N so that ‖C2 −U(t−
s)C1U(t− s)‖ ≤ (4κ)−1ε. Then we have

|h−1es−tη[s,s+h)(U(t− s)C1U(t− s)∗)− h−1es−tη[s,s+h)(C2)| < ε/4

for h �= 0 sufficiently small. Hence, we have in the limit that

|ωt(C1)− es−tωs(C2)| < ε/4.

And we also have

|es−tωs(C2)− es−tωs(U(t− s)C1U(t− s)∗)| < ε/4

and

|es−tωs(U(t− s)C1U(t− s)∗)− es−tωs(U(t− s)CU(t− s)∗)| < ε/4.

Combining the four ε/4 inequalities above we find

|ωt(C)− es−tωs(U(t− s)CU(t− s)∗)| < ε

and since ε > 0 is arbitrary we have ωt(C) = es−tωs(U(t − s)CU(t − s)∗). Hence,
ωt = es−tθ̂t−sωs for all 0 < s < t with s, t ∈ S. Since the complement of S
has Lebesgue measure zero there is a decreasing sequence of real numbers sn ∈ S
tending to zero. Let us define ωt for all t > 0 by the limit

ωt = lim
n→∞ esn−tθ̂tωsn

Note that for t ∈ S this leaves ωt unchanged and for t /∈ S this defines ωt so that ωt

is norm continuous in t. Note that for the newly defined ωt we have ωt = es−tθ̂tωs

for all 0 < s < t. Since the complement of S has Lebesgue measure zero we have

η[a,b)(A) =
∫
S∩[a,b)

ωt(A) dt =
∫ b
a

ωt(A) dt(4.11)

for all A ∈ N. Since each side of the above equation is σ-weakly continuous the
above equation extends to all A ∈ B(H).

We now define ω(A) = limt→0+ etωt(U(t)∗AU(t)) for A ∈ ∪t>0U(t)B(H)U(t)∗.
We see that for s > 0 and A ∈ B(H) we have

ω(U(s)AU(s)∗) = lim
t→0+

etωt(U(t)∗U(s)AU(s)∗U(t))

= lim
t→0+

etωt(U(s− t)AU(s− t)∗) = esωs(A).

Combining this with Equation (4.11) we have

η[a,b)(A) =
∫ b
a

e−tω(U(t)AU(t)∗) dt
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for all A ∈ B(H) and a, b ∈ (0,∞) with a < b. Since

η[a,b)(A) = e−aσ̂(U(a)AU(a)∗)− e−bσ̂(U(b)AU(b)∗)

for A ∈ B(H) and as a → 0+ and b → ∞ this converges to σ̂(A) we have

σ̂(A) =
∫ ∞

0

e−tω(U(t)AU(t)∗) dt

for all A ∈ B(H).
To establish ω is a restriction of a boundary weight to ∪t>0U(t)B(H)U(t)∗. we

will need some estimates. As we saw in establishing Equation (4.3f) we have∫ ∞

0

e−tU(t)U(t)∗ dt = I − Λ.

Then we have

σ̂(U(t)U(t)∗) =
∫ ∞

0

e−sω(U(t+ s)U(t+ s)∗) ds

=
∫ ∞

0

ete−sωt(U(s)U(s)∗) ds = etωt(I − Λ).

Hence, we have ωt(I − Λ) = e−tσ̂(U(t)U(t)∗) ≤ e−tσ̂(I). Now for t > 0 and
A ∈ B(H) let

µt(A) =ω(U(t)U(t)∗(I − Λ)
1
2A(I − Λ)

1
2U(t)U(t)∗)

=etωt(U(t)∗(I − Λ)
1
2A(I − Λ)

1
2U(t)).

Then recalling that ωt(I) ≤ σ̂(I)/t and ωt(I − Λ) ≤ e−tσ̂(I) we have

µt(I) =etωt(U(t)∗(I − Λ)U(t)) = etωt(I − e−tΛ)

=ωt(I − Λ) + (et − 1)ωt(I) ≤ e−tσ̂(I) + (et − 1)σ̂(I)/t.

Since µt(I) increases as t deceases toward zero and the limit of the expression on
the right of the above inequality converges to 2σ̂(I) we have µt(I) ≤ 2σ̂(I) for all
t > 0.

Now from the definition of µt and the fact U(t)U(t)∗ commutes with Λ we have

µt+s(A) = µt(U(t+ s)U(t+ s)∗AU(t+ s)U(t+ s)∗)(4.12)

for all A ∈ B(H) and s, t ∈ (0,∞). It then follows from Lemma 2.10 that for
t, s ∈ (0,∞) we have

‖µt − µt+s‖2 ≤2‖µt‖2 − 2‖µt+s‖2 = 2(‖µt‖+ ‖µt+s‖)(‖µt‖ − ‖µt+s‖)
≤4‖µt‖(‖µt‖ − ‖µt+s‖) ≤ 8σ̂(I)(‖µt‖ − ‖µt+s‖).

Hence,

‖µt − µs‖ ≤ 2
√

2σ̂(I)
√
| ‖µt‖ − ‖µs‖ |

for t, s ∈ (0,∞). Since ‖µt‖ converges to a limit as t → 0+ it follows that t → µt
is a Cauchy net in norm as t → 0+ and, hence, µt converges in norm to a positive
element µ ∈ B(H)∗ and from Equation (4.12) it follows that for t ≥ 0 and A ∈ B(H)
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and t > 0 we have µt(A) = µ(U(t)U(t)∗AU(t)U(t)∗). Since U(t)∗U(t) = I and
U(t)U(t)∗ commutes with Λ we have

µ(U(t)AU(t)∗) =µt(U(t)AU(t))

=etωt(U(t)∗(I − Λ)
1
2U(t)AU(t)∗(I − Λ)

1
2U(t))

=ω(U(t)U(t)∗(I − Λ)
1
2U(t)AU(t)∗(I − Λ)

1
2U(t)U(t)∗

=ω((I − Λ)
1
2U(t)AU(t)∗(I − Λ)

1
2 )

for all A ∈ B(H) and t > 0. We extend ω to the whole null boundary algebra A(H)
by the relation

ω((I − Λ)
1
2A(I − Λ)

1
2 ) = µ(A)

for all A ∈ B(H). Hence, this extension of to the whole null boundary algebra A(H)
gives us a boundary weight which satisfies Equation (4.8). As for normalization
condition (4.9) we have only established µ(I) = ω(I − Λ) ≤ 2σ̂(I). However, now
the existence of µ has been established we have µ(I) = ω(I − Λ) = σ̂(I) ≤ ρ(I) by
direct calculation.

In our calculations we have suppressed indicating the dependence of σ, ω and
µ on ρ. Now we will return to indicating this dependence by writing σ(ρ), ω(ρ)
and µ(ρ). Summarizing our progress up to this point we have shown that for a
positive ρ ∈ B(K)∗ the boundary weight ω(ρ) is positive and satisfies Equation
(4.8) We have shown the mapping ρ → ω(ρ) is positive. To complete the first
part of the proof we must show this mapping is completely positive. To show a
mapping ρ → ω(ρ) is completely positive is equivalent to showing the mapping
ν ⊗ ρ → ν ⊗ ω(ρ) is positive from B(K1)∗ to B(H1)∗ where K1 = Ko ⊗ K and
H1 = Ko⊗H = Ko⊗K⊗L2(0,∞) = K1⊗L2(0,∞). The argument that the mapping
ρ → µ is completely positive is obtained by simply repeating our argument above
for the tensored map from B(K1)∗ to B(H1)∗ and replacing our use of positivity
above with complete positivity which is the same as positivity for the tensored
maps. Since all this involves is a change in notation we will skip the details.

Conversely, suppose ρ → ω(ρ) is a completely positive mapping of B(K)∗ into
A(H)∗ satisfying the normalization condition (4.9). Suppose t > 0. Then we have

σ̂(ρ)(A)− e−tθ̂t(σ̂(ρ))(A) =
∫ t

0

e−sω(ρ)(U(s)AU(s)∗) dt

forA ∈ B(H). Since the mappings ρ → θ̂s(ω(ρ)) is completely positive for each s > 0
the mapping ρ → σ̂(ρ) − e−tθ̂t(σ̂(ρ)) is completely positive and the normalization
condition follows from direct computation. �

The next two lemmas provide some useful norm estimates.

Lemma 4.18. Suppose ρ ∈ B(K)∗. Then∥∥∥∥
∫ t

0

esζ̂t(ξ̂s(Φ̂(ρ))) ds
∥∥∥∥ ≤ ‖ρ‖

(
et + e−t

2
− 1
)

for all t > 0 so the above expression is O(t2).
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Proof. Suppose ρ ∈ B(K)∗. We have

esζ̂t(ξ̂s(Φ̂(ρ)))(A) =esΦ̂(ρ)(U(s)∗E(t)AE(t)U(s))

=e2sΦ̂(ρ)(U(s)U(s)∗E(t)AE(t)U(s)U(s)∗)

for all A ∈ B(H). For 0 ≤ s ≤ t we have E(t)U(s)U(s)∗ = E(s, t) so

esζ̂t(ξ̂s(Φ̂(ρ)))(A) = e2sΦ̂(ρ)(E(s, t)AE(s, t)).

Next we will estimate the norm of the above expression. Let S be a partial isometry
so that ρ(A) = φ(AS) where φ is positive and ‖φ‖ = φ(I) = φ(S∗S) = ρ(S∗) = ‖ρ‖.
For A ∈ B(K) we define Λo(A) the operator on B(H) given by

(Λo(A)f)(x) = Af(x)

for x ≥ 0 so Λo(A) = A⊗ I acting on H = K ⊗ L2(0,∞). Note from the definition
of Φ̂ we have Φ̂(ρ)(A) = Φ̂(φ)(AΛo(S)) for all A ∈ B(H). Then we have

esζ̂t(ξ̂s(Φ̂(ρ)))(A) =e2sΦ̂(φ)(E(s, t)AE(s, t)Λo(S))

=e2sΦ̂(φ)(E(s, t)AΛo(S)E(s, t)).

Since the functional A → Φ̂(φ)(E(s, t)AE(s, t)) is positive the norm of this func-
tional is obtained by evaluating this functional at A = I. Hence, we have

|esζ̂t(ξ̂s(Φ̂(ρ)))(A)| = |e2sΦ̂(φ)(E(s, t)AΛo(S)E(s, t))|
≤e2sΦ̂(φ)(E(s, t))‖AΛo(S)‖ ≤ (es − e2s−t)‖ρ‖ ‖A‖.

Hence, ‖esζ̂t(ξ̂s(Φ̂(ρ)))‖ ≤ (es − e2s−t)‖ρ‖. Evaluating the above expression with
A = Λo(S∗) proves the reverse inequality so we have ‖esζ̂t(ξ̂s(Φ̂(ρ)))‖ = (es −
e2s−t)‖ρ‖. Hence, we have∥∥∥∥

∫ t
0

esζ̂t(ξ̂s(Φ̂(ρ))) ds
∥∥∥∥ ≤ ‖ρ‖

∫ t
0

es − e2s−t ds =
1
2
‖ρ‖(et + e−t − 2).

And we have ∥∥∥∥
∫ t

0

esζ̂t(ξ̂s(Φ̂(ρ))) ds
∥∥∥∥ = O(t2)

as t → 0+ (i.e., t−2 times the above expression is bounded). �

Lemma 4.19. Suppose η ∈ B(H)∗. Then, we have

‖ζ̂t(Γ̂(ξ̂t(η))− Φ̂(Λ̂(η)))‖/t → 0

and
‖ζ̂t(Γ̂(η)− Φ̂(Λ̂(η)))‖/t → 0

as t → 0+ so ‖ζ̂t(Γ̂(ξ̂t(η))−Φ̂(Λ̂(η)))‖ and ‖ζ̂t(Γ̂(η)−Φ̂(Λ̂(η)))‖ are o(t) as t → 0+.

Proof. Suppose η ∈ B(H)∗. We will prove that

‖etζ̂t(Γ̂(ξ̂t(η))− etΦ̂(Λ̂(η)))‖/t → 0

as t → 0 + . Now from Equations (4.3) we have

etΓ̂(ξ̂t(η)) = Γ̂(η) +
∫ t

0

esξ̂s(η) ds.
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We will show that the norm of ζ̂t applied to the second term is o(t) as t → 0 + .
Now we have

ζ̂t(
∫ t

0

esξ̂s(η)ds)(A) =
∫ t

0

esη(U(s)∗E(t)AE(t)U(s)) ds.

Now suppose η is positive then the norm of the above functional is attained for
A = I and we have∥∥∥∥ζ̂t(

∫ t
0

esξ̂s(η)ds)
∥∥∥∥ =

∫ t
0

esη(U(s)∗E(t)U(s)) ds =
∫ t

0

esη(E(t− s)) ds

≤
∫ t

0

esη(E(t)) ds = (et − 1)η(E(t)).

Since η(E(t)) → 0 as t → 0+ we have

t−1

∥∥∥∥ζ̂t(
∫ t

0

esξ̂s(η)ds)
∥∥∥∥→ 0

as t → 0+ . Since an arbitrary η ∈ B(H)∗ is the linear combination of four positive
elements the above results holds for all η ∈ B(H)∗. With this established we have

‖etζ̂t(Γ̂(ξ̂t(η))− etΦ̂(Λ̂(η)))‖ = ‖ζ̂t(Γ̂(η)− etΦ̂(Λ̂(η)))‖+ o(t).

Let ν = η − 2Φ̂(Λ̂(η)) so η = 2Φ̂(Λ̂(η)) + ν and Λ̂(ν) = 0. Then

ζ̂t(Γ̂(η)− etΦ̂(Λ̂(η))) = (1− et)ζ̂t(Φ̂(Λ̂(η))) + ζ̂t(Γ̂(ν))

and direct calculation shows that ‖ζ̂t(Φ̂(Λ̂(η)))‖ = (1− e−t)‖Λ̂(η)‖ so

‖ζ̂t(Γ̂(η)− etΦ̂(Λ̂(η)))‖ = ‖ζ̂t(Γ̂(ν))‖+O(t2)

and combining the with the previous estimate we have

‖etζ̂t(Γ̂(ξ̂t(η))− etΦ̂(Λ̂(η)))‖ = ‖ζ̂t(Γ̂(ν))‖+ o(t).

Then the proof of the lemma reduces to showing ‖ζ̂t(Γ̂(ν))‖ is o(t) for all ν ∈ B(H)∗
with Λ̂(ν) = 0. Suppose then that ν ∈ B(H)∗ and Λ̂(ν) = 0. Suppose t > 0. We
note the mapping A → Γ(ζt(A)) is completely positive. Hence, the norm of this
mapping is attained at the unit. We have

Γ(ζt(I)) =
∫ ∞

0

e−sU(s)E(t)U(s)∗ ds.

We recall from Equation (4.3f) we established the formula∫ ∞

0

e−sU(s)U(s)∗ ds = I − Λ.

Then we have

Γ(ζt(I)) =
∫ ∞

0

e−sU(s)(I − U(t)U(t)∗)U(s)∗ ds

=I − Λ− U(t)(I − Λ)U(t)∗

=E(t)− Λ + etΛU(t)U(t)∗

=(I − Λ)E(t) + (et − 1)ΛU(t)U(t)∗.

Note the operator Γ(ζt(I)) is multiplication by function q(x) = 1−e−x for x ∈ [0, t]
and q(x) = et−x − e−x for x ∈ [t,∞). Then ‖Γ(ζt(I))‖ = 1− e−t since 0 < q(x) ≤
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1 − e−t for all x ≥ 0 and q(x) → 1 − e−t as x → t. Since A → Γ(ζt(A)) is
completely positive we have ‖Γ(ζt(A))‖ ≤ (1 − e−t)‖A‖ for all A ∈ B(H). Hence,
‖ζ̂t(Γ̂(ν))‖ is O(t). Using the fact that Λ̂(ν) = 0 we will show ‖ζ̂t(Γ̂(ν))‖ is o(t).
Suppose this is not the case. Let A(t) be an element in the unit ball of B(H) with
ζ̂t(Γ̂(ν))(A(t)) = ‖ζ̂t(Γ̂(ν))‖ for each t > 0. Let

B(t) = t−1Γ(ζt(A(t))) = t−1

∫ ∞

0

e−sU(s)E(t)A(t)E(t)U(s)∗ ds.

We have ‖B(t)‖ ≤ (1− e−t)/t ≤ 1 and ν(B(t)) = ‖ζ̂t(Γ̂(ν))‖/t and by assumption
‖ζ̂t(Γ̂(ν))‖/t does not tend to zero as t → 0+ we have lim supt→0+ ν(B(t)) > 0.
Since ν(B(t)) is bounded there is a sequence tn → 0+ so that ν(B(tn)) → c
as n → ∞ and c > 0. Since the unit ball of B(H) is σ-weakly compact and H is
separable we can by passing to a subsequence (which we also denote by tn) arrange it
so Bn = B(tn) → Bo as n → ∞ and ν(Bo) = c > 0. We will show that Bo = Λ(Co)
for some Co ∈ B(K).We begin by showing that Bo = E(t)BoE(t)+e−tU(t)BoU(t)∗

for each t > 0. As a preliminary to that we show Bo commutes with E(t) for all
t > 0. Since U(s)∗E(t) = 0 for s ≥ t we have

BnE(t) =t−1
n

∫ ∞

0

e−sU(s)E(tn)A(tn)E(tn)U(s)∗E(t) ds

=t−1
n

∫ t
0

e−sU(s)E(tn)A(tn)E(tn)U(s)∗E(t) ds.

And since E(t+ tn)U(s)E(tn) = U(s)E(tn) for s ∈ [0, t] we have BnE(t) = E(t+
tn)BnE(t). Hence, if f ∈ (I − E(t))H and g ∈ E(t)H we have

|(f,Bog)| = lim
n→∞ |(f,Bng)| = lim

n→∞ |(E(t, t+ tn)f,Bng)|
≤ lim
n→∞ ‖E(t, t+ tn)f‖ ‖Bn‖ ‖g‖

≤ lim
n→∞ ‖E(t, t+ tn)f‖ ‖g‖ = 0.

Hence, (I−E(t))BoE(t) = 0. Calculating E(t)Bn as we did above we find E(t)Bn =
E(t)BnE(t+ tn) and taking the limit as above we find E(t)BoE(t,∞) = 0. Hence,
we have E(t)Bo = BoE(t) = E(t)BoE(t) for all t > 0.

We now investigate U(t)BoU(t)∗. Now for t > 0 we have

U(t)BnU(t)∗ =t−1
n

∫ ∞

0

e−sU(t+ s)E(tn)A(tn)E(tn)U(t+ s)∗ ds

=t−1
n et

∫ ∞

0

e−t−sU(t+ s)E(tn)A(tn)E(tn)U(t+ s)∗ ds.

Then we have

Bn − e−tU(t)BnU(t)∗ = t−1
n

∫ t
0

e−sU(s)E(tn)A(tn)E(tn)U(s)∗ ds.

Let Cn = Bn − e−tU(t)BnU(t)∗ − BnE(t). Combining the above equation with
the integral for BnE(t) derived earlier and using the fact that E(tn)U(s)∗E(t) =
E(tn)U(s)∗ for s ∈ [0, t− tn] we have

Cn = −t−1
n

∫ t
t−tn

e−sU(s)E(tn)A(tn)E(tn)U(s)∗(I − E(t)) ds.
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Since E(tn)U(s)∗ = E(tn)U(s)∗E(t+ tn) for s ∈ [t− tn, t] we have

Cn = −t−1
n

∫ t
t−tn

e−sU(s)E(tn)A(tn)E(tn)U(s)∗(E(t+ tn)− E(t)) ds.

Hence, we have from the above that Cn = CnE(t, t + tn) and ‖Cn‖ ≤ 1. Let
Co = limn→∞ Cn = Bo − e−tU(t)BoU(t)∗ − BoE(t) where we are taking the limit
in the sense of weak convergence. Then we have for f, g ∈ H that

|(f, Cog)| = lim
n→∞ |(f, Cng)| = lim

n→∞ |(f, CnE(t, t+ tn)g)|
≤ lim
n→∞ ‖f‖ ‖E(t, t+ tn)g‖ = 0.

Hence, Co = 0 and since BoE(t) = E(t)BoE(t) we have that

Bo = E(t)BoE(t) + e−tU(t)BoU(t)∗

for all t > 0. We will now show that the above equation implies Bo = Λ(Co) for
some operator Co ∈ B(K). Note the above equation implies E(t)Bo = BoE(t) =
E(t)BoE(t) for all t > 0. Multiplying the above expression for Bo by U(t)∗ on
the left we find U(t)∗Bo = e−tBoU(t)∗ for all t > 0. And multiplying the above
equation for Bo by U(t) on the right we find BoU(t) = e−tU(t)Bo for all t > 0. It
follows from differentiating these equations that BoD(d) ⊂ D(d) and BoD(d∗) ⊂
D(d∗) and Bof = d∗Bof − Bod

∗f for all f ∈ D(d∗). It follows that Bo ∈ D(δ1)
and δ1(Bo) = Bo. Hence, it follows from Lemma 4.7 that Bo = Λ(Co) for some
Co ∈ B(K). We recall that ν(Bo) = ν(Λ(Co)) = c > 0. But this is a contradiction
since Λ̂(ν) = 0. Hence, ‖ζ̂t(Γ̂(ν))‖ is o(t). �

The next theorem is one of the main results of this section. In the statement of
the theorem we use the norm ‖η‖+ which we now describe. If η ∈ B(H)∗ and η
is hermitian then η has a canonical decomposition as the difference of two disjoint
positive functionals η+ and η− so η = η+−η−. For a discussion of this decomposition
we refer to Section 4.3 of [KR] and we present the well-known properties of this
decomposition. For hermitian η ∈ B(H)∗ we have ‖η‖ = ‖η+‖+ ‖η−‖ and there
are unique hermitian projections E+, E− ∈ B(H) so that η(AE+) = η+(A) and
η(AE−) = −η−(A) for all A ∈ B(H) and E+ and E− are the smallest projections
with this property and E+ + E− ≤ I. Also ‖η+‖ = sup(η(A) : 0 ≤ A ≤ I) and
the supremum is actually attained for A = E+. If η is an hermitian functional we
define ‖η‖+ = ‖η+‖ = sup(η(A) : 0 ≤ A ≤ I). Note that for an hermitian functional
with η = η+−η− its canonical decomposition into the difference of disjoint positive
functional we have ‖ − η‖+ = ‖η−‖ and ‖η‖ = ‖η‖+ + ‖ − η‖+.

Next we introduce some notation. Suppose φ is a σ-weakly continuous linear
mapping of B(H) into B(K). Let Ko be an infinite dimensional separable Hilbert
space and let H1 = Ko ⊗ H and K1 = Ko ⊗ K. Let φ′ be the mapping of B(H1)
into B(K1) given by φ′(A ⊗ B) = A ⊗ φ(B) for all A ∈ B(Ko) and B ∈ B(H).
The statement φ is completely positive or completely contractive is equivalent to
the statement φ′ is positive or contractive. Suppose α is a CP-flow over K so
α is a CP-semigroup of B(H) where H = K ⊗ L2(0,∞). Let Ko be an infinite
dimensional separable Hilbert space and let H1 = Ko ⊗ H and K1 = Ko ⊗ K. Let
α′ be the CP-flow over K1 given by α′

t(A ⊗ B) = A ⊗ αt(B) for t ≥ 0, A ∈
B(Ko) and B ∈ B(H). To show α is a CP-semigroup is equivalent to showing
α′ is a semigroup of positive contractions. Note all the operators and mappings
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U(t), E(t) = I − U(t)U(t)∗, θ, ξ, ζ, ,Λ, ,Φ, ,Γ and σ all have obvious primed
operators and mappings where we replace K with K1 = Ko ⊗ K and H1 = Ko ⊗ H.
When we put a prime on a mapping (e.g., U ′(t), σ′ or Φ′ and speak of the tensored
operators or maps we mean the operators or maps one obtains by tensoring with
B(Ko). So showing that a map φ is completely positive is the same as showing φ′

is positive. Note all the theorems and lemmas we have proved concerning CP-flows
remain true if we replace the maps and operators in the theorems and lemmas
with the primed maps and operators since all that is needed is to replace K with
K1 = Ko ⊗ K.

Theorem 4.20. Suppose α is a CP-flow over K and σ is the boundary resolvent
of α. Recall E(t) = I − U(t)U(t)∗, θt(A) = U(t)AU(t)∗ and ζ(A) = E(t)AE(t) for
A ∈ B(H) and t ≥ 0. Recall from Lemma 4.16 it follows that for each t > 0 the
mapping ρ → σ̂(ρ)− e−tθ̂t(σ̂(ρ)) is completely positive linear contraction of B(K)∗
into B(H)∗. Assumed the primed mappings are the tensored mappings just described
and a subscript one on a Hilbert space mean the Hilbert space without a subscript
tensored with the infinite dimensional Hilbert space Ko. Then for each ρ ∈ B(K1)∗
we have

lim inf
t→0+

t−1(‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖ − ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖) ≥ 0(4.13)

and for each hermitian ρ ∈ B(K1)∗ we have

lim inf
t→0+

t−1(‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ − ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖+) ≥ 0(4.13+)

where ‖η‖+ is the is the norm of η+ where η = η+ − η− is the canonical decompo-
sition η as the difference of disjoint positive functionals.
Conversely, suppose ρ → σ̂(ρ)− e−tθ̂t(σ̂(ρ)) is a completely positive linear con-

traction of B(K)∗ into B(H)∗ for each t ≥ 0 and the primed mappings are defined
as described above and for all ρ ∈ B(K1)∗ we have

lim sup
t→0+

t−1(‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖ − ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖) ≥ 0(4.14)

and for all hermitian ρ ∈ B(K1)∗ we have

lim sup
t→0+

t−1(‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ − ‖etσ̂′(ρ)− θ̂t(σ̂′(ρ))‖+) ≥ 0.(4.14+)

Then there is a unique CP-flow α over K whose boundary resolvent is σ. If in
addition the mapping ρ → σ̂(ρ) is unital the same conclusion follows if one only
requires condition (4.14) (i.e., in the unital case condition (4.14+) it follows from
(4.14)).

