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Continuous spatial semigroups of
completely positive maps of 2B($))

Robert T. Powers

ABSTRACT. This paper concerns the structure of strongly continuous one pa-
rameter semigroups of completely positive contractions of B(H) = B(R ®
L2(0,00)) which are intertwined by translation. These are called CP-flows over
R. Using Bhat’s dilation result each unital CP-flow over K dilates to an E,-
semigroup of B($H1) where H1 can be considered to contain B(& ® L2(0,c0)).
Every spatial E,-semigroup is cocycle conjugate to one dilated from a CP-
flow. Each CP-flow is determined by its associated boundary weight map
which determines the generalized boundary representation. The index of the
FEo-semigroup dilated from a CP-flow is calculated. Machinery for determining
whether two CP-flow dilate to cocycle conjugate Eo-semigroups is developed.
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1. Introduction

The goal of this paper is the construction of new spatial E,-semigroups of B(9).
An E,-semigroup of B() is a strongly continuous one parameter semigroup of
s-endomorphisms of B(5)). An E,-semigroup is spatial if there is a one parameter
semigroup of intertwining isometries. If there are enough intertwining semigroups
to reconstruct the £,-semigroup the semigroup is said to be completely spatial. The
first examples of spatial E,-semigroups were given in [P1] and later Arveson [Al]
defined and completely classified the completely spatial E,-semigroups. The index
first introduced and the additivity property suggested in [P1] and later correctly
defined and proved to be additive under tensoring by Arveson [A2] is a complete
cocycle conjugacy invariant for the completely spatial E,-semigroups. In [P2] an
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example of a non spatial E,-semigroups was first constructed and recently Tsirelson
[T2] has constructed a one parameter family of non isomorphic product systems of
type III in the context of Arveson’s theory of continuous tensor products of Hilbert
spaces and from Arveson’s representation theorem this implies the existence of a
one parameter family of non cocycle conjugate non spatial E,-semigroups.

The first example of a spatial F,-semigroup which is not completely spatial was
constructed in [P4]. Now Tsirelson [T1] has constructed a one parameter family
of non isomorphic product systems of type II and by Arveson’s theory of product
systems this implies the existence of a one parameter family of non cocycle conjugate
spatial E,-semigroups of B($).

In this paper we develop a way of constructing spatial E,-semigroups of B($).
This method can in principle construct all spatial E,-semigroups (see Theorem 4.0A).
We use the new technology developed by Bhat. Bhat showed in [Bh] that every uni-
tal CP-semigroup of B(R) can be dilated to an E,-semigroup of B($)) where $ can
be thought of as a larger Hilbert space containing K. A CP-semigroup of B(R) is
a strongly continuous one parameter semigroup of completely positive contractions
of B(K). Since CP-semigroups are much easier to construct than FE,-semigroups
Bhat’s result is extremely useful in constructing E,-semigroups. In this paper we
study CP-flows over a Hilbert space 8. A CP-flow is CP-semigroup of £® L?(0, co)
which is intertwined by translation on L?(0, c0). We believe this is the simplest ob-
ject from which one can construct via Bhat’s dilation all the spatial E,-semigroups.
We show how each CP-flow over R is determined from a boundary weight. We show
how to calculate the index of the E,-semigroup obtained by dilation.

Although we construct no new examples of spatial E,-semigroups we consider
the results of this paper to be a big success. In a subsequent paper we will discuss
the classification of E,-semigroups obtained from CP-flows in the case where &
is one dimensional. In the case when K is two dimensional all sorts of new and
interesting problems arise. Since most of the basic problems reduce to questions
about completely positive maps of the two by two matrices into themselves we
believe these problems are tractable. The reason we have not given applications
of CP-flows to constructing F,-semigroups of B($)) in this paper is that so many
different approaches suggest themselves that we are not sure which direction is
best. We can assure the reader that CP-flows lead to barrel loads of examples and
we believe that these examples will lead the way into developing a classification of
spatial E,-semigroups of B(9).

The author wishes to thank the referee for pointing out numerous misprints,
omissions and for helpful suggestions.

2. Background, definitions and generators of semigroups

All Hilbert spaces which will be denoted by the characters such as $, R and 9
are assumed to be separable unless otherwise stated. On Hilbert spaces we use the
physicist’s inner product (f, g) which is linear in g and conjugate linear in f. If
is a Hilbert space we denote by %B($)) the set of all bounded linear operators on $
and by B(9). the pre dual of B(5)). Every element p € B(5)). can be represented
in the form p(A) = X2, (fi, Ag;) where X2, || fill |lgi]| < co. If $; and $z are two
Hilbert spaces we denote by B($1, $2) the space of bounded linear operators from
o to H1. Note if A € %(Y)l,ﬁg) then A*A € %(f)g) and AA* € %(f)l)
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Definition 2.1. We say « is an E,-semigroup of a von Neumann algebra M with
unit 7 if the following conditions are satisfied:
(i) a is a *-endomorphism of M for each ¢ > 0.
(ii) «, is the identity endomorphism and oy o g = iy for all s,¢ > 0.
(iii) For each f € M, (the pre dual of M) and A € M the function f(a:(A4)) is a
continuous function of ¢.
(iv) ou(I) = I for each t > 0(oy preserves the unit of M).

Definition 2.2. Suppose a and § are E,-semigroups B($1) and B($2). We say
a and (3 are conjugate denoted o = § if there is *-isomorphism ¢ of B($1) onto
B(H2) so that poay = By o ¢ for all ¢ > 0. We say o and § are cocycle conjugate
denoted a; ~ f(; if @ and § are conjugate where « and o differ by a unitary
cocycle (i.e., there is a strongly continuous one parameter family of unitaries U (t)
on B($H1) for t > 0 satisfying the cocycle condition U(t)a(U(s)) = U(t + s) for all
t,s > 0 so that o} (A) = U(t)ay (A)U(t) ! for all A € B(H;) and t > 0).

Definition 2.3. Suppose a is an E,-semigroup of B(£)). We say « is spatial if there
exists a strongly continuous one parameter semigroup of isometries U(t) € B(9)
which intertwine ay, i.e., U(t)A = a(A)U(t) for all A € B($H) and ¢t > 0.

The property of being spatial is a cocycle conjugacy invariant. If there are enough
intertwining semigroups to reconstruct the F,-semigroup we say the semigroup is
completely spatial. In [A1l] Arveson classified the completely spatial E,-semigroups
of B($). He showed that each completely spatial E,-semigroup is cocycle conjugate
to a CAR flow of rank n for n = 1,2,--- and n = oco. The CAR flows are E,-
semigroups of B($) constructed using representations of the CAR algebra.

The E,-semigroups of B($) themselves form a semigroup and the appropriate
group operation is tensoring. If o and § are E,-semigroups of B($) and B(KR),
respectively, then one can form a new semigroup v = a® (8 which acts on the tensor
product space $ ® R. Specifically, we define 1, (A ® B) = a;(A4) ® B¢(B). In [A2]
Arveson showed the index is additive (i.e., the index of « is the sum of the index of
« and the index of ). One of the important results of the theory of E,-semigroups
obtained by Arveson is that if o is a one parameter group of *-automorphisms of
B(9H) (ie., oi(A) = U(t)AU ()"t with U(t) a strongly continuous one parameter
unitary group) then o acts like the unit under tensoring. This means that if «
is an E,-semigroup and o is one parameter group of %-automorphisms then « is
cocycle conjugate to a ® o. Another result we state as a theorem (see Theorem 2.9
of [P4]) so we can refer to it later is that the restriction of an E,-semigroup to
an invariant subspace yields an F,-semigroup which is cocycle conjugate to the
original F,-semigroup.

Theorem 2.4. Suppose o is a proper E,-semigroup of B(9) (so o (B(9)) # B(H)
fort > 0) and E € B($) is an hermitian projection which is invariant under a;
(i.e., x(E) = E for allt > 0). Let M be the range of E and let Qg be the set of all
operators A € B($) so that A = EAE. Note Qg is x-isomorphic with B(IN) the
algebra of all bounded operators on M and note if A € Q then cy(A) € Qg for all
t > 0. Let B be the restriction of a to Qg so Bi(A) = au(A) for all A € Qg. Then
B is an E,-semigroup of B (M) which is cocycle conjugate to a.

We assemble some of the standard facts about the semigroups of contractions.
Suppose X is a Banach space and t — S(t) is a strongly continuous one parameter
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semigroup of contractions of X into itself where by strong continuity we mean
IS(t)x — z|| — 0 as t — 0+ for each € X. The generator T of S is the linear
operator from the domain ©(T") into X given by

e g1 _
Ta:—wli%grt (S(t)r — x)

and the domain is the set of x € X so that the limit exists in the sense of norm
convergence. The domain ©(7T) is norm dense in X and the generator T is closed
which means that if z, € ®(T) forn =1,2,---- | ||z, — 2| — 0 and ||Tx, —y|| — 0
as n — oo then z € (T) and Tz = y.

Definition 2.5. A densely defined operator T on a Banach space X is said to be
dissipative if for each f in the domain of T" there is a linear functional F' in the unit
ball of the dual of X (so that |F'(h)| < ||| for all h € X) so that F(f) = ||f|| and
Re(F(Tf)) < 0).

Lemma 2.6. IfT is densely defined dissipative operator on a Banach space X then
T is closable and its closure is dissipative.

For the proof see Lemma 3.1.14 of Bratteli and Robinson [BR].

Theorem 2.7 (Lumer-Phillips). If T is a closed densely defined dissipative oper-
ator on a Banach space X and the range of (A —T) is dense in X for some real
A > 0 then T is the generator of a strongly continuous one parameter semigroup
of contractions. Conversely, if T is the generator of a strongly continuous one pa-
rameter semigroup of contractions then T is a closed dissipative operator and the
range of (M —T) is all of X for every real X\ > 0.

For the proof see Theorem 3.1.16 of [BR].

If T is the generator of a strongly continuous one parameter semigroup of con-
tractions we often refer to (I — T)~! as the resolvent of T. Note the resolvent is a
one to one mapping of X onto the domain D (7).

Theorem 2.8. Suppose T is the generator of a strongly continuous one parameter
semigroup S(t) of contractions of a Banach space X andt — z(t) is a differentiable
map of [0, s into the domain D(T') and

d

—x

dt
Then x(t) = S(t)z(0) fort € [0, s].
Proof. Assume the hypothesis and notation of the theorem. Let y(t) = S(t)z(0) —
x(t). Then y(t) is differentiable and

(t) = Ta(t).

u(t) = Ty(t)

for ¢ € [0, s]. We show ||y(¢)|| is non increasing. Suppose ¢ € [0,s) and h > 0 and
t+ h < s. Since T is dissipative there is an element F; € X* of norm one with
Fi(y(t)) = |ly(®)|| and Re(F+(Ty(t))) < 0 for each ¢ € [0, s]. Then we have

ly(t + Bl = (@)l =Re(Fryn(y(t + h)) — Fi(y(t)))
=Re((Fipn — Fy)(y(t)) + hRe(Fin(Ty(t)))
+ Re(Fipn(y(t + ) —y(t) — hTy(1))).
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Now the first of the three terms is nonpositive and the third is o(h). So all we need to
show is that the limit superior of Re(Fi45(Ty(t)) as h — 0+ is not positive. Suppose
the limit superior is a positive number A. Then there is a decreasing sequence of
positive numbers h,, so that h, — 0 and Re(Fiyp, (Ty(t))) — A as n — oo. Let
F be a weak limit point of the sequence Fiip, . Since the ||Fyip, || = 1 we have
[|F|| < 1. We have

F(y(®)) =F(y(t) =yt + hn)) + (F = Fopn, )yt + hn) = y(t))
+ (F = Fign, ) (y(0) + ly(t + hn)|-

As n — oo the first two terms tend to zero and the last term tends to ||y(¢)]].
Since F' is a weak limit point there is a subsequence of the sequence h,, converging
to zero so that the third term tends to zero for the subsequence. Hence, we have
F(y(t)) = |ly(@®)|l- Also we have Re(F(Ty(t)) = . Let g(s) = F(S(s)y(t)) for s > 0.
Since y(t) € D(T) we have g is differentiable and ¢'(s) = F(S(s)Ty(t)). We have
1S(s)y(t)]] > Re(g(s)) and since g(0) = |ly(t)|| and Re(¢’(0)) = A > 0 we have
1S(s)y(@®)]] > |ly(¢)|| for some s > 0. But this contradicts the fact that S(s) is a
contraction. Hence, we have

lim sup ([ly(t +n)[ = [ly()[))/h <0
h—0+

and it follows that |ly(¢)|| is a non increasing function of ¢. Since ||y(0)]| = 0 we
have y(t) = 0 for all t € [0, s]. Hence, z(t) = S(t)x(0) for ¢ € [0, s].

Theorem 2.9. Suppose T is the generator of a strongly continuous one parame-
ter semigroup of contractions Oy of B(9).. Then ©, is positivity preserving (i.e.,
Oi(p) >0 if p>0 for allt >0 and p € B(9)«) if and only if p — AT p > 0 implies
p >0 forall A € (0,1) and p € D(T).

Proof. This result can be dug out of Chapter 3 of [BR] (Bratelli and Robinson
work with groups but the arguments work for semigroups). A sketch of the proof is
as follows. Assume the hypothesis of the theorem and O, is positivity preserving.
Then for A > 0 we have

1 oo
(I-MT)"' = X/ e O, dt
0

so (I — AT)~! is positivity preserving for A > 0. Hence p — AT)p > 0 implies p > 0
for all A > 0 and p € D(T).

Conversely, suppose p — ATp > 0 implies p > 0 for all A € (0,1) and p € D(T).
Then (I — A\T)~! is positivity preserving for all A € (0,1). As shown in calculations
in Chapter 3 of [BR] we have

O:(p) = exp(tT)(p) = lim (I —(t/n)T)""p
for each p € B(H), and ¢t > 0. Since (I — (¢t/n)T)~" is positivity preserving for

n > t lwe see O, is the limit of positivity preserving maps and, hence, O, is
positivity preserving. (|

We will occasionally need the following lemma.

Lemma 2.10. Suppose p € B(9). and E € B(H) is an orthogonal projection. Let
p1(A) = p(EAE) for A € B(9). Then

lo = prll* < 2[lpll* = 2]l o1
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Proof. We prove the lemma for the case when ||p|| = 1. The general case then
follows by linearity. Suppose p € B($). and ||p|| = 1. Then p can be written in the

form
p(A) =" Ni(fi, Agi)
=1

where the f’s and ¢'s form an orthonormal set of vectors and the \; are posi-
tive numbers which sum to one. Let m be the countable direct sum of identity
representations of B($)) and let

F=vVvMi®vVifo®--- and G=vVM g1 B Vg2 ® - .
Then we have p(A) = (F,7(A)G) and ||F|| = ||G|| = 1. Let p1(A) = p(EAE)
for all A € B($H). We have p1(A) = (n(E)F,n(A)7(E)G) and, hence, ||p1| <
|7 (E)F| ||7(E)G]. Suppose A € B(H) and ||A|| < 1. Then

p(A) = pr(A)| =|(F, w(A) (I = 7(E))G) + ((I = n(E)) F,w(A)m(E)G)|

<G = m(E)G| + | F = m(E)F|| |[=(E)G].

Now |F — n(E)F||*> = (F,(I — ©(E))F) = 1 — ||x(E)F||? and, similarly we have
|G — n(E)G|?> = 1 — ||x(E)G|*. Combining these with the above inequality we
have

p(A) = p1(A)] < V1~ [[n(E)G|? + V[ (E)G|? ~ [[n(E)G|?|m(E)F>.
Since /z + \/y < /22 + 2y for all z,y € [0, 00) it follows that
p(A) = p1(A)] < V2 = 2|7 (E)G|2||=(E)F|]?
for all A € B($) with ||A|| < 1. Hence, we have
lp = pall* < 2 =2|m(E)G|?|m(B)F|* < 2= 2l|p: 1%,

where the second inequality in the line above follows from the inequality ||p1]| <
|lm(E)F] ||7(E)G||. Hence, we have proved the lemma for the case ||p|| = 1. For the
general case we first note that if ||p|| = 0 then p = p; = 0 and the conclusion of the
lemma follows trivially. Then if ||p|| > 0 we simply apply the above inequality to
the functionals ||p||~1p and ||p||~'p1 and the inequality of the lemma follows. [

3. Subordinates of CP-semigroups

In this section we are interested in the order structure of CP-semigroups and the
E,-semigroups they induce from a result of Bhat [Bh].

Definition 3.1. A CP-semigroup « of B($) is a one parameter semigroup of com-
pletely positive contractions ay of 9B(5)) into itself which are strongly continuous in
the sense that ||y (A)f — Af|| = 0 ast — 0+ for all A € B($H) and f € H.

We are particularly interested in the order structure for CP-semigroups where
the order structure is in the sense of completely positive maps. A mapping ¢ from
one operator algebra 2 into B($H) completely positive if

n
D (i d(AA))f) =20
i,j=1
for A, e A, f e Hori=1,2,--- , mand n = 1,2,--- . An important result of
Stinespring [St] states that if 2 has a unit I and ¢ completely positive from 2 into
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B(H) there is a x-representation 7 of 2 on B(RK) and a operator V from § to R so
that
P(A) =Vim(A)V

for all A € 2 and the vectors m(A)V f for A € A and f € $ span R Furthermore,
this representation 7 is determined by these requirements up to unitary equivalence.
Note that for a completely positive map ¢ we have ||¢|| = ||¢(I)||. By requiring 2
to have a unit we insure ¢ is bounded. Also, if v is a second completely positive
map of 2 into B($H) and the mapping A — ¢(A) — v(A) for A € 2 is completely
positive then there is a unique positive operator C' € 7(21)'(C' commutes with 7(A)
for all A € ) so that y(A) = V*Cr(A)V for all A € 2.

Another result concerning completely positive maps which we will often use is
that if ¢ is a completely positive contraction from a C*-algebra 2 to B($) and S € A
is a contraction (||S|| < 1) then if ¢(S) is an isometry then ¢(AS) = ¢(A)¢(S) for
all A € 2 and if ¢(S*) is an isometry then ¢(SA) = ¢(S)p(A) for all A € A. This
result follows easily from the Stinespring construction.

Arveson has described the completely positive maps of B($) into B(RK) which
we describe in the following definition. We use Arveson’s characterization to defines
the rank of such a map. In this section we denote by B(R, £) the space of bounded
linear operators from the Hilbert space $) to the Hilbert space K. Note that if
A € B(R,9H) then A* € B(H, R).

Definition 3.2. Suppose ¢ is a completely positive o-weakly continuous contrac-
tion of B(H) into B(R). Arveson has shown that a completely positive o-weakly
continuous contraction ¢ of B($) into B(K) is of the form

P(A) = XT: C;ACT
i=1

for A € B($) where r is a nonnegative integer or a countable infinity and the
C; € B(&,9) are linearly independent over ¢2(N) which means that for every
square summable sequence z; € C for ¢ € [1,r 4+ 1) if C is the operator given by

C = i ZZCZ
i=1

(one can show the sum converges in norm) then C' = 0 if and only if each z; = 0
for i € [1,7 + 1). If ¢ is expressed in terms of a second linearly independent set of
operators C] the number of terms 7’ for the second sum is the same. We call r the
rank of ¢.

We have the notion of when map ¢ dominates . Sometimes it is useful to have
a word for the maps v which are dominated by ¢. We call these maps subordinates

of ¢.

Definition 3.3. Suppose ¢ is a o-weakly continuous completely positive map of
B($H) into B(RKR). Then ~ is a subordinate of ¢ if v is a completely positive map
of B(H) into B(K) and the mapping for A € B(H) given by A — ¢(A) — v(4)
is completely positive. In this situation we say ¢ dominates . The fact that ¢
dominates v or what is the same thing that ~ is a subordinate of ¢ is denoted ¢ > ~.
(Note v is automatically o-weakly continuous.) Suppose « is a CP-semigroup of
B($). Then G is a subordinate of « if 8 is a CP-semigroup and A — a;(A) — B:(A)
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for A € 9B($) is completely positive for all t > 0 (i.e., oy > G, for each ¢ > 0). Again
we may express this same notion by saying o dominates § and this is denoted by
writing o > .

Suppose ¢ is a o-weakly continuous complete positive map of B() into B(K)
and ¢ is given as in Definition 3.2. Then the extremal subordinates of ¢ are of the
form v(A) = CAC* for A € B($H) with

T T
i=1 i=1

We see that the extremal subordinates of ¢ are isomorphic to the rank one
projections in a r-dimensional Hilbert space.

An important result of Bhat [Bh] is that each unital CP-semigroup « can be
dilated to an E,-semigroup o and if the dilation is minimal then o is unique up
to cocycle conjugacy. The relation between the CP-semigroup « of B($) and the
minimal dilation a? which is an E,-semigroup of (1) is given by

a(A) = W*ad(WAW W
for all A € B($)) where W is an isometry of §) into £; so that WW* is an increasing
projection for a? (i.e., ad(WW*) > WW* for all t > 0) and a? is minimal over the
range of WW™*. We use Arveson’s definition of minimal [A6] which is equivalent to

Bhat’s definition but easier to state which means the linear span of vectors of the
form

af WAW* ol (WAW*) - o (WA,W*W f
with f € 9, A; € B(H), t; >0fori=1,--- ,nand n = 1,2,--- is dense in H;.
Arveson showed that a is minimal if and only if the operators af(W AW*) for
A € B($) generate B(H1) so every vector is cyclic for the aff(WAW™).

The minimal dilation o is determined by a up to conjugacy. Because of the

importance of this construction we briefly describe the situation. Suppose a in

a minimal dilation of the unital CP-semigroup of B($)) to an E,-semigroup a? of
B($H1) and W is an isometry of §) into $; so that a? is minimal over the range of
W and

a(A) = Wad(WAW W
for all A € B($) and ¢ > 0. The key to understanding why o determines a? is
seeing how the expression

= :E(Ala aAn7t17"' atn)
=W*af (WAW*)ail, (WAW*) -+ afd (WA, W )W

is computable from «. Let us first take the case of two terms with ¢; > ¢35 so we set
s =1y and t = t; — t5. Then we have

W*ad (WAW*) ol (WBWH)W =W*af, (WAW*)ad(WBW*)W
=W*a(ad(WAW*)W BW*)W
=W*a(WW*)ad(ad(WAW* YW BW* )W
=W*ad(WW*a(WAW*)W BW*)W
al(Wa(A)BW*)W = as(a:(A)B)
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where in the third line we used the fact that a(WW*) > WW* so we have W* =
W*ad(WW*). So for t; > t, we have
Wad (WAW*)al (WAWHW = o, (gt (A1) A).
And when t; <ty a similar calculation shows
W*al (WAW*)al (WAWHW = o, (Aray, —1,(A2)).
So in general we have
W* ol (W AW Yol (W As W)W = a0z, g, (A1), e, (42)
where t, = min(ty, t2). For the case of n terms we find
W*ad (WAW*)al (WAW*) - ol (WA, W)W
=W*ag(af, _ (WAW)af, _(WAW)---af _ (WA,W*)W
where s = min(¢q,ta, - ,t,). So if ¢ is the minimum of the ¢'s we have
Wl (WAW*)al (WAW™) - aff (WA WHW =
Wras(af _s(WAW*)--af, | (WA A WHWAW*af, (WA W)
o) L (WAW)W.
In the expression above we can replace W* by W*as(WW™*) on the left and W by
as(WW*)W on the right. Then we have
W*ad (WA W*)af (WAW*) - ol (WA WHW = W*al(WX ALY W)W
where
X =W} J(WAW*)-af (WA W)W
and
Y =Wl (WA W) o (WA W)W,

Note the expressions for X and Y involve an expression = with a smaller number
of terms. One sees that by using this procedure repeatedly one can successively
reduce the number to terms until the number of terms is two or less. In this way
one can evaluate Z in solely in terms of a. To give an example, for the product of
four terms with 0 <ty <t; <t3 < t4 we find

W*ad (WAW*)ald (WA W), (W As W) o, (W AgW )W
= O, (atl —ta (Al)A2at3 —ta (A3at4 —t3 (A4)))

In [P4] we introduced the notion of a local cocycle for E,-semigroups. If « is an
E,-semigroup of B($) then ¢t — S(¢) is a cocycle if S(t) is strongly continuous in
t, S(0) = I and S(t) satisfies the cocycle identity S(t)a:(S(s)) = S(t + s) for all
s,t > 0. The family S(t) is a local cocycle if S(t) is a cocycle and S(¢) commutes
with a;(A) for all A € B(9) (i.e., S(t) € a(B(H)) for all t > 0). In Theorem 4.9 of
[P4] it was shown that the projection valued local cocycles with the order relation
E(t) > F(t) for all t > 0 form a complete lattice which is a cocycle conjugacy
invariant. The same argument shows that the positive local cocycles with the
obvious order relation are a cocycle conjugacy invariant. What is of interest is
that the positive contractive local cocycles of an E,-semigroup « are in one to one
correspondence with the subordinates of a.
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Theorem 3.4. Suppose a is an E,-semigroup of B(9). Suppose B is a subordinate
of a. Then there is a local cocycle t — C(t) with 0 < C(t) < I fort > 0 and
Bi(A) = C(t)ar(A) for allt >0 and A € B(9). Conversely, if t — C(t) is a local
cocycle with 0 < C(t) < I fort > 0 and if B (A) = C(t)ar(A) for all t > 0 and
A € B(9) then B is a subordinate of a. Furthermore, the local cocycles t — C(t)
with 0 < C(t) < I for all t > 0 with the obvious order relation are a cocycle
conjugacy invariant.

Proof. Suppose a is an F,-semigroup of B($) and [ is subordinate of «. Suppose
t > 0. Since ay > (; and a4 is a *-isomorphism we have from the Stinespring
results concerning completely positive maps that 8:(A) = o (A)C(t) with C(t) €
o (B($)) for each A € B(H) and 0 < C(t) < I. Since § is a semigroup we have
for t,s > 0 that

C(t+5) = Birs(I) = Be(Bs(1)) = Be(C(s)) = Ct)a(C(s))-

Conversely suppose t — C(¢) is a local cocycle with 0 < C(¢t) < I for all ¢t > 0.
Then for each ¢ > 0 we have

ai(A) = By(A) = (I — O(t))ay(A) = (I — C(£)) Zay(A)(I — C(1))%.

Hence, the map A — «;(A) — B;(A) is completely positive for ¢ > 0.
Next suppose « and f3 are cocycle conjugate E,-semigroups of B($1) and B(92),
respectively. This means there is a unitary operator W € 9B($1, $2) so that

Bi(A) = W*S(t) o (WAW*)S(t) W
for all A € B($H2) and t > 0 where t — S(t) is an « unitary cocycle. Suppose

t — C(t) is a local cocycle for o with 0 < C(¢t) < I for all t > 0. Let D(t) =
W*S(t)C(t)S(t)~*W. We have 0 < D(t) < I for all t > 0 and

D(t)B:(D(s)) ZD(t)W*S(t)at(WD(S)W*)S(t)*W
Dt)WS(t)ae(S(s)C(s)S(s) ") S ()~ W
=W*S(t)C(t)ar(S(s))ae(C(s))S(t + 5) 7' W
=W*S(t)ae(S(s))C(t)ae(C(s)S(t + ) 7' W
=W*S(t+ s)C(t+5)S(t+s) "W = D(t + 5)
for all t,s > 0. Hence, t — D(t) is a cocycle for 8. Next note that
D(t)B(A) =W*S(HC()SH) T WW*S(t)on(WAW)S () ™' W
=W S(t)C( Ja (WAW*)S(t) "' W
=W*S(t)ay(WAW*)C(t)S(t) "W
=W*S(t)a:(WAW*)S(t) "WW*S(t)C(t)S(t) "W
=4 (A)D(t)

for all A € B(H) and t > 0. Hence t — D(t) is a local cocycle for 8. Hence, the
cocycle conjugacy produces mapping from each positive contractive local cocycle
t — C(t) for a to a positive contractive local cocycle D(t) for 5. Since this mapping
is invertible and preserves order it follows that we have an order isomorphism
from the local cocycles for a onto the local cocycles for § and from what we have
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shown above this gives and order isomorphism of the subordinates of o with the
subordinates of (3. ([l

Theorem 3.5. Suppose « is a unital CP-semigroup of B($) and o in a minimal
dilation of a to an E,-semigroup of B($1). Then there is an order isomorphism
of the subordinates of o with the subordinates of a® given as follows. Suppose the
relation between oy and of is given by

a(A) = W*ad(WAW W

for all A € B($) and t > 0 where W is an isometry of ) into H1 with WW* an
increasing projection for a® and o is minimal over the range of WW*. Suppose
v is a subordinate of a® and C(t) = v¢(I) for t > 0. Then 3 the subordinate of a
associated with v under this isomorphism is given by

Bi(A) = W*ad(WAW*)C(t)W
for all A € B($) and t > 0.