Proof. Before we begin the proof we remark that conditions given in (4.13+) and
(4.14+) above imply (4.13) and (4.14), respectively. This is seen as follows. Note
for an hermitian functional η we have ‖η‖ = ‖η‖+ + ‖ − η‖+ and, hence, (4.13)
and (4.14) follow from (4.13+) and (4.14+) in the case of hermitian functionals.
Because Ko is infinite dimensional the truth of (4.13) and (4.14) for hermitian
functional implies the truth of the relations for arbitrary functionals. This follows
from the following observation. Suppose N is a Hilbert space and η ∈ B(N)∗ is an
arbitrary. Let η1 ∈ B(N ⊕ N) the functional given in matrix form as follows:

η1 =
[
0 η
η∗ 0

]
so η1

[
A B
C D

]
= η(B) + η(C∗).
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Let S be an element in the unit ball so that η(S) = ‖η‖ and let

S1 =
[
0 S
S∗ 0

]
.

Note S1 = S∗
1 and S∗

1S1 has positive diagonal entries of norm less than or equal
to one so S∗

1S1 ≤ I. Hence, we have ‖S1‖ ≤ 1 and η1(S1) = 2‖η‖ and, therefore,
‖η1‖ ≥ 2‖η‖. On the other hand, suppose T1 ∈ B(N ⊕ N) is of the form

T1 =
[
A B
C D

]

and ‖T1‖ ≤ 1. Then we have ‖B‖ ≤ 1 and ‖C‖ ≤ 1 and

|η1(T1)| = |η(B) + η(C∗)| ≤ ‖η‖+ ‖η‖ = 2‖η‖
and, hence, ‖η1‖ ≤ 2‖η‖. Combining this with the previous inequality gives ‖η1‖ =
2‖η‖. Hence, the norm of an arbitrary functional η can be obtained from the norm of
the hermitian functional η1. Since Ko is infinite dimensional B(Ko) is isomorphic to
B(Ko⊕Ko) the properties of all the primed mappings persist if Ko is replaced by Ko⊕
Ko and by the procedure described above the norm of an arbitrary functional can
be determined from the norm of an associated hermitian functional. It follows that
if relations (4.13) or (4.14) hold for hermitian functionals they hold for arbitrary
functionals. In the statement of the theorem we included both the conditions with
and without the (+) because in the unital case the only the versions without the
(+) are needed.

We begin the proof of the theorem by establishing condition (4.13) of the theo-
rem. Suppose ρ ∈ B(K1)∗ and η, ν ∈ B(H1)∗ and Λ̂′(η) = ρ. Then from Equations
(4.5) and (4.6) of Theorem 4.14 we have

α̂′
t

(
σ̂′(ρ) + Γ̂′(η) +

∫ t
0

esξ̂′s(η) ds− ν + ζ̂ ′t(ν)
)

= et(σ̂′(ρ) + Γ̂′(η))− θ̂′t(ν).

Let η = 2Φ̂′(ρ) and let

ν = σ̂′(ρ) + Γ̂′(η) +
∫ t

0

esξ̂′s(η) ds

= σ̂′(ρ) + Φ̂′(ρ) + 2
∫ t

0

esξ̂′s(Φ̂
′(ρ)) ds.

Then

α̂′
t(ζ̂

′
t(ν)) =etσ̂′(ρ)− θ̂′t(σ̂

′(ρ))

+ etΓ̂′(η)− θ̂′t(Γ̂
′(η))−

∫ t
0

esθ̂′t(ξ̂
′
s(η)) ds

α̂′
t(ζ̂

′
t(ν)) =etσ̂′(ρ)− θ̂′t(σ̂

′(ρ))

+ (et − e−t)Φ̂′(ρ)− 2
∫ t

0

esθ̂′t(ξ̂
′
s(Φ̂

′(ρ))) ds.
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We calculate the last term in the above equation. Since for t ≥ s we have θ̂′t(ξ̂
′
s(η)) =

θ̂′t−s(θ̂
′
s(ξ̂

′
s(η))) = θ̂′t−s(η) and, hence,

2
∫ t

0

esθ̂′t(ξ̂
′
s(Φ̂

′(ρ))) ds =2
∫ t

0

esθ̂′t−s(Φ̂
′(ρ)) ds

=2
∫ t

0

e2s−tΦ̂′(ρ) ds = (et − e−t)Φ̂′(ρ).

Hence, in the expression for α̂′
t(ζ̂

′
t(ν)) the last two terms cancel and we have

α̂′
t(ζ̂

′
t(ν)) = etσ̂′(ρ)− θ̂′t(σ̂

′(ρ)).

We have

ζ̂ ′t(ν) = ζ̂ ′t(σ̂
′(ρ)+etΦ̂′(ρ))− (et − 1)ζ̂ ′t(Φ̂

′(ρ))(4.15)

+2
∫ t

0

esζ̂ ′t(ξ̂
′
s(Φ̂

′(ρ))) ds

for A ∈ B(H). From Lemma 4.18 we have∥∥∥∥
∫ t

0

esζ̂ ′t(ξ̂
′
s(Φ̂

′(ρ))) ds
∥∥∥∥ = O(t2)

as t → 0+ (i.e., t−2 times the above expression is bounded).
We note that the norm of the second to last term in Equation (4.15) is

‖(et − 1)ζ̂ ′t(Φ̂
′(ρ))‖ = (et − 1)(1− e−t)‖ρ‖ = (et + e−t − 2)‖ρ‖

which is also O(t2). Hence, we have

‖ζ̂ ′t(ν)‖ = ‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+O(t2).

Since αt is a complete contraction of B(H) into itself the extended α′
t is a contraction

of B(H1) into itself. Hence, ‖ζ̂ ′t(ν)‖ ≥ ‖α̂′
t(ζ̂

′
t(ν))‖ = ‖etσ̂′(ρ) − θ̂′t(σ̂

′(ρ))‖ for all
t > 0. From the estimate above for ‖ζ̂ ′t(ν)‖ the limit condition (4.13) of the theorem
follows.

We now show condition (4.13+) holds. Suppose ρ ∈ B(K1)∗ and η, ν ∈ B(H1)∗
and Λ̂′(η) = ρ and all the functionals are hermitian. Repeating the calculations
above we arrive at the expressions for α̂′

t(ζ̂
′
t(ν)) and ζ̂ ′t(ν) given above. We note

‖α̂′
t(ζ̂

′
t(ν))‖+ ≤ ‖ζ̂ ′t(ν)‖+. This may be seen as follows. Note that since αt is com-

pletely positive and completely contractive α′
t is positivity preserving and contrac-

tive. Since for 0 ≤ A ≤ I we have 0 ≤ α′
t(A) ≤ α′

t(I) ≤ I we see that

‖α̂′
t(ζ̂

′
t(ν))‖+ =sup(α̂′

t(ζ̂
′
t(ν))(A) : A ∈ B(H1), 0 ≤ A ≤ I)

= sup(ζ̂ ′t(ν)(α
′
t(A)) : A ∈ B(H1), 0 ≤ A ≤ I)

≤ sup(ζ̂ ′t(ν)(A) : A ∈ B(H1), 0 ≤ A ≤ I) = ‖ζ̂ ′t(ν)‖+.

Hence, ‖ζ̂ ′t(ν)‖+ ≥ ‖α̂′
t(ζ̂

′
t(ν))‖+ = ‖etσ̂′(ρ) − θ̂′t(σ̂

′(ρ))‖+ for all t > 0. From
expression for ζ̂ ′t(ν) in Equation (4.15) and the fact that the norm of the second
two terms is O(t2) it follows that

‖ζ̂ ′t(ν)‖+ = ‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ +O(t2).
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This with the upper estimate for ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖+ gives condition (4.13+) of

the theorem.
Now we prove the reverse implication. Suppose ρ → σ̂(ρ)− e−tθ̂t(σ̂(ρ)) is com-

pletely positive linear contraction of B(K)∗ into B(H)∗ for each t > 0 satisfying
conditions (4.14) and (4.14+). We define δ̂ by Equation (4.4) of Theorem 4.14.
Specifically we define the domain of δ̂ to be all ν of the form ν = σ̂(Λ̂(η))+ Γ̂(η)
for some η ∈ B(H)∗ and δ̂(ν) = ν − η. It is clear that the range of the mapping
ρ → ρ − δ̂(ρ) from D(δ̂) to B(H)∗ is all of B(H)∗. All we need to establish that δ̂
is the generator of a continuous semigroup of contractions of B(H)∗ is show that δ̂
is dissipative. In fact, we will show δ̂ is completely dissipative so we will work with
the primed maps. Now each ν ∈ D(δ̂′) is of the form νo = σ̂′(Λ̂′(η)) + Γ̂′(η) for
some η ∈ B(H1)∗. We will show there is an element S in the unit ball of B(H1) so
that νo(S) = ‖νo‖ and Re(δ̂′(νo(S))) = Re(νo(S) − η(S)) = ‖νo‖ − Re(η(S)) ≤ 0.
To slightly simplify some of the following formulae let ρ = Λ̂′(η). Now let νt =
σ̂′(ρ) + etΓ̂′(ξ̂′t(η)) for t ≥ 0. Note νt for t = 0 is νo. We will estimate the difference
‖νt‖ − et‖νo‖. We have from Lemma 4.12 that ‖νt‖ ≥ ‖ζ̂ ′t(νt)‖+ ‖θ̂′t(νt)‖. We have

‖ζ̂ ′t(νt)‖ =‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ) + etΓ̂′(ξ̂′t(ηo))− etΦ̂′(ρ))‖
≥‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖ − et‖ζ̂ ′t(Γ̂′(ξ̂′t(ηo))− Φ̂′(ρ))‖.

From Lemma 4.19 the second term above is o(t) so

‖ζ̂ ′t(νt)‖ = ‖ζ̂ ′t(etΦ̂(ρ) + σ̂′(ρ))‖+ o(t).

Now from Equations (4.3) we have

θ̂′t(νt) = θ̂′t(σ̂(ρ)) + etΓ̂′(η).

So we have

‖νt‖ ≥‖ζ̂ ′t(νt)‖+ ‖θ̂′t(νt)‖
=‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ ‖θ̂′t(σ̂′(ρ)) + etΓ̂′(η)‖+ o(t).

Now

‖θ̂′t(σ̂′(ρ)) + etΓ̂′(η)‖ =‖etνo − etσ̂′(ρ) + θ̂′t(σ̂
′(ρ))‖

≥et‖νo‖ − ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖.

Then combining the two inequalities above we have

‖νt‖ − et‖νo‖ ≥ ‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖ − ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖+ o(t).(4.16)

Now, let S(t) be an element of the unit ball of B(H1) so that νt(St) = ‖νt‖. Since
the superior limit is an accumulation point there is a decreasing sequence t′n of
positive numbers converging to zero so that if the limit (4.14) is taken with the
sequence t′n the limit superior is achieved. Since the unit ball of B(H) is σ-weakly
compact there is a subsequence tn = t′k(n) so that S(tn) converges σ-weakly to a
limit So as n → ∞. Note So is in the unit ball of B(H) since it is the weak limit of
elements in the unit ball. Since ‖νtn −νo‖ → 0 and, therefore, |(νo−νtn)(Stn)| → 0
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as n → ∞ we have

νo(So) = lim
n→∞ νo(Stn)

= lim
n→∞ νtn(Stn) + (νo − νtn)(Stn)

= lim
n→∞ ‖νtn‖ = ‖νo‖.

Hence, So is an element in the unit ball of B(H) with νo(So) = ‖νo‖.
Applying Equations (4.3) to the expression for νt we have

νt = σ̂′(ρ) + etΓ̂′(ξ̂′t(η)) = σ̂′(ρ) + Γ̂′(η) +
∫ t

0

esξ̂′s(η) ds.

Then, we have

‖t−1(νt − νo)− η‖ ≤ t−1

∫ t
0

‖esξ̂′s(η)− η‖ ds → 0

as t → 0 + . Then we have

t−1
n (νtn(S(tn))− νo(S(tn))) = η(S(tn)) + (t−1

n (νt − νo)− η)(S(tn)).

Since the norm of second functional on the right-hand side of the above equation
converges to zero as n → ∞ and the S(tn) are in the unit ball of B(H) we have this
term converges to zero as n → ∞. Since S(tn) converges σ-weakly to So the first
term on the right-hand side of the above equations converges to η(So). Hence, we
have

lim
n→∞ t−1

n (νtn(S(tn))− νo(S(tn))) = η(So).

Then we have

Re(δ̂′(νo(So))) =Re(νo(So)− η(So)) = ‖νo‖ − Re(η(So))

=‖νo‖ − lim
n→∞ t−1

n Re(νtn(S(tn))− νo(S(tn)))

=‖νo‖ − lim
n→∞ t−1

n Re(‖νtn‖ − νo(S(tn)))

≤‖νo‖ − lim sup
n→∞

t−1Re(‖νtn‖ − ‖νo‖)
≤‖νo‖ − lim sup

n→∞
t−1
n (‖νtn‖ − etn‖νo‖+ (etn − 1)‖νo‖)

=− lim sup
n→∞

t−1
n (‖νtn‖ − etn‖νo‖)

≤ − lim sup
tn→∞

t−1
n (‖ζ̂ ′tn(etnΦ̂′(ρ) + σ̂′(ρ))‖ − ‖etn σ̂′(ρ)− θ̂′tn(σ̂

′(ρ))‖)

where the last inequality follows from (4.16). Recall that the sequence {tn} is
a subsequence of the sequence {t′n} where for the sequence {t′n} the above limit
superior equals the limit superior as t → 0 + . Hence, the above limit superior
equals the limit superior as t → 0+ and by assumption (limit inequality (4.14))
this limit is greater than or equal to zero. Hence, Re(δ̂′(νo(So))) ≤ 0 and δ̂′ is
dissipative and since δ̂′is dissipative δ̂ is completely dissipative.

Recall δ̂ is defined on its domain D(δ̂) of ν ∈ B(H)∗ of the form ν = σ̂(Λ̂(η)) +
Γ̂(η) and δ̂(ν) = ν − η. We see that δ̂ is a closed dissipative operator and the
range of the mapping ν → ν − δ̂(ν) for ν ∈ D(δ̂) is all of B(H)∗. Then from
Theorem 2.7 we have δ̂ is the generator of a strongly continuous one parameter
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semigroup α̂ of contractions of B(H)∗ and δ̂ and, therefore, α is uniquely determined
by the mapping ρ → σ̂(ρ). Since δ̂ is completely dissipative α̂ and, therefore, α is
completely contractive.

We now prove the last statement of the theorem. We assume then the mapping
ρ → σ̂(ρ) is unital. Then for ν = σ̂(Λ̂(η)) + Γ̂(η) ∈ D(δ̂) we have

δ̂(ν)(I) =σ̂(Λ̂(η))(I) + Γ̂(η)(I)− η(I)

=η(Λ) + η(I − Λ)− η(I) = 0.

Hence,
d

dt
ν(αt(I)) = δ̂(α̂t(ν))(I) = 0

for all ν ∈ D(δ̂) and t > 0. Hence, ν(I) = ν(αt(I)) for all ν ∈ D(δ̂) and t ≥ 0 and
since D(δ̂) is dense in B(H)∗ we have αt(I) = I for all t ≥ 0. Hence, α is unital.
Since α is unital and completely contractive α is completely positive.

Now that we have proved the last statement of the theorem we now drop the
assumption that ρ → σ̂(ρ) is unital. We will show that condition (4.14+) insures
that α is completely positive or what is the same thing that α′ is positive. As
mentioned earlier in the proof condition (4.14+) implies (4.14) so by the argument
above we have α is a strongly continuous semigroup of completely contractive map-
pings of B(H) into itself. As we saw in Theorem 2.9 α′ is positivity preserving if
and only if for all λ ∈ (0, 1) we have ν − λδ̂′(ν) ≥ 0 implies ν ≥ 0 or what is the
same thing α′ is positivity preserving if and only if for λ ∈ (0, 1) and ν ∈ D(δ̂′) is
hermitian and ν is not positive then ν − λδ̂′(ν) is not positive. Suppose then that
λ ∈ (0, 1) and ν ∈ D(δ̂′) is hermitian and ν is not positive. Let ν = ν+ − ν− be the
canonical decomposition of ν as the difference of two disjoint positive functionals
and let E+ and E− be the support projections of ν+ and ν−, respectively. Since ν

is not positive ν(E−) = −‖ν−‖ < 0. Since ν ∈ D(δ̂′) we have ν = σ̂′(Λ̂′(η))+ Γ̂′(η).
Let Pt = E′(t)A(t)E′(t) + θ′t(E−) for t ≥ 0 where A(t) is a positive operator in the
unit ball of B(H1). We see that Pt is positive and in the unit ball so

(σ̂′(Λ̂′(η)) + Γ̂′(η))(Pt − E−) ≥ 0

for t > 0. So for t > 0 we have

σ̂′(Λ̂′(η))(ζ ′t(A(t))) + Γ̂′(η)(ζ ′t(A(t))) + Γ̂′(η)(θ′t(E−)− E−)

+ (et − 1)σ̂′(Λ̂′(η))(E−)− σ̂′(Λ̂′(η))(etE− − θ′t(E−)) ≥ 0.

Since
lim
t→0+

t−1Γ̂′(η)(θ′t(E−)− E−) = Γ̂′(η)(E−)− η(E−)

and from Lemma 4.19 we have ‖ζ̂ ′t(Γ̂′(η)− Φ̂′(Λ̂′(η)))‖/t → 0 as t → 0+ and since
‖(et − 1)ζ̂ ′t(Φ̂

′(Λ̂′(η)))‖ is O(t2) and, hence, is o(t) we have the above expression is
equal to the expression below

ζ̂ ′t(σ̂
′(Λ̂′(η))+etΦ̂′(Λ̂′(η)))(A(t)) + t(σ̂′(Λ̂′(η))

+Γ̂′(η))(E−)− tη(E−)

−(etσ̂′(Λ̂′(η))− θ̂′t(σ̂
′(Λ̂′(η))))(E−) + o(t).
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So we have

tη(E−) ≤ ζ̂ ′t(σ̂
′(Λ̂′(η)) + etΦ̂′(η))(A(t)) + t(σ̂′(Λ̂′(η)) + Γ̂′(η))(E−)

− (etσ̂′(Λ̂′(η))− θ̂′t(σ̂
′(Λ̂′(η))))(E−) + o(t).

Recall that the only assumption on A(t) ∈ B(H1) is 0 ≤ A(t) ≤ I. Now let us
choose A(t) so that

ζ̂ ′t(σ̂
′(Λ̂′(η)) + etΦ̂′(η))(A(t)) = −‖ζ̂ ′t(σ̂′(Λ̂′(η)) + etΦ̂′(η))‖−

where ‖µ‖− = ‖µ−‖ with µ = µ+ − µ− is the canonical decomposition of µ into
the difference of disjoint positive functionals. Since E− is a hermitian projection
we have

(etσ̂′(Λ̂′(η))− θ̂′t(σ̂
′(Λ̂′(η))))(E−) ≥ −‖etσ̂′(Λ̂′(η))− θ̂′t(σ̂

′(Λ̂′(η)))‖−.
Hence, we have

η(E−) ≤(σ̂′(Λ̂′(η)) + Γ̂′(η))(E−)− t−1‖ζ̂ ′t(σ̂′(Λ̂′(η)) + etΦ̂′(η))‖−
+ t−1‖etσ̂′(Λ̂′(η))− θ̂′t(σ̂

′(Λ̂′(η)))‖− + o(t)/t.

Note (σ̂′(Λ̂′(η)) + Γ̂′(η))(E−) = ν(E−) = −‖ν‖− < 0. Hence, we have

η(E−) ≤ −‖ν‖− ≤ − lim sup
t→0+

D(t)

with

D(t) = t−1(‖ζ̂ ′t(σ̂′(Λ̂′(η)) + etΦ̂′(η))‖− − ‖etσ̂′(Λ̂′(η))− θ̂′t(σ̂
′(Λ̂′(η)))‖−).

Since ‖−µ‖+ = ‖µ‖− for any hermitian functional µ it follows that relation (4.14+)
holds with the ‖ · ‖+ norms replaced by the ‖ · ‖− norms. Since we have assumed
(4.14+) holds and −‖ν‖− is strictly negative we have η(E−) < 0. Hence, we have

(ν − λδ̂′(ν))(E−) =(1− λ)(σ̂′(Λ̂′(η)) + Γ̂′(η))(E−) + λη(E−)

=(1− λ)ν(E−) + λη(E−)

<− (1− λ)‖ν‖− < 0

and, hence, (ν − λδ̂′(ν)) is not positive. It then follows from Theorem 2.9 that α̂′

is positivity preserving and, hence, α is completely positive.
We show that U(t) intertwines α. We recall each ν ∈ D(δ̂) is of the form ν =

σ̂(Λ̂(η)) + Γ̂(η) for some η ∈ B(H)∗. If follows that if η ∈ B(H)∗ and Λ̂(η) = 0
then Γ̂(η) ∈ D(δ̂) and δ̂(Γ̂(η)) = Γ̂(η)− η. It follows from Lemma 4.10 that δ̂ is an
extension of δ̂1 (i.e., δ̂(ν) = δ1(ν) for all ν ∈ D(δ̂1)). Hence, it follows that δ1 is an
extension of δ. Suppose that f ∈ D(d) and A ∈ D(δ). Then we have

h−1(αt+h(A)U(t+ h)f − αt(A)U(t)f) =h−1(αt+h(A)(U(h)− I)U(t)f)

+ h−1(αt+h(A)− αt(A))U(t)f

for t > 0 and t+ h > 0. Taking the limit as h → 0 we find
d

dt
αt(A)U(t)f =αt(A)dU(t)f − δ(αt(A))U(t)f =

=− αt(A)dU(t)f − δ1(αt(A))U(t)f = −dαt(A)U(t)f.

Since ft = αt(A)U(t)f ∈ D(d) and (d/dt)ft = −dft it follows that ft = U(t)fo =
U(t)f. Hence, we have U(t)Af = αt(A)U(t)f for all f ∈ D(d) and A ∈ D(δ). Since
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for fixed t each side of this equation is norm continuous in f this equation extends
to all f ∈ H. Since each side of this equation is σ-strongly continuous in A and D(δ)
is σ-strongly dense in B(H) it follows that U(t)Af = αt(A)U(t)f for all A ∈ B(H)
and f ∈ H. Hence, U(t) intertwines α. �

We see from the previous theorem that for an understanding of CP-flows it is
essential that we understand the limits (4.13+) and (4.14+). The next lemma
shows us that the superior limit in (4.14+) is always finite.

Lemma 4.21. Suppose ρ ∈ B(K)∗ is hermitian and σ ∈ B(H)∗ is hermitian then

‖ζ̂t(etΦ̂(ρ) + σ)‖+ − ‖etσ − θ̂t(σ)‖+ ≤ (et − 1)(‖σ‖− + ‖ρ‖+)

for all t > 0. The same result holds for an hermitian ρ ∈ B(K1)∗ and an hermitian
σ′ ∈ B(H1)∗ with all the maps above replaced by the primed maps as described
before Theorem 4.20.

Proof. Assume the hypothesis of the lemma and t > 0. Let η = ζ̂t(etΦ̂(ρ) + σ)
and let η = η+ +η− be the unique decomposition of η into the difference of disjoint
positive functionals and let E+ be the support projection for η+ so η(E+) = ‖η‖+

and E+ is the smallest projection with this property. It follows that E(t)E+E(t) =
E+. Let

B =
∞∑
n=0

U(nt)E+U(nt)∗.

Since E+ ≤ E(t) we have

B =
∞∑
n=0

U(nt)E+U(nt)∗ ≤
∞∑
n=0

U(nt)E(t)U(nt)∗ = I.

Hence, 0 ≤ B ≤ I. We have

etB − θt(B) =(et − 1)B +
∞∑
n=0

U(nt)E+U(nt)∗ −
∞∑
n=1

U(nt)E+U(nt)∗

=(et − 1)B + E+.

Since 0 ≤ B ≤ I we have

‖etσ − θ̂t(σ)‖+ ≥σ(etB − θt(B)) = (et − 1)σ(B) + σ(E+)

=(et − 1)σ(B) + η(E+)− ζ̂t(etΦ̂(ρ))(E+)

≥(et − 1)σ(B) + ‖η‖+ − ‖ζ̂t(etΦ̂(ρ))‖+

≥− (et − 1)‖σ‖− + ‖η‖+ − (et − 1)‖ρ‖+.