Proof. Assume the hypothesis and notation of the theorem. Suppose 7 is a sub-
ordinate of a? and C(t) = ~;(I) for all t > 0. Let 3; be as given in the statement
of the theorem. Note

Bi(A) = W*al(WAW*)C()W = W*C (1) al(WAW*)C (1) 2 W
and
ai(A) = Bi(A) =W* o (WAW*)(I - C(t))W
=W*(I — C(t))2al(WAW*)(I — C(t))* W

for all A € B(H) and ¢t > 0. From this it follows that A — (,(A) and A —
ot (A)— B (A) are completely positive maps for all ¢ > 0. Note that 3; is a semigroup
since

WW*ad(WAW*)C(s)WW*)C(t)W

B (Bs(A)) =W*a( ( (

af (W af (C(s))af (WWH)C(HOW
o ( )

£

\_//\

NC () (C(s))al(WW* )W
=W*ad(W )at+5(WAW YC(t + 8)ad (WWHW
=W*al (WAW*)CO(t + )W = Brys(A)

for all A € B($) and ¢, s > 0. (Note above we used the fact that af (WW*) > WW*
which implies W*ad(WW*) = W* and ol(WW*)W = W for all t > 0.) Hence, 3
is a subordinate of a.

Next we show the mapping just described from C(t) to 3 is one to one. In fact
we will show that the local cocycle C(t) can be reconstructed from 3. We will show
how expressions like

E=W*al (WAW?) o (WAWC(t,)ad (WBW*)---ald (WB,W*)W

S

can be calculated from o and f3. Since a? is minimal over the range of W it follows

that these expression determine C(t). We begin with some low order terms. Suppose
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0<t<sand A € B(H). Then
W*C(t)ad(WAW* )W =W*a d(
o
) f
=W*C(t)ad(WW*al_,(WAW* ) WW*)W
—W Ol (Was_ (A)WHW
=B(as—t(A)).
Suppose 0 < s <t and A € B(H). Then
W*C(t)ad(WAWHW =W*C(s)ad(C(t — 5))ad(WAW*)W
=W*ad(WW*)C(s)ad(C(t — s))ad(WAW* )W
=W*C(5)ad(WW*C(t — )W AW*)W
=W*C(s)a (W o(1) AW*)W
=Bs(Bi—s(I)A).
Repeating the computation with C(t) on the right gives
W*ad(WAW*)C(OW = Bs(AB—s(I))-

Next we show how an expression = given above can be calculated in terms of a =
with fewer terms. Consider E given above. Let t = min(ty, -« , tm, to, S1,°** 5 Sm)-
Suppose t = t;. Note that C(t,) = C(t)ad(C(t, —t)) and C(t) commutes with
ad(WAW*) for s > t and A € B($). Using this we find the expression for = above
can be reduced as follows:

= =W C(t)af(af, (WAWY)---af, (WAW)C(t,)ad, (WBIW™) - -
af, (WB,W*)W

for t; = t; —t and s} = s; —t for i = 0,1,--- ,n and j = 1,---,m. Since
Ad(WWHW = W, W*ad(WW*) = W* and o(WW?*) commutes with C(t) we
have

2= W*C(t)af(WW*af, (WA, W)
..agz (WA, W* )WAkW*at, (WA W) -
caf (WAW*)C(t)ad, (WBW™) - -
al, (WB, W*)WW*)W.

Let
X =Wl (WAWY)--. af;_l(WAk_lw*)W

and
Y = W*at, (WAL W) - af, (WAWC(t)ad (WBIW?) - -
aldy (WB,W*)W.
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Note X,Y € B(9) and X is computable in terms of « as described at the beginning
of this section and Y is of the form = with a smaller number of terms. Then we
have
E=W*Ct)ad (WX ALY W)W = B(X AY).

Hence, we have shown that in this case = can be computed from a knowledge of
and = with fewer terms.

Next suppose t = t,. Then C(t,) = C(t) commutes with all the other terms and
we have

E=W*C(t)af(af, ( WAW)---af, (WAW*)ald, (WB W) --
—ad (WB,W*))W

fort; =t;—tand sy =s;—tfori=1,--- ,nandj=1,--- ,m. Since al(WW*)W =
W, W*ad(WW*) = W* and o (WW*) commutes with C(t) we have

E=W*C(t)af(WW*af, (WA W) -
ap (WAWS)al, (WBIW?) - af, (WB,W* )WW*)W.
Let
Z =W af (WAW?)---afs (WAW*)al, (WBIW?) -, (WB,W*)W.
Note Z € B($) and Z can be computed from a knowledge of o. Hence, we have
2 =W*C(t)ad(WZW*W = B,(2).

Hence, we have shown in this case = can be calculated from a knowledge of § and
Q.

Finally suppose t = si. Then the same sort of calculation we did for ¢t = ¢
shows that = can be computed from a knowledge of o and § and Z with fewer
terms. Hence, we have shown in all cases = can be computed from a knowledge of
a, § and = with fewer terms. Then by iteration we can reduce the number of terms
in Z until the number of terms is down to two or one where we have shown how to
compute these terms from a knowledge of o and 3. Hence, we have shown that all
the terms = can be computed from a knowledge of a and . Since o is minimal
over the range of W it follows that for each ¢t > 0 we can compute (F, C(¢t)G) where
F and G are linear combinations of vectors of the form

oaf WAW®) - af (WAW*)W f

with f € $, A; € B(9),t; > 0fori=1,---,n. Since the closed span of such vectors
is all of 9, it follows that C(t) is determined from a knowledge of « and (. Hence,
the mapping C(t) — (; from positive contractive local cocycles to subordinates of
« is one to one.

Next we show the mapping is onto (i.e., it has range all subordinates of «).
Suppose then that 5 is a subordinate of a. Suppose ¢ > 0. Since we have a;(4) =
WH*ad(WAW*)W for A € B($) and af is a -representation of B($H;) the mapping
A — a(WAW™) is a =representation of B($H) on af(WW*)IM, where M; is
the closed linear span of {ad(WAW*)W f, f € 5, A € B($H)} and let ¢; be the
restriction of A — af(WAW*) to My so ¢ (A)f = a(WAW*)f for all f € M,
and A € B($). Note ay(A) = W*¢p,(A)W for A € B($H) and the span of ¢,(A)W f
for A € B(9) and f € § is dense in M;. Since ay > F; it follows from the
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Stinespring analysis of completely positive maps that there is a unique operator
Z(t) € ¢:(B($))’ so that B;(A) = W*¢,(A)Z(t)W for all A € B($H).

To proceed further we need to know the relation between the unit I € B($;)
and WW*. Since WW* is an increasing projection for a? we have ad(WW*) >
ad(WW*) for t > s. Note either WW* = af(WW?*) for all t > 0 or a(WW*) #
ad(WW*) if t # s. In the first case a; is already an F,-semigroup and in this case
the theorem is trivial and in the second case I — WW™* is of infinite rank since
ol L(WW*) — al(WW*) for n = 1,2,--- is a sequence of nonzero orthogonal
projections less than I — WW™*. Hence, I — WW™* is of rank zero or infinity. In
the rank zero case the theorem is trivial so we assume I — WW™* is of infinite rank.
Then there exist an infinite sequence of partial isometries E;; € B($1) so that
E;—klEil = E11 = WW* and E'ZﬁlEjl =0 for i 7éj for Z,j = 1,2, .-+ and

i EnEf =1
i=1

Let E;j = EjE} for 4,5 = 1,2,--- . Note the E;; form a set of matrix units in
B(9H1). Since M, is a subspace of H; any operator A € B(M;) can be interpreted
as an operator Al in B($)1) by considering A in B($1) to be given by (f, Alg) =
(f', Ag’) where f’ and g’ are the orthogonal projections of f and g onto ;. Then
let

Y(t) = iaf(Eil)Z(t)af(Eu)

where we interpret Z(t) € B(9M;) as an operator in B(H;) in the manner just
described. We will show W (t) € af(B(H))’. This is seen as follows. From the
formula given above one easily checks that Y () commutes with the af(E;;) for
i,j=1,2,--- . Let Fj; fori,j =1,--- ,r be a complete set of matrix units for B($)
(note r is the dimension of ). Then G (;n)(jm) = EaW Fum W*Eyj fori, j = 1,2, -
and n,m = 1,--- ,r form a complete set of matrix units for B(H1). Then C €
o (B($H1))’ if and only if C commutes with o (G (jn) (jm)) for all values of the indices.
Since Y (t) commutes with af(E;;) for all i, j = 1,2,--- we have Y (t) € a(B(H1))’
if and only if Y (t) commutes with af(W F,,,,W*) for n,m = 1,---,r. Suppose
1 <n,m<r+1. Since Z(t) € ¢:(B($))" we have for f € M;

(
A (WEum WY (8) f = (W Fo W) Z () f = ¢¢(Fam) Z(t) f
=Z(t)py(Fpm) f = Z(t)a(W Fpp W*) f
=Y (t)ad(W FpW*) f

and since o (W F,,,, W*) = o} (W F,,W*) maps 9, into itself af (W F,,,W*) maps
;- the orthogonal complement of 91, into itself we have for f € 9t

A WE WY () f = ad(WFE, 2WHZ(t)f =0
and
Y () (W E W f = Z(t)ad(W Ep W) f = 0.

Since these Y (t) and af(W F,,,W*) commute when applied to f € 90, and to
f e Mt for all nym = 1,--- ;7 we have Y (t) € af(B(H1)). We are now we are
prepared to define a local cocycle C(t). We first define C(t) for ¢t a dyadic rational



CP-FLows 179

(i.e., t = m2~" with n and m integers). Suppose t = m2~". For n, m and p positive
integers consider the operators
d d d
C(m,n,p) =Y (s)ag(Y(s))ag(Y(s)) - - - age(Y(s))

where s = 277 and ¢ = m2™®*(P=0) _ 1. Since the unit ball of B($);) is o-weakly
compact the above sequence of operators has a weak limit point as p — oo. Since $
is separable there is a subsequence of the above operators which converge weakly to
a limit. Since the dyadic rationals are countable there is by the diagonal sequence
argument a sequence {p; : k = 1,2,---} tending to infinity so that C(m,n,pg)
converges o-weakly to a limit as k — oo for all positive integers m and n. We define

C(m2™") = klim C(m,n,pr).

Since Y (s) € ad(B($H1))" for s > 0 a routine computation shows C(m,n,p) €
A(m2-)(B($H1))" for all p > 0. Hence, C(t) € a;(B(H1))" for £ = m27™. Next we
show C(t) is a cocycle. Before we begin we note that although multiplication is
not jointly continuous in the o-weak topology in our case it is. Note that if M
is a type I factor then the mapping C = AB for A € M and B € M’ is jointly
continuous in the o-weak operator topology. To see this note we can represent our
Hilbert space K as the tensor product of £ ® Ky and represent M as B(£;) and
M’ as B(R2) so we can express elements of M in the form A ®I and elements of
M’ as I ® B. Note that for product vectors F = f; ® f2 and G = g1 ® g2 we have

(F,CG) = (F,(A® B)G) = (f1,Ag1)(f2, Bg2)

and we see the above expression is jointly continuous in the o-weak operator topol-
ogy. Since linear combinations of product vectors f; ® fo are dense in R it follows
that multiplication is jointly continuous in A and B for A € M and B € M’. The
same argument shows multiplication is jointly continuous in n variables (i.e., C' =
A1As -+ Ay) where A; € M; with the M; mutually commuting type I factors for
i=1,---,n. Since af is o-weakly continuous for each ¢ > 0 we have expression of

the form
Aroy, (Ag)ag, 41, (A3) - oy gt 4 (An)

with A; € ay, (B($H1)) are jointly continuous in the A4; in the o-weak topology.
We now show C'(t) satisfies the cocycle condition on the dyadic rationals. Sup-
pose t = m2~™ and s = k277. Note that for k sufficiently large we have

C(m7 nvpk)agl(c(kmjapk)) = C(quim + k2qik7 qvpk)

As k — oo the three terms above tend o-weakly to C(t), a;(C(s)) and C(¢+ s) and
since multiplication is jointly continuous in this situation we have C(t)ad(C(s)) =
C(t+s).

Next we show W*C(t)afd(WAW*)W = B;(A) for t a dyadic rational and A €
B($). Suppose t = m2~ ™. Now we have for k sufficiently large (so that py > n) we
have

C(m,n, p)ag (WAW®) =Y (s)al(Y (s))asg,(Y () - afy_1), (Y (5))ag, (WAW?)

S
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where s = 27P% and ¢ = m2P*~". Since P = WW™ is an increasing projection for
a? and the fact that Y (s) € a¢(B(9))’ it follows that

=W*Y (s)al(PY (s))ag,(PY () - ag,_o(PY (s))ag,(WAW* )W
=W*Y (s)af(PY (s))ag,(PY () -+~ ag,_o(PY (s)ad(WAW*) P)W
=W*Y (s)al(PY ())ag,(PY () - age_o (Y (s)age_ (W B (AW )W
=W*Y (s)af(PY (5))ag,(PY () - ag o (Y (s)al (W, (A)W*) P)W
=W*Y (s)a{(PY (5))ag,(PY () -~ age o (W Bas (W)W

=W*Y (5)a(PY (s)al (W Bys—2s(A)W*)P)W
:W*Y(S)ag(WﬂqsfS(A)W*)W = Bgs(A) = Bi(A).

Since C(n,m,pi) — C(t) as k — oo we have WC(#)ad(WAW*)W = §,(A) for
all A € B(9) and ¢ a nonnegative dyadic rational. We now want to extend these
results from dyadic rationals to the real numbers. Since af is o-strongly continuous
in ¢t and C(t + s) = C(t)a(C(s)) all for ¢ and s nonnegative dyadic rationals all
we need is to show C(t) — I o-weakly as t — 0+ in the dyadic rationals. (Note
since C(t+s) = C(t)as(C(s)) > C(t) for s and t positive dyadic rationals it follows
that C(t) is decreasing in ¢ so if C(t) converges weakly to I as t — 0+ it converges
strongly.) Now we showed earlier how expressions of the form

E=Waf (WAW?) o (WAWC(t,)ald (WBW*)---ald (WB, W)W
can be computed from a knowledge of o and [ and if we restrict the variables ¢;
and s; to dyadic rationals the same rules apply and we can compute these terms
in terms of @ and 8. We do not actually have to carry out these computations in
detail to see that for an expression = above there will be a finite number of 3,
expressions with ¢; < ¢, and since §,(A) — A o-strongly as s — 0+ it follows that
as t, — 0+ these expressions behave so that the limit will be the expression for =
with C(¢,) replaced by the unit I. Hence, we have (F,C(¢t)G) — (F,G) as t — 0+
(t a dyadic rational) for F' and G finite linear combination of vectors of the form

af (WAW®) - af (WA,W*)W f

with f € 9 and A; € B($) for i = 1,--- ,n. Since a? is minimal over the range of
W these vectors are dense in $; and since the C(t) are all of norm less than one
we have C(t) — I weakly as t — 0+ with ¢ a dyadic rational. As we have seen this
implies C(t) is continuous in ¢ so we can extend C(¢) to all the nonnegative reals
by continuity and the cocycle condition C(t)af(C(s)) = C(t + s) and the relation
Bi(A) = W*C(t)ad(A)W holds for all A € B($) and for all ¢,s € [0,00). Hence,
we have shown for a subordinate 3 of « there is a subordinate v of a? (and from
what we showed before it follows that ~ is unique) so that 14 (A) = C(t)a(A) with
C(t) a local cocycle and 3;(A) = W*C(t)ad(A)W for all A € B($H) and t > 0. It
is routine to show the isomorphism v < § is an order isomorphism so the proof of
the theorem is complete. (Il
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The next lemma gives a way to determine if one CP-semigroup dominates an-
other.

Lemma 3.6. Suppose a and 3 are CP-semigroups of B(9). Let © be the semigroup
of B(H & H) given by

o ([ xn i ]) =15 Ao

where X;; € B(9) fori,j =1,2. Then o > 3 if and only if O is completely positive
for each t > 0.

Proof. Suppose a and  are CP-semigroups of B($) and © is defined as above.
Note © is a semigroup. Using the notation above we have

o[ )= [ [ A6 ]

for t > 0. Hence, if o > [ the above equations shows that ©; is the sum of
two completely positive maps and, therefore, is completely positive. Conversely,
suppose O; is completely positive for each ¢t > 0. Suppose t > 0 and A; € B(H)

and f; € $ and let
_ i A o i
B; = { 0 0 ] and  F; = [ }

—fi
fori=1,--- ,n. Then we have
S (fir (A7 Aj) = Bi(AT A f5) = > (F, 04(B; Bj)Fy) > 0
i,j=1 i,j=1

where the last inequality follows from the fact that ©; is completely positive. Hence,
A — oy (A) — Bi(A) is completely positive for each ¢ > 0. O

When A. Connes introduced the notion of outer conjugacy [Co] which we now
call cocycle conjugacy one of the important observations Connes made was that
two automorphisms « and (8 of a factor R are outer conjugate if and only if there
is an automorphism © of Ms ® R of the form

o[ i) -[ae) 3]

We will make frequent use of Connes’ observation in developing criteria for de-
termining when the minimal dilations of two unital CP-semigroups are cocycle
conjugate. We introduce the following notation. If $); and $)o are Hilbert spaces
then an elements X € B($H; ® H2) (all bounded operators on the direct sum of $);
and ) can be represented in matrix form as follows:

X1 X2
X =
{le X22}

where X;; € B(9;,9;) fori,j =1,2.
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Definition 3.7. Suppose « and § are unital CP-semigroups of 5($1) and B(92),
respectively. We say v is a corner from « to § if 7 is mapping of B($1, H2) into
itself so that the mapping ©; given by

ol ) - e 3]

for t > 0 where X;; € B(9;,9;) for i,7 = 1,2 and 7/(X21) = 1(X3)* is a
CP-semigroup of B($H1 @ 9H2). Suppose 7 is a corner from « to § and O is the
CP-semigroup defined above and ©’ is a subordinate of © where the mapping O}

is given by
=Y X1 Xio _ ap(X11)  7(Xa2)
P X1 Xao Vi (Xo1)  Bi(Xa2)
for t > 0 where X;; € B(9;,9;) for 4,5 = 1,2 and v/ (X21) = v(X35;)*. Then we
say 7 is a maximal corner from « to § if for every subordinate ©®" we have o/ = «

and we say « is a hyper maximal corner from « to f if for every subordinate ©" we
have o/ =« and B’ = 3.

We note that if v is a corner from a to § then ~* is a corner from (3 to o and ~y
is hyper maximal if and only both v and v* are maximal.

Lemma 3.8. Suppose a and B are E,-semigroups of B($H1) and B($2), respec-
tively. Then o and B are cocycle conjugate if and only if there is a corner vy from
a to B so that ©; defined by

o ([ )=l 6

where X;; € B(9;,9;) fori,j =1,2 and for t > 0 is an E,-semigroup of B(H1 &
9H2).

Proof. Suppose a; and §; are E,-semigroups of B($1) and B($H3) which are co-
cycle conjugate. Then there is an «a; unitary cocycle S(¢) and a unitary operator
W € B(91, H2) so that 5;(A) = W*S(t)oy(WAW*)S(t)*W for all A € B($2) and
t > 0. Define ©; by

o X1 Xio|) _ ay(X11) ay(X1oW*)S(t)* W
t X21 X22 W*S(t)ozt(Wle) W*S(t)at(WXQQW*)S(t)*W

where X;; € B(9;,9;) for i,j = 1,2. A routine computation shows that ©, is an
E,-semigroup of B(H; @ H2) satisfying the conclusion of the theorem.

Conversely, suppose «; and (; are E,-semigroups of B($;) and B($H2) and O, is
an FE,-semigroup of B(9H1 ® Ha) of the form given in the statement of the theorem.
Let E; be the hermitian projection of £; @ $H2 onto H;. So F1 + F; = I the unit
in B(H; © H2) and O4(E;) = E; for i = 1,2 and ¢ > 0. From Theorem 2.4 we
have ©; is cocycle conjugate to a; and f; since a; and [(; are obtained from Oy
by restricting ®t to El%(fjl D ﬁg)El = %(f)l) and EQ‘B(ﬁl D 57)2)E2 = %(52),
respectively. Since a; and (; are both cocycle conjugate with ©, they are cocycle
conjugate with each other. O

Lemma 3.9. Suppose o and 3 are x-endomorphisms of B($1) and B(52), respec-
tively. Suppose © is a completely positive mapping of B(H1 B Ha) into itself of the
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form
X1 Xio|\ _ [a(Xn) v(Xi2)
6([)(21 Xzz]) B [7*(X21) B(X22)]| "
Then
(3.1) (X1 X12X22) = a(X11)7(X12)B(X22)

for all X;; € B(9i,9;) fori,j=1,2.

Proof. Suppose « and 8 are x-endomorphisms of B($;) and B(5s2), respectively,
and © is a completely positive mapping of B($H; ® 9H2) into itself of the form
given above. Then from the Stinespring construction there is a *-representation m
of B(H1 ® H2) on a Hilbert space H3 and operator V € B(H3,9H1 ® H2) so that
O(A4) = V*r(A)V for all A € B(H1 ® H2) and $H3 is the closed span of vectors
of the form w(A)Vf with A € B(H; @ H2) and f € H; ® Hy. Let P; be the
orthogonal projection of $; & 92 onto $;. Given the form of © given above we see
that ©(F;)P;, = O(F;) for i = 1,2. Suppose A € B($,) and B € B(H2) and

A 0
x=[5 4
Since O(X)*O(X) = O(X*X) we have V*n(X)*VV*n(X)V = V*n(X)*n(X)V.
Since V is a contraction we have VV*7(X)V = 7n(X)V and V*7(X) = V*r(X)VV*
for all X of the above form. Suppose T € B(H1,9H2). Then we have

OXTX)=V'n(XTX)V =V*1(X)VV*'n(T)VV*r(X)V = 0(X)0(T)O(X).
Hence v(ATB) = a(A)y(T)5(B) for all A € B($H,) and B € B(H2). O

Next we show that a mapping satisfying (3.1) is automatically o-strongly con-
tinuous.

Lemma 3.10. Suppose o and 8 are x-endomorphisms of B(9H1) and B(H2), re-
spectively. Suppose v is a linear mapping of B(H1, H2) into itself satisfying (3.1).
Then ~ and ~* are o-strongly continuous.

Proof. Suppose the hypothesis of the lemma is satisfied. First let us assume the
dimension of §); does not exceed the dimension of 5. Then there is isometry W
on $); into $H2. Suppose w is a normal state of B(H2). Then for T € B(9H1,92) we
have y(T) = y(W*WT) = v(W*)B(WT) and

w(y(T)Y(T)) =w(BWT) (W) y(W*)BWT)) < |ly(W)|Pw(BWT)* BWT))
=W Pw(BT*W*WT)) = |ly(W*)|Pw(B(T7T))
=y (WHI?Bw)(T*T).
Since 3 is o-weakly continuous 3(w) is normal so we have w(y(T)*y(T)) < € pro-
vided ||[y(W*)|?8(w)(T*T) < € so v is o-strongly continuous.
Next suppose the dimension of $)5 does not exceed the dimension of §;. Then

there is isometry W on 9 into $;. Suppose w is a normal state of B($3). Then
for T € B(H1, H2) we have y(T) = v(TW*W) = a(TW*)v(W) and

w(y(T)y(T)) = w(y(W) a(TW*) e TW )y (W) = w(y(W) (W T TW )y (W)).
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Now p defined by p(A) = w(y(W)*A~v(W)) for A € B(H;) is o-weakly continuous
we have
W((T)A(T)) = p(a(W*T*TW)) = a(p)(W*T*TW).

Since « is o-weakly continuous G&(p) is o -weakly continuous. Since the mappings
A — W*AW is o-weakly continuous we have A — &(p)(W*AW) is o-weakly
continuous. Then w(y(T)*v(T)) < € if &(p)(W*T*TW) < € so v is o-strongly
continuous.

The proof that v* is o-strongly continuous is the same as the proof for v except
that the roles of o and 3 are interchanged. O

Lemma 3.11. Suppose o and 8 are x-endomorphisms of B(9H1) and B(Hs2), re-
spectively. Suppose 7y is a linear mapping of B(9H1,92) into itself satisfying (3.1).
Suppose W € B($H1,92) is a rank one operator normalized so that |W| =1 (so
W is a partial isometry). Then v(W) = a(WW*)y(W)B(W*W). Conversely, sup-
pose S € B(H1,92) and S = a(WW*)SE(W*W). Then there is a unique linear
mapping of B(H1,H2) into itself satisfying (3.1) so that v(W) = S.

Proof. Suppose «, 8 and W satisfying the conditions of the lemma. Suppose v is
a linear mapping of B($1, H2) into itself satisfying (3.1). Then

TW) =y(WW WW*W) = a(WW*)y(W)B(W*W).

Conversely, suppose is S € B($1,92) and S = a(WW*)SBW*W). Let {e; :
i =1,2,---}and {f; : j = 1,2,---} be an orthonormal bases for $; and $q,
respectively, so that W f1 = e;. We define matrix units T;; f = (f;, f)e; and Fy; f =
(fj, [)fi for all f € 99 and E;;f = (ej, f)e; for all f € ;. We define v(T;;) =
a(E;1)SB(F ) for all ¢ and j in their appropriate range. Now suppose T is a finite
linear combination of the T;; and we define v(7T') by linearity as

T = Z tijTi;  so (1) = Z tija(Ein)SB(F1;).
ij=1 i.j=1
Suppose w is a normal state of B($2). Then we have
wY(T)AT) = > Tamtijw(B(Fa1)S™a(Bim)a(Ein) SB(Fij))
i,j,n,m=1

= > tnmtmw(B(Fa1)S*SB(F;))

Jm,m=1

=Y w(B(Xm)"S"SB(Xm)) < [57S| Y w(B(XrpXom))

m=1

where
X =Y tmiFij.
j=1

We have
T°T =Y X5 Xm
m=1

so we have w(y(T)*v(T)) < ||S||Pw(B(T*T)). Suppose T € B($H1,92). Let

E, = Z E; and F,= i F, and T,=E,TF,.
3 =1
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Then T,, — T in the o-strong topology as n — oo. Since the mapping C' — 5(C)

is continuous in the o-strong topology and since

WY (Tn = 1) " v(Tn — Tin)) < ”SH%}(B((Tn = T0)" (T — Tm)))
we have v(T),) converges to a limit which we call y(T) o-strongly as n — oo.
We have by direct calculation that v(E;;TymFrs) = a(Eij)y(Tnm)B(Frs) and by
o-strong continuity and linearity this relation extends to the relation v(ATB) =
a(A)y(T)B(B) for all A € B($H1), B € B(H2) and T € B(H1, H2).

If 4/ is a second mapping satisfying (3.1) and such that /(W) = S. Then recalling
the construction of v we see that 7/(T) = ~(T) for all T" which are finite linear
combinations of the Tj;. From the previous lemma we know that ~ is o-strongly
continuous and so 7' = «. Hence, the mapping ~y satisfying the stated conditions is
unique. ([

Lemma 3.12. Suppose a and 8 are unital x-endomorphisms of B(9H1) and B(H2),
respectively. Suppose © is a completely positive mapping of B(H1 © Ha) into itself

of the form
o <[X11 X12]> _ [Q(Xll) v(X12)
Xo1 Xoo 7 (Xa1) B(X22)]”
Suppose W € B(91, H2) is unitary and y(W) € B(H1,H2) is also unitary. Then ©
is a unital x-endomorphism of B(H1 ® Ha2) into itself. Conversely, if © is a unital

x-endomorphism of B(H1 ® H2) into itself then v(W) is unitary for every unitary
operator W € B(91,92).