Note in the last line we used the fact that ‖ζ̂t(etΦ̂(ρ))‖+ = (et − 1)‖ρ‖+ which
follow from direct computation. Recalling η = ζ̂t(etΦ̂(ρ) + σ) the estimate of the
lemma follows. The proof for the primed maps is identical. �
Lemma 4.22. Suppose ρ → ω(ρ) is a completely positive boundary weight map
of B(K)∗ into A(H)∗ as described in Definition 4.16 and suppose ρ → σ̂(ρ) is the
mapping of B(K)∗ into B(H)∗ given by

σ̂(ρ)(A) =
∫ ∞

0

e−tω(ρ)(U(t)AU(t)∗) dt = Γ̂(ω(ρ))(A)(4.8)
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for all A ∈ B(H). Let Ko be an infinite dimensional separable Hilbert space and let
K1 = Ko⊗K and H1 = K1⊗H = Ko⊗K⊗L2(0,∞) and let the primed operators and
mappings be the tensored mapping as described before Theorem 4.20. Let A(H1) be
then null boundary algebra of all operators of the form

A = (I − Λ′(I))
1
2B(I − Λ′(I))

1
2

with B ∈ B(H1). Then the mapping ρ → σ̂(ρ) is the boundary resolvent of a CP-flow
over K if and only if for each hermitian ρ ∈ B(K1)∗ there is an operator T ∈ B(K1)
with 0 ≤ T ≤ I so that if A = A∗ ∈ A(H1) and

0 ≤ A+ Λ′(T ) ≤ I then ρ(T ) ≥ ω′(ρ)(A).(4.17)

Proof. Assume the hypothesis and notation of the lemma. Suppose for each her-
mitian ρ ∈ B(K1)∗ there is an operator T ∈ B(K) with 0 ≤ T ≤ I so that for
A = A∗ ∈ A(H1) inequality (4.17) above is satisfied. From Theorems 4.17 and 4.20
we see that the mapping ρ → σ̂(ρ) defines a CP-semigroup provided limit inequality
(4.14+) holds. Suppose then that ρ ∈ B(K1)∗ is hermitian and T ∈ B(K1) with
0 ≤ T ≤ I so that (4.17) is satisfied. Suppose t > 0 and C ∈ B(H1) with 0 ≤ C ≤ I
and

(etσ̂′(ρ)− θ̂t(σ̂′(ρ)))(C) = ‖etσ̂′(ρ)− θ̂t(σ̂′(ρ))‖+.

Note we can let C be the support projection of the positive part of etσ̂′(ρ)−θ̂t(σ̂′(ρ)).
Let B = Λ′

o(T )E
′(t) where Λo was defined in Definition 4.6. Since 0 ≤ T ≤ I we

have 0 ≤ B ≤ I and ζ ′t(B) = B it follows that

‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ ≥ (etΦ̂′(ρ) + σ̂′(ρ))(B).

Then we have

‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ − ‖etσ̂′(ρ)− θ̂t(σ̂′(ρ))‖+ ≥ Q(t)(4.18)

= (etΦ̂′(ρ) + σ̂′(ρ))(B)− (etσ̂′(ρ)− θ̂t(σ̂′(ρ)))(C).

We examine Q(t). We have

Q(t) = (et−1)ρ(T ) +
∫ ∞

0

e−sω′(ρ)(U ′(s)Λ′
o(T )E

′(t)U ′(s)∗) ds

− et
∫ t

0

e−sω′(ρ)(U ′(s)CU ′(s)∗) ds.

We can write the above formula in the form

Q(t) = (et − 1)ρ(T )− ω′(ρ)(B1 −B2)

where

B1 = et
∫ t

0

e−sU ′(s)CU ′(s)∗ ds

and

B2 =
∫ ∞

0

e−sU ′(s)Λ′
o(T )E

′(t)U ′(s)∗ ds

=Λ′
o(T )− Λ′(T )− U ′(t)(Λ′

o(T )− Λ′(T ))U ′(t)∗

=Λ′
o(T )E

′(t)− Λ′(T ) + etΛ′(T )(I − E′(t))
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where the second equality comes from applying Equation (4.3f) and the fact that
E′(t) = I − U ′(t)U ′(t)∗ and the second equality comes from the commutation
properties of U ′(t) with Λ′

λ(T ) as stated after Definition 4.6. We calculate

(et − 1)Λ′(T )−B2 =etΛ′(T )− Λ′
o(T )E

′(t)− etΛ′(T )(I − E′(t))

=(etΛ′(T )− Λ′
o(T ))E

′(t).

For f a K1 valued function f(x) we have ((etΛ′(T )−Λ′
o(T ))E

′(t)f)(x) = (ete−x −
1)Tf(x) for x ∈ [0, t] and the function is the zero vector for x > t. Since T ≥ 0 we
see the above operator is positive. Since B1 is positive we have

B1 −B2 + (et − 1)Λ′(T ) ≥ 0.

If in the expression for B1 above we replace C by the unit I we will obtain a larger
operator. Hence, we have

B1 ≤ D =et
∫ t

0

e−sU ′(s)U ′(s)∗ ds

=et(I − Λ′(I))− U ′(t)(I − Λ′(I))U ′(t)∗

=(et − 1)(I − E′(t)) + et(I − Λ′(I))E′(t).

Hence, we have

(et − 1)I −B1 +B2 − (et − 1)Λ′(T )

≥(et − 1)I −D +B2 − (et − 1)Λ′(T )

=((et − 1)I − (et − 1)(I − E′(t)))− et(I − Λ′(I))E′(t)

− (etΛ′(T )− Λ′
o(T ))E

′(t)

=(etI − I − etI + etΛ′(I)− etΛ′(T ) + Λ′
o(T ))E

′(t)

=(−Λ′
o(I) + etΛ′(I)− etΛ′(T ) + Λ′

o(T ))E
′(t)

=(etΛ′(I − T )− Λ′
o(I − T ))E′(t).

For f ∈ H1 represented by a K1 valued function f(x) we have ((etΛ′(I−T )−Λ′
o(I−

T ))E′(t)f)(x) = (ete−x − 1)(I − T )f(x) for x ∈ [0, t] and the function is the zero
vector for x > t. Recalling that T ≤ I we see the above operator is positive. Hence,
we have

0 ≤ B1 −B2 + (et − 1)Λ′(T ) ≤ (et − 1)I.

Let A = (et − 1)−1(B1 − B2). Since B1 and B2 are in A(H1) we have A ∈ A(H1)
and we have 0 ≤ A+ Λ′(T ) ≤ I so we have ρ(T ) ≥ ω′(ρ)(A) and we have

Q(t) = (et − 1)ρ(T )− ω′(ρ)(B1 −B2) ≥ 0.

Hence, Q(t)/t ≥ 0 so from (4.18) we see the limit (4.14+) of Theorem 4.20 is
nonnegative. Hence, from Theorem 4.20 it follows that the mapping ρ → σ̂(ρ)
defines a unique CP-flow α.

Conversely, suppose σ is the boundary resolvent of a CP-flow α. Suppose ρ ∈
B(K1)∗ is hermitian. Let A(t) ∈ B(H1) be hermitian with 0 ≤ A(t) ≤ E′(t) for
each t > 0 so that

ζ̂ ′t(e
tΦ̂′(ρ) + σ̂′(ρ))(A(t)) = ‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+.
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Let

B(t) =
∞∑
n=0

e−ntU ′(nt)A(t)U ′(nt)∗.

Let X(t) = t−1Γ′(ζ ′t(A(t))) = t−1Γ′(A(t)). Note that X(t) − B(t) converges σ-
weakly to zero as t → 0 + . The fact that for f, g ∈ H1 (f, (X(t)− B(t))g) → 0 as
t → 0+ is just the argument that the Riemann integral can be replace by Riemann
sums for a continuous function. And then since X(t)−B(t) is uniformly bounded
one obtain σ-weak convergence. Repeating the argument in the proof of Lemma 4.19
we have there exists a decreasing sequence of positive tn so that tn → 0 as n → ∞
and X(tn) → Λ′(T ) σ-weakly as n → ∞. In constructing the sequence tn we can
arrange it so it is a subsequence of any given sequence converging to zero so we
will make the further assumption that tn = 2−k(n) (i.e., tn is the reciprocal of a
power of two). Since the X(t) are positive and ‖X(t)‖ ≤ 1 (see the argument in
the proof of Lemma 4.19) we have 0 ≤ T ≤ I. Since X(t)− B(t) → 0 σ-weakly as
t → 0+ we have B(tn) → Λ′(T ) as n → ∞. We claim condition (4.17) is satisfied
for this operator T. Suppose this is not the case so there an hermitian A1 ∈ A(H1)
so that 0 ≤ A1 +Λ′(T ) ≤ I and ρ(T ) < ω′(ρ)(A1). Note ω′(E′(t,∞)A1E

′(t,∞)) →
ω′(A1) as t → 0+ so there is a to > 0 so that if Ao = E′(to,∞)A1E

′(t0,∞) then
ρ(T ) < ω′(ρ)(Ao). Furthermore, shrinking to if necessary we can assume to is the
reciprocal of a power of two. One checks that since 0 ≤ A1 + Λ′(T ) ≤ I we have
0 ≤ Ao + Λ′(T ) ≤ I

We will need to introduce some notation. Let

ωt(A) = t−1

∫ t
0

e−sω′(ρ)(U ′(s)AU ′(s)∗) ds

and
νt(A) = ωt(E′(to,∞)AE′(to,∞))

for all A ∈ B(H1) and t > 0. As we saw in the proof of Theorem 4.17 the expression
for ωt is well-defined and is given by

ωt = t−1(σ̂′(ρ)− e−tθ̂′t(σ̂
′(ρ))).

As for νt, since ω′(ρ) restricted to U ′(to)B(H1)U ′(to)∗ is a normal functional we
have νt ∈ B(H1)∗ and νt converges in norm to the limit νo as t → 0+ where
νo(A) = ω′(ρ)(E′(to,∞)AE′(to,∞)) for all A ∈ B(H1). In terms of ωt we have for
t > 0 that

t−1‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ = t−1ζ̂ ′t(e
tΦ̂′(ρ) + σ̂′(ρ))(A(t))

= t−1(etΦ̂′(ρ) + σ̂′(ρ))(A(t))

= t−1etΦ̂′(ρ)(A(t)) + t−1

∫ ∞

0

e−sω′(ρ)(U ′(s)A(t)U ′(s)∗) ds

= t−1(et − e−t)Φ̂′(ρ)(B(t)) + ωt(B(t)).

And
t−1(etσ̂′(ρ)− θ̂t(σ̂′(ρ)))(A) = etωt(A)

for all A ∈ B(H1). We define

q(t) = t−1(‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ − ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖+).
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Since σ is the boundary resolvent of a CP-flow over K we have lim inft→0+ q(t) ≥ 0
from Theorem 4.20. Now for C(t) ∈ B(H1) hermitian and 0 ≤ C(t) ≤ I for t > 0
we have

t−1(et − e−t)Φ̂′(ρ)(B(t)) + ωt(B(t)) ≥ etωt(C(t)) + q(t).
Dividing by et and with a slight rearrangement we have

t−1(1− e−2t)Φ̂′(ρ)(B(t))− e−tq(t) ≥ ωt(C(t)− e−tB(t))

for t > 0. Then we have for all hermitian A ∈ U ′(to)B(H1)U ′(to)∗

t−1(1− e−2t)Φ̂′(ρ)(B(t))− e−tq(t) ≥ ωt(A) if 0 ≤ A+ e−tB(t) ≤ I.

Since to and tn for n = 1, 2, · · · are the reciprocals of a power of two we have
E′(to) commutes with B(tn) for tn ≤ to so we have if A satisfies the inequality 0 ≤
A+ e−tnB(tn) ≤ I then the operator A′ = E′(to,∞)AE′(to,∞) satisfies the same
inequality. Hence, we have for all hermitian A ∈ B(H1) with 0 ≤ A+e−tnB(tn) ≤ I

t−1
n (1− e−2tn)Φ̂′(ρ)(B(tn))− q(tn) ≥ νtn(A).

Note νtn converges in norm to νo as n → ∞ and

t−1
n (1− e−2tn)Φ̂′(ρ)(B(tn)) → 2Φ̂′(ρ)(Λ′(T )) = ρ(T )

and the inferior limit of the e−tnq(tn) is nonnegative. From these facts it follows that
for every ε > 0 there is an integer N so that for each n ≥ N if A = A∗ ∈ B(H1) with
0 ≤ A+ e−tnB(tn) ≤ I we have ρ(T )+ ε > νo(A). Note ρ(T ) < ω′(ρ)(Ao) = νo(Ao)
and 0 ≤ Ao + Λ′(T ) ≤ I. We choose ε = εo = 1

2 (νo(Ao) − ρ(T )) > 0 so for
n ≥ N = N(εo) if A = A∗ ∈ B(H1) and 0 ≤ A+ e−tnB(tn) ≤ I we have

ρ(T ) + εo > νo(A).

We will show that this inequality leads to the conclusion that ρ(T ) ≥ νo(Ao) which
is a contradiction.

Suppose Di = exp(−tni)B(tni), λi > 0 and ni ≥ N for i = 1, · · · , p and
p∑
i=1

λi = 1 and C =
p∑
i=1

λiDi.

Suppose A = A∗ ∈ B(H1) and 0 ≤ A + C ≤ I. We show ρ(T ) + εo > νo(A). Let
Ai = A+C−Di for i = 1, · · · , p. Then 0 ≤ Ai+Di ≤ I so we have ρ(T )+εo > νo(Ai)
for i = 1, · · · , p. Then we have

ρ(T ) + εo =
p∑
i=1

λi(ρ(T ) + εo) >
p∑
i=1

νo(λiAi) = νo(A).

Since the set of C of the above form is a convex set and the σ-weak and σ-strong
closure of a convex set are equal and since e−tnB(tn) → Λ′(T ) σ-weakly as n → ∞
we have Λ′(T ) can be approximated arbitrarily well by operators C in the above
form in the σ-strong topology. Hence, there is a sequence Cn of operators of the
above form so that Cn → Λ′(T ) as n → ∞ in the σ-strong topology. Let φ be the
real valued function given by φ(x) = 0 for x ≤ 0, φ(x) = x for x ∈ [0, 1], φ(x) = 2−x
for x ∈ [1, 2] and φ(x) = 0 for x ≥ 2. Note φ is a continuous function of compact
support. As shown in (Theorem 5.3.4, p. 328 of [KR]) the mapping A → φ(A)
is strongly continuous on the hermitian operators. Recall Ao was the hermitian
operator satisfying 0 ≤ Ao+Λ′(T ) ≤ I. Let An = φ(Ao+Cn)−Cn for n = 1, 2, · · · .
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Since 0 ≤ φ(Ao+Cn) ≤ I we have 0 ≤ An+Cn ≤ I and, hence, ρ(T )+εo > νo(An)
for n = 1, 2, · · · . Since Cn → Λ′(T ) and φ(Ao+Cn) → φ(Ao+Λ′(T )) = Ao+Λ′(T )
as n → ∞ in the strong operator topology we have

An → Ao + Λ′(T )− Λ′(T ) = Ao

strongly as n → ∞ and since the An are uniformly bounded we have convergence
in the σ-strong topology. Hence, νo(An) → νo(Ao) as n → ∞ and since ρ(T )+ εo >
νo(An) for all n = 1, 2, · · · we have ρ(T ) + εo ≥ νo(Ao). We recall εo = 1

2 (νo(Ao)−
ρ(T )) so we have 1

2ρ(T ) ≥ 1
2νo(Ao). But this is a contradiction since ρ(T ) < νo(Ao).

Hence, ρ(T ) ≥ ω′(ρ)(A) for all hermitian A ∈ A(H1) with 0 ≤ A+ Λ′(T ) ≤ I. �

Theorem 4.23. Suppose ρ → ω(ρ) is a completely positive boundary weight map
B(K)∗ into A(H)∗. For s > 0 suppose ωs is the truncated boundary weight map so
ωs(ρ)(A) = ω(ρ)(E(s,∞)AE(s,∞)) for all A ∈ B(H) and s > 0. Suppose ρ → σ̂(ρ)
is the mapping of B(K)∗ into B(H)∗ given by

σ̂(ρ)(A) =
∫ ∞

0

e−tω(ρ)(U(t)AU(t)∗) dt(4.8)

for all A ∈ B(H). Let Ko be an infinite dimensional separable Hilbert space and let
K1 = Ko ⊗ K and H1 = K1 ⊗ H = Ko ⊗ K ⊗ L2(0,∞) and let the primed operators
and maps be the tensored operators and maps as describe before Theorem 4.20.
Suppose the mapping σ is the boundary resolvent of a CP-flow over K. Then for
each hermitian ρ ∈ B(K1)∗ and each s > 0 we have

‖ρ+ Λ̂′(ω′
s(ρ))‖+ ≥ ‖ω′

s(ρ)‖+.(4.19)

Conversely, suppose for each hermitian ρ ∈ B(K1)∗ we have

lim sup
s→0+

‖ρ+ Λ̂′(ω′
s(ρ))‖+ − ‖ω′

s(ρ)‖+ ≥ 0.(4.20)

Then the mapping ρ → σ̂(ρ) defines a CP-flow over K.

Proof. Assume the hypothesis and notation of the theorem. First let us assume
the mapping ρ → σ̂(ρ) defines an CP-flow over K. Suppose ρ ∈ B(K1) is hermitian
and s > 0. Then from the previous lemma there is an operator T = T ∗ ∈ B(K1)
with 0 ≤ T ≤ I so that ρ(T ) ≥ ω′(ρ)(A) for A = A∗ ∈ A(H1) (the null boundary
algebra) with 0 ≤ A + Λ′(T ) ≤ I. Note if A satisfies 0 ≤ A + Λ′(T ) ≤ I so does
A′ = E′(s,∞)AE′(s,∞). Hence, we have ρ(T ) ≥ ω′

s(ρ)(A) for all A = A∗ ∈ B(H1)
with 0 ≤ A+ Λ′(T ) ≤ I. Hence, we have ρ(T ) + ω′

s(ρ)(Λ
′(T )) ≥ ω′

s(ρ)(A+ Λ′(T ))
for all A = A∗ ∈ B(H1) with 0 ≤ A+ Λ′(T ) ≤ I. Since ‖ω′

s(ρ)‖+ = sup(ω′
s(ρ)(C) :

C ∈ B(H1) with 0 ≤ C ≤ I) we have (ρ + Λ̂′(ω′
s(ρ)))(T ) ≥ ‖ω′

s(ρ)‖+ and since
0 ≤ T ≤ I we have ‖ρ + Λ̂′(ω′

s(ρ))‖+ ≥ (ρ + Λ̂′(ω′
s(ρ)))(T ) and inequality (4.19)

follows.
Conversely, suppose inequality (4.20) holds for all hermitian ρ ∈ B(K1)∗. Sup-

pose ρ ∈ B(K1)∗ is hermitian. Then there is a decreasing sequence sn → 0 so that
if

qn = ‖ρ+ Λ̂′(ω′
sn
(ρ))‖+ − ‖ω′

sn
(ρ)‖+

then limn→∞ qn ≥ 0. Let Pn be the support projection of the positive part of
ρ+ Λ̂′(ω′

sn
(ρ)) so

(ρ+ Λ̂′(ω′
sn
(ρ)))(Pn) = ‖ρ+ Λ̂′(ω′

sn
(ρ))‖+.
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Then for each n = 1, 2, · · · we have

ρ(Pn) + ω′
sn
(ρ)(Λ′(Pn)) ≥ ω′

sn
(ρ)(B) + qn

for all hermitian B ∈ B(H1) with 0 ≤ B ≤ I and, therefore, we have ρ(Pn) ≥
ω′
sn
(ρ)(A) + qn for A = A∗ ∈ B(H1) with 0 ≤ A+ Λ′(Pn) ≤ I. And from the defi-

nition of ω′
sn
(ρ) we have ρ(Pn) ≥ ω′(A) + qn for all A = A∗ ∈ U ′(sn)B(H1)U ′(sn)

with 0 ≤ A + Λ′(Pn) ≤ I. Since the unit ball of B(H1) is σ-weakly compact and
H1 is separable there is a subsequence sn(k) so that Pn(k) converges σ-weakly to an
operator T as k → ∞. We relabel the subsequence as sk and Pk so sk is a decreasing
sequence converging to zero and Pk → T σ-weakly as k → ∞. We claim inequal-
ity (4.17) holds with T the operator just constructed. Suppose this is not the
case. Then there is a c > 0 and a hermitian operator Ao ∈ U ′(c)B(H1)U ′(c)∗

and 0 ≤ Ao + Λ′(T ) ≤ I so that ρ(T ) < ω′(ρ)(Ao) = ω′
c(Ao). Note that if

A = A∗ ∈ B(H1) and 0 ≤ A + Λ′(Pn) ≤ I or 0 ≤ A + Λ′(T ) ≤ I then the
same inequalities hold with A replaced by A′ = E′(c,∞)AE′(c,∞). Hence, we
have ρ(Pn) ≥ ω′

c(A) + qn for hermitian A ∈ B(H1) with 0 ≤ A+Λ′(Pn) ≤ I. Since
Pn → T σ-weakly as n → ∞ and limn→∞ qn ≥ 0 for each ε > 0 there is an integer
N so that for each n ≥ N if A = A∗ ∈ B(H1) with 0 ≤ A+ Λ′(Pn) ≤ I we have

ρ(T ) + ε > ω′
c(A).

We are now in precisely the same situation we had in the proof of the second
part of Lemma 4.22 and repeating the argument there produces the contradiction
ρ(T ) ≥ ω′

c(Ao). Hence, inequality (4.17) holds and from Theorem 4.22 we have
ρ → σ̂(ρ) defines a CP-flow. �

A natural way to construct Eo-semigroups or CP-flows is through the bound-
ary representation πo as given in Definition 4.5. One may simply require that the
boundary representation πo of D(δ) be σ-weakly continuous and, therefore, have a
σ-weakly continuous extension π to all of B(H). In earlier work it was natural to
focus on the boundary representation. For example, it was shown in [P3] (Theo-
rem 4.6) if α satisfies the conclusion of Theorem 4.20 then α is a completely spatial
Eo-semigroup of B(H) if and only if the mapping A → πo(A) from the domain of
the generator δ of α to B(H) extends to a σ-weakly continuous ∗-representation π
of B(H) on B(K) and with the further property that A = π(Λ(A)) only if A = 0.
Here are ways to connect a normal boundary representation with a CP-flow.

Theorem 4.24. Suppose σ is the boundary resolvent of a CP-flow over K and δ is
the generator of α. Suppose π is a completely positive normal contraction of B(H)
into B(K). Then the following are equivalent:

(i) Φ̂(ρ) ∈ D(δ̂) and δ̂(Φ̂(ρ)) = π̂(ρ)− Φ̂(ρ) for each ρ ∈ B(K)∗.
(ii) σ̂(ρ− Λ̂(π̂(ρ))) = Γ̂(π̂(ρ)) for all ρ ∈ B(K)∗.
(iii) π(A) = πo(A) for all A ∈ D(δ) where πo is the boundary representation

introduced in Definition 4.5.

Proof. Assume the hypothesis and notation of the theorem apply. Assume condi-
tion (ii). Since α is defined from σ̂ we have for all η ∈ B(H)∗ that σ̂(Λ̂(η))+ Γ̂(η) ∈
D(δ̂) and δ̂(σ̂(Λ̂(η)) + Γ̂(η)) = σ̂(Λ̂(η)) + Γ̂(η) − η where δ is the generator of α.
For η = 2Φ̂(ρ)− π̂(ρ) we have Λ̂(η) = ρ− Λ̂(π̂(ρ)) and Γ̂(η) = Φ̂(ρ)− Γ̂(π̂(ρ)) and,
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therefore, from the equation above we have Φ̂(ρ) ∈ D(δ̂) and δ̂(Φ̂(ρ)) = π̂(ρ)−Φ̂(ρ).
Hence, (ii) ⇒ (i).

Conversely if α satisfies (i) we have Φ̂(ρ) ∈ D(δ̂) and δ̂(Φ̂(ρ)) = π̂(ρ) − Φ̂(ρ)
where δ̂ is the generator of α̂. Then for ρ ∈ B(K)∗ there is an η ∈ B(H)∗ so that
σ̂(Λ̂(η))+Γ̂(η) = Φ̂(ρ) and then δ̂(σ̂(Λ̂(η))+Γ̂(η)) = σ̂(Λ̂(η))+Γ̂(η)−η = Φ̂(ρ)−η =
π̂(ρ) − Φ̂(ρ). Hence, η = 2Φ̂(ρ) − π̂(ρ). Since Γ̂(Φ̂(ρ)) = 1

2 Φ̂(ρ) and Λ̂(Φ̂(ρ)) = 1
2ρ

we have σ̂(Λ̂(η)) = σ̂(ρ− Λ̂(π̂(ρ))) = Γ̂(π̂(ρ)). Hence, (i) ⇒ (ii).
Next we show (ii) and (iii) are equivalent. Since α is defined from the map

ρ → σ̂(ρ) means that each element of D(δ̂) is of the form σ̂(Λ̂(η)) + Γ̂(η) and
δ̂(σ̂(Λ̂(η))+Γ̂(η)) = σ̂(Λ̂(η))+Γ̂(η)−η for some η ∈ B(H)∗. This translates over to
the dual space B(H) to give that each element of D(δ) is of the form Λ(σ(A))+Γ(A)
and δ(Λ(σ(A)) + Γ(A)) = Λ(σ(A)) + Γ(A) − A. Recalling the properties of the
boundary representation we note that πo(Γ(A)) = 0 and πo(Λ(B)) = B for all A ∈
B(H) and B ∈ B(K). Hence, we have πo(Λ(σ(A))+Γ(A)) = σ(A) for all A ∈ B(H).
It follows that condition (iii) is then equivalent to the equation σ(A) = π(Λ(σ(A))
+Γ(A)) for all A ∈ B(H). Note all the mapping in this equation are σ-weakly
continuous so translating this equation to the predual gives condition (ii). Hence,
(ii) and (iii) are equivalent. �

Definition 4.25. We say a CP-flow α over K is derived from the completely pos-
itive normal contraction π of B(H) into B(K) if it satisfies one and, therefore, all
the conditions of Theorem 4.24.