Proof. Suppose the hypothesis and notation of the lemma is satisfied. Below we
define S and compute ©(S5)

wo-o(d 1)L W)

Since (W) is unitary ©(S) is unitary. As we pointed out at the beginning of this
section it then follows that ©(XS) = ©(X)O(S) and O(SX) = ©(S5)O(X) for all
X € B(H1DH2). Applying this to the case where X has entries A € B($;) and B €
B(92) in the upper left-hand corner and lower right-hand corner, respectively, and
the zero operator in the off diagonal entries we find v(AW) = a(A)y(W), v(WB)
— Y (W)B(B), 7*(BW) = B(B)y(W)* and 7*(WA) = A(W)*a(A) for all A €
B($H1) and B € B(H3). Now suppose A € B(H1), B € B(H2) and T € B(H1, H2).
Then we have
V(AT B) =y(ATBW*W) = a( ATBW*)y(W) = a( A)a(TBW* )y (W)
=a(A)y(TBW*W) = a(A)y(TB) = a(A)y(WW*TB)
(AW)BW*TB) = a( A)y(W)B(W*T)5(B)
a(A)y(WW*T)B(B) = a(A)(T)B(B).
A similar calculation shows that if A € B($1), B € B($2) and T € B(H1, H2) then
+*(BT*A) = B(B)y*(T*)a(A) = B(B)1(T)*a(4). Now suppose X;; € B($;, 5;)
for 4,5 = 1,2. Then we have
Y(X12)7" (X21) =y(XpeWW)y* (W W Xo1) = a(X12W*)y(W)y(W)* (W Xo1)
:Oé(X12W*)Oé(WX21) = Oé(X12W*WX21) = a(X12X21)

(&%
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and

Y (X21)7(Xa2) =7 (Xaat WIW )y (WW* X13) = B(Xaa W)y(W)* (W) B(W* X12)
:/8(X21W)5(W*X12) = B(X21WW*X12) = 6(X21X12)'

Using the facts that a and 3 are *-endomorphisms and the properties of v and
~* established above it now just a matrix computation to show that ©(X)O(Y) =
O(XY) for all X, Y € B(H1 ® H2).

Conversely, suppose © is a unital x-endomorphism of B($; & H2) and W €
B(H1, H2). It is now just a routine computation to show that v(W) is unitary. O

Theorem 3.13. Suppose o and B are unital CP-semigroups of B($H1) and B(H2)
with minimal dilations o and B? to E,-semigroups of B(H11) and B(Ha1), respec-
tively. Then a® and 3¢ are cocycle conjugate if and only if there is a hyper mazimal
corner y from « to B where hyper maximal corners were defined in Definition 3.7.

Proof. Assume the notation given in the statement of the theorem and assume a¢

and 3¢ are cocycle conjugate. The relation between the CP-semigroup a of B($)1)
and the minimal dilation o which is an E,-semigroup of B($)1;) is given by

i (A) = Wi (W AW Wy

for all A € B($) where W is an isometry of §) into $; so that W, W is an increasing
projection for a¢ (i.e., ad(W1W7) > Wi W5 for all t > 0) and a? is minimal over
the range of W, W5 and the relation between 3 and 3¢ is the same with W, replaced
with Ws. Since a and 3¢ are cocycle conjugate there is by Lemma 3.8 a corner v¢
from a® to 8% so that the mapping ©¢ given by

o ([ %)) -[éGe) HG)

where X;; is a bounded operator from $;; to $;; for ¢ > 0 is an E,-semigroup
of B(H11 B Ho1). Let W be the isometry from $H; ® Hy to H11 S Hoy given by
WA{f, g} = {W1if,Wag} for f € $H; and g € H2. Then since W1 W/ is an increasing
projection for a® and WoW5 is an increasing projection for 3¢ we have

47070 0 D {af(WW*) 0

d *\ d
9*”’”’)@({ A A ES

} >WwWwr
for each t > 0 so WW* is an increasing projection for @?. Note that since a? is
minimal over the range of W, and ¢ is minimal over the range of Wy we see ©¢
is minimal over the range of W. Let © be given by ©,(A) = W*Q4(W AW*)W for
A€ B(H1 P H2) and t > 0. We see that O is of the form

o xx]) - Bt w]

where X;; € B(9;,9;) for i,j = 1,2 and 3(Xi2) = Wiyt (W1 X 1oW5 )Wy for
X12 € B(91,92) and t > 0. Now suppose O’ is a subordinate of the form given in
the statement of the theorem. Then from Theorem 3.5 there is a subordinate ©’¢
of ©% so that

0L(A) = W*OH (W AW )W
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for all A € B(H11 @ Ho1) and t > 0 and from Theorem 3.4 there is a local cocycle
C so that ©%(A) = ©¢(A)C(t) for all A € B(H11 @ Ha21) and t > 0. Now C(t) can
be written in matrix form so
Cia(t) 012(15)}
C(t) =
(*) [021@) Con (1)

for t > 0. Writing out the equation C(#)0¢(X) = ©%(X)C(t) in matrix form one
obtains four equations with four variables X;; for ¢, 7 = 1,2. Examination of these
equation yields that facts Ci2(t) = 0, C21(t) = 0 and Caa(t) = 7{(S)*Cr1(£)vE(S)
where S is a unitary form $21 to $11. (Note v:(.9) is also a unitary from $21 to H11
follows from the fact that ©¢ is a unital F,-semigroup.) Since O/¢(A) = C(t)0%(A)
for A € B(H11 ® H21) and the corner of O is v by assumption we have v;(A) =
Wi Ch ()Y H WL AW Wy = Wiyd (W AW )Ws for all t > 0 and all bounded linear
operators A € B(H1, H2). Consider the somewhat complicated expression below:

= =W;e! (Wi AWY) -0 (WA, W)C ()0l ed (WiBW;)- -
08 (Wi B W)W AW 02 (WoR W) - -
- 0F, (Wa R, W5)O, (WaSiWW3) - - O (WaS,W3)Wa

for A, A;, Bj, Ry, S; € B(H1©H2) andt >0and t; >0, s; >0,z >0,y >0 for
i, j, k and [ in there respective ranges. First we note that from a knowledge of all
such terms we can compute Cy;(t). This can be seen by noting that in the above
expression the linear combinations of the terms in the brackets following C(t)©¢
are o-strongly dense in the space of linear operators from $2; to $11 so we can
compute C(t)O%(X,2) for X5 any operator from $2; to $1;1. Since this operator
is determined by C11(¢) it follows that we can compute C11(¢) from a knowledge of
the above terms.
Next note that

C(t)OH(OF, (Wi B W) ---
- 0F (WiB, Wi )W AW5 05, (WoRiW3) - - 05 (W2R,W5))
= C(H)OL (WiBWY)---
08 (W1 B, W) (W1 AWS)0F, (WaRiW3) - OF, (Wa R, W5)
=04 (W1BW;)- -

08 (W1BRWY)C ()0 (W1AWS)OF, (WaR\W3) - OF, (Wa R, W5)

where a prime on a variable means the unprimed variable plus t (e.g., s, = s; + 1).
Then we see that = can be expressed in the simpler form

E=WiOL (Wi W) .- Of (Wi A Wi)C(1)8F (W1 AW;)OF, (WaBiW3) - - -
0 (WoB, W3 )W,
where the new A’s are made of the original A’s and B’s and the new B’s are made
up of the original R's and S’s and the new t's are made up of the original ¢ and

s's and the new s’'s are made up of the original ¢ and z’s. Now in calculating = by
the methods described earlier we see that = can be calculated from a knowledge of

Wy O (WL AWT ) W1, W5 OF (Wr AWS)Wa
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and
WO (Wi AW,) Wy = W C(4)OF (Wi AW,) W)

for A € B(9H1 © H2) and ¢t > 0. Now the first two are given by ay(A) and F,(A4),
respectively. And the third one is given by 7:(A4) by the assumption of the theorem.
Hence, = is computable from «, 8 and . Now if we calculate the expression for
= and replace C(t) with the unit we get the same expression. Since in calculating
an expression which determines Ci1(t) we get the same expression if we replace
C11(t) with the unit it follows that C11(t) = I. At this point we can only conclude
C11(t) = I because in these expressions we have restricted our attention to terms
where C(t) lies between vectors in ;7. Now we have seen that Ci2(t) = 0 and

Cgl(t) =0 and

Caa(t) = 7 ()" Cua ()7 (S) =~ ()" (S) = B{(S*S) = p(I) = I.

Hence, C(t) = I so © = O.

Now we prove the reverse implication. Suppose 7 is a corner from « to [ satis-
fying the condition of the theorem. Suppose © is given in terms of «, § and ~ as
in Definition 3.7 and ©¢ is the minimal dilation of © to an E,-semigroup of $3 so
we have a isometry W € B(93,H1 ® H2) so WW* is an increasing projection for
©? and ©9 is minimal over the range of W and ©,(A) = W*OH(W AW*)W for all
A€ B(H @ H2) and t > 0. Let P and P, be the projections of $; & H2 onto $H1
and $)o, respectively. Let Wy = WP, and Wy = W P,. Since « is unital and « is
the top left corner of © we have ©;(P;) = P so we have

WAW; LW W)W W, = Wi W LW PW* )W\ W} = W10, (P)W; = W, Wy

for t > 0 so W, W is an increasing projection for ©%. Since 3 is unital we have by
the same argument that W,W5 is an increasing projection for ©%. Next we note
that ©,(W1W)Os(W,W5) = 0 for all s,¢ > 0. To see this first note that

O (WA ) WaW3 O, (Wi W) < Oy (Wi Wi WoWs Wi W) =0

for all ¢ > 0. So O,(W,W{)WoWs = 0 for all ¢t > 0. The same argument shows
O (WoW3) W1 Wy =0 for all ¢ > 0. Then we have for 0 < ¢ < s that

O (WiWT)O0,(W2W3) = O, (Wi WO, (W2W5)) = 0.

A similar argument gives the result for 0 < s < ¢. Hence, O,(W;W{)O,(W2W5) =0
for all ¢,s > 0. Let 9; be the closed subspace of $3 spanned by the vectors

Yi(E) = Of W, AW;) - 0f (W AW )W, f

fori=1,2,f € 91BN2, t; >0, A, € B(H19H2) fork=1,--- ,nandn=1,2,---.
When we refer to Y;(Z2) we mean the vector above. We give this vector a name
so we do not have to repeatedly repeat all the quantifiers associated with this
vector. Since O¢(W;W)Y;(Z) = Y;(Z) for t > t; for i = 1,2 and OF(W,W7)
and ©¢(W2W5) have orthogonal ranges it follows that 9; and 91, are orthogonal
subspaces. Let 91 be the span of 91; and D and let @, Q1 and Q2 be the orthogonal
projections of $3 onto N, N; and Mo, respectively. We show Q7 is an increasing
projection for ©%. Consider the vector Y;(Z) above. Note Q1Y1(Z) = Y1(Z) for all
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such vectors Y1(Z). Let s = min(ty,- - ,¢,). Suppose 0 < t < s. Then
Of(Q1)Y1(E) =0¢(Q10f, (W1 Ay W) - - 0 (W1 A, W7))Wy f
=0{(Q10F, (W1 A\ WY) --- Of (W1 A, Wi )W W)W f
where tj =t —t for k=1,--- ,n. Since
Q10%, (W1 Ay WY) - - O, (W1 A, W)Wy = O (W1 Ay W) - ©f (W1 A, W)Wy

we have ©¢(Q1)Y1(Z) = Yi(Z) for 0 < t < s. Now suppose ¢t > s and t; = s. Then
we have

O(Q)Y1(E) = 04(07(Q1)0F (Wi AW - - Wi AW - Of (WA, W))W, f

where t' =t — s and t; = t; — s for j = 1,--- ,n. Hence, ©¢(Q1)Y1(E) = Y1(E)
provided

O (Q1)Of (Wi A WY)---0f  (WiA W)W,
=0y (WL AWY) -0 (Wi A W)W

And using this reduction formula repeatedly we can reduce to only one term so we
have @g(Ql)Yl (E) = Yl (E) if

OL(Q1)0L WL BW )Wy = ©(W,BW;)W,

for all z,y > 0 and B € B(H1 ® H2). We have already shown that if x < y the
above equality holds so we consider the case 0 < y < . But then we have

OL(Q1)OLWLBW )Wy =04(04_, (Q1)W1BWT))W;
=0 (W1 BW{)W1.

Since Q104 _,(W1BW )Wy = ©2_ (W BW; )W) we have proved the above equal-
ity for all z,y > 0 and, hence, ©%(Q1)Y1(Z) = Y1(Z) for all t > 0 and vectors
Y1(Z). Hence, ©¢(Q1) > Q1 and Q; is an increasing projection for ©%. The same
argument shows Qs is an increasing projection for ©¢. It follows that Q = Q1 + Q-
is an increasing projection for ©¢. Now let ©° be the CP-semigroup of 9 given
by the compression of ©% to M so OY(A) = QO (A)Q for all A € B(MN) where we
identify 9B(91) with the hereditary subalgebra of B($)3) of all operators A € B($3)
so that A = QAQ.

We see that ©° is an intermediate CP-semigroup between © and ©%. Note that
corresponding to the decomposition 91 = 91y & Ny we have a matrix decomposition
of ©% in the form

o ([ %) = B e

where X;; is a bounded operator from N; to 9, for ¢ > 0. Checking the construction
of the minimal dilation we see that the upper left-hand corner above is a? the
minimal dilation of a to an E,-semigroup. Similarly the lower right-hand corner is
(3% the minimal dilation of 3. Also, one checks that the minimal dilation of ©° to
a E,-semigroup is ©%¢. From Theorem 3.5 we have there is an order isomorphism
from the subordinates of © to the subordinates of ©% and an order isomorphism
from the subordinates of ©% to the subordinates of ©% and, therefore, there is an
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order isomorphism from the subordinates of © to the subordinates of ©°. Suppose
S is a unitary operator from 9y to ;. For each ¢ > 0 we define

of ([ x)) =[x isyoflSxmsrims

where X;; is a bounded operator from 91; to 9; for 7,5 = 1,2. In the following
argument when we write X;; we mean an arbitrary bounded linear operator from
M, to N; so we will not continually write out the specification for X;;. Similarly
when we write ¢ we mean an arbitrary ¢ > 0. We will show O°¢ is a subordinate
of ©%. Note that 7; satisfies (3.1). In the calculations below we will use this fact
repeatedly. First note the bottom right term above can be rewritten as follows.

1e(S)" o (SAS*)1e(S) = 1e(S) ne(SA) = ne(S) me (S) 5 (A)
for all A € B(Mz). Also we have
0e(S) " (SAS )y (S) =(af (SAS™)*11(8)) e (S)
= (SA*) m(S) = (:(S)B(A™))*mi (S)
=07 (A)1e(S)*1¢(S)

for all A € B(My). It follows that 7 (S)*n:(S) € BL(B(M2))".

Next we show that ©°¢ is a semigroup. The top diagonal and the off diagonal
terms in ©° are the same as ©% and since @ is a semigroup these terms satisfy the
semigroup property. We only need to check the semigroup property for the bottom
right term in ©€¢. Suppose s,t > 0. Then we have

e (S) e (S) B (ns(S)*ns (S)Bs(A))

)0 (S) 85 (ns(S) 0 (S)) e+ (A)
) 0t (Sns(5) 15 (S)) Bits(A)
S)*af (Sns(S)")1e (15(9)) B+ (A)
) (S0 (S)* )45 (S) Brys (A)
=(af (1s(S)S™)0e(9))* Ne1s(S) Brys (A)
=1t (15(5)) Mt45(S) Be+5(A)
=015 (5) M5 () Brts (A)

for A € B(Ny). Hence, the bottom right term satisfies the semigroup property
so ©° is a semigroup. Next we show ©°¢ is completely positive. We will need an
alternate expression for 7;(X12). Note that

nt(X12) = 1:(X125%S) = @ (X125%)m:(S).

=m(S
=m(S
=1 (
=n:(S

Also we have
0y (Xa1) = 0e(X3,878)" = (af (X5,5")me(S))* = ne(S) 0 (S Xan).
Recalling how we defined ©f we have

o} ([ﬁ; §;§D - {nt(S?gc(x;((lé’)le) Wt(S?géé;iI;i?;gggt(S)
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where we have inserted the alternate expressions for n;(X12) and its adjoint. We
show this map is completely positive by writing it as the product of three completely

positive maps. Let
I 0 1 0
R= {0 S] and T = {0 ﬂt(S)}

and A is the mapping

(i ) -

Xo1 Xoa of (Xo1) o (Xa2)

for X;; € B(M1) for ¢,j = 1,2. Then one calculates that ©7(X) = T*A(RXR*)T
for all X € B(M) so OFf is the product of three completely positive maps so ©f is
completely positive and ¢ is a CP-semigroup. Note that ©¢ is a subordinate of
O since

ol (Eﬁ f(D 9 (Eﬁ ﬂ) - [8 = m(S)mO(S))ﬁt(Xm)]
and since 7:(5)*1:(S) € B4(B(N3)) we have

(I = ne(S)*ne(9)) B (Xa2) = (I — nt(s)*nt(s))%ﬂtd(XQQ)(I —7e(S) e (S)) =

which makes it clear that the map X — @f — ©f is completely positive. Hence, ©°¢
is a subordinate of ©. Since the subordinates of ©° are order isomorphic with the
subordinates of ©, there is a subordinate ©" of © corresponding to ©°. Since the
off diagonal elements of ©¢ equal the off diagonal elements of ©° it follows that the
off diagonal elements of ©' match those of ©. By the assumption of the theorem
we have ©' = © and by the order isomorphism we have ©¢ = ©°. Hence, we have
1:(S)* n.(S) =1 for all t > 0.
Now let ©f be given by

or (e &)= [ )

Repeating the argument we made for ©°¢ we find ©% is a subordinate of O and
this time we find 7:(S)n:(S)* = I. Note essentially all we are doing in this new
argument is interchanging the roles of « and . Hence, 1:(.5) is unitary for all ¢ > 0
and from Lemma 3.12 we find ©Y is a unital *-endomorphism of %B(M) and from
Lemma 3.8 we have a? and 3 are cocycle conjugate. (I

The previous theorem shows the importance of analyzing corners between CP-
semigroup. This brings up the question if « is a unital CP-semigroup what do
the corners from « to a correspond to for the dilated E,-semigroup. As we will
see these corners correspond to contractive local cocycles. We will also consider
matrices of corners.

Definition 3.14. Suppose « is a CP-semigroup of B($)) and n is a positive integer.
We say © is a positive (n X n)-matrix of corners from « to « if © is a matrix
with coefficients #(7) where the (%) are strongly continuous semigroups of B($)
for i,j = 1,--- ,n so that © is a CP-semigroup of B(®}_,$) into itself and the
diagonal entries of © are subordinates of «.
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Definition 3.15. Suppose o is a E,-semigroup of B($) and n is a positive integer.
We say C'is a positive (n x n)-matrix of a local cocycles if the coefficients Ci; of C
are contractive local cocycles for a? for 4,7 = 1,--- ,n and the matrix C(¢) whose
entries are C;;(t) is positive for all ¢t > 0.

We remark how the cocycle condition fits nicely with the notion of a positive
matrix of local cocycles. It is well-known that if A and B are positive matrices
with coefficients {a;;} and {b;;} in the complex numbers then the matrix C' with
coefficients {a;;b;;} (C is known as the Schur product of A and B) is positive.
The same is true if the coefficients a;; € A where 2 is algebra of operators on
a Hilbert space and b;; € 2’ the commutant of 2. We see then that if C(¢) is a
positive matrix with coefficients which are operators in a(B($))" and C(s) is a
positive matrix with coefficients in B($) and if C(t+s) is a matrix with coefficients
Cii(t)ad(Cy(s)) then C(t + s) is a positive matrix. It follows then that in order to
check that C' is a positive matrix of local cocycles it is only necessary to check the
positivity of C(t) for small ¢.

Theorem 3.16. Suppose « is a unital CP-semigroup of B($) and a? is its Bhat
dilation to an E,-semigroup a® of B($1). The relation between o and o is given
by
ar(A) = W*al(WAW* )W

for A € B(9) and t > 0 where W is an isometry from $ to 91 and a is minimal
over the range of W.

Suppose n is a positive integer and © is positive (n x n)-matriz of corners from «
to . Then there is a unique positive (n x n)-matriz C of contractive local cocycles
Cij for al fori,j=1,---,n so that

0D (A) = W*Cij (1)l (W AW )W
for all A € B($H) and t > 0. Conversely, if C is a positive (n X n)-matriz of

contractive local cocycles for o then the matriz © whose coefficients 019 are given
above is a positive (n X n)-matriz of corners from « to «.

Proof. Assume the set up and notation of the theorem. Suppose C' is a positive
(n x n)-matrix of a? local cocycles with coefficients Cyj fori,j=1,--- ,nand 9§”)
are given in terms of the C;; as given in the statement of the theorem. First we
check that © is a semigroup. To do this we need to show that the coefficients are
a semigroup. To save writing subscripts in our calculations suppose ¢ and j are

integers in the interval [1,n] and C(t) = C;;(t) and ~; = 6’ for ¢ > 0. We have
1(15(A)) = W) o (WW*C(s)as(WAW YWW )W
= W*C()af(WW*)af(C(s))afy (WAW ) ad (WW )W
= W WW)C @)l (C(s))ad, . (W AW o (W)W
= W*C(t + s)ai, (WAWH)W = 144(A)

for all t,s > 0 and A € B($H) where we have used the facts that WW* is an
increasing projection for a? and C(t) is local. Hence, O is a semigroup. Let ©; be
the family of mappings in the statement of the theorem and W7 be the mapping
of @ 1% into &9 given by Wi{f1,---, fu} ={Wfi,---,Wf,}. Then we have

©; = W{E:W; where E; are operators on @I ;91 with coefficients = (A4;;) =
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Cij () (WA ;W*) for A;; € B(H) for 4,5 = 1,--- ,n. We show Z; is completely
positive for ¢ > 0. Suppose ¢ > 0. The matrix C(¢) with coefficients C;(t) €
ad(B($1)) is positive. For z € [0, 1] we have

(1—2)7 =1—(1/2)a — (1/8)2% — (1/16)z* — (5/128)z* — - - -

where the series converges absolutely in the closed interval. Let X = I — C().
Then we have

Ct)? =(I-X)? =1—(1/2)X — (1/8)X

(1/8
where the series converges in norm. Since Cj;(t) € af(B($1)) we have D(t) =
C(t)? has coefficients D;;(t) € af(B($1))". Since C(t) = D(t)*D(t) we have

Y (Aiy) = Cij(t)ad (W A;W™) ZDm "Dy (H)af (W A;W™)

Zn: o (W A;;W*) D5 (1)

for A;; € B(9) for i,j = 1,--- ,n. Hence, Z; is the sum of n completely positive
maps and since ©, = W=, W is follows that O is a CP-semigroup so O is a positive
(n x m)-matrix of corners from « to a.

Conversely, suppose O is a positive (n x n)-matrix of corners from « to «. The
proof of the exitance and uniqueness of the positive (n x n)-matrix C of contrac-
tive local cocycles for a? virtually a repetition of the proof in Theorem 3.5. The
uniqueness of the matrix coefficients C;;(t) is the same as the proof of the unique-
ness of the positive cocycle C(t) in Theorem 3.5. The proof of the existence of
the (n x n)-matrix C of contractive local cocycles for a? is the same as the proof
of the existence of the positive contractive cocycle C(¢) in Theorem 3.5 with one
complication which we explain. Recall in the proof of Theorem 3.5 we found an
operator Z(t) € ¢:(B($))’ so that G (A) = W*¢(A)Z(t)W for A € B($H) where
¢¢ was the restriction of A — af(WAW*) to 9, which was the closed linear span
of {d(WAWSYWf : f € 9, A€ B(H)}. In our present case we find the same
operator Z(t) which is now a positive (n x n)-matrix of elements ¢.(B($))’. The
existence of Z(t) in the proof of Theorem 3.5 was assured by Stinespring analysis of
completely positive maps. The existence of the matrix Z(¢) in our case follows from
the following mild generalization of the Stinespring analysis which is the following.

Suppose 7 is a completely positive unital map of a C*-algebra 2 into B($) and 7
is the Stinespring representation of 2 on B($)1) determined by 1 by the requirement
n(A) = V*r(A)V for A € A and V is an isometry from $) to $; and the linear
span of the vectors m(A)V f for A € A and f € 9 is dense in H;. Now suppose v is
positive (n x n)-matrix of corners from 7 to n where we take the notion of positive
from Definition 3.14. Then there is a unique positive (n x n)-matrix of contractive
operators Cj; in m(2A)’ so that v;;(A) = V*Cijm(A)V for Ac Aand i, j=1,---,n
Unfortunately, we do not have a reference for this exact result but it a fairly routine
argument.

Using this result we construct Z(¢) which is now a positive matrix with coeffi-
cients in ¢;(B($))’. Then following the argument in Theorem 3.5 we construct Y (¢)
which is now a positive (n x n)-matrix with coefficients in af(%B(£))’. Then follow-
ing the argument in Theorem 3.5 we construct the positive (n x n)-matrix C(t) for
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t a dyadic rational and then show C(t) is continuous and can be extended to all
real positive ¢ thereby producing the positive (n X n)-matrix of local cocycles. O

Corollary 3.17. Suppose « is a unital CP-semigroup of B($)) and o is its Bhat
dilation and the relation between o and o is as given in the previous theorem.
Suppose 0 is a corner from o to o and C is the local contractive cocycle for a®
associated with 6. Then C(t) is an isometry for allt > 0 if and only if 0 is mazimal
and C(t) is unitary for all t > 0 if and only if 0 is hyper maximal.

Proof. Assume the set up and notation of the corollary. Let © be the (2 x 2)-
matrix of semigroups so that the diagonal semigroups are o and the (12) entry is 6
and the (21) entry is * and let C be the positive (2 x 2)-matrix of local a? cocycles
associated with © by the previous theorem. Suppose ©' a subordinate of © whose
corner is 6 and let C’ be the positive (2 x 2)-matrix associated with ©’. One checks
that 0 S Ch(t) S I, 0 S Céz(t) S I, CiQ(t) = 012(75) and Cél(t) = Cgl(t) = Clg(t)*
for all ¢ > 0. A matrix computation shows that C’(¢) given below satisfies

, Cr2(t)*Cr2(t)  Cia(t) I Ch2(t)
ogc<t>=[ Con(tr : ]S[Cn(t)* : ]=c<t>

for t > 0. Hence, if C12(t) is not an isometry then the top left entry of the above
matrix in not the unit so 6 is not maximal. Conversely, suppose Ci2(t) is an
isometry for all ¢ > 0. If C'(t) is positive for all ¢ > 0 we have

0< {Ch(t) 012(75)} < {Ch(t) 012(75)}
T [Cra(t)" Cp)] — [Cr(t)” I
for all t > 0. A straight forward computation shows matrix on the right above is
positive if and only if C{,(¢t) > I and since C},(t) < I we have C7;(t) = I for all
t > 0. Hence, 6 is maximal. Now 6 is hyper maximal if and only if both 6 and 6*
are maximal so 6 is hyper maximal if and only if C(t) is unitary for all ¢ > 0. O

4. CP-flows

We consider the problem of finding all strongly continuous semigroups of com-
pletely positive contractions of the space of all bounded operators on & ® L?(0, co)
into itself which intertwine with the semigroup of right translation on £® L?(0, 00).
As we will see this is a problem in finding an extension of the differential operator
d = d/dx. The importance of this problem is that every E,-semigroup can be in-
duced using the Bhat minimal dilation [Bh] from such a semigroup. We call such
semigroups CP-flows over R where R is a separable Hilbert space.

Definition 4.0. Suppose £ is a separable Hilbert space and $§ = A® L?(0, c0) and
U(t) is right translations of ) by ¢ > 0. Specifically, we may realize §) as the space
of K-valued Lebesgue measurable functions with inner product

(J.g) = / " T@e(e) do

for f,g € $. The action of U(t) on an element f € $ is given by (U(¢)f)(x) =
f(z —1t) for z € [t,00) and (U(¢t)f)(x) = 0 for z € [0,¢). A semigroup « is a CP-
flow over R if « is a CP-semigroup of B($)) which is intertwined by the translation
semigroup U (t), i.e., U(t)A = o (A)U(¢t) for all A € B(H) and ¢ > 0. A semigroup
a is a CP-flow over K where x > 0 if « is intertwined by the translation semigroup
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U(t) and the semigroup A — e~ *ta;(A) is a CP-semigroup of B($)). The constant
K is called a growth bound for a.

Then next theorem shows that every spacial F,-semigroup is cocycle conjugate to
an F,-semigroup which is also a CP-flow so and complete classification of CP-flows
yields a complete classification of spatial E,-semigroups.

Theorem 4.0A. Every spatial E,-semigroup of B($) is cocycle conjugate to an
E,-semigroup which is also a CP-flow.