The next theorem shows that for each such π there is a CP-flow α derived from
π.

Theorem 4.26. Suppose π is a completely positive σ-weakly continuous linear con-
traction of B(H) into B(K). Then for each ρ ∈ B(K)∗ the sum

σ̂(ρ) = Γ̂(π̂(ρ) + π̂(Λ̂(π̂(ρ))) + π̂(Λ̂(π̂(Λ̂(π̂(ρ))))) + · · · )

converges in norm and σ is the boundary resolvent of a CP-flow α which is derived
from π. Furthermore, this α is the minimal CP-flow derived from π in that if ρ →
σ̂2(ρ) defines a second CP-semigroup derived from π then σ̂(ρ) ≤ σ̂2(ρ) for all
positive ρ ∈ B(K)∗. Furthermore, if (π ◦ Λ)n(I) → 0 weakly as n → ∞ then α
defined above is the unique (i.e., α is the only CP-flow derived from π).

Proof. Suppose π is a completely positive σ-weakly continuous linear contraction
of B(H) into B(K). For ρ ∈ B(K)∗ let

σ̂n(ρ) = Γ̂(π̂(ρ)) + Γ̂

(
n∑
k=1

π̂((Λ̂ ◦ π̂)k(ρ))
)
.

Note the mapping ρ → σ̂n(ρ) is completely positive and each of the terms in the
sum for σ̂n are completely positive. Suppose ρ ∈ B(H)∗ and ρ is positive. Using



CP-Flows 233

the fact that π(I) ≤ I we find

σ̂n(ρ)(I) =ρ(π(I − Λ)) +
n∑
k=1

ρ((π ◦ Λ)kπ(I − Λ))

≤ρ(I − π(Λ)) +
n∑
k=1

ρ((π ◦ Λ)k(I − π(Λ)))

=ρ(I)− ρ((π ◦ Λ)n+1(I)) ≤ ρ(I)

for all n ≥ 1. Since for n ≥ m we have ‖σ̂n− σ̂m‖ = σ̂n(I)− σ̂m(I) and this tends to
zero as n,m → ∞ it follows that σ̂n converges in norm to a limit which we denote
by σ̂(ρ) as n → ∞. Since each ρ ∈ B(K)∗ is the complex linear combination of four
positive elements it follows that σ̂n(ρ) converges in norm to a limit as n → ∞ for
all ρ ∈ B(K)∗. Note for ρ ∈ B(K)∗ and A ∈ B(H) we have

(σ̂n(ρ)− e−tθ̂t(σ̂n(ρ)))(A) =
∫ t

0

e−s
n∑
k=0

ρ((π ◦ Λ)kπ(U(s)AU(s)∗)) ds.

Since each of the terms in the above sum is completely positive the mapping ρ →
σ̂n(ρ) − e−tθ̂t(σ̂n(ρ)) is completely positive. Since σ̂n converges in norm to σ̂ as
n → ∞ the mapping ρ → σ̂(ρ)−e−tθt(σ̂(ρ)) is completely positive. To show that σ̂
defines a CP-flow we need to establish the limit inequality (4.14+) of Theorem 4.20.
We do not know how to do this directly because although the expression for σ̂(ρ)
converges in norm as n → ∞ the expression on which Γ̂ acts in the definition of
σ̂(ρ) need not converge. (In fact, we know of examples where it fails to converge.)
To fix this problem we will replace π by λπ with 0 < λ < 1 which makes the typical
sums which occur convergent. Then we will take the limit as λ → 1− .

For ρ ∈ B(K)∗ and 0 ≤ λ < 1 we define

ρλ = ρ+ λΛ̂(π̂(ρ)) + λ2Λ̂(π̂(Λ̂(π̂(ρ)))) + · · ·

and

σ̂λ(ρ) = λΓ̂(π̂(ρλ)).

Note that since λ < 1 the series for ρλ converges in norm. We show the mapping
ρ → σ̂λ(ρ) defines a CP-flow over K. This mapping is completely positive by the
same argument that the mapping ρ → σ̂(ρ) is completely positive and σ̂λ(ρ)(I) ≤
ρ(I) for ρ ≥ 0 by the same computation that showed this for σ̂(ρ). We show σ̂λ(ρ)
satisfies the limit inequality (4.14+). As describe before Theorem 4.20 we use the
primed maps to indicate the extension of the unprimed map to tensor product space
K1 = Ko ⊗ K by rule γ′(A⊗B) = A⊗ γ(B). Suppose ρ ∈ B(K1)∗ is hermitian and
t > 0. Then we have

ζ̂ ′t(e
tΦ̂′(ρ) + σ̂λ′(ρ)) =ζ̂ ′t(e

tΦ̂′(ρ) + λΦ̂′(Λ̂′(π̂′(ρλ))))

+ λζ̂ ′t(Γ̂
′(π̂′(ρλ))− Φ̂′(Λ̂′(π̂′(ρλ)))).
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By Lemma 4.19 the norm of the second term on the left-hand of the above equation
is o(t). Hence, we have

lim
t→0+

t−1‖ζ̂ ′t(etΦ̂′(ρ) + σ̂λ′(ρ))‖+

= lim
t→0+

t−1‖ζ̂ ′t(etΦ̂′(ρ) + λΦ̂′(Λ̂′(π̂′(ρλ))))‖+

= lim
t→0+

t−1(1− e−t)‖etρ+ λΛ̂′(π̂′(ρλ))‖+

= ‖ρ+ λΛ̂′(π̂′(ρλ))‖+ = ‖ρλ‖+.

And we have

t−1(etσ̂λ′(ρ)− θ̂t(σ̂λ′(ρ))) = t−1λet
∫ t

0

e−sθ̂′s(π̂
′(ρλ)) ds

→ λπ̂′(ρλ)

as t → 0 + . Hence, we have

lim
t→0+

t−1‖etσ̂λ′(ρ)− θ̂t(σ̂λ′(ρ))‖+ = λ‖π̂′(ρλ)‖+.

Hence, inequality (4.14+) is satisfied if and only if

λ‖π̂′(ρλ)‖+ ≤ ‖ρλ‖+

for all hermitian ρ ∈ B(K1)∗. But this follows immediately from the fact that λ < 1
and π is a completely positive contraction so π′is a positive contraction. Hence, by
Theorem 4.20 there is a CP-flow αλ of B(H) whose boundary resolvent is σλ. The
properties of the semigroup αλ are essential to the remainder of our argument.

Suppose ρ ∈ B(K1) is hermitian. Suppose t > 0. Then from Equations (4.15) in
the proof of Theorem 4.20 we have

α̂λ′t (ζ̂
′
t(ν)) = etσ̂λ′(ρ)− θ̂′t(σ̂

λ′(ρ))

and

ζ̂ ′t(ν) = ζ̂ ′t(σ̂
λ′(ρ) + etΦ̂′(ρ))− (et − 1)ζ̂ ′t(Φ̂

′(ρ))

+ 2
∫ t

0

esζ̂ ′t(ξ̂
′
s(Φ̂

′(ρ))) ds

where the somewhat complicated expression for ν (which fortunately we do not
need) is given in the proof of Theorem 4.20. Since αλt is completely positive and,
therefore, αλ′t is positive for t ≥ 0 we have ‖α̂λ′t (ζ̂ ′t(ν))‖+ ≤ ‖ζ̂ ′t(ν)‖+. We note that
both α̂λ′t (ζ̂

′
t(ν)) and ζ̂ ′t(ν) converge in norm to limits as λ → 1− and, hence, the

inequality ‖α̂λ′t (ζ̂ ′t(ν))‖+ ≤ ‖ζ̂ ′t(ν)‖+ holds in the limit obtained by setting λ = 1.
Hence, we have

t−1(‖ζ̂ ′t(ν)‖+ − ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖+) ≥ 0

where ζ̂ ′t(ν) is the expression given above with σ̂λ′(ρ) replaced by σ̂′(ρ). As shown
in the proof of Theorem 4.20 (after Equation 4.15) the norm of each of the second
two terms in the expression for ζ̂ ′t(ν) are O(t2). Combining this with the inequality
above we have

lim inf
t→0+

t−1(‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+ − ‖etσ̂′(ρ)− θ̂′t(σ̂
′(ρ))‖+) ≥ 0
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which is the limit inequality (4.13+) which implies (is stronger than) that the limit
inequality (4.14+). Hence, by Theorem 4.20 σ is the boundary resolvent of a CP-
flow over K.We show α is derived from π. Suppose ρ ∈ B(K)∗. A direct computation
from the definition of σ̂ shows that

σ̂(ρ− Λ̂(π̂(ρ))) = Γ̂(π̂(ρ)).

for ρ ∈ B(K)∗. From Theorem 4.24 it follows that α is derived from π.
Next suppose then that β is a CP-flow over K derived from π and let σ2 be the

boundary resolvent of β. Since β is derived from π we have from Theorem 4.24 that

σ̂2(ρ− Λ̂(π̂(ρ))) = Γ̂(π̂(ρ))

for all ρ ∈ B(K)∗. For ρ ∈ B(K)∗ let

ρn =
n∑
k=0

(Λ̂ · π̂)k(ρ).

Then ρn − Λ̂(π̂(ρn)) = ρ− (Λ̂ · π̂)n+1(ρ) and, hence,

σ̂2(ρ− (Λ̂ · π̂)n+1(ρ)) = Γ̂(π̂(ρn)).

Early in this proof when we constructed σ we showed that Γ̂(π̂(ρn)) converges in
norm to σ̂(ρ) as n → ∞. Hence, we have

σ̂2(ρ) = σ̂(ρ) + lim
n→∞ σ̂2((Λ̂ · π̂)n(ρ))

where the above limit exists. Since the mappings ρ → σ̂2(ρ) and (Λ̂ · π̂)n are
completely positive for all n = 1, 2, · · · is follows the mapping ρ → σ̂2(ρ)− σ̂(ρ) is
completely positive.

Now suppose ρ ≥ 0. Then ‖(Λ̂ · π̂)n(ρ)‖ = ρ((π ◦ Λ)n(I)). Now let us make the
assumption (π◦Λ)n(I) → 0 weakly as n → ∞. It then follows that ‖(Λ̂·π̂)n(ρ)‖ → 0
as n → ∞ and since each ρ ∈ B(K)∗ is a linear combination of four positive elements
this limit holds for all ρ ∈ B(K)∗. From the normalization condition for σ̂2 it follows
that σ̂2((Λ̂ · π̂)n) → 0 in norm. Hence, we have

σ̂2(ρ) = σ̂(ρ) + lim
n→∞ σ̂2((Λ̂ · π̂)n(ρ)) = σ̂(ρ).

Hence, β = α and α is the unique CP-flow derived from π if (π ◦ Λ)n(I) → 0
strongly as n → ∞. �

Next we show that if the weights ω(ρ) are bounded for all ρ ∈ B(K)∗ then the
CP-flow defined from ω is derived from a completely positive normal contraction π
of B(H) into B(K).

Theorem 4.27. Suppose α is a CP-flow over K and σ is the boundary resolvent
of α. Suppose

σ̂(ρ)(A) =
∫ ∞

0

e−tω(ρ)(U(t)AU(t)∗) dt

for all A ∈ B(H) where ω(ρ) is the weight defined in Theorem 4.17 and suppose
the weight ω(ρ) is bounded for each ρ ∈ B(K)∗. Then there is a unique completely
positive σ-weakly continuous contraction π of B(H) into B(K) so that α is the
unique CP-flow derived from π and the relation between π and ω is given by

ω = π̂(I − Λ̂ · π̂)−1 and π = ω(I + Λ̂ · ω)−1.
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In particular, it follows that if α is a CP-flow over K and ρ → ωt(ρ) are the
associated maps for t > 0 as described in Theorem 4.23 then for each t > 0 there
is a unique completely positive normal contraction πt of B(H) into B(K) so that
there is a unique CP-flow α(t) derived from πt and the associated map ρ → σt(ρ)
is given by

σ̂t(ρ)(A) =
∫ ∞

0

e−sωt(ρ)(U(s)AU(s)∗) ds

for A ∈ B(H). The relation between πt and ωt is given by the relations

ωt = π̂t(I − Λ̂ · π̂t)−1 and πt = ωt(I + Λ̂ · ωt)−1

for each t > 0.

Proof. Assume the hypothesis and notation of the first paragraph of the the-
orem holds. We first show that the mapping ρ → ω(ρ) is closed. We must
show that if ‖ρn‖ → 0 and ‖ω(ρn) − η‖ → 0 as n → ∞ then η = 0. Let
ωs(ρ)(A) = ω(ρ)(E(s,∞)AE(s,∞)) for s > 0 and A ∈ B(H). Suppose ρ ∈ B(K)∗
and ρ is positive. Since ω(ρ)(I − Λ) ≤ ρ(I) we have for s > 0 that

ωs(ρ)(I) =ω(ρ)(I − E(s)) ≤ (1− e−s)−1ω(ρ)(I − Λ)

≤(1− e−s)−1ρ(I).

Hence, ‖ωs(ρ)‖ ≤ (1 − e−s)−1‖ρ‖ for ρ positive and since the mapping ρ → ωs(ρ)
is completely positive we have this inequality holds for all ρ and the mapping
ρ → ωs(ρ) is bounded with bound less than or equal to (1 − e−s)−1 for all s > 0.
Suppose then that ‖ρn‖ → 0 and ‖ω(ρn) − η‖ → 0 as n → ∞. Then we have
ωs(ρn)(A) → 0 as n → ∞ for each s > 0. Hence, η(E(s,∞)AE(s,∞)) = 0 for all
s > 0 and A ∈ B(H). Hence η = 0 and the mapping ρ → ω(ρ) is closed and, hence,
by the closed graph theorem the mapping is bounded so there is a constant K so
that ‖ω(ρ)‖ ≤ K‖ρ‖ for all ρ ∈ B(K)∗.

The next step is to show that mapping ρ → ρ + Λ̂(ω(ρ)) is invertible. We have
σ̂(ρ) = Γ̂(ω(ρ)) for all ρ ∈ B(K)∗. We use the primed maps as described before
Theorem 4.20. Then for all hermitian ρ ∈ B(K1)∗ we have

ζ̂ ′t(e
tΦ̂′(ρ) + σ̂′(ρ)) =ζ̂ ′t(e

tΦ̂′(ρ) + Φ̂′(Λ̂′(ω′(ρ))))

+ ζ̂ ′t(Γ̂
′(ω(ρ))− Φ̂′(Λ̂′(ω′(ρ)))).

By Lemma 4.19 the norm of the second term in the above equation is o(t) and,
hence,

lim
t→0+

t−1‖ζ̂ ′t(etΦ̂′(ρ) + σ̂′(ρ))‖+

= lim
t→0+

t−1‖ζ̂ ′t(Φ̂′(etρ+ Λ̂′(ω′(ρ))))‖+ = ‖ρ+ Λ̂′(ω′(ρ))‖+.

And we have

(etσ′(ρ)− θ̂′t(σ
′(ρ)))(A) = et

∫ t
0

e−sω′(ρ)(U ′(s)AU ′(s)∗) ds

for all A ∈ B(H) and t > 0. It follows from the above that

lim
t→0+

t−1(etσ′(ρ)− θ̂′t(σ
′(ρ))) = ω′(ρ)
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and, therefore,
lim
t→0+

t−1‖etσ̂′(ρ)− θ̂t(σ̂′(ρ))‖+ = ‖ω′(ρ)‖+.

Then it follows from Theorem 4.20 (inequality (4.13+)) that

‖ρ+ Λ̂′(ω′(ρ))‖+ ≥ ‖ω′(ρ)‖+

for all hermitian ρ ∈ B(K1)∗. As described in the proof of Theorem 4.20 this
implies ‖ρ + Λ̂′(ω′(ρ))‖ ≥ ‖ω′(ρ)‖ for all ρ ∈ B(K1)∗ and this trivially implies
‖ρ+ Λ̂(ω(ρ))‖ ≥ ‖ω(ρ)‖ for all ρ ∈ B(K)∗. Note ‖ρ+ Λ̂(ω(ρ))‖ ≥ ‖ω(ρ)‖ implies

‖ρ+ Λ̂(ω(ρ))‖ ≥ ‖ρ‖ − ‖Λ̂(ω(ρ))‖ ≥ ‖ρ‖ − ‖ω(ρ)‖ ≥ ‖ρ‖ − ‖ρ+ Λ̂(ω(ρ))‖.
So we have ‖ρ + Λ̂(ω(ρ))‖ ≥ 1

2‖ρ‖ for all ρ ∈ B(K)∗. It follows that the map
ρ → ρ+ Λ̂(ω(ρ)) is one to one and this map has a bounded left inverse.

We will show that this mapping has range B(K)∗ and so this left inverse is also
a right inverse and the mapping is invertible. Suppose 0 ≤ y ≤ 1. Consider the
mapping ρ → yσ̂(ρ) and then ρ → yω(ρ) is the corresponding differentiated map.
Note from Lemma 4.22 that the mapping ρ → yω(ρ) satisfies inequality (4.17)
since the mapping ρ → ω(ρ) does. Hence, the mapping ρ → yσ̂(ρ) corresponds
to a CP-flow and by the argument above (with yω(ρ) replacing ω(ρ)) we have
‖ρ + yΛ̂(ω(ρ))‖ ≥ 1

2‖ρ‖ for all ρ ∈ B(K)∗ and y ∈ [0, 1]. Let Ty be the mapping
ρ → ρ+ yΛ̂(ω(ρ)) for ρ ∈ B(K)∗ and let Θy be the left inverse of Ty for y ∈ [0, 1].
Recall ‖ω(ρ)‖ ≤ K‖ρ‖ for ρ ∈ B(K)∗. Now for y ∈ [0, 1/K) we have

Θy(ρ) = ρ− yΛ̂(ω(ρ)) + y2Λ̂(ω(Λ̂(ω(ρ))))− · · ·
and the geometric series converges. Note for y ∈ [0, 1/K) we have Θy is both a
right and left inverse of Ty so the range of Ty is B(K)∗ for y ∈ [0, 1/K). Suppose
y ∈ [0, 1] and for this value of y we have Ty has range B(K)∗ so Θy is both a right
and left inverse of Ty. Then for x ∈ [0, 1] we have

Tx+y = Ty + xΛ̂ · ω = (Ty + xΛ̂ · ω)ΘyTy = (I + x(Λ̂ · ω)Θy)Ty.
Note since ‖Tyρ‖ ≥ 1

2‖ρ‖ for ρ ∈ B(K)∗ we have ‖Θy‖ ≤ 2 and, hence, ‖x(Λ̂ ·
ω)Θy‖ ≤ 2xK. Hence for x ∈ [0, 1

2K
−1) we have (I+x(Λ̂ ·ω)Θy) is invertible (since

the geometric series for it converges). Since Ty has range B(K)∗ it follows that
Tx+y has range all of B(K)∗ for x ∈ [0, 1

2K
−1). Then we can extend the interval

[0, (2/3)K−1] on which we know Ty has range B(K)∗ to [0,K−1] on which Ty has
range B(K)∗ then to [0, (4/3)K−1] on which Ty has range B(K)∗ and in a finite
number of steps we can extend the interval for which we know Ty has range B(K)∗
to an interval containing [0, 1]. Hence, T1 has range B(K)∗ and Θ1 is both a right
and left inverse for T1.

It follows that Θ1(ρ) + Λ̂(ω(Θ1(ρ))) = ρ for all ρ ∈ B(K)∗. Then for the primed
maps we have

‖ρ‖+ = ‖Θ′
1(ρ) + Λ̂′(ω′

1(Θ
′
1(ρ)))‖+ ≥ ‖ω′

1(Θ
′
1(ρ))‖+

for all hermitian ρ ∈ B(K1)∗. Let π̂(ρ) = ω(Θ1(ρ)) for all ρ ∈ B(K)∗. Then the
above inequality says ‖ρ‖+ ≥ ‖π̂′(ρ)‖+ for all hermitian ρ ∈ B(K1)∗ which is
equivalent to saying π is a completely positive normal contraction of B(H) into
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B(K). Since Θ1(ρ) + Λ̂(ω(Θ1(ρ))) = ρ for all ρ ∈ B(K)∗ we have ω(Θ1(ρ)) +
ω(Λ̂(ω(Θ1(ρ)))) = ω(ρ) or

ω(ρ− Λ̂(π̂(ρ))) = π̂(ρ)

for all ρ ∈ B(K)∗. Hence, we have σ̂(ρ − Λ̂(π̂(ρ))) = Γ̂(π̂(ρ)) for ρ ∈ B(K)∗ and α
is derived from π.

As in the proof of Theorem 4.26 for ρ ∈ B(K)∗ and n ≥ 0 let

ρn = ρ+ Λ̂(π̂(ρ)) + · · ·+ (Λ̂ · π̂)n(ρ).
Then we have ω(ρ−(Λ̂·π̂)n+1(ρ)) = π̂(ρn). Then assuming further that ρ is positive
we have

π̂(ρn)(I) = ω(ρ)(I)− ω((Λ̂ · π̂)n+1(ρ))(I) ≤ ω(ρ)(I).
for all n = 1, 2, · · · and this implies π̂((Λ̂·π̂)nρ)(I) = ((Λ̂·π̂)nρ)(π(I)) → 0 as n → ∞
for all positive ρ ∈ B(K)∗. Since Λ ≤ I we have ((Λ̂ · π̂)n+1ρ)(I) ≤ ((Λ̂ · π̂)nρ)(π(I))
for ρ positive so ρ((π · Λ)n(I)) → 0 for all positive ρ ∈ B(K)∗ as n → ∞. Since
each element in B(K)∗ is the linear combination of four positive elements we have
(π · Λ)n(I) tends weakly to zero so from Theorem 4.26 we have α is the unique
CP-flow derived from π.

Note we have shown that ‖ωs(ρ)‖ ≤ (1 − e−s)−1‖ρ‖ for ρ ∈ B(K)∗ and s > 0
so the theorem’s last paragraph is an immediate consequence of the theorem’s first
paragraph and the proof is complete. �

We consider the following exercise. Suppose π is a completely positive normal
contraction of B(H) into B(K) so that ‖Λ̂ · π̂‖ < 1 and α is the unique CP-flow
derived from π. Suppose σ is the boundary resolvent of α. As we saw in the above
proof for λ ∈ [0, 1] the mapping ρ → λσ̂(ρ) gives rise to a CP-flow α(λ) and since
the mapping ρ → λω(ρ) is bounded it follows from the above theorem that α(λ) is
derived from a completely positive normal contraction πλ of B(H) into B(K). We
leave as an exercise determining the relation between π and πλ which is given by
π̂λ = λπ̂(I − (1− λ)Λ̂ · π̂)−1 for the predual maps and πλ = λ(I − (1− λ)π ·Λ)−1π
for the operator maps.

At this point we have reached the most important result of this section. We
see how a CP-flow is characterized by the family of completely positive normal
contraction πt of the previous theorem and these contractions completely determine
the CP-semigroup α. Because of their importance we give this family a name.

Definition 4.28. If α is a CP-semigroup over K we say ρ → ω(ρ) is the boundary
weight map of α if the boundary resolvent σ of α is given by Equation (4.8). We
denote by π# called the generalized boundary representation of α (or ω) the family
of mappings π#

t = πt (where πt are mappings defined in Theorem 4.27) for t > 0. A
boundary weight map ρ → ω(ρ) is said to be q-positive if the generalized boundary
representation maps π#

t are completely positive contractions of B(H) into B(K) for
all t > 0.

Theorem 4.27 shows that the problem of constructing CP-flows is equivalent to
constructing q-positive boundary weight maps. We consider this to be the most im-
portant result of this paper. Since every spatial Eo-semigroup is cocycle conjugate
to one dilated from a unital CP-flow this gives us a way to construct Eo-semigroups.
There are a number of strategies for constructing q-positive boundary weight maps.
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When the Hilbert space K is one dimensional they are simply given by a simple
boundary weight on L2(0,∞). When K is finite dimensional we have not classified
the q-positive boundary weight maps but the problem seems tractable. And in
the case where K is infinite dimensional we can construct new Eo-semigroups with
surprising properties as we will see at the end of this section. Note the general-
ized boundary representation of α completely determines α. Also note that if π#

is a generalized boundary representation of a CP-semigroup then π#
t is determined

by π#
s for all t > s so it is the properties of π#

s as s → 0+ that are important.
The generalized boundary representation is of importance in determining the order
structure for CP-semigroups.

Theorem 4.29. Suppose α and β are CP-flows over K and π# and φ# are the
generalized boundary representations of α and β, respectively. If β is a subordinate
of α then π#

s ≥ φ#
s (i.e., the map A → π#

s (A) − φ#
s (A) from B(H) to B(K) is

completely positive) for all s > 0. Conversely, if π#
sn

≥ φ#
sn
for all n = 1, 2, · · ·

where sn → 0+ as n → ∞ then β is a subordinate of α.

Proof. Suppose α and β are CP-flows over K and π# and φ# are the generalized
boundary representations of α and β, respectively. Suppose α dominates β. Let
Θ be the semigroup of B(H ⊕ H) constructed from α and β as described in the
Lemma 3.6. Since α dominates β we have Θ is a CP-semigroup and, hence, its
generalized boundary representation which is given below[

π#
s φ#

s

φ#
s φ#

s

]
is by Theorem 4.27 completely positive for all s > 0. Then π#

s ≥ φ#
s for all s > 0.