Proof. Suppose « is a spatial E,-semigroup of B($) and V is a one parameter
semigroup of isometries that intertwine . For each one parameter semigroup of
isometries V acting on §) there is the Wold decomposition of $ = §, DRAR L2 (0, 00)
so that V(t) is unitary on §), and V/(¢) is the right shift on is R ® L?(0, 0o) for each
t > 0. Note V(t)V(t)* — P as t — oo where P is the projection onto 9, so if
IV(#)*f]] — 0 as t — oo for each f € $ then « is a CP-flow since V (¢) is the
right shift on § = & ® L?(0,00) for each ¢t > 0. To prove the theorem we need to
show that every spatial E,-semigroup is cocycle conjugate to a E,-semigroup which
is intertwined by a semigroup V with the above property. From Theorem 2.13 of
[P4] it follows that every spatial E,-semigroup is cocycle conjugate to a spatial
FE,-semigroup in standard form where an E,-semigroup « is in standard form if it
has a pure absorbing state w, which means that if p is any normal state of B(9)
then p(a(A)) — wo(A) as t — oo for all A € B(H). It follows that an absorbing
state is invariant (i.e., wo(at(A)) = wo(A) for all ¢ > 0 and A € B(9H)). Since
w, is pure it follows that there is a unit vector f, € 9 so that w,(A4) = (fo, Afo)
for all A € B(9). One defines a strongly continuous one parameter semigroup of
isometries U(t) by the relation

U)Afo = ae(A) fo

for all A € B(9H) and ¢ > 0. The semigroup U intertwines «. It follows from proof of
Theorem 2.13 in [P4] that U(¢) is a pure shift on the orthogonal complement of f, so
the Hilbert space $ = 9, P $H1 decomposes into a direct sum of the one dimensional
subspace §), spanned by f, and the orthogonal complement $); and the semigroup
U decomposes as a pure shift on the orthogonal complement $; and U just the
identity on $, (i.e., V(t)f, = f, for t > 0). We will show that we can perturb the
E,-semigroup « and obtain an E,-semigroup (8 which is cocycle conjugate with «
and ( is intertwined by a semigroup of pure shifts so § is a CP-flow.

Now since U is a pure shift on ; we can represent §; as &1 ® L?(0,00) and V
acts by translation. We can pick a unit vector hy € K and then let h be the vector
in $; defined by the £, valued function h(z) = v/2hie™® for z > 0. To specify
the vector h without referring to this representation of vectors as functions we can
simply say h € $) is a unit vector so that U(t)*h = e~ th for all ¢t > 0. Now let H
be the skew hermitian operator giving by

HE = 3(h, f)fo— 5(fo, f)P

for all f € . Let —d be the generator of U(t) so U(t) = e~ for t > 0. Let § be
the generator of o and let

51(A) = 6(A) + HA — AH
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for all A € ©(6). Now by Theorem 2.8 of [P3] (restated as Theorem 2.10 in [P4])
01 is the generator on an FE,-semigroup (3 which is cocycle conjugate to o and (3
is intertwined by the semigroup of isometries V(t) = exp(—tdy) = exp(—t(d — H))
for t > 0 (where d; = d — H). We show V is a pure shift. Suppose f € $. We note
that for each ¢ > 0 we can uniquely decompose V' (¢)f in the form

V() f = a(t)fo+ b(t)h + g(t)
where ¢(t) is orthogonal to both f, and h. Note a(t) = (f,, V(t)f) and b(t) =
(h,V(t)f). Note f,,h € D(d;) and
difo=dfo—H f,=-1h and  djh=d"h—Hh=h+1Lf,
Then we can differentiate a(t) and b(t) and obtain the equations

L alt) = ~(di £, VIOH) = S0 V(D)) = (1)

and
Doty = ~(dih, V() = (~h = 1), V(1)) = ~b(1) — ba(t)

for t > 0. Solving these coupled differential equations one finds that

a(t) = (a+ %(a + b)t)efét and b(t) = (b— %(a + b)t)e*%t

for t > 0 where a = a(0) = (f,, f) and b = b(0) = (h, f).

Now let 90t be the two dimensional subspace of $ spanned by f, and h and let P
be the orthogonal projection of $ onto 9. We see from the above equations that if
f € ML (the orthogonal complement of M) then V(t)f € M+ for all t > 0 (since
if a =b =0 then a(t) = b(¢t) = 0 for all ¢ > 0). Next we note that if f € D(d) and
f € Mt then dy f = df. Hence, for f € D(d) and f € M+ we have U(t)f = V() f
for all ¢ > 0. This extends to all f € M+ by continuity. Armed with these facts
can now prove V(t) is a pure shift for each ¢ > 0.

We have shown that

V) =V)P+V#)I-P)=VH)P+U@t)(I - P)
for ¢ > 0. Taking adjoints we have
V) =PV(#t) +(I—-P)U®®)"

for t > 0. Since U is a pure shift on f;- and (I—P)U(t)* f, = 0 for all t > 0 it follows
that ||(I — P)U(t)*f|l — 0 as t — oo for all f € . Then we have ||V (¢)*f|| — 0 as
t — oo for all f € § if and only if |[PV(¢)*f|| — 0 as t — oo for all f € 9. Now
from the equations for a(t) and b(t) we have

1PV (@) FII* = [(fo. V&) ))I? + (b, V()" )P = la(t)]* + [b()
< @+ ) (laf? + b)) = (L+ )| Pfl[Pe™
for t > 0. Hence, ||[PV(t)*f|| — 0 as t — oo for all f € § so V(t) is a pure shift for
each t > 0. Hence, ( is a CP-flow. O

The problem we pose is to describe all CP-flows over K. In the following when
working with a CP-flow over & we will assume that $ = & ® L%(0,00) and U(¢) is
the right translation operator described above. Note that a CP,-flow is a CP-flow.
We will prove that every CP-flow is a CP-flow. Also when we write CP-flow in
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the sequel we assume automatically assume that x > 0 and K is a separable Hilbert
space.

Lemma 4.1. Suppose a is a one parameter semigroup of positive linear mappings
of B($) into B($H) and the semigroup U(t) of isometries intertwine o in that
Ut)A = a(A)U(t) for all A € B($H) and t > 0. Let E(t) =1 —U(t)U(t)*. Then
for A € B(9) we have E(s)a:(A) = ar(A)E(s) for all s and t with 0 < s <t < o0
and

(4.1) a(A) = U)AU(6)* + E(t)ar(A)E(t).

Proof. Suppose « satisfies the hypothesis of the lemma. Since «; is positive we
have o (A*) = a(A)* for all A € B(H) and all ¢ > 0. Since U(t) intertwines we
have U(t)A = o (A)U () for all A € B(H) and taking adjoints and replacing A by
A* we have AU(t)* = U(t)*at(A) for all A € B($H) and ¢ > 0. It follows then that

as(A)U(s)U(s)* =U(s)AU(s)* = U(s)U(s)*as(A)

for all A € B(9) and s > 0. Since for s < t < co we have az(A) = as(az—s(4))
it follows that E(s)a:(A) = E(s)a:(A) for all A € B($H) and s and t satisfying
0 < s <t < oo. The last line of the lemma follows from the computation

ay(A) = a(AUMU(6)* + au (A E(t)? = U(H) AU (t)* + E(t)a,(A)E(t)
for all A € B($H) and ¢t > 0. O

Lemma 4.2. Suppose « is a CP-flow over & and recall U(t) are the right transla-
tions on § = A® L?(0,00). Let § be the generator of o and —d be the generator of
U(t)(d is the differential operator d/dx with the boundary condition that f(0) = 0).
Then each A € D(d) has property that AD(d) C D(d) and AD(d*) C D(d*) and
for f € D(d) and g € D(d*) and A € D(5) we have

(4.2) S(A)f = Adf —dAf  and  6(A)g = —Ad*g+ d* Ag.

Proof. Assume the hypothesis and notation of the lemma. Suppose A € D(J) and
f € ®(d). Using the fact that U(t)A = a;(A)U(t) we have

tHU@) = DA =t Hou(A) = A f +t7TAU®R) - D) f
+ 1t (A) — A)(U () — D).

Since the first two terms on the right-hand side of the above equation converges to
d(A)f and —Adf respectively and the third term converges to zero it follows that
Af € ©(d) and —dAf = 6(A)f — Adf. Hence, we have proved the first equation of
the conclusion of the lemma. Now continuing to suppose f € D(d) and A € D(9)
and suppose g € ©(d*). Then we have —(dAf,g) = (6(A)f,g9) — (Adf,g). Since
A € D(4) implies A* € D(0) and §(A*) = §(A)* we can replace A by A* and taking
adjoints we find (df, Ag) = (f, Ad*g) + (f,d(A)g). Since this is true for all f € D(d)
we have Ag € D(d*) and d*Ag = Ad*g + §(A)g. O

We introduce a x-derivation §; which is an extension of 4.

Definition 4.3. Let §; be the linear mapping of the domain D(d;) into B(H)
where D(d1) consisting of all A € B(H) so that AD(d) C D(d), AD(d*) C D(d*)
and there is a B € B()) so that Bf = d*Af — Ad*f for all f € D(d*). If A € B($H)
satisfies the above requirements then §;(A4) = B.
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Lemma 4.4. The domain ©(d1) is a x-algebra which is o-strongly dense in B(H)
and 01 is a o-weakly closed x-derivation of D(d1) into B($). If 6 is a generator
of strongly continuous one parameter semigroup o of completely positive maps of
B(9) into itself satisfying the hypothesis of Lemma 4.2 then §y is an extension of
§ in that ©(51) D D(0) and 61(A) = §(A) for all A € D(9).

Proof. Suppose h,g € D(d) and X f = (g, f)h for all f € $. Note XD(d) C D(d)
and XD (d*) C D(d) € D(d*). Let Y f = —(g, f)dh — (dg, f)h for all f € . Then
one checks that X € ©(d;) and 01(X) = Y. It follows then that ©(d;) contains
all finite linear combinations of operators of the form X just given. Since D(d) is
dense in $) these operators are o-strongly dense in the finite rank operators. Since
the finite rank operators are o-strongly dense in B($)) we have ©(4;) is o-strongly
dense in B(9H).

Suppose A € D(01) and §;(A) = B. Then Bf = d*Af — Ad* f for all f € D(d*).
Suppose g € D(d). Then (A*g,d*f) = (g9,(d*A — B)f) = ((A*dg — B*g), f) for all
f € D(d*). Hence, A*g € D(d**) = D(d) and we have shown that A*D(d) C D(d).
Since AD(d) C D(d) and —d* D d we have Bf = Adf — dAf for all f € D(d).
Suppose g € D(d*). Then we have (A*g,df) = (g, (dA+ B)f) = (A*d*g+ B*g), f)
for all g € ©(d). Hence, we have shown that A*D(d*) C ©(d*) and B*g = d*A*g—
A*d*g. for g € D(d*). Hence, A € D(d;) implies A* € ©(d1) and 1 (A*) = 51 (A)*.

It is a routine computation to show that if A, B € ©(d;) then AB € D(01)
and 61 (AB) = 61(A)B + Ad1(B) so we have that D(d;) is a #-algebra and §; is a
x-derivation of ®(d1) into B($). If § is the generator of Lemma 4.2 it follows that
D(61) D D(6) and §1(A) = 6(A) for all A € D(J).

Finally, we show that d; is o-weakly closed. Suppose then that A, € D(d1)
and 61(4,) = B, and A4,, — A and B,, — B o-weakly as n — oo. Then A% —
A* and 01(A}) — B* o-weakly as n — oo. Suppose f € D(d) and g € D(d*).
Then (Af,d"g) = lim,—oo(Anf.d"g) = limyoc(Andf. g) — (Buf.q) = ((Adf -
BYf),g). Hence, AD(d) C D(d**) = D(d). Suppose f € D(d*) and g € D(d). Then
(Af,dg) = lim,—oo(Anf,dg) = lim,oo(f, Akdg) = lim,—o(f, (dA% + Bf)g) =
lim, oo ((And* + Bp) f,9) = ((Ad*f + Bf),g). Hence, we have Af € ©(d*) and
Bf =d*Af — Ad* f for all f € ©(d*). Hence, we have A € ©(d;) and J;(A) = B.
Hence, §; is o-weakly closed. (I

We define the boundary representation 7, of ©(d1). As is well (see [DS], Lemma
10, p. 1227) known each element f € ©(d*) can be uniquely decomposed in the
form f = f,+ f+ with f, € D(d) and fy € D(d*) and d*f; = fi. The vector fy is
given by fi(z) = e *f(0). Note that since f is differentiable f can be represented
by a continuous K-valued function f(z) and when we write f(0) we are of course
referring to a representation of f by a continuous function. We introduce the inner
product (f,g) on ©(d*) by the relation

(f:9) = (d"f,9) + (f,d"g).
Note that if f,g € ©(d*) then (f,g) = (f(0),9(0)) so (-,-) is an inner product in
D(d*) mod D(d). Now if A € ®(d1) we have AD(d) C D(d) and AD(d*) C D(d*).
It follows that if f € ©(d*) then (Af)(0) only depends on f(0). The mapping
£(0) — (Af)(0) is called the boundary representation of m, of ®(d;). One sees that

T, 1S a *-mapping and 7, is a representation of D(d1) since for A, B € D(d;) and
f € D(d*) we have m,(AB) f(0) = (ABf)(0) = mo(A)(Bf)(0) = mo(A)mo(B)f(0).
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Note 7, is unital in that m,(I) = I. We show 7, is a contraction of ©(d;) into
B(R). Since D(07) is not a C*-algebra this in not an immediate consequence of the
fact that m, is unital. For A > 0 let f\ = e~k where k € £ is a unit vector and
suppose A € D(8;). Note || fx]| = 1/v/2\. Then we have

7o (A)K|1Z =(f, AAL) = (d* fr, A*Afr) + (fa, d*A*Af)
=(d" f, A"Af\) + (fx, A"Ad" 1) + (fr, 0(A"A) f))
=2M[ALAI? + (fr, 6(A*A) fr) < ]I + (2X) 7 H|6(A*A)]).

Taking the limit as A — oo we have ||7,(A4)|| < ||A] for all A € D(d1).

Definition 4.5. The mapping 7, defined above is called the boundary representa-
tion of ©(d1) on K.

If one looks for the solutions to the equation d;(A) = A one is lead to the
operators A(B) defined below.

Definition 4.6. For A\ > 0 and A € B(8) we define Ay(A4) on H = & ® L%(0, 00)
by the relation (Ax(A)f)(z) = e **Af(z) for all f € . If we write A(A) with no
subscript we mean Aj(A) (i.e., A = 1) and we simply write A for A(I) = Ay ().