Conversely, suppose π#
sn

≥ φ#
sn

for all n where sn → 0+ as n → ∞. Let Ω be the
boundary weight given by the matrix of weights[

ω η
η η

]
where ω is the boundary weight associated with α and η is the boundary weight
associated with β. Consider the matrix of truncated weights[

ωs ηs
ηs ηs

]
where ωs(A) = ω(E(s,∞)AE(s,∞)) for A ∈ B(H) and the same for ηs. Since
π#
sn

≥ φ#
sn

we have the above weight is the weight of a CP-flow over K ⊕ K for
s = sn. Since sn → 0+ it follows from Theorem 4.23 that the above matrix of
weights is the boundary weight of a CP-flow over K ⊕ K and this is clearly a CP-
flow of the form of Θt given in Lemma 3.6. Since Θt is a CP-flow we have α ≥ β
from Lemma 3.6. �
Lemma 4.30. Suppose α and β are CP-flows over K and π# and φ# are their
generalized boundary representations, respectively. Suppose for some t > 0 we have
π#
t ≥ φ#

t . Then π#
s ≥ φ#

s for all s ≥ t.

Proof. Assume the hypothesis and notation of the theorem. Let ω and η be the
boundary weights of α and β, respectively and let ωt and ηt the truncated weights
at t, so

ωt(ρ)(A) = ω(ρ)(E(t,∞)AE(t,∞)) and ηt(ρ)(A) = η(ρ)(E(t,∞)AE(t,∞))
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for all A in the null boundary algebra A(H) and ρ ∈ B(K)∗. Theorem 4.27 shows
there are CP-flows α1 and β1 associated with ωt and ηt, respectively. Let γ the
mapping of B(H ⊕ H) into B(K ⊕ K) given by

γ

([
X11 X12

X21 X22

])
=
[
π#
t (X11) φ#

t (X12)
φ#
t (X21) φ#

t (X22)

]

for Xij ∈ B(H). One checks that γ is completely positive and there is a unique
CP-semigroup Θ derived from γ which is given for each t ≥ 0 by the matrix

Θt

([
X11 X12

X21 X22

])
=
[
α1
t (X11) β1

t (X12)
β1
t (X21) β1

t (X22)

]
.

Note the fact that Θ is unique follow from the fact that ‖γ · Λ‖ ≤ e−t < 1. From
Lemma 3.6 it follows that α1 ≥ β1 and from Theorem 4.29 that π1

s ≥ φ1
s for all

s > 0 where π1# and φ1# are the generalized boundary representations of α1 and
β1, respectively. Since π1#

s = π#
s and φ1#

s = φ#
s for s ≥ t the conclusion of the

lemma follows. �

The difficulty in computing the generalized boundary representation from the
boundary weight for a CP-flow is computing the inverse of the map Tρ = ρ+Λ̂ω(ρ).
Even when K is two dimensional this is a complicated problem in linear alge-
bra. The situation is tractable in the case of Schur maps which we now describe.
A mapping φ of B(H) into itself is called Schur product with respect to an or-
thonormal basis {fi : i = 1, 2, · · · } of H if there are complex numbers φij so that
(fi, φ(A)fj) = φij(fi, Afj) for i, j = 1,2,· · · · . This means φ acts on A by multiply
the matrix coefficients of A by φij . This product has been called the Schur product,
the Hadamard product or Kronecker product. We will call this the Schur product.
In the case where H is finite dimensional one easily sees that if φ is diagonal with
coefficients φij then φ is completely positive if and only if the coefficients φij are
those of a positive operator. A similar result holds for infinite dimensional Hilbert
spaces. Note the spectrum of φ as a mapping are the numbers φij . We see then
that a completely positive mapping can have negative spectrum and even complex
spectrum.

Definition 4.31. The mapping ρ → ω(ρ) from B(K)∗ to weights defined on the
null boundary algebra A(H) is said to be Schur diagonal with respect to an or-
thonormal basis {fi : i = 1, 2, · · · } of K if ρij(A) = (fi, Afj) for A ∈ B(K) and
eif = (fi, f)fi then

ω(ρij)(A) = ω(ρij)((ei ⊗ I)A(ej ⊗ I))

for all A in the null boundary algebra A(H) for all i, j = 1, 2, · · · . In this case the
matrix elements of the mapping ρ → ω(ρ) are the weights

ωij(A) = ω(ρij)(eij ⊗A)

defined for A in the null boundary algebra A(L2(0,∞) where {eij} are the set of
matrix units defined by eijf = (fj , f)fi for all f ∈ K and i, j =1,2,· · · · .

The next lemma shows that if the mapping ρ → ω(ρ) is completely positive to
show the mapping is Schur diagonal we need only check the diagonal entries.
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Lemma 4.32. Suppose the mapping ρ → ω(ρ) from B(K)∗ to weights defined on
the null boundary algebra A(H) is completely positive. Suppose {fi : i = 1, 2, · · · } is
an orthonormal basis for K and ρij(A) = (fi, Afj) for all A ∈ B(K) and all i and
j and eijf = (fj , f)fi for f ∈ K. Suppose ωij = ω(ρij) and suppose the diagonal
weights ωii are Schur diagonal, so ωii(A) = ωii((eii ⊗ I)A(eii ⊗ I)) for A in the
null boundary algebra A(L2(0,∞)) for each i and j. Then ω is Schur diagonal with
respect to {fi : i = 1, 2, · · · }.
Proof. Assume the hypothesis and notation of the lemma are satisfied. Suppose
fi and fj are distinct vectors in the orthonormal basis for K. Since ρ → ω(ρ) is
completely positive we have

ωii(A∗A) + ωij(A∗B) + ωji(B∗A) + ωjj(B∗B) ≥ 0

for A,B in the null boundary algebra A(L2(0,∞)) Multiply B by z with z a com-
plex number and minimizing the above expression we find the above inequality is
equivalent to the inequality

|ωij(A∗B)|2 ≤ ωii(A∗A)ωjj(B∗B)

for A,B ∈ A(L2(0,∞)) Replacing B by B((I−ejj)⊗I) we have ωij(A∗B((I−ejj)⊗
I)) = 0 or ωij(A∗B) = ωij(A∗B(ejj ⊗ I)) for all A,B ∈ A(L2(0,∞)). Applying this
argument to A, and replacing A by A((I− eii)⊗ I) we recalculate that ωij(A∗B) =
ωij((eii ⊗ I)A∗B) for all A,B ∈ A(L2(0,∞))U(t). Since A and B are arbitrary
we combine these results to obtain ωij(A) = ωij((eii ⊗ I)A(ejj ⊗ I)) for all A ∈
A(L2(0,∞)). Hence ω is Schur diagonal with respect to the basis {fi : i = 1, 2, · · · }.

�
The following theorem gives a reasonably computable condition that the Schur

diagonal mapping ρ → ω(ρ) gives rise to a CP-flow.

Theorem 4.33. Suppose K is finite dimensional and ρ → ω(ρ) is a linear mapping
of B(K)∗ into weights ω(ρ) on the null boundary algebra A(H) which is Schur diago-
nal with respect to an orthonormal basis {fi : i = 1,2,· · · · , n} and ρij(A) = (fi, Afj)
for each i and j and for A ∈ B(K). For t > 0 and ρ ∈ B(K)∗ let

ωt(ρ)(A) = ω(ρ)(E(t,∞)AE(t,∞))

for all A ∈ A(H). Note ρ → ωt(ρ) is Schur diagonal with the same basis. For
ρ ∈ B(K)∗ let

σ̂(ρ)(A) =
∫ ∞

0

e−tω(ρ)(U(t)AU(t)∗) dt

for all A ∈ B(H). Then the mapping σ is the boundary resolvent of a CP-flow if
and only if for each t > 0 the matrix with entries given by

ηij =
ωt(ρij)

1 + ωt(ρij)(Λ)
for i, j = 1, 2, · · · , n are the matrix elements of a completely positive contraction of
B(K)∗ into B(H)∗.

Proof. Assume the hypothesis and notation given in the statement of the theorem
apply. Suppose the mapping ρ → ω(ρ) is the boundary weight map of a CP-flow.
Suppose t > 0. From Theorem 4.23 it follows the mapping ρ → ωt(ρ) defines a CP-
flow. From Theorem 4.27 it follows that this semigroup is derived from a completely
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positive normal contraction π of B(H) into B(K) and from the details of the proof
of Theorem 4.27 it follows that π̂(ρ) = ωt(Θ(ρ)) for all ρ ∈ B(K)∗ where Θ is the
inverse of the map ρ → ρ + Λ̂(ωt(ρ)). Let ρij(A) = (fi, Afj) for A ∈ B(K) and
eijf = (fj , f)fi for i, j = 1, · · · , n. Let Θ′ be the linear mapping of B(K)∗ into
B(K)∗ given by Θ′(ρij) = (1+ωt(ρij)(Λ))−1ρij for i, j = 1, · · · , n. Since ρ → ωt(ρ)
is Schur diagonal with the basis {fi : i = 1, · · · , n} a direct calculations shows
that Θ′ is the inverse of the map ρ → ρ+ Λ̂(ωt(ρ)) and since the inverse is unique
Θ′ = Θ. Hence, we have

π̂(ρij) =
ωt(ρij)

1 + ωt(ρij)(Λ)

and since ρ → ωt(ρ) is Schur diagonal and π̂ is a completely positive contraction of
B(K)∗ into B(H)∗ the conclusion of the theorem follows for the ηij .

Conversely, suppose for each t > 0 the matrix entries ηij given in the statement
of the theorem are define a completely positive contraction π̂t of B(K)∗ into B(H)∗.
Then it follows from Theorem 4.26 that ρ → ωt(ρ) is the boundary weight map of
a CP-flow which is derived from πt. Since ρ → ωt(ρ) gives rise to a CP-flow for
each t > 0 it follows from Theorem 4.23 that inequality (4.19) of Theorem 4.23
is satisfied and this implies weaker limit inequality (4.20) which implies ρ → ω(ρ)
defines a CP-flow. �

We begin our investigation of the limit πo of π#
s as s → 0+ where π# is a

generalized boundary representation.

Lemma 4.34. Suppose α is a CP-flow over K and π# is the associated generalized
boundary representation. If to > 0 and 0 < s ≤ t ≤ to then the mapping A →
πt(E(to,∞)AE(to,∞)) − πs(E(to,∞)AE(to,∞)) is completely positive (i.e., the
mapping φs(A) = πs(E(to,∞)AE(to,∞)) is an increasing (in sense of complete
positivity) function for s ∈ (0, to]).

Proof. Suppose π# is a generalized boundary representation described above. As
we have done before when we will put a prime on mapping to indicate the associated
map where K is replaced by K1 = K ⊗ Ko and H is replaced by H1 = H ⊗ Ko where
Ko is a separable infinite dimensional Hilbert space and the primed mapping is
the usual tensor extensions. To prove the lemma all we need do is prove the
mapping described in the lemma is positive for the primed maps. Suppose then
that A ∈ B(H1) is positive. Suppose to > 0 and 0 < s < t < to. We show
π′#
s (E′(t,∞)AE(t,∞)) ≤ π′#

t (E′(t,∞)AE′(t,∞)). Suppose ρ ∈ B(K1)∗ and ρ ≥ 0.
Let

Q(t) = ρ(π′#
t (E′(t,∞)AE′(t,∞))− π′#

s (E′(t,∞)AE′(t,∞))).

Then we have

Q(t) =(π̂′#
t − π̂′#

s )(ρ)(E′(t,∞)AE′(t,∞))

=(ω′
t(I + Λ̂′ω′

t)
−1 − ω′

s(I + Λ̂′ω′
s)

−1)(ρ)(E′(t,∞)AE′(t,∞)).
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Because ω′
s(E

′(t,∞)AE′(t,∞)) = ω′
t(A) we have

Q(t) =(ω′
t(I + Λ̂′ω′

t)
−1 − ω′

t(I + Λ̂′ω′
s)

−1)(ρ)(A)

=ω′
t((I + Λ̂′ω′

t)
−1((I + Λ̂′ω′

s)− (I + Λ̂′ω′
t))(I + Λ̂′ω′

s)
−1)(ρ)(A)

=ω′
t((I + Λ̂′ω′

t)
−1Λ̂′(ω′

s − ω′
t)(I + Λ̂′ω′

s)
−1)(ρ)(A)

=π̂′#
t (Λ̂′(ωs − ωt)((I + Λ̂′ωs−1ρ))(A).

Since A ≥ 0 we see Q(t) ≥ 0 if the mapping in the brackets following π′#
t is positive.

To give this mapping a name we call it Ψ. Suppose B ∈ B(K1) and B ≥ 0 and
η ∈ B(K1)∗ is positive, then we have

Ψ(η)(B) =Λ̂′(ω′
s − ω′

t)((I + Λ̂′ω′
s)

−1η)(B)

=ω′((I + Λ̂′ω′
s)

−1η)(E′(s,∞)Λ′(B)E′(s,∞)− E′(t,∞)Λ′(B)E′(t,∞)).

Since E′(x,∞) commutes with Λ′(B) for all x > 0 we have

Ψ(η)(B) = ω′((I + Λ̂′ω′
s)

−1η)(E′(s, t)Λ′(B)E′(s, t)).

Since ω′(E′(s, t)CE′(s, t)) = ω′
s(E

′(s, t)CE′(s, t)) for all C ∈ B(H) we have

Ψ(η)(B) =ω′
s((I + Λ̂′ω′

s)
−1η)(E′(s, t)Λ′(B)E′(s, t)).

=π̂′#
s (η)(E′(s, t)Λ′(B)E′(s, t)).

Since π′#
s is positivity preserving Ψ is positivity preserving andQ(t) = π̂#

t (Ψ(ρ))(A)
is positive. Replacing A by E′(to,∞)AE′(to, A) in the expression forQ(t) completes
the proof of the lemma. �

Theorem 4.35. Suppose α is a CP-flow over K and π# is the generalized boundary
representation of α. Then π#

s (A) → π#
o (A) for as s → 0+ in the σ-strong topology

for each A ∈ ∪t>0U(t)B(H)U(t)∗ where π#
o is a σ-weakly continuous completely

positive contraction of B(H) into B(K).

Proof. Suppose α is a CP-flow over K with generalized boundary representation
π#. Let φs(A) = π#

s (E(t,∞)AE(t,∞)) for 0 < s ≤ t and A ∈ B(H). From the
previous lemma we have φs is an increasing function of s in the sense of complete
positivity. From the Stinespring Theorem we have φt(A) = V ∗γ(A)V for A ∈ B(H)
where γ is a ∗-representation of B(H) on a Hilbert space Ho and V is a linear
contraction from K to Ho. Since φs ≤ φt for s ≤ t we have φs(A) = V ∗Csγ(A)V
for A ∈ B(H) where Cs ∈ γ(B(H))′ and 0 ≤ Cs ≤ I. Since the φs are increasing
we have 0 ≤ Cx ≤ Cy ≤ I for 0 < x ≤ y ≤ t. Since the Cs are decreasing as
s → 0+ we have the Cs converge strongly to a limit Co as t → 0 + . Hence, φs(A)
converges σ-strongly to φo(A) = V ∗Coγ(A)V as s → 0+ . For A ∈ U(t)B(H)U(t)∗

then we define πo(A) = φo(A). The mapping φo depends on t but we note that
for two φ′s defined for two t′s the φo from the smaller t1 agrees with the φo from
the larger t2 on U(t2)B(H)U(t2)∗. Then for A ∈ U(t)B(H)U(t)∗ we define π#

o (A)
defined from any φo constructed from a t1 ≤ t. This defines the mapping π#

o on
∪t>0U(t)B(H)U(t)∗ and we have π#

s (A) → π#
o (A) in the σ-strong topology as

s → 0+ for A ∈ ∪t>0U(t)B(H)U(t)∗ We now show π#
o is σ-weakly continuous.

Note that φo(A) = V ∗Coγ(A)V for A ∈ B(H) is σ-weakly continuous since γ
is a ∗-representation of B(H) and, hence, we have A → π#

o (E(t,∞)AE(t,∞)) is
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σ-weakly continuous for all t > 0. Suppose η ∈ B(K)∗ and η ≥ 0 and ρt(A) =
η(πo(E(t,∞)AE(t,∞))) for t > 0 and A ∈ B(H). Then from Lemma 2.10 we have

‖ρt − ρs‖2 ≤ 2η(π#
o (E(s,∞)))2 − 2η(π#

o (E(t,∞)))2 ≤ 4‖η‖η(π#
o (E(s, t))).

Since lims→0+ η(π#
o (s,∞)) ≤ η(I) we have if sn is a sequence of positive numbers

decreasing to zero we see from the above estimate that the ρsn form a Cauchy
sequence in norm. Since each element of B(K)∗ can be written as a sum of four
positive elements we see that functionals A → η(π#

o (A)) are norm limits of normal
functionals and, hence, these functionals are normal so π#

o is normal which implies
π#
o is σ-weakly continuous. �

Definition 4.36. If α is a CP-flow over K and π# is the generalized boundary
representation of α then π#

o as defined in the previous theorem is called the normal
spine of α.

Lemma 4.37. Suppose φ is a σ-weakly continuous completely positive contraction
of B(H) into B(K) and α is the minimal CP-flow derived from φ. Suppose π# is the
generalized boundary representation for α and π#

o is the normal spine of α. Then
π#
o = φ.

Proof. Assume the hypothesis and notation of the lemma. For t > 0 let φt(A) =
φ(E(t,∞)AE(t,∞)) for A ∈ B(H). We establish a formula for π#

t . From Theo-
rem 4.26 we have the boundary weight ω(ρ) for α is given by

ω(ρ) = φ̂(ρ) + φ̂(Λ̂(φ̂(ρ))) + φ̂(Λ̂(φ̂(Λ̂(φ̂(ρ))))) + · · ·
where the sum converges on the null boundary algebra A(H) and for ρ positive the
sum satisfies ω(ρ)(I − Λ) ≤ ρ(I). Suppose t > 0. The truncated weight ωt is given
by

ωt(ρ) = φ̂t(ρ) + φ̂t(Λ̂(φ̂(ρ))) + φ̂t(Λ̂(φ̂(Λ̂(φ̂(ρ))))) + · · ·
where now the sum converges in norm. Then π#

t is given by π̂#
t = ωt(I + Λ̂ωt)−1

or π̂#
t (I + Λ̂ωt) = ωt. Then applying this equation to I − Λ̂φ̂ and canceling terms

which is permissible since the sums converge we find π̂#
t (I − Λ̂(φ̂− φ̂t)) = φ̂t. Then

applying this equation to the finite geometric sum of powers of Λ̂(φ− φt) we find

π̂#
t (I − (Λ̂(φ̂− φ̂t))n+1) = φ̂t(I + Λ̂(φ̂− φ̂t) + · · ·+ (Λ̂(φ̂− φ̂t))n).

Since E(t,∞) commutes with Λ(A) for A ∈ B(H) it follows that

(φ− φt)(Λ(A)) =φ(Λ(A)− E(t,∞)Λ(A)E(t,∞))

=φ((I − E(t,∞))Λ(A))

=φ(E(t)Λ(A)) = φ(E(t)Λ(A)E(t)).

Hence, Λ̂(φ̂ − φ̂t) is a completely positive map. Since the terms in the above
equation are positive it follows that the series converges in norm. We will show
that the π̂#

t ((Λ̂(φ̂− φ̂t))n+1 term converges to zero as n → ∞. Recall the equation
π̂#
t (I + Λ̂ωt) = ωt. Applying this to (Λ̂ · φ̂)n we find

π̂#
t (Λ̂ · φ̂)n = (I − π̂#

t Λ̂)ωt(Λ̂ · φ̂)n.
Since the series for ωt converges it follows that ωt(Λ̂ · φ̂)n converges pointwise to
zero in norm. Since π#

t is a contraction π̂#
t (Λ̂ · φ̂)n converges pointwise to zero in
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norm as n → ∞. A bit of computation shows that (Λ̂ · φ̂)n ≥ (Λ̂(φ̂ − φ̂t))n so for
positive ρ ∈ B(K)∗ we have

‖π̂#
t (Λ̂ · φ̂)nρ‖ =(π̂#

t (Λ̂ · φ̂)nρ)(I) ≥ (π̂#
t (Λ̂(φ̂− φ̂t))nρ)(I)

=‖π̂#
t (Λ̂(φ̂− φ̂t))nρ‖.

Since each ρ ∈ B(K)∗ is the linear combination of four positive elements we have
‖π̂#
t (Λ̂(φ̂− φ̂t))nρ‖ → 0+ as n → ∞. Using this in the equation for π̂#

t we find

π̂#
t = φ̂t(I + Λ̂(φ̂− φ̂t) + (Λ̂(φ̂− φ̂t))2 + · · · )(4.21)

where the series converges in norm for each ρ ∈ B(K)∗. Assume s > 0. Applying
this to a positive ρ ∈ B(K)∗ we have for t ∈ (0, s] and a positive A ∈ B(H) that

π#
t (ρ)(E(s,∞)AE(s,∞)) = (φ̂s(I + Λ̂(φ̂− φ̂t) + (Λ̂(φ̂− φ̂t))2 + · · · ))(A)

for A ∈ B(H). Since the terms above are positive and decreasing as t decreases
it follows that π#

t (ρ)(E(s,∞)AE(s,∞)) → φ(E(s,∞)AE(s,∞)) as t → 0 + . By
linearity this result extends to all ρ ∈ B(K)∗ and A ∈ B(H). Since s > 0 is arbitrary
and from the definition of π#

o we have π#
o = φ. �

We suspect that in the previous lemma with more work one could show ‖π̂#
t (ρ)−

φ̂(ρ)‖ → 0 as t → 0+ for each ρ ∈ B(K)∗.

Lemma 4.38. Let α be a CP-flow over K and let π# be the generalized boundary
representation for α. Let αs be the minimal CP-flow derived from π#

s for s > 0.
Then αst (A) → αt(A) σ-weakly as s → 0+ for t ≥ 0 and A ∈ B(H) and the
convergence is uniform for t in a finite interval.

Proof. Assume the hypothesis and notation of the lemma. We will use the Trotter
convergence theorem for resolvents. Let Rs and R be the resolvent of αs and α and
let ωs and ω be the boundary weights of αs and α. Then we have from Theorem
4.17 and the Definition (4.13) of the boundary resolvent that

R̂s(η) = Γ̂(ωs(Λ̂(η))) + Γ̂(η)

and
R̂(η) = Γ̂(ω(Λ̂(η))) + Γ̂(η)

for η ∈ B(H)∗. Suppose further that η is positive and ‖η‖ ≤ 1. We have

‖R̂(η)‖ =Γ(ω(Λ̂(η)) + η)(I)

≤Γ̂(ω(Λ̂(η)))(I) =
∫ ∞

0

h(t) dt ≤ 1

where h(t) = e−tω(Λ̂(η))(E(t,∞)). Now suppose A ∈ B(H) with ‖A‖ ≤ 1. Then
we have

|(R̂−R̂s)(η)(A)| = |Γ̂(ω(Λ̂(η))− ωs(Λ̂(η)))(A)|

=
∣∣∣∣
∫ ∞

0

e−tω(Λ̂(η))(U(t)AU(t)∗ − E(s,∞)U(t)AU(t)∗E(s,∞))dt
∣∣∣∣ .
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Now U(t)∗E(s,∞) = E(s− t,∞)U(t)∗ for t ∈ [0, s] and U(t)∗E(s,∞) = U(t)∗ for
t ≥ s. Hence, we have

|((R̂− R̂s)(η)(A)| =
∣∣∣∣
∫ s

0

e−tω(Λ̂(η))(U(t)(A− E(s− t,∞)AE(s− t,∞))U(t)∗)dt
∣∣∣∣

=
∣∣∣∣
∫ s

0

e−tθ̂tω(Λ̂(η))(A− E(s− t,∞)AE(s− t,∞))dt
∣∣∣∣

≤
∣∣∣∣
∫ s

0

e−t2‖θ̂tω(Λ̂(η))‖dt
∣∣∣∣

=
∣∣∣∣
∫ s

0

e−t2ω(Λ̂(η))(E(t,∞))dt
∣∣∣∣ = 2

∫ s
0

h(t) dt.

Since this estimate is true for all A ∈ B(H) with ‖A‖ ≤ 1 and h ∈ L1(0,∞) we
have

‖(R̂− R̂s)(η)‖ ≤ 2
∫ s

0

h(t) dt → 0

as s → 0+. Since each η ∈ B(K)∗ is the linear combination of four positive elements
we have ‖(R̂ − R̂s)(η)‖ → 0 as s → 0+ for all η ∈ B(K)∗. Then by the Trotter
resolvent convergence theorem [BR] (Theorem 3.1.26) we have ‖α̂st (η)− α̂t(η)‖ → 0
as s → 0+ for all η ∈ B(K)∗ and t ≥ 0 where the convergence is uniform for t in
a bounded interval. This result for the predual maps implies the conclusion of the
lemma for the maps αs and α. �

Lemma 4.39. Suppose φ is a σ-weakly continuous completely positive contraction
of B(H) into B(K). Let φs(A) = φ(E(s,∞)AE(s,∞)) for s > 0 and A ∈ B(H).
Let α be the minimal CP-flow derived from φ and let αs be the minimal CP-flow
derived from φs for s > 0. Then αst (A) → αt(A) σ-weakly as s → 0+ for t ≥ 0 and
A ∈ B(H) and the convergence is uniform for t in a finite interval.

Proof. Assume the hypothesis and notation of the lemma. Again we will use the
Trotter convergence theorem for resolvents. Let Rs and R be resolvents of αs and
α and let ωs and ω be the boundary weights of αs and α. Then from Theorem 4.27
and Definition 4.28 we have

R̂s(η) = Γ̂(ωs(Λ̂(η))) + Γ̂(η)

and
R̂(η) = Γ̂(ω(Λ̂(η))) + Γ̂(η).

for s > 0 and η ∈ B(K)∗. Assume η ∈ B(H)∗ is positive and let ρ = Λ̂η. Then from
Theorem 4.26 we have

Γ̂(ω(ρ)) = Γ̂(φ̂(ρ) + φ̂(Λ̂(φ̂(ρ))) + φ̂(Λ̂(φ̂(Λ̂(φ̂(ρ))))) + · · · )
and

Γ̂(ωs(ρ)) = Γ̂(φ̂s(ρ) + φ̂s(Λ̂(φ̂s(ρ))) + φ̂s(Λ̂(φ̂s(Λ̂(φ̂s(ρ))))) + · · · ).
As we saw in the proof of Theorem 4.26 the series above converge with the Γ̂ term
included. Note the series above is uniformly bounded since we can compute the
norms by evaluating on the unit I and we obtain the estimates

‖Γ̂(φ̂s(Λ̂(· · · (φ̂s(ρ)) · · · )))‖ ≤ ‖Γ̂(φ̂(Λ̂(· · · (φ̂(ρ)) · · · )))‖.
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Since each of the terms with the φs converge to the corresponding term with the φ
and since we have uniform bounds on the sum of the norms of the terms we have
‖Γ̂(ωs(ρ)) − Γ̂(ω(ρ))‖ → 0 as s → 0 + . Hence, ‖(R̂ − R̂s)(η)‖ → 0 as s → 0 + .
Again since each η ∈ B(H)∗ is the linear combination of four positive elements this
results holds for all η ∈ B(H)∗. Then using the Trotter convergence theorem as we
did in the previous lemma the result of the lemma follows. �

Lemma 4.40. Suppose π and φ are two σ-weakly continuous completely positive
contractions of B(H) into B(K). Suppose α and β are the minimal CP-flows derived
from π and φ, respectively. Then α ≥ β if and only if π ≥ β.

Proof. Assume the hypothesis and notation of the lemma. Assume further that
π ≥ φ. Let πs(A) = π(E(s,∞)AE(s,∞)) and φs(A) = φ(E(s,∞)AE(s,∞)) for
s > 0 and A ∈ B(H). For each s > 0 let αs and βs be the minimal CP-flows
derived from πs and φs, respectively. Suppose π

s#
t and φs#t and are the generalized

boundary representations of αs and βs. Note πs#t = πs#s = πs and φs#t = φs#s = φs
for t ∈ (0, s]. Since πs ≥ φs we have αs ≥ βs from Theorem 4.29. From Lemma 4.39
we have αst (A) → αt(A) and βst (A) → βt(A) σ-weakly as s → 0+ for all t ≥ 0 and
A ∈ B(H). Since αs ≥ βs is follows that α ≥ β in the limit of s → 0 + .

Conversely suppose α ≥ β. Then π#
s ≥ φ#

s for all s > 0 where π# and φ# are
the generalized boundary representations of α and β. Since the normal spines of α
and β (π#

o and φ#
o , respectively) are limits of the π#

s and φ#
s we have π#

o ≥ φ#
o .

From Lemma 4.37 we have π#
o = π and φ#

o = φ so π ≥ φ. �

Lemma 4.41. Suppose α is a CP-flow over K and π#
o is the normal spine of α.

Suppose β is the minimal CP-flow derived from π#
o . Then α ≥ β.

Proof. Assume the hypothesis and notation of the lemma. Let φ = π#
o and let

φs be defined as in Lemma 4.39. For s > 0 let βs be the minimal CP-flow derived
from φs and let αs be the minimal CP-flow derived from π#

s where the family
π# is the generalized boundary representation of α. From Lemma 4.34 and the
definition of the normal spine π#

o we have π#
s ≥ φs for each s > 0. Then from

Lemma 4.40 we have αs ≥ βs. From Lemmas 4.38 and 4.39 we have αst (A) → αt(A)
and βst (A) → βt(A) σ-weakly as s → 0+ for all t ≥ 0 and A ∈ B(H). Since αs ≥ βs

it follows that α ≥ β in the limit as s → 0 + . �

Theorem 4.42. Suppose α is a CP-flow over K and π#
o is the normal spine of α.

Suppose φ is a σ-weakly continuous completely positive contraction of B(H) into
B(K) and β is the minimal CP-flow derived from φ. Then α ≥ β if and only if
π#
o ≥ φ.

Proof. Assume the hypothesis and notation of the theorem. Suppose α ≥ β. Let
π#
t and φ#

t be the generalize boundary representations of α and β, respectively.
From Theorem 4.29 we have π#

t ≥ φ#
t for all t > 0. Let π#

o and φ#
o be normal

spines of α and β, respectively. Since π#
o and φ#

o are defined in terms of limits of
the π#

t and φ#
t we have π#

o ≥ φ#
o . From Lemma 4.37 we have φ#

o = φ so π#
o ≥ φ.

Next suppose π#
o ≥ φ. Let γ be the minimal CP-flow over K derived from π#

o .
From Lemma 4.41 we have α ≥ γ and from Lemma 4.40 we have γ ≥ β. Hence,
α ≥ β. �
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Arveson defines the index of a unital CP-semigroup α in terms of semigroups
S(t) of contractions so that if Ωt(A) = S(t)AS(t)∗ for A ∈ B(H) and t ≥ 0 then
ektαt ≥ Ωt. This index is of great importance since if γ is the minimal dilation of α,
so γ is an Eo-semigroup then the index of γ is the Arveson index of α. The factor of
ekt which Arveson allowed we will eliminate by rescaling S(t) with a factor of e−

1
2kt.

The following lemmas lead up to a Theorem 4.46 which enables us to determine
when a CP-semigroup of the form Ωt(A) just given is a subordinate of α. This will
enable us to show the Arveson index of a CP-flow is just the rank of the normal
spine.

Lemma 4.43. Suppose α is a CP-flow over K and S(t) is a strongly continuous
one parameter semigroup of contractions of H and Ωt(A) = S(t)AS(t)∗ for all
A ∈ B(H) and t ≥ 0 and αt − Ωt is positive for all t ≥ 0. Then if −d is the
generator of U(t) (so U(t) = exp(−td)) and −D is the generator of S(t) there is a
complex number c with nonnegative real part and a linear operator V from H to K

with norm satisfying ‖V ‖ ≤ √2Re(c) so the domain of D is D(D) = {f ∈ D(d) :
f(0) = V f} and Df = −d∗f + cf. (Note as we saw in the discussion of the
boundary representation that each element of D(d∗) has a unique representation as
a continuous K-valued function f(x) so in particular f(0) is well defined.)

Proof. Assume the hypothesis of the lemma. It follows that for all A ∈ B(H) with
A ≥ 0 and t ≥ 0 we have from Lemma 4.1 that

U(t)∗S(t)AS(t)∗U(t) ≤ U(t)∗αt(A)U(t) = A.

If A is a rank one projection and f is a units vector in the range of A if follows
that U(t)∗S(t)f = xf for some complex number x. Now if g is a second unit vector
orthogonal to f then U(t)∗S(t)g = yg and U(t)∗S(t)(f+g) = z(f+g) = xf+yg with
y and z complex numbers. Since f and g are orthogonal we have x = y = z = a(t)
where a(t) is constant independent of the vector f so U(t)∗S(t) = a(t)I. Since both
U(t) and S(t) are semigroups we have

a(t1 + t2)I = U(t2)∗U(t1)∗S(t1)S(t2) = a(t1)U(t2)∗S(t2) = a(t1)a(t2)I.

Since a(t) is continuous we have a(t) = e−ct for all t ≥ 0 where c is a complex
number and since U(t) and S(t) are contractions the real part of c is nonnegative.
Let W (t) = ectS(t). Then U(t)∗W (t) = I for all t ≥ 0. Since S(t)AS(t)∗ ≤ αt(A)
for A ≥ 0 and t ≥ 0 we have

W (t)W (t)∗ = e2Re(c)tS(t)S(t)∗ ≤ e2Re(c)tαt(I)

and since ‖W (t)‖2 = ‖W (t)W (t)∗‖ we have ‖W (t)‖ ≤ eRe(c)t for all t ≥ 0. Let −T
be the generator of W (t) so W (t) = e−tT . Suppose f ∈ D(d) and g ∈ D(T ). Then
we have

d

dt
(U(t)f,W (t)g)|t=0 = −(df, g)− (f, Tg) = 0.

It follows that g ∈ D(d∗) and Tg = −d∗g. Hence, T is a restriction of −d∗. Note
that for f ∈ D(T ) we have

d

dt
‖W (t)f‖2 =(W (t)d∗f,W (t)f) + (W (t)f,W (t)d∗f)

=(d∗W (t)f,W (t)f) + (W (t)f, d∗W (t)f) = ‖(W (t)f)(0)‖2.
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So s(t) = ‖W (t)f‖2 is a function with a continuous positive derivative and since
s(0) = ‖f‖2 and s(t) ≤ e2Re(c)t‖f‖2 for t ≥ 0 we have

d

dt
‖W (t)f‖2|t=0 = ‖f(0)‖2 ≤ 2Re(c)‖f‖2.

For f ∈ D(T ) ⊂ D(d∗) the mapping f → V f = f(0) is clearly linear and from the
above inequality we have ‖V ‖ ≤ (2Re(c))

1
2 . We show D(T ) consists of all f ∈ D(d∗)

so that f(0) = V f. Suppose λ > Re(c). Since ‖W (t)‖ ≤ eRe(c)t for t ≥ 0 it follows
that the integral of e−λtW (t) from zero to infinity exists and gives the inverse of
(T + λI). Hence, we have

(T + λI)−1 =
∫ ∞

0

e−λtW (t) dt.

Now suppose f ∈ D(d∗) and f(0) = V f. Let g = −d∗f +λf. Let f1 = (T +λI)−1g.
Then

−d∗f1 + λIf1 = (T + λI)f1 = g = −d∗f + λf.

Hence, d∗(f − f1) = λ(f − f1). But this implies (f − f1)(x) = e−λx(f − f1)(0) so
we have

‖f(0)− f1(0)‖2 = 2λ‖f − f1‖2.

Now we have

‖f(0)− f1(0)‖2 = ‖V (f − f1)‖2 ≤ 2Re(c)‖f − f1‖2.

Combining these inequalities we have

2(λ− Re(c))‖f − f1‖2 ≤ 0.

Since λ > Re(c) we have f = f1. Hence, we have shown that D(T ) consists of all
f ∈ D(d∗) so that f(0) = V f. Since S(t) = e−ctW (t) for t ≥ 0 the conclusion of
the lemma follows. �

Lemma 4.44. Suppose D satisfies the conclusion of the previous lemma so D is
defined on D(D) = {f ∈ D(d∗) : f(0) = V f} by Df = −d∗f+cf where V is a linear
operator from H to K with norm satisfying ‖V ‖ ≤ √

2Re(c) and Re(c) ≥ 0. Then
−D is the generator of strongly continuous semigroup S(t) of contractions and if f ∈
H is of the form f(x) = e−sxh for x ≥ 0 with s > 0 and h ∈ K then t−1S(t)∗E(t)f →
V ∗h as t → 0+ and we have the uniform estimate t−1‖S(t)∗E(t)f‖ ≤ ‖V ‖ ‖h‖ for
all h ∈ K.

Proof. The proof of the lemma can be extracted from [PP]. Since the situation is
different we give a complete proof.

Suppose D satisfies the hypothesis of the lemma. Now for f ∈ D(D) we have

Re(f,−Df) =Re((f, d∗f)− c(f, f)) =
1
2
‖f(0)‖2 − Re(c)‖f‖2

=
1
2
‖V f‖2 − Re(c)‖f‖2 ≤ 1

2
(‖V ‖2 − 2Re(c))‖f‖2 ≤ 0.

Hence, −D is dissipative. We show D(D) is dense in H. For s > 0 let Qs be
the isometry of from K to H given by (Qsk)(x) =

√
ske−

1
2 sx for k ∈ K. Then

‖V Qs‖ ≤ ‖V ‖ and, hence, (I − s−
1
2V Qs) is invertible for s > ‖V ‖2. Suppose
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f ∈ D(d) and s > ‖V ‖2. Let g = f+s−
1
2Qs(I−s−

1
2V Qs)−1V f. We have g ∈ D(d∗)

and

V g =V f − s
1
2 (I − s−

1
2V Qs)s−

1
2 (I − s−

1
2V Qs)−1V f + s

1
2 s−

1
2 (I − s−

1
2V Qs)−1V f

=V f − V f + (I − s−
1
2V Qs)−1f = g(0).

Hence, g ∈ D(D). Now we have

‖s− 1
2Qs(I − s−

1
2V Qs)−1V f‖ ≤ s−

1
2 ‖(I − s−

1
2V Qs)−1V f‖ ≤ s−

1
2 ‖V f‖

1− s−
1
2 ‖V Qs‖

and as s → ∞ the above tends to zero. Hence, for each f ∈ D(d) and each ε > 0
there is a element g ∈ D(D) with ‖f − g‖ < ε. Since, D(d) is dense in H we have
D(D) is dense in H. Next we show that the range of D + I is H. Suppose g ∈ H. If
(D + I)f = g then f satisfies the differential equation

df

dx
(x) + (c+ 1)f(x) = g(x)

and solving this equation we find

f(x) = f(0)e−(c+1)x + e−(c+1)x

∫ x
0

e(c+1)tg(t) dt

or in operator form f = Wf(0) + Bg where W is the operator from K to H given
above and B is the operator from H to H given above. Note B = (−d+(c+1)I)−1.
Since f ∈ D(D) we must have

f(0) = V f = VWf(0) + V Bg or (I − VW )f(0) = V Bg.

Now ‖W‖ = (2Re(c) + 2)−
1
2 which implies

‖VW‖ ≤
(

2Re(c)
2 + 2Re(c)

) 1
2

< 1

so (I − VW ) is invertible and we find f(0) = (I − VW )−1V Bg and the range of
D+I is all of H. Hence, −D is a densely defined dissipative operator with the range
of I +D is H and by the standard tools described in section II we have −D is the
generator of a strongly continuous one parameter semigroup of contractions S(t).

We show U(t)∗S(t) = e−ctI for t ≥ 0. Suppose f ∈ D(d) and g ∈ D(D). Then

d

dt
(f, U(t)∗S(t)g) =− (dU(t)f, S(t)g)− (U(t)f,DS(t)g)

=− (U(t)f, d∗S(t)g)− (U(t)f, (−d∗ + cI)S(t)g)

=− c(f, U(t)∗S(t)g).

It then follows that (f, U(t)∗S(t)g) = e−ct(f, g) for all f ∈ D(d), g ∈ D(D) and t ≥
0. This equation extends by continuity to all f, g ∈ H and we find U(t)∗S(t) = e−ctI
for all t ≥ 0. Then we have S(t) = E(t)S(t)+U(t)U(t)∗S(t) = E(t)S(t)+ e−ctU(t)
for all t ≥ 0. Using this we can establish the uniform estimate of the lemma.
Since the range of E(t) and U(t) are orthogonal compliments we have ‖S(t)f‖2 =
‖E(t)S(t)f‖2 + e−2Re(c)t‖U(t)f‖2. Since S(t) is a contraction if follows that

‖E(t)S(t)f‖2 ≤ ‖f‖2 − e−2Re(c)t‖f‖2
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for all t ≥ 0. Hence,

‖E(t)S(t)‖ ≤ (1− e−2Re(c)t)
1
2 ≤

√
2tRe(c)

for all t ≥ 0. Now if f(x) = e−sxh for x ≥ 0 with s > 0 we have

‖S(t)∗E(t)f‖ ≤‖S(t)E(t)E(t)f‖ ≤ (2tRe(c))
1
2 ‖E(t)f‖

≤ (2tRe(c))
1
2

(
1− e−2st

2s

) 1
2

‖h‖ ≤ t(2Re(c))
1
2 ‖h‖ ≤ t‖V ‖ ‖h‖

for t ≥ 0.
As in [PP] compute the action ofD∗ on D(d∗). Suppose f ∈ D(d∗) and g ∈ D(D).

Then we have

(f,Dg) =− (f, d∗g) + c(f, g)

=− (f, d∗g)− (d∗f, g) + ((d∗ + cI)f, g)

=− (f(0), g(0)) + ((d∗ + cI)f, g)

=− (f(0), V g) + ((d∗ + cI)f, g)

=(((d∗ + cI)f − V ∗f(0)), g).

Hence, f ∈ D(D∗) and D∗f = (d∗ + cI)f − V ∗f(0). Then for f ∈ D(d∗) we have
t−1(S(t)∗ − I)f → −D∗f as t → 0 + . Hence, for f ∈ D(d∗) we have

t−1S(t)∗E(t)f =t−1S(t)∗(I − U(t)U(t)∗)f

=t−1(S(t)∗f − e−ctU(t)∗f)

=t−1(S(t)∗f − f − (e−ctU(t)∗f − f))

→ −D∗f − (−d∗ − cI)f = V ∗f(0).

As t → 0+. Now if f(x) = e−sxh for x ≥ 0 with s > 0 and h ∈ K we have f ∈ D(d∗)
and f(0) = h. �

Lemma 4.45. Suppose {S(t) : t ≥ 0} is a strongly continuous semigroup of con-
tractions of H = K ⊗ L2(0,∞) satisfying the conclusion of the Lemma 4.43 so
S(t) = e−tD where the domain of D is given by D(D) = {f ∈ D(d∗) : f(0) = V f}
and Df = −d∗f + cf and V is a linear operator from H to K with norm satisfying
‖V ‖ ≤ √

2Re(c). We assume further that Re(c) > 0 and ‖V ‖ <
√
2Re(c). For

t > 0 let

βt(A) = (1− e−2Re(c)t)−1E(t)S(t)AS(t)∗E(t) + U(t)AU(t)∗

for A ∈ B(H). Then for A ∈ B(H) we have (βt/n)n(A) → γt(A) in the strong
operator topology as n → ∞ for each t > 0 where γ is the minimal CP-semigroup
of B(H) derived from the completely positive normal map π(A) = (2Re(c))−1V AV ∗

as defined in Definition 4.25 and constructed in Theorem 4.26.

Proof. Assume the hypothesis and notation of the lemma. We have made the
further hypothesis that ‖V ‖ <

√
2Re(c).With this additional assumption ‖π(A)‖ ≤

(1 − ε)‖A‖ for A ∈ B(H) with ε > 0 and by Theorem 4.26 there is only one CP-
semigroup γ derived from π and, furthermore, the geometric series occurring in the
calculations we need converge.
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We use the ingenious inequalities of Chernoff [Ch] and let Dn(A) = n(βs/n(A)−
A). Note Dn is the generator of a semigroup given by

β
(n)
t (A) = exp(tDn)(A) = e−tn

∞∑
k=0

tknk(βs/n)n(A)
k!

.

We note each of the term in the above series is completely positive and, hence, β(n)
t

is completely positive. Evaluating β
(n)
t (I) we see that 0 ≤ β

(n)
t (I) ≤ I so β

(n)
t is a

contraction. Using Chernoff’s inequality (see Lemma 3.1.11 of [BR]) we have

‖β(n)
1 (A)− (βs/n)n(A)‖ ≤ √

n‖βs/n(A)−A‖
for A ∈ B(H). For a typical operator ‖βs/n(A)− A‖ is the order of one as n → ∞
so the above inequality is not very helpful. However, at this point it is profitable
to work on the predual and the same inequality holds there, namely,

‖β̂(n)
1 (η)− (β̂s/n)n(η)‖ ≤ √

n‖β̂s/n(η)− η‖(4.22)

for all η ∈ B(H)∗. Let γ be the minimal CP-semigroup which is intertwined by U(t)
derived from π. Since ‖π‖ < 1 it follows from Theorem 4.26 that γ is the unique
CP-semigroup derived from π. Let δ be the generator of γ and δ̂ be the generator
γ̂ (the action of γ on the predual). We establish the key estimate of the lemma
which says that D̂nη → sδ̂(η) as n → ∞ for all η ∈ D(δ̂). Our arguments draw
heavily on Theorem 4.26 and we assume the notation used in that theorem is in
effect. Let ρ → σ̂(ρ) be the integrated boundary map which generates γ. Since γ is
derived from π we have σ̂(ρ− Λ̂(π̂(ρ))) = Γ̂(π̂(ρ)) for all ρ ∈ B(K)∗. Since ‖π‖ < 1
the mapping ρ → ρ− Λ̂(π̂(ρ)) is invertible and we have

σ̂(ρ) = Γ̂(π̂(ρ) + π̂(Λ̂(π̂(ρ))) + · · · )
where the geometric series converges for all ρ ∈ B(K)∗. From the definition of σ̂ we
have each element of D(δ̂) is of the form σ̂(Λ̂(η)) + Γ̂(η) for some η ∈ B(H)∗ and

δ̂(σ̂(Λ̂(η)) + Γ̂(η)) = σ̂(Λ̂(η)) + Γ̂(η)− η.

It follow that each element of D(δ̂) is of the form Γ̂(ν) and

δ̂(Γ̂(ν)) = Γ̂(ν)− η

where
ν = η + π̂(Λ̂(η)) + π̂(Λ̂(π̂(Λ̂(η)))) + · · ·

for some η ∈ B(H)∗. The above equation for ν is equivalent to the equation η =
ν− π̂(Λ̂(ν)). We compute D̂n(Γ̂(ν)). From direct calculation for A ∈ B(H) we have

D̂n(Γ̂(ν))(A) =n(1− e−2Re(c)s/n)−1ν(Γ(E(s/n)S(s/n)AS(s/n)∗E(s/n)))

− nes/n
∫ s/n

0

e−tν(U(t)AU(t)∗) dt+ n(es/n − 1)ν(Γ(A)).

Then rewriting this purely in terms elements of B(H)∗ we have

D̂n(Γ̂(ν)) =n(1− e−2Re(c)s/n)−1ψ̂s/n(ζ̂s/n(Γ̂(ν)))

− nes/n
∫ s/n

0

e−tθ̂t(ν) dt+ n(es/n − 1)Γ̂(ν)
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where ψ(A) = S(t)AS(t)∗ for all A ∈ B(H) and t ≥ 0. It is clear that the second and
third term above converge to sν and sΓ̂(ν) in norm as n → ∞. From Lemma 4.19
we have ‖ζ̂t(Γ̂(ν)− Φ̂(Λ̂(ν)))‖/t → 0 as t → 0+ so we have

D̂n(Γ̂(ν)) =n(1− e−2Re(c)s/n)−1ψ̂s/n(ζ̂s/n(Φ̂(Λ̂(ν))))

− sν + sΓ̂(ν) + o(n)

as n → ∞. Now Λ̂(ν) has a decomposition so that for A ∈ B(K)

Λ̂(ν)(A) =
∑
i=1

λi(hi, Aki)

where hi, ki ∈ K are unit vectors and λi > 0 for i = 1, 2, · · · and the sum of the λi
is bounded. Then

Φ̂(Λ̂(ν))(A) =
∑
i=1

λi(fi, Agi)

for A ∈ B(H) where fi(x) = e−
1
2xhi and gi(x) = e−

1
2xki for all x ∈ [0,∞) for

i = 1, 2, · · · . Then we have

n(1− e−2Re(c)s/n)−1ψ̂s/n(ζ̂s/n(Φ̂(Λ̂(ν)))) =
∑
i=1

ηni

where

ηni (A) = n(1− e−2Re(c)s/n)−1λi(S(s/n)∗E(s/n)fi, AS(s/n)E(s/n)gi)

for A ∈ B(H) and i = 1, 2, · · · . From the previous Lemma 4.44 we have

(n/s)‖S(s/n)∗E(s/n)fi‖ ≤ ‖V ‖ ‖hi‖ ≤ ‖V ‖ <
√
2Re(c)

for i = 1, 2, · · · and the same estimate applies with the fi replaced by gi. Also, from
Lemma 4.44 we have

(n/s)S(s/n)∗E(s/n)fi → V ∗hi and (n/s)S(s/n)∗E(s/n)gi → V ∗ki

as n → ∞ for i = 1, 2, · · · . Hence, ηni → η∞i as n → ∞ where

η∞i (A) =
s

2Re(c)
λi(V ∗hi, AV ∗ki)

for A ∈ B(H) and we have the uniform estimate that ‖ηni ‖ < s independent of n
for i = 1, 2, · · · . Since the sum of the λi converges and with our uniform estimate
and the convergence for each i = 1,2,· · · · and the definition of π we have

n(1− e−2Re(c)s/n)−1ψ̂s/n(ζ̂s/n(Φ̂(Λ̂(ν)))) → sπ̂(Λ̂(ν))

as n → ∞. Hence, we have D̂n(Γ̂(ν)) → sπ̂(Λ̂(ν))−sν+sΓ̂(ν) as n → ∞. Recalling
η = ν − π̂(Λ̂(ν)) we have that

D̂n(Γ̂(ν)) → −sη + sΓ̂(ν) = sδ̂(Γ̂(ν))

as n → ∞. Hence, D̂n(η) → sδ̂(η) for all η ∈ D(δ̂). Then from Chernoff’s inequality
(4.22) we have

‖β̂(n)
1 (η)− (β̂s/n)n(η)‖ ≤ √

n‖β̂s/n(η)− η‖ = ‖Dn(η)‖/
√
n → 0
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as n → ∞ for all η ∈ D(δ̂). Now by standard convergence arguments we have for
η ∈ D(δ̂) that

β̂
(n)
1 (η)− γ̂s(η) =

∫ 1

0

β̂
(n)
t ((Dn − sδ̂)(γ̂st(η))) dt.