Note that for A > 0 the mapping A — Ax(A) is a contraction of B(R) into B(H).
One easily checks that

AX(A)" =Ax(A7)
U(t)Ax(A) =eMAN(A)U ()
U(t)*Ax(A) =e M A (A)U (1)
for A € B(&) and t > 0. Note that for A, u > 0 we have
AX(A)Au(B) = Axi,(AB)
for A, B € B(R).

Lemma 4.7. If §; is the x-derivation defined in Definition 4.3 and A > 0 then
51(A) = M if and only if A= A\(B) for some B € B(R).

Proof. If B € B(R) one sees immediately that Ax(B) € D(d1) and §,(Ar(B)) =
AAN(B). Conversely, suppose A € ©(41) and 01(A) = AA. For s > 0 let D, be the
subspace of all f € ©(d*) so that d*f = sf. It is well known that ®; consists of
all vectors f € §) of the form f(x) = e %" f, where f, € & Suppose f € D;. Since
91(A) = AA we have from the definition of 6; that AAf = §1(A)f = —Ad*f+d*Af
and, hence, d*Af = (1 + M) Af. Hence, A maps D1 into D14 . Since the mapping
f — f(0) is continuous and has a continuous inverse both for f € ©; and for
f € ®i4y it follows that if f(x) = e %k with k € & then (Af)(z) = e~ 1+tN*BE
where B is a bounded linear operator determined by A. Suppose B is this operator
determined by A. Let C = A — Ax(B). We claim C = 0.

We have C' € ©(01) and 6;(C') = AC and C'f = 0 for f € D;. From the definition
of 8 we have Cf = §,(C)f = —dCf+Cdf for all f € D(d). Now suppose f € D(d).
Let g(t) = eMCU(t)f. Since U(t)f € D(d) for all t > 0 and —d is the generator of
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U(t) we have
(t) =Ag(t) — N CAU(t) f
=\g(t) — eMNdCU(t)f — NeMCU(t)f = —dy(t).

Since —d is the generator of U(t) we have g(t) = U(t)g(0) = U(t)Cf or U(t)Cf =
eMCU(t)f for all f € D(d) and t > 0. For each fixed ¢ both sides of this equation are
norm continuous in f so we can extend this equation to all f € $). In particular we
can apply this equation to vectors g; given by g(x) = e~ %k in ©; and since Cf =0
for f € D1 we have CU(t)g1 = 0 for all k € Rand t > 0. Note (g1 —e tU(t)g1)(z) =
qt(x)k where ¢:(x) = e ™ for x € [0,t] and ¢:(x) = 0 for « > ¢. The linear span of
the functions ¢; are dense in L2(0,00) for if h € L?(0,00) where orthogonal to all
the ¢; we would have e”*h(x) = 0 almost everywhere. Since the linear span of the
q: are dense in L?(0, 00) we have the linear span of the vectors U(t)g; with g1 (z) =
e "k with k € R and t > 0 are dense in §. Hence, Ch = 0 for a dense set of vectors
so C = 0. Hence, A = A)(B). O

%9

Next we introduce the operator I' which solves the equation A — §;(4) = B.
Definition 4.8. Suppose A > 0. For ¢ > 0 we define

Fi(A):/OC/\e‘AtU(t)AU(t)*dt and  Ty(A) :/ODO e MU () AU ()" dt

for all A € B($). If we write I'(A) with no subscript we mean I'y (A) (A = 1). When
we write 'y we always assume A\ > 0.

We see I'y is a everywhere defined bounded operator and I'y is o-weakly con-
tinuous since I'§ is o-weakly continuous and I'§ (A) converges in norm to I'y(A4) as
¢ — 00.

Lemma 4.9. Suppose X\ > 0. For A € B($) we have I'y(A) € D(d1) and
TA(A) = A7161(TA(A)) = A.
For A € ©(01) we have
DA(A = A7101(4)) = A = A(m0(A)).
Proof. Suppose I'y is as defined above. Suppose A € B(5)). Then we have

Ta(A) — e MU (A () = /0 AU (s) AU (s)* ds.

Dividing by ¢ and taking the limit as ¢t — 0+ we find
tHUBTA(A)U(1)* = Ta(4)) = AMTA(4) = 4)
in the strong operator topology as t — 0 + . Now suppose f € D(d). Then
t=HU(t) = DTA(A)f =t TUOTAAU @) (U() — Df
+ T UBTA(AU ()" —TA(A) [

As t — 0+ the first term on the right-hand side converges to —T'yx(A)df and the
second term converges to A(I'y(A)f — Af). Hence, T'x(A)f € ©(d) and

—~dT(A)f = ~Ta(A)df + ATA(A)f — Af).
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Note the above equation holds with A replaced by A*. Then for f € ©(d) and
g € D(d*) we have

—(9,dUA(A")f) = = (9, TA(A")df) + Mg, TA(A") ) — Alg, A™f)

and rearranging we have
(Tx(A)g, df) = (Dx(A)d"g, f) + ML (A)g, f) — AMAg, f).
It follows that I'y(A)g € ©(d*) and
d*Tx\(A)g =TA(A)d"g + A(I'A(A)g — Ag).

Hence, it follows from the definition of ¢; that I'x(A) € ©(d1) and 61(T'x(4)) =
)\(F)\(A) — A) Hence, F)\(A) — )\_1(51(F)\(A)) = A.

Now suppose A € D(61) and f,g € D(d*). Since 61(A)U(t)*f = d*AU(t)* f —
Ad*U)*f and (d/dt)U(t)*h = —d*U(t)*h and recalling that {f,g) = (d*f,g) +
(f,d*g) we have

(,T5(4 — A16,(A4))g) = / AN U f (A= A8 (A)U(H) ) dt

=— /0C e MU f, AU (t)*g) + die*’\t(U(t)*f, AU(t)*g) dt

t
. / T M), mo(A)g() dt + (F, Ag) — e (U(S)* f, AU(0)"g)
= (£, (A — M (mo(A)))g) — e (U ()" £, (A — Ax(mo(A))U()"g).

Note both sides of the above equation are norm continuous in f and ¢ and since
D(d*) is dense in § the above equation is valid for all f, g € $. Hence, we have

TS(A = A7161(A) = A — Ax(1o(A)) — e U (c)(A — A (7o (A))U(c)*.

As ¢ — oo the second term on the right-hand side of the above equation converges
strongly to zero and the result of the lemma follows. O

The next lemma characterizes the domain of d; and 51. We recall that if ¢ is a
linear mapping which is o-weakly closed then ¢ is the associated mapping on the
predual.

Lemma 4.10. Suppose A > 0. We have A € D(61) if and only if A is of the form
A= A\(B)+T»\(C) with B € B(R) and C € B($). We have p € D(d1) if and only
if p=Tx(w) for somew € B(H). with Ay(w) = 0. Note p satisfies p—A"101(p) = w.

Proof. Suppose A > 0. From the previous lemmas it follows that if A = Ay(B) +
L'\ (C) with B € B(R) and C € B(H) then A € D(51). Now suppose A € D(d7).
Let C = A — X\716;(A). Then from Lemma 4.9 we have I'y(C) = A — Ax(m,(A))
and, hence, A = Ay (m,(A)) + T'A(C).

Next suppose p € D(d1). Let w = p— A28, (p). Then w(A) = p(A)—A"1p(61(A))
for all A € ©(d1). Since Ax(B) € ©(01) and 01 (Ax(B)) = AAA(B) for all B € B(RK)
we have w(Ax(B)) = 0 for all B € B(R) so Ay(w) = 0. Since w(A4) = p(A4) —
A"1p(81(A)) for all A € D(d41) and by the properties of I'y proved in the previous
lemma we have w(I'y(A4)) = p(A) for all A € B($). But this means p = L' (w).
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Now, suppose w € B($), and Ay(w) = 0. Let p = I'y(w). Suppose A € D(4).
Then from the previous lemma we have

p(A=A"101(A4)) = w(lA(A = A7161(4))) = w(A = Ax(mo(4))) = w(A)
where the last equality follows from the fact that Ay(w) = 0. Hence, p € ®(4;) and
p—A"11(p) = w. O

In the next definition we introduce notation we will use repeatedly in our analysis

of CP-flows.

Definition 4.11. Recall § = 8 ® L?(0,00) and U(t) is the translation semigroup
on 9. Let E(t) = (I —U®)U(t)*) and E(s,t) = E(t) — E(s) for 0 < s < t and
E(t,00) =U@)U(t)* =1 — E(t) for t > 0. Let

0,(A) = UMAU(),  &(A)=U® AU() and  G(A) = BQ)AE()

for all A € B(H).
For A > 0 let Qy be the isometry from & to § given by (Qxk)(z) = VAe 277k
for £ > 0 and k € R. Let ®) be the mapping of B(5)) into B($H) given by

P (A) = QXAQA
for A € B(9). Note if we write ® without a subscript we mean @, with A = 1.
Note 0; and &; are semigroups and
§O(A)=A  and  B(&(A) = B(t,00) AE(t, )

for all A € B($) and t > 0. It follows that ,(&,(n)) = n for all n € B(H),. Note
E(AN(A)) = e MAL(A) for all A € B(H) and ¢, A > 0. Also, we have

1 1
Px(AN(A)) = ;A4 and 5 (I'A(4)) = 5‘13,\(/1)

for A € B(9H) and A > 0. Using these identities a direct calculation establishes the
formulae

(4.3a) Aan) = e MR (n)

(4.3b) AP (E () = Ta(n) + / AME, () ds
(4.3¢) 0:(TA(€:(m))) = T'a(n)

(4.34) Aalda(p) = 39

(4.3¢) Pa(@2(0) = 5@2(0)

(43f) F/\ (AO(A>) = AO(A) - A)\(A>

(4.3g) T()=1-A

which are valid for all £, A > 0, n € B(9)«, p € B(RKR). and A € B(9H).
We establish the last two equations. Suppose f,g € $ and so we can represent
f and g as R-valued functions f(z) and g(x) for > 0. Then for A € B(8K) and
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A > 0 we have

(/,Ta(Ao(A))g) = / T U AAYT (1) ) de

_ /OOO e /too(f(x),Ag(x)) dar dt.

Integrating by parts we arrive at the formula
(1 T3A(A)g) = [ (@), Agta)) da — [ e (500, Ag(o) e
0 0

= (f, (Ao(A) — Ax(A4))g).
Hence, we have established (4.3f). Since A,(I) = I and A1(1) = A(I) = A (4.3g)
follow from the previous equation when one sets A = and A = 1.

Lemma 4.12. With ¢ and 0; as above we have ||n|| > [|G:(n)|| + |0:(n)|| for all
t>0 andn e B(H)..

Proof. Assumet > 0 and n € B(H).. Suppose A and B are in the unit ball of B($)
and G (n)(A) = [|G:(n)|| and 0¢(n)(B) = [|0:(n)||. Let C = E(t)BE(t) + U(t)AU(t)*.
Note

C*C =E(t)B*E(t)BE(t) + U(t)A*AU(t)*
<E(t)B*BE(t)+U{)U(t)* < E(t)+U@)U(t)" =1.
Hence, ||C]| < 1. Now we have

Inll = [n(C)] = &) (B) + () (A)| = |G| + 16 ()
which concludes the proof of the lemma. ([
Suppose « is a CP-flow over K. Suppose 4 is the generator of «. In the analysis

of a an important tool is the resolvent Ry of & which is defined for A > k where &
is a growth bound for « by the formula

Ry(A) = /000 e My (A)dt

for A € B($H). If we speak of the resolvent R (with no subscript) we mean the
resolvent R; where A = 1. If a is a CP-semigroup the resolvent is defined for all
A > 0 (in fact all complex A with Re(\) > 0) but because || (A)|| can grow like e
we see that convergence of above integral is only assured for A > k. The resolvent
is the inverse of the map A — A — A715(A) for A € D(). Precisely, we have for
A > k the resolvent maps B($)) onto the domain D (J) and

Ra(4) = A16(Ry(4)) = A
for all A € B($). Also, we have
Ra(A) — A" LRy (5(A)) = A

for all A € ©(9). The semigroup « can be recovered from the resolvent in a variety
of ways. One formula we will use is the formula

au(A) = lim (Foy0)"(4)

for A € B($H) and ¢t > 0 where the convergence is in the o-strong topology and
is uniform for ¢ in a bounded interval. We use the convention R (A) = A. For a
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discussion of the resolvent we refer to Chapter 3 of [BR]. Now from Equation (4.1)
we recall that

o (A) = Et)a(A)E(t) + U)AU(t)"
for A € B(H). Then we have

— /OO Ae ME(t)ay (A)E(t) dt +T'x(A)
0

so we see that the resolvent is the sum of two terms the second of which is directly
computable and the first term contains the information about the particular CP-
flow. The next definition allows us to focus on this first term. Our definition is not
just the first term above but a what you obtain after applying @, to it. Our reason
for this will become clear with Theorem 4.14.

Definition 4.13. Suppose « is a CP.-flow over R with a growth bound x > 0.
Suppose A > k. The boundary resolvent for « denoted by o is a completely positive
o-weakly continuous mapping of B($) into B(R) given by

O'A(A) = 2(13)\ RA(A)) q))\(A)

_9 / e MD, (B(t)ay (A)E (1)) dt

for A € B($) where R is the resolvent for a. In terms of the maps on the predual
we have

ax(p) = 2R\ (®x(p)) — @a(p)
—z/ Ny (E(B(p) dt

for p € B(K).. If we refer to o (with no superscript) as the boundary resolvent of
a CP-flow we mean oy with A = 1.

Theorem 4.14. Suppose a is a CPy-flow over R and suppose k > 0 is a growth
bound for a.. Suppose A\ > k and oy is the boundary resolvent of a. Then

(4.4) Ry(n) = 6x(Ax(n)) +Ta(n)

forn € B(H). where Ry is the resolvent of a. We have

(4.5) a(x(Ax(m) + MDA (E(n)) = e (a(Ax(n)) + Ta(n))
for alln € B(9H). and t > 0 and for arbitrary v € B(H). we have

(4.6) ai(v — G (v) = 0y (v).

Proof. Assume the hypothesis and notation of the theorem. We begin with (4.6).
Assume v € B(9).. We have from Lemma 4.1 that

(v = G()(A) = v(a(A) = E(t)ar(A)E()) = v(U (AU (1)) = 0, (v)(A)
for all A € B($) and t > 0. Hence, Equation (4.6) is established.

Next we establish Equation (4.4). Let § be the generator of a and 4 its preadjoint
which is the generator of &. Suppose 7 € B(H),. Let p = Ax