Since the integrand is uniformly bounded and converges pointwise to zero in norm
we have ‖β̂(n)

1 (η) − γ̂s(η)‖ → 0 as n → ∞. Combining this with our previous
inequality we have ‖(β̂s/n)n(η)− γ̂s(η)‖ → 0 as n → ∞ for all η ∈ D(δ̂). Since D(δ̂)
is dense in B(H)∗ and the mappings are uniformly bounded we have ‖(β̂s/n)n(η)−
γ̂s(η)‖ → 0 as t → 0 for all η ∈ B(H)∗ and this immediately gives us σ-strong
convergence on B(H). �

The next theorem gives a relatively computable condition that a CP-semigroup α
of B(H) intertwined by U(t) dominates Ωt with Ωt(A) = S(t)AS(t)∗ for A ∈ B(H)
and t ≥ 0.

Theorem 4.46. Suppose α is a CP-flow over K and S(t) is a strongly continuous
one parameter semigroup and Ωt(A) = S(t)AS(t)∗ for t ≥ 0 and A ∈ B(H) is
a subordinate of α. Then S(t) is a strongly continuous one parameter semigroup
of contractions with generator −D where D(D) = {f ∈ D(d∗) : f(0) = V f} and
Df = −d∗f + cf where c is a complex number with nonnegative real part and V is
a linear operator from H to K with norm satisfying ‖V ‖2 ≤ 2Re(c). Furthermore,
if π(A) = (2Re(c))−1V AV ∗ for all A ∈ B(H) and γ is the minimal CP-semigroup
derived from π then α dominates γ. In the case Re(c) = 0 we take define π = 0.
Conversely, if c is a complex number with Re(c) > 0 and V is a linear operator

from H to K with norm satisfying ‖V ‖2 ≤ 2Re(c) and if π(A) = (2Re(c))−1V AV ∗

for A ∈ B(H) and γ is the minimal CP-semigroup derived from π and α dominates
γ then if D is an operator with domain D(D) = {f ∈ D(d∗) : f(0) = V f} and
Df = −d∗f + cf. Then −D is the generator of a contraction semigroup S(t) and
if Ωt(A) = S(t)AS(t)∗ for t ≥ 0 and A ∈ B(H) and α dominates Ω.

Proof. Suppose the hypothesis and notation of the first paragraph of the theorem
is satisfied. Then it follow from Lemma 4.43 that S(t) is a strongly continuous
one parameter semigroup of contractions with generator −D where D(D) = {f ∈
D(d∗) : f(0) = V f} and Df = −d∗f + cf where c is a complex number with
nonnegative real part and V is a linear operator from H to K with norm satisfying
‖V ‖2 ≤ 2Re(c). Let π(A) = (2Re(c))−1V AV ∗ for all A ∈ B(H) and let γ be the
minimal CP-semigroup derived from π. (In case Re(c) = 0 we define π = 0.) Here
we make a slight change. Note if we replace c with c+ ε with ε > 0 we replace S(t)
with e−εtS(t) and all the hypothesis concerning Ωt remains true. Note with this
change we have ‖π‖ < 1. In what follows we will assume this replacement of c with
c+ ε has been made.

Let A ∈ B(H) be a positive. Then we have

S(t)AS(t)∗ ≤ αt(A) = E(t)αt(A)E(t) + U(t)AU(t)∗.

Since U(t)∗S(t) = e−ctI we have

S(t) = U(t)U(t)∗S(t) + E(t)S(t) = e−ctU(t) + E(t)S(t).



CP-Flows 255

Combining this with the previous inequality we have

E(t)(αt(A)− S(t)AS(t)∗)E(t)− e−ctE(t)S(t)AU(t)∗

− e−ctU(t)AS(t)∗E(t) + (1− e−2Re(c)t)U(t)AU(t)∗ ≥ 0.

If X denotes the operator above and h = U(t)g + E(t)f then we have

(h,Xh) =(E(t)f, (αt(A)− S(t)AS(t)∗)E(t)f)− 2Re(e−ct(f,E(t)S(t)Ag))

+ (1− e−2Re(c)t)(g,Ag) ≥ 0.

for all f, g ∈ H. Then by the Schwarz inequality the above inequality is satisfied if
and only if

|(f,E(t)S(t)Ag)|2 ≤ (e2Re(c)t − 1)(E(t)f, (αt(A)− S(t)AS(t)∗)E(t)f)(g,Ag)

for all f, g ∈ H. Specializing this inequality to the case when A = E with E an
hermitian rank one projection and g is a unit vector in the range of E (so Eg = g
and Ef = (g, f)f for f ∈ H) we find

e2Re(c)t|(f,E(t)S(t)g)|2 ≤ (e2Re(c)t − 1)(E(t)f, αt(E)E(t)f)

for all f ∈ H. Then we find

‖ES(t)∗E(t)f‖2 ≤ (1− e−2Re(c)t)(E(t)f, αt(E)E(t)f)

for all f ∈ H and this is equivalent to the operator inequality

E(t)((1− e−2Re(c)t)αt(E)− S(t)ES(t)∗)E(t) ≥ 0.

Now if A ∈ B(H) is of the form A =
∑n
i=1 λiEi where the Ei are hermitian rank

one projections and the λi > 0 for i = 1, · · · , n then it follows from the above
inequality that

E(t)((1− e−2Re(c)t)αt(A)− S(t)AS(t)∗)E(t) ≥ 0.

And since every positive A ∈ B(H) can be approximated in the σ-strong topology
by expressions of the above form it follows that the above inequality is valid for all
positive A ∈ B(H). For t ≥ 0 let βt be the map

βt(A) = (1− e−2Re(c)t)−1E(t)S(t)AS(t)∗E(t) + U(t)AU(t)∗

for A ∈ B(H). Note that

αt(A)− βt(A) = E(t)(αt(A)− (1− e−2Re(c)t)−1S(t)AS(t)∗)E(t)

for A ∈ B(H). We have shown that αt − βt is positive for each t ≥ 0. As was
done in the last section we can introduce the primed maps which are obtained by
replacing H with H⊗Ko with Ko in infinite dimensional separable Hilbert space and
making the obvious definitions. Since for each t ≥ 0 we have A → αt(A)−Ωt(A) is
completely positive the mapping A → α′

t(A)−Ω′
t(A) is positive and the argument

that αt−βt is positive extends directly to the primed maps and we find that α′
t−β′

t

is positive and this is equivalent to the fact that αt−βt is completely positive. Now
for each t > 0 we have

αt(A)− (βt/n)n(A) =
n∑
k=1

(αt/n)k−1((αt/n − βt/n)(βt/n)n−k(A))

for A ∈ B(H). Since the mappings above are all completely positive we have
A → αt(A) − (βt/n)n(A) is completely positive. Now from Lemma 4.5 we have
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(βt/n)n(A) → γt(A) σ-strongly as n → ∞ for all A ∈ B(H) and t ≥ 0. Here, is
where we needed the fact that we had replaced c with c+ε since we needed ‖π‖ < 1.
Taking the limit as n → ∞ we have the mapping A → αt(A)− γt(A) is completely
positive for all t ≥ 0 and, hence, α dominates γ.

Now we deal with the fact that we replaced c with c+ ε. Let us now denote the
dependence of π and γ on ε by writing πε and γε. We have shown that α dominates
γε for all ε > 0 and γε is the unique CP-semigroup derived from πε. As was shown
in the proof of Theorem 4.26 we have γεt (A) converges σ-weakly γto(A) for each
A ∈ B(H) and t ≥ 0 where γo is the minimal CP-semigroup γo derived from πo.
Hence, we have α dominates γ where γ is the minimal CP-semigroup derived from
π (now ε = 0). This completes the proof of the implication of the theorem in one
direction.

Now suppose the hypothesis and notation of the second paragraph of the state-
ment of the theorem is satisfied. As we did in the first part of the proof of this
theorem we replace c by c + ε with ε > 0 in the definition of D (and, therefore,
S(t)) and π. Again the hypothesis remain true after this replacement. For t > 0 let

βt(A) = (1− e−2Re(c)t)−1E(t)S(t)AS(t)∗E(t) + U(t)AU(t)∗

and βo(A) = A for A ∈ B(H). Since S(t) = E(t)S(t) + e−ctU(t) we have

(βt(A)− Ωt(A)) = (e2Re(c)t − 1)−1B(t)AB(t)∗

with

B(t) = E(t)S(t)− (e2Re(c)t − 1)e−ctU(t)

from which it follows that the mapping A → βt(A)− Ωt(A) is completely positive
for all t ≥ 0. Note Ωt(Ωs(A)) = Ωt+s(A) for all A ∈ B(H) and t, s ≥ 0. Then we
have

(βt/n)n(A)− Ωt(A) =(βt/n)n(A)− (Ωt/n)n(A)

=
n∑
k=1

(βt/n)k−1((βt/n − Ωt/n)((Ωt/n)n−k(A)))

for A ∈ B(H) and t ≥ 0 and n a positive integer. Since all of the mappings in the
above sum are completely positive we have the mapping A → (βt/n)n(A) − Ωt(A)
is completely positive. From Lemma 4.5 we have (βt/n)n(A) → γt(A) σ-strongly as
n → ∞ for all A ∈ B(H) and t ≥ 0. Hence, γ ≥ Ω.

Now we deal with the fact that we replaced c by c + ε. Again we denote the
dependence of γt, Ωt and π on ε by writing γεt , Ω

ε
t and π∈. Then we have shown

that γε ≥ Ωε where γε is the unique CP-semigroup derived from πε. As ε → 0+ we
have from the proof of Theorem 4.26 that γεt (A) → γot (A) in the σ-strong topology
for all A ∈ B(H) and t ≥ 0 where γo is the minimal CP-semigroup derived from
πo. Since Ωεt(A) → Ωot (A) as ε → 0+ for each A ∈ B(H) and t ≥ 0 in the σ-strong
topology we have γo ≥ Ωo. Or with ε = 0 we have γ ≥ Ω. Since α ≥ γ we have
α ≥ Ω. �

Before we show how to compute the Arveson index of a CP-flow we make a
simple definition and prove a useful lemma.
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Definition 4.47. Suppose α is a CP-semigroup and β is a subordinate of α. We
say β is trivially maximal if β′

t = estβt for t ≥ 0 with s > 0 then β′ is not a
subordinate of α.

Note that if β is a subordinate of α there is a unique subordinate β′ of the form
β′
t = estβt for t ≥ 0 with s ≥ 0 so that β′ is a trivially maximal subordinate of α. In

discussing subordinates it is often useful to consider trivially maximal subordinates.

Lemma 4.48. Suppose α is a spatial Eo-semigroup of B(H) and β is an extremal
subordinate of α which is trivially maximal (where by extremal we mean every sub-
ordinate γ of β is of the form γt = e−stβt for all t ≥ 0 where s ≥ 0). Then there is
a strongly continuous one parameter semigroup of isometries S(t) which intertwine
αt for each t ≥ 0 so that

βt(A) = S(t)S(t)∗αt(A) = αt(A)S(t)S(t)∗ = S(t)AS(t)∗

for all A ∈ B(H) and t ≥ 0.

Proof. Assume the hypothesis of the lemma. Since α is spatial there is a strongly
continuous one parameter semigroup of isometries U(t) which intertwine αt for each
t ≥ 0. As we saw in Theorem 3.4 there is a local cocycle C so that βt(A) = C(t)αt(A)
for all A ∈ B(H) and t ≥ 0. Let γt(A) = C(t)2αt(A) for A ∈ B(H) and t ≥ 0. Since
0 ≤ C(t) ≤ I we have 0 ≤ C(t)2 ≤ C(t) for all t ≥ 0 so γ is a subordinate of
β and since β is extremal we have γt = e−stβt for all t ≥ 0 with s ≥ 0. Hence,
C(t)2 = e−stC(t) for all t ≥ 0. Hence, Q(t) = estC(t) is a projection valued local
cocycle so if ηt(A) = Q(t)αt(A) for all A ∈ B(H) and t ≥ 0 then η is a subordinate
of α and β is a subordinate of η. Since β is trivially maximal if follows that η = β
and C(t) is a projection for all t ≥ 0.

Next consider R(t) = C(t)U(t). We have

R(t)R(s) =C(t)U(t)C(s)U(s) = C(t)αt(C(s))U(t)U(s)

=C(t+ s)U(t+ s) = R(t+ s)

for t, s ≥ 0. Note that R(t) intertwines αt for each t ≥ 0 since

R(t)A = C(t)U(t)A = C(t)αt(A)U(t) = αt(A)C(t)U(t) = αt(A)R(t).

We note R(t)∗R(t) commutes with A for all A ∈ B(H) since

R(t)∗R(t)A = R(t)∗αt(A)R(t) = AR(t)∗R(t).

Hence, R(t)∗R(t) is a multiple of the identity and from the semigroup property of
R we have R(t)∗R(t) = e−stI for t ≥ 0 where s ≥ 0. Let S(t) = e

1
2 stR(t) for t ≥ 0.

We see S(t) is a strongly continuous one parameter semigroup of isometries which
intertwines αt for t ≥ 0. Note t → F (t) = S(t)S(t)∗ is local cocycle so ν given by
νt(A) = F (t)αt(A) for A ∈ B(H) and t ≥ 0 is a subordinate of α. Since

F (t) = S(t)S(t)∗ = estC(t)U(t)U(t)∗C(t)

and C(t) for t ≥ 0 are projections we see that F (t) ≤ C(t) and, hence, ν is a
subordinate of β. Since β is extremal we have νt = e−atβt for t ≥ 0 with a ≥ 0.
Since C(t) and F (t) are projections we have a = 0 and β = ν. Hence,

βt(A) = S(t)S(t)∗αt(A) = αt(A)S(t)S(t)∗ = S(t)AS(t)∗

for all A ∈ B(H) and t ≥ 0. �
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Theorem 4.49. The Arveson index of a unital CP-flow α which is equal to the
index of the minimal dilation αd of α to an Eo-semigroup is the rank (given in
Definition 3.2) of the normal spine of α.

Proof. Suppose α is a CP-flow over K. Arveson’s definition of the index of a CP-
semigroup involves identifying the semigroups S(t) so that Ωt(A) = S(t)AS(t)∗

for A ∈ B(H) and t ≥ 0 is subordinate of α and computing the covariance of two
such semigroups. From Theorem 4.46 we can easily identify such semigroups but
computing the covariance is not something we know how to do easily. The Arveson
index of α is equal to the index of the minimal dilation αd of α to an Eo-semigroup.
(This was the point of Arveson’s definition.) So to prove the corollary we will show
the index of the minimal dilation αd of α is the rank of the normal spine of α.

Suppose αd is the minimal dilation of α to an Eo-semigroup and πo is the normal
spine of α. Recalling the relation between α and αd as described in the last section
we have αd is an Eo-semigroup of B(H1) and W is a isometry of H into H1 so
that WW ∗ is an increasing projection for αd and αd is minimal over the range
of W and αt(A) = W ∗αdt (WAW ∗)W for all A ∈ B(H) and t ≥ 0. Now it was
shown in [P4] (see Section 4) that Eo-semigroup αd is of index p if and only if there
are p + 1 minimal projective local cocycles Fi for i = 0, 1, · · · , p which are lattice
independent and maximal in that one can not add another minimal projective local
cocycle and maintain lattice independence. In greater detail F is a projective local
cocycle if F (t) is a projection valued local cocycle (i.e., F (t)αdt (F (s)) = F (t+s) and
F (t) ∈ αdt (B(H1))′ for t, s ≥ 0). And F is minimal if G is a projective local cocycle
so that 0 ≤ G(t) ≤ F (t) for t ≥ 0 then G(t) = F (t) for all t ≥ 0. The projective
local cocycles Fi are lattice independent if the suprema of the Fi for i �= j is not
greater than Fj .

In the language of subordinates a minimal projective local cocycle F for αd

corresponds to an extremal subordinate γ of αd which are trivially maximal. This
means F is a minimal projective local cocycle for αd if and only if the mapping
γt(A) = F (t)αdt (A) for A ∈ B(H1) and t ≥ 0 is an extremal subordinate of αd.
Note that extremal subordinates of αd which are trivially maximal correspond to
minimal projective local cocycle as was shown in Lemma 4.48.

Now we use Theorem 4.46 and the order isomorphism of Theorem 3.5 which
gives us an order isomorphism from the extremal subordinates of αd to the extremal
subordinates of α. Suppose the normal spine πo of α is of finite rank p. This means
πo is of the form

πo(A) =
p∑
i=1

CiAC
∗
i

for A ∈ B(H) where the Ci are linearly independent operators from H to K for
i = 1, · · · , p. Let φi(A) = CiAC

∗
i for i = 1, · · · , p and let φo(A) = 0 for A ∈ B(H).

Let Di be the operator with domain D(Di) = {f ∈ D(d∗) : f(0) = Cif} and
Df = −d∗f+ 1

2f for i = 1, · · · , p and letDo = d. Let βi be the minimal CP-flow over
K derived from φi for i = 0,1,· · · · , r. Since πo ≥ φi we have from Theorem 4.42 that
α ≥ βi for each i = 0, 1, · · · , p. And from Theorem 4.46 we have Di is the generator
of a contraction semigroup Si(t) and Ωit(A) = Si(t)ASi(t)∗ for A ∈ B(H) and
t ≥ 0 is a subordinate of α for i = 0, 1, · · · , p. It is clear that the Ωi are extremal
subordinates of α which are trivially maximal. The fact that the Ωi are lattice
independent may be seen as follows. Let ηi be the suprema of the Ωj with j ≤ i for
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i = 0, 1, · · · , p. Note ηi is the minimal CP-flow over K derived from φo+φ1+· · ·+φi.
We see then for each i = 1, · · · , p we have ηi is strictly greater than ηi−1. If the Ωi
were not lattice independent we would have ηi = ηi−1 for some i = 1, · · · , p. Note
ηp is the CP-flow over K derived from πo. Now suppose β is an extremal subordinate
of α which is trivially maximal. From the order isomorphism of Theorem 3.4 there
is an extremal subordinate γ of αd

βt(A) = W ∗γt(WAW ∗)W

for all A ∈ B(H) and t ≥ 0. Since γ is extremal we have from Lemma 4.48 there is a
strongly continuous semigroup of isometries S1(t) which intertwine αdt for each t ≥ 0
so that γt(A) = S1(t)AS1(t)∗. Hence, we have βt(A) = W ∗S1(t)WAW ∗S1(t)∗W
for A ∈ B(H) and t ≥ 0. Since WW ∗ is an increasing projection for αd it follows
that S1(t)∗ maps the range of W into itself. This is seen as follows. Suppose t ≥ 0.
Then S1(t)WW ∗ = αdt (WW ∗)S1(t) and taking adjoints and multiplying by WW ∗

on the right we find

WW ∗S1(t)∗WW ∗ = S1(t)∗αdt (WW ∗)WW ∗ = S1(t)∗WW ∗

so S1(t)∗ maps the range of W into itself. It follows that S(t)∗ = W ∗S1(t)∗W is a
strongly continuous semigroup of contractions since

S(t)∗S(s)∗ =W ∗S1(t)∗WW ∗S1(s)∗W = W ∗S1(t)∗S1(s)∗W

=W ∗S1(t+ s)∗W = S(t+ s)∗

for s, t ≥ 0. Hence, βt(A) = S(t)AS(t)∗ for A ∈ B(H) and t ≥ 0. Since β is a
subordinate of α Theorem 4.46 applies to the semigroup S(t) and the generator of
S(t) has to satisfy certain conditions regarding the normal spine πo of α. But πo
is also the normal spine of ηd and therefore S(t) satisfies these same continuous
for the normal spine of ηd and, hence, by Theorem 4.46 we have that β is a sub-
ordinate of ηd. Hence, we have shown that every nonzero extremal subordinate of
α is a subordinate of ηd so we have proved the subordinates βi for i = 0, 1, · · · , p
are a lattice independent set and maximal in the sense that any other extremal
subordinate β of α is a subordinate of ηd the suprema of the βi for i = 0, 1, · · · , p.
Hence, the index of αd is p and the Arveson index of α is p. In the case where the
normal spine πo is of infinite rank the above argument shows that the index of αd

is greater than any positive integer so the index of αd is infinite. �

In the next lemma we show that if α is a unital CP-flow over K and αd is the
minimal dilation of α to an Eo-semigroup then αd is a CP-flow over K1.

Lemma 4.50. Suppose α is a unital CP-flow over K and αd is the minimal dilation
of α to an Eo-semigroup and suppose the relation between α and αd is given by

αt(A) = W ∗αdt (WAW ∗)W

for all A ∈ B(H) (with H = K ⊗ L2(0,∞)) and t ≥ 0 where W is an isometry
from H to H1 and WW ∗ is an increasing projection for αd and αd is minimal over
the range of W. Then H1 can be expressed as H1 = K1 ⊗ L2(0,∞) and αd is a
CP-flow over K1 so that if U(t) and U1(t) are right translation on H and H1 for α
and αd, respectively, then U1(t)W = WU(t) and U1(t)∗W = WU(t)∗ for all t ≥ 0.
This means W as a mapping of H = K ⊗ L2(0,∞) into H1 = K1⊗ L2(0,∞) can be
expressed the form W = W1 ⊗ I where W1 is an isometry from K into K1.
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Proof. Assume the hypothesis and notation of the lemma are satisfied. Since αd

is minimal over the range of W the linear combination of vectors of the form

αdt1(WA1W
∗) · · ·αdtn(WAnW

∗)Wf

with f ∈ K and Ai ∈ B(H) and ti ≥ 0 for i = 1, · · · , n and n = 1,2,· · · · are dense
in H1. For t ≥ 0 we define U1(t) on a vectors of the above form by the equation

U1(t)αdt1(WA1W
∗) · · ·αdtn(WAnW

∗)Wf

=αdt1+t(WA1W
∗) · · ·αdtn+t(WAnW

∗)WU(t)f.

By expressing the inner product of such vectors in terms of α and using the fact
that U(t) intertwines αt one first checks that (U1(t)F,U1(t)G) = (F,G) for F and
G vectors of the above form. Then it follows that these relations uniquely define an
isometry U1(t) of H1. Recalling how αd is defined as explained in the last section
we can show that U1(t) intertwines αdt so U1(t)A = αdt (A)U1(t) for all A ∈ B(H)
and t ≥ 0. Next it follows from the above equation that U1(t)W = WU(t) for all
t ≥ 0. We note that

U1(t)∗WU(t) = U1(t)∗U1(t)W = W = WU(t)∗U(t)

for all t ≥ 0. It follow that U1(t)∗W = WU(t)∗ for all t ≥ 0 if and only if B(t) =
U1(t)∗W (I − U(t)U(t)∗) = 0 for all t ≥ 0. We find

B(t)∗B(t) =(I − U(t)U(t)∗)W ∗U1(t)U1(t)∗W (I − U(t)U(t)∗)

=W ∗U1(t)U1(t)∗W − U(t)U(t)∗.

We show B(t)∗B(t) = 0. Since U1(t)∗αdt (A) = AUt(t)∗ we have

W ∗U1(t)U1(t)∗αdt (WAW ∗)W = W ∗U1(t)WAW ∗U1(t)∗W = U(t)AU(t)∗

for all A ∈ B(H) and t ≥ 0. Then setting A = I in this equation and noting that
since WW ∗ is an increasing projection for αd we have αdt (WW ∗)W = W so the
above equation gives

W ∗U1(t)U1(t)∗W = U(t)U(t)∗

for all t ≥ 0. Hence, B(t) = 0 for all t ≥ 0 and U1(t)∗W = WU(t)∗ for all t ≥ 0.
Next we show U1(t)∗ → 0 strongly as t → ∞. Since U1(t) intertwines αdt we have

for ti ≥ 0, Ai ∈ B(H) for i = 1, · · · , n and t ≥ t1 that

U1(t)∗αdt1(WA1W
∗) · · ·αdtn(WAnW

∗)Wf

= U1(t− t1)∗WA1W
∗U1(t1)∗αt2(A2) · · ·αdtn+t(WAnW

∗)WU(t)f

= WU(t− t1)∗A1W
∗U1(t1)∗αt2(A2) · · ·αdtn+t(WAnW

∗)WU(t)f.

Since U(t)∗ → 0 strongly as t → ∞ we have the above expression tends to zero in
norm as t → ∞. Since the linear span of vectors of the above form is dense in H1

it follows that U1(t)∗ → 0 strongly as t → ∞. Hence, U1(t) is a pure shift. Since
U1(t) is a pure shift we can realize H1 in the form K1⊗L2(0,∞) where U1(t) is right
translation by t for t ≥ 0. The details of this realization are as follows. Let M1 be
the von Neumann algebra generated by U1(t) for t ≥ 0. Since the action of the right
shift operators S(t) are irreducible on L2(0,∞) we have M1 can be identified with
B(L2(0,∞)) and U(t) corresponds to the right shift S(t) for all t ≥ 0. Since M1 is
a type I factor its commutant M ′

1 is a type I factor which we identify as B(K1). In
this way we realize H1 = K1 ⊗ L2(0,∞) and U1(t) as the right shift by t on H1 for
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all t ≥ 0. Similarly in the realization of H as H = K⊗L2(0,∞) we let M be the von
Neumann algebra generated by U(t). Since W intertwines the action of U1(t) and
U1(t)∗ with U(t) and U(t)∗ we see that if φ is the natural isomorphism of M with
M1 induced by identifying U(t) with U1(t) we see that (I ⊗ φ(A))W = W (I ⊗ A)
for all A ∈ M. Note WW ∗ is in the commutant of M1 so WW ∗ corresponds to a
projection in B(K1). Let N be the subspace of K1 corresponding to the range of
this projection. Now if we simply think of φ as the identity map by which we mean
we identify U1(t) = I ⊗ S(t) and U(t) = I ⊗ S(t) where in the first case I is the
unit of B(K1) and in the second case I is the unit of B(K) for t ≥ 0 then W is of
the form W = W1 ⊗ I where W1 is an isometry of K into K1 with range N. This
completes the proof of the lemma. �

Theorem 4.51. Suppose α is a unital CP-flow over K and αd is the minimal
dilation of α to an Eo-semigroup and suppose the relation between α and αd is
given by

αt(A) = W ∗αdt (WAW ∗)W

for all A ∈ B(H) (with H = K⊗L2(0,∞)) and t ≥ 0 where W is an isometry from
H to H1 and WW ∗ is an increasing projection for αd and αd is minimal over the
range of W. Suppose S(t) is a strongly continuous semigroup of contractions of H
and Ω given by Ωt(A) = S(t)AS(t)∗ for A ∈ B(H) and t ≥ 0 is a subordinate of α.
Further assume Ω is trivially maximal. Then there is a unique strongly continuous
one parameter semigroup of isometries S1(t) which intertwine αdt for each t ≥ 0
and

S(t) = W ∗S1(t)W

for all t ≥ 0.
Conversely, if S1(t) is a strongly continuous one parameter semigroup of isome-

tries which intertwine αdt for each t ≥ 0 then if S(t) is as defined in the equation
above we have S(t) is a strongly continuous one parameter semigroup of contrac-
tions so that Ω defined by Ωt(A) = S(t)AS(t)∗ for A ∈ B(H) and t ≥ 0 is a
subordinate of α which is trivially maximal.

Proof. Assume the hypothesis and notation for α and αd is in effect. The sec-
ond paragraph in the statement of the theorem was established in the proof of
Theorem 4.49.

Suppose the hypothesis of the first paragraph of the lemma is satisfied. Since Ω
is an extremal subordinate of α which is trivially maximal it follows from the order
isomorphism of Theorem 3.5 that there is an extremal subordinate γ of αd which
is trivially maximal and Ωt(A) = W ∗γt(WAW ∗)W for all A ∈ B(H) and t ≥ 0.
From Lemma 4.48 we have γ is of the form

γt(A) = S1(t)S1(t)∗αdt (A) = S1(t)AS1(t)∗

for all A ∈ B(H1) and t ≥ 0 where S1(t) is a strongly continuous one parameter
semigroup of isometries which intertwine αdt for each t ≥ 0. Note since γ is uniquely
determined by Ω we have the semigroup S1(t) is uniquely determined except for
a unitary phase factor (i.e., the semigroup S′

1(t) = eistS1(t) for t ≥ 0 with s real
gives the same γ). We have

S(t)AS(t)∗ = Ωt(A) = W ∗S1(t)WAW ∗S1(t)W
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for all A ∈ B(H) and t ≥ 0. It follows that S(t) = eistW ∗S1(t)W. for all t ≥ 0
where s is real. Now replacing S1(t) with eistS1(t) we have S(t) = W ∗S1(t)W
and we have established the connection between S(t) and S1(t) as stated in the
theorem. �

Theorem 4.52. Suppose α is a unital CP-flow over K and αd is the minimal
dilation of α to an Eo-semigroup. Then αd is completely spatial if and only if α is
the minimal CP-flow derived from π#

o the normal spine of α.

Proof. Assume the notation of the theorem. As shown in the last paragraph
of Section 4 of [P3] a spatial Eo-semigroup is completely spatial if an only if it is
least upper bound of its extremal subordinates (in [P3] these extremal subordinates
were called minimal compressions). From Theorem 3.5 we know there is an order
isomorphism from the subordinates of αd with the subordinates of α. Hence, αd

is completely spatial if and only if α is the least upper bound of its extremal
subordinates.

Let γ be the least upper bound of the extremal subordinates of α and let φ
be the normal spine of γ. Since the extremal subordinates of α are of the form
βt(A) = S(t)AS(t)∗ for t ≥ 0 (see Lemma 4.48 and Theorem 4.51) with S(t) a
strongly continuous one parameter semigroup and if β is such a CP-semigroup then
γ ≥ β is determined only by φ (see Theorems 4.42 and 4.46) it follows that γ must
be the minimal CP-flow derived from φ. To see this simply replace γ by the CP-
flow derived from φ and we have a CP-flow γ′ with γ ≥ γ′ and γ′ is still an upper
bound for the extremal subordinates of α. Then it follows that φ is the least upper
bound of all subordinates of π#

o of the form π(A) = CAC∗ for A ∈ B(H) with C
an operator from H to K. Since φ is an upper bound we have φ ≥ π#

o and since
φ is a least upper bound we have π#

o ≥ φ so φ = π#
o . Hence, we have shown that

the least upper bound of the extremal subordinates of α is the minimal CP-flow
derived from π#

o . Hence, α is the least upper bound of its extremal subordinate if
and only if α is the minimal CP-flow derived from π#

o . �

As in Theorem 3.14 of the last section we characterize corners for CP-flows. We
begin with a definition.

Definition 4.53. Suppose α and β are CP-flows over K1 and K2, respectively. We
say γ is a flow corner from α to β if γ is a one parameter family of σ-weakly
continuous maps γt of B(H2) to B(H1) (with Hi = Ki ⊗ L2(0,∞) for i = 1, 2) so
that

Θt

([
A11 A12

A21 A22

])
=
[
αt(A11) γt(A12)
γ∗
t (A21) βt(A22)

]
for t ≥ 0 and Aij is a bounded linear operator from Hj to Hi is a CP-flow over
K1 ⊕ K2 where the translation operator U(t) on (K1 ⊕ K2)⊗ L2(0,∞) is given by

U(t) =
[
U1(t) 0
0 U2(t)

]

for t ≥ 0 where Ui is the translation operator on Hi = Ki ⊗ L2(0,∞) for i = 1, 2.

Theorem 4.54. Suppose α is a unital CP-flow over K and αd is the minimal
dilation of α to an Eo-semigroup and suppose the relation between α and αd is a
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stated in Lemma 4.50. We assume the notation of the Lemma 4.50. Suppose C is
an αd contractive local cocycle so that C(t)U1(t) = U1(t) for t ≥ 0. Then

γt(A) = W ∗C(t)αdt (WAW ∗)W

for t ≥ 0 and A ∈ B(H) is a flow corner from α to α. Conversely, if γ is a flow
corner from α to α then there is a unique αd contractive local cocycle C so that
C(t)U1(t) = U1(t) and

γt(A) = W ∗C(t)αdt (WAW ∗)W

for A ∈ B(H) for all t ≥ 0.

Proof. Assume the notation and set up of the theorem. Suppose C is an αd

contractive local cocycle and C(t)U1(t) = U1(t) for t ≥ 0 and γ is given in terms of
C as stated in the theorem. Then we have

γt(A)U(t) = W ∗C(t)αdt (WAW ∗)WU(t) = W ∗C(t)αdt (WAW ∗)U1(t)W

= W ∗C(t)U1(t)WAW ∗W = W ∗U1(t)WAW ∗W

= U(t)W ∗WAW ∗W = U(t)A

for t ≥ 0 and A ∈ B(H). Hence, U(t) intertwines γt so we see that Θ as defined in
terms of γ in Definition 4.53 is a CP-flow.

Conversely, suppose γ is a flow corner from α to α. Since γ is a corner from α
to α we have from Theorem 3.14 that there is a αd cocycle C so that

γt(A) = W ∗C(t)αdt (WAW ∗)W

for t ≥ 0 and A ∈ B(H). Since γ is flow corner from α to α we have U(t)A =
γt(A)U(t) for all t ≥ 0 and A ∈ B(H). And setting A = I in the equation yields
the result that

γt(I)U(t) = W ∗C(t)αdt (WW ∗)WU(t) = W ∗C(t)αdt (WW ∗)U1(t)W

= W ∗C(t)U1(t)WW ∗W = W ∗C(t)U1(t)W = U(t)

for t ≥ 0. Note S1(t) = C(t)U1(t) is a strongly continuous semigroup which inter-
twines αd and W ∗S1(t)W = S(t) = U(t) for t ≥ 0, where we introduce S(t) = U(t)
to recall the notation of Theorem 4.51. Note if Ωt(A) = S(t)AS(t)∗ for t ≥ 0
and A ∈ B(H) then Ω is a subordinate of α and applying Theorem 4.51 we see
that S1 is uniquely determined from S = U so S1(t) = U1(t) for t ≥ 0. Hence,
C(t)U1(t) = U1(t) for t ≥ 0. �

One ambiguity that occurs with flow corner comes with the definition of maximal
and hyper maximal flow corners. In the definition of maximal and hyper maximal
we speak of the subordinates Θ′ of Θ (see Definition 3.7). The question is do
we means subordinates of Θ or do we mean flow subordinates of Θ which are
subordinates which are also CP-flows. The next lemma shows that the subordinates
Θ′ are necessarily CP-flows. This means that for flow corners the two notions of
maximal or hyper maximal are equivalent.

Lemma 4.55. Suppose α and β are CP-semigroups over H1 = K1 ⊗L2(0,∞) and
H2 = K2 ⊗ L2(0,∞), respectively. Let Ui(t) be translation on Hi for t ≥ 0 and i =
1, 2. Suppose γ is a corner from α to β. with the property that U1(t)A = γt(A)U2(t)
for all A ∈ B(H1,H2) and t ≥ 0 (so γ is a flow corner). Then α and β are CP-flows.
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Proof. Assume the hypothesis and notation of the lemma. Let Θ and U be defined
as in the above Definition 4.53 and let Ψt(A) = U(t)∗Θt(A)U(t) for t ≥ 0 and
A ∈ B(H1 ⊕ H2). Then we find

Ψt

([
XX∗ X
X∗ X∗X

])
=
[
U1(t)∗αt(XX∗)U1(t) X

X∗ U2(t)∗βt(X∗X)U2(t)

]
for all partial isometries X from H2 to H1. Note the diagonal entries in the above
matrix are positive contractions since Θ is a CP-semigroup. Since Θt is completely
positive the matrix on the right-hand side of the above equation must also be
positive. One checks that this implies U1(t)∗αt(E)U1(t) ≥ E for all projections
E ∈ B(H1) and for all t ≥ 0. Since αt is a contraction we have U1(t)∗αt(I)U1(t) = I
and using additivity we find U1(t)∗αt(A)U1(t) = A for all projections A ∈ B(H1)
and for all t ≥ 0. By linearity this extends to all A ∈ B(H1). Now fix t > 0 and
let φ(A) = αt(A) for A ∈ B(H1) and let V = U1(t). Note V ∗φ(A)V = A for all
A ∈ B(H1). Since φ is completely positive we have

φ(A) =
∑
i∈I

SiAS
∗
i

for A ∈ B(H1) and the Si are linearly independent over +2(N). Since V ∗φ(A)V = A
for A ∈ B(H1) we have V ∗Si is a multiple of the unit operator for all i ∈ I. Then
with a change of basis we can rewrite the sum for φ with a new set of Si where
V ∗Si = 0 except for i = 1 and V ∗S1 = I. Since V is an isometry and S1 is a
contraction it follows that S1 = V. Then we have

φ(A) = V AV ∗ +
∑
i∈J

SiAS
∗
i

for A ∈ B(H1) where J is the index set I with the index i = 1 removed. Since
V ∗Sj = 0 for j ∈ J we have V A = φ(A)V for A ∈ B(H1). Hence, α is a CP-flow.
The same argument shows β is a CP-flow. �

Theorem 4.56. Suppose α and β are unital CP-flows over K1 and K2 and αd

and βd are the minimal dilations of α and β to Eo-semigroups. Suppose γ is a
hyper maximal flow corner from α to β. Then αd and βd are cocycle conjugate.
Conversely, if αd is a type IIo and αd and βd are cocycle conjugate then there is a
hyper maximal flow corner from α to β.

Proof. The first statement of the theorem is just an application of Theorem 3.13.
Assume the hypothesis and notation of the last statement of the theorem. We
know from Lemma 4.50 that the relation between the CP-flows and the dilated
Eo-semigroups is given by

αt(A) = W ∗
1 α
d
t (W1AW

∗
1 )W1 and βt(B) = W ∗

2 β
d
t (W2BW ∗

2 )W2

for t ≥ 0 andW1,W2, , A andB are operators on the appropriate Hilbert spaces with
the properties described in Lemma 4.50. Now αd and βd are cocycle conjugate and
mapping that establishes the cocycle conjugacy maps one parameter semigroups
of intertwining isometries for αd onto one parameter semigroups of intertwining
isometries for βd. Since αd and βd are type IIo there is only one semigroup of
intertwining isometries up to multiplication by a phase factor. This means that the
corner which establishes the cocycle conjugacy for αd and βd is after multiplication
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by a phase factor eist a flow corner and taking things back to the original CP-
semigroups this gives us a hyper maximal flow corner from α to β. �

An important question in the theory of CP-flows is whether two CP-flows dilate
to cocycle conjugate Eo-semigroups if and only if there is a hyper maximal flow
corner from one to the other. The previous theorem shows the implication one way
and both ways in the type IIo case. It would be very nice to know if the implication
goes both ways in the type IIn case with n ≥ 0. If follows from the papers of
Alevras ([Al1],[Al2]) this is a question of whether there a unitary local cocycles for
and Eo-semigroup maps that maps one semigroup of intertwining isometries onto
any other semigroup of intertwining isometries.

In the last section we defined (n × n)-matrices of corners. There is the corre-
sponding notion of flow corners.

Definition 4.57. Suppose α is a CP-flow over K and n is positive integer. We say
Θ is a positive (n × n)-matrix of flow corners from α to α if Θ is a matrix with
coefficients θ(ij) where the θ(ij) are strongly continuous semigroups of B(H) for
i, j = 1, · · · , n so that Θ is a CP-flow over (⊕ni=1K) and the diagonal entries of Θ
are subordinates of α.

Definition 4.58. Suppose αd is CP-flow over K which is also a Eo-semigroup of
B(H) with H = K ⊗ L2(0,∞) and n is a positive integer. We say C is a positive
(n× n)-matrix of αd contractive local flow cocycles if the coefficients Cij of C are
contractive local cocycles for αd for i, j = 1, · · · , n which fix the translations U(t)
meaning Cij(t)U(t) = U(t) and the matrix C(t) whose entries are Cij(t) is positive
for all t ≥ 0.

We remark if C is a contractive local flow cocycle then C∗ is also a contractive
local flow cocycle. This is seen as follows. Suppose C is a contractive local cocycle
for αd and C(t)U(t) = U(t) for t ≥ 0. Then we have

(C(t)∗U(t)− U(t))∗(C(t)∗U(t)− U(t))

= U(t)∗C(t)C(t)∗U(t)− U(t)∗C(t)U(t)− U(t)∗C(t)∗U(t) + I

= U(t)∗C(t)C(t)∗U(t)− I ≤ U(t)∗U(t)− I = 0.

Since the above expression is positive it must be zero so C(t)∗U(t) = U(t) for t ≥ 0.

Theorem 4.59. Suppose α is a unital CP-flow over K and αd is its dilation to an
Eo-semigroup αd of B(H1). The relation between α and αd is given by

αt(A) = W ∗αdt (WAW ∗)W

as described in Lemma 4.50.
Suppose n is a positive integer and Θ is positive (n× n)-matrix of flow corners

from α to α. Then there is a unique positive (n × n)-matrix C of contractive local
flow cocycles Cij for αd for i, j = 1, · · · , n so that

θ
(ij)
t (A) = W ∗Cij(t)αdt (WAW ∗)W

for all A ∈ B(H) and t ≥ 0. Conversely, if C is a positive (n × n)-matrix of
contractive local flow cocycles for αd then the matrix Θ whose coefficients θ(ij) are
give above is a positive (n× n)-matrix of flow corners from α to α.
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Proof. Once one sees that there is a one to one mapping from flow corners from
α to α and flow cocycles for αd as was established in Theorem 4.54 the theorem
follows from Theorem 3.16. �

Theorem 4.60. Suppose α is a unital CP-flow over K and αd is its dilation to
an Eo-semigroup and the relation between α and αd is as given in the previous
theorem. Suppose θ is a flow corner from α to α and C is the local contractive flow
cocycle for αd associated with θ. Then C(t) is an isometry for all t ≥ 0 if and only
if θ is maximal and C(t) is unitary for all t ≥ 0 if and only if θ is hyper maximal.

Proof. The proof is the same as the proof of Corollary 3.17 taking into Theo-
rem 4.54. �

We think the next theorem is a surprising result. It is a basically a corollary of
Theorem 4.15.

Theorem 4.61. Suppose α is a CP-flow over K and U(t) is translation on H =
K ⊗ L2(0,∞). Suppose γ is a corner from α to α so that

U(t)A = eztγt(A)U(t)

for t ≥ 0 and A ∈ B(H) where z is a complex number with nonnegative real part.
Let βt = eztγt for t ≥ 0. Then β is a flow corner from α to α.

Proof. Assume the hypothesis and notation of the theorem. Suppose αd the di-
lation of α to an Eo-semigroup and the relation between α and αd is as stated in
Lemma 4.50. We assume all the notation of the statement of Lemma 4.50. From
Theorem 3.16 there is a local contractive αd cocycle so that

γt(A) = W ∗C(t)αdt (WAW ∗)W

for all t ≥ 0 and A ∈ B(H). From Lemma 4.50 we have

U(t) =eztγt(I)U(t)

=eztW ∗C(t)αdt (WW ∗)WU(t)

=eztW ∗C(t)αdt (WW ∗)U1(t)W

=eztW ∗C(t)U1(t)W

for all t ≥ 0. One checks that S(t) = eztC(t)U1(t) is a one parameter semigroup that
intertwines αdt for t ≥ 0. Since S(t) intertwines αdt we have S(t)

∗S(t) commutes with
B(H1) so S(t)∗S(t) is a multiple of the unit for t ≥ 0. Then S(t) = estV (t) for t ≥ 0
where V is semigroup of intertwining isometries for αd. Since U(t) = W ∗S(t)W
it follows from Theorem 4.51 that S(t) = U1(t) for t ≥ 0. Hence, C(t)U1(t) =
e−ztU1(t) for t ≥ 0. Now let D(t) = e2xtC(t)∗C(t) for t ≥ 0 where x is the real part
of z. and let Θt(A) = D(t)αdt (A) for A ∈ B(H1). One sees Θ is a CPκ-flow with
growth bound κ = 2x. Then by Theorem 4.15 we have Θ is a CP-flow so ‖D(t)‖ ≤ 1
for all t ≥ 0. Hence, eztC(t) is a contractive flow cocycle and β is a flow corner
from α to α. �

For the case of type IIo CP-flows this theorem is very useful in calculating the
local cocycles for the dilated Eo-semigroup. It says they can all be obtained by
analyzing flow corners.
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Next we will present some results which show that the relation between a CP-flow
and its normal spine π#

o is not as simple as one would expect. Since π#
s determines

π#
t for t > s for a generalized boundary representation one gets the impression that

the limit π#
o of a boundary representation π#

s as s → 0+ determines the CP-flow.
The next theorem shows the situation is quite delicate. This theorem shows that if π
is a completely positive contraction of B(H) into B(K) and ∆ = limn→∞(π ·Λ)n(I)
is not zero then there are CP-flows over K derived from π other than the minimal
one constructed in Theorem 4.26. This theorem is of importance because it shows
that the boundary representation does not completely specify the CP-flow. The
generalized boundary representation contains more information than the boundary
representation.

Theorem 4.62. Suppose π is a completely positive contraction fromB(H) toB(K).
Note (π · Λ)n+1(I) = (π · Λ)n(π(Λ)) ≤ (π · Λ)n(I) so (π · Λ)n(I) is a decreasing
sequence of positive operators which then must converge strongly to a limit ∆ as
n → ∞. Suppose ∆ is not zero. Suppose ν is an positive element of B(H)∗ with
ν(I) ≤ 1 and

ωo = ν + π̂(Λ̂(ν)) + π̂(Λ̂(π̂(Λ̂(ν)))) + · · ·
where the sum converges as a weight on (I − Λ)

1
2 B(H)(I − Λ)

1
2 . Let ρ → ω(ρ) be

the mapping given by

ω(ρ) =
ρ(∆)

(1− ν(Λ(∆)))
ωo + π̂(ρ) + π̂(Λ̂(π̂(ρ))) + π̂(Λ̂(π̂(Λ̂(π̂(ρ))))) + · · ·

for all ρ ∈ B(K)∗. Then the mapping ρ → ω(ρ) is a boundary weight mapping of a
CP-flow α and α is derived from π. Furthermore, if ν(I) = 1 then α is unital.

Proof. Assume the hypothesis and notation of the theorem apply. Since ∆ is
not zero we have ‖∆‖ > 0. Note π(Λ(∆)) = ∆. We have (π · Λ)n(‖∆‖I − ∆) =
‖∆‖(π ·Λ)n(I)−∆ → (‖∆‖ − 1)∆ and since the limit is positive we have ‖∆‖ ≥ 1
and since π and Λ are contractions we have ‖∆‖ ≤ 1 so we have ‖∆‖ = 1. The
arguments of Theorem 4.26 show the series for ω(ρ) and ωo converge as weights.
Suppose λ ∈ (0, 1) and let φλ be the mapping of B(H) into B(K) given by

φ̂λ(ρ) = λπ̂(ρ) + (1− λ)ρ(∆)ν

for ρ ∈ B(K)∗. It is clear that φλ is completely positive so to check that φλ is a
contraction we need only check φλ on the unit. One easily checks that for positive
ρ ∈ B(K)∗ we have φ̂λ(ρ)(I) ≤ ρ(I) and since ν(I) ≤ 1 we have ν(Λ(∆)) < 1 so
‖Λ̂φ̂λ‖ < 1. Hence, the CP-flow derived from φλ is unique and its boundary weight
map is given by

ωλ(ρ) = φ̂λ(ρ) + φ̂λΛ̂φ̂λ(ρ) + φ̂λΛ̂φ̂λΛ̂φ̂λ(ρ) + · · ·
for ρ ∈ B(K)∗. Computing the series which converges in norm we find

ωλ(ρ) =
ρ(∆)

(1− ν(Λ(∆)))
ωλo + λπ̂(ρ) + λ2π̂(Λ̂(π̂(ρ))) + λ3π̂(Λ̂(π̂(Λ̂(π̂(ρ))))) + · · ·

for ρ ∈ B(K)∗ where

ωλo = ν + λπ̂(Λ̂(ν)) + λ2π̂(Λ̂(π̂(Λ̂(ν)))) + · · · .
Following the argument of Theorem 4.26 we can take the limit as λ → 1− obtain

the mapping ρ → ω(ρ) given in the statement of the theorem and we find the limit
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inequality (4.13+) of Theorem 4.20 is satisfied. Hence, the mapping ρ → ω(ρ) is
the boundary weight map of a CP-flow α where now we have set λ = 1. Since
∆ = π(Λ(∆)) we have

ω(ρ− Λ̂(π̂(ρ))) = ρ(∆− π(Λ(∆)))ωo + π̂(ρ) = π̂(ρ)

so from Theorem 4.24 we have that α is derived from π.
Note that if ν(I) = 1 and ρ ∈ B(K)∗ is positive we have

ω(ρ)(I − Λ) = ρ(∆)
ν(I − Λ(∆))
1− ν(Λ(∆))

+ ρ(I −∆) = ρ(I)

so in this case α is unital. �

We show that the previous theorem is not vacuous in that there are examples
of representations π where ∆ is not zero. Let K be the infinite tensor product of
L2(0,∞) so K = ⊗∞

k=1L
2(0,∞) with the reference vector (see [vN ] for details of

infinite tensor products of Hilbert spaces)

Fo = λ1e
− 1

2λ
2
1x ⊗ λ2e

− 1
2λ

2
2x ⊗ · · ·

and where λi > 0 for i ≥ 0 and
∞∑
n=1

λ−2
n < ∞ and

∞∑
n=1

|λn − λn+1|2
λ2
n + λ2

n+1

< ∞.

We note both these conditions are satisfied for λn = n and the second condition is
not satisfied for λn = 2n. Let S be the unitary mapping of H = K ⊗ L2(0,∞) into
K given by

S((f1 ⊗ f2 ⊗ · · · )⊗ h) = h⊗ f1 ⊗ f2 ⊗ · · ·
and let π(A) = SAS∗ and ∆ = e−x ⊗ e−x ⊗ · · · where e−x is shorthand for the
operation of multiplication by e−x on L2(0,∞). The first sum condition insures
that ∆ is not zero and the second condition insures that S is well defined. One
checks that

(π · Λ)n(I) = e−x ⊗ e−x ⊗ · · · ⊗ e−x ⊗ I ⊗ I ⊗ · · ·
where there are n factors of e−x and (π · Λ)n(I) → ∆ as n → ∞.
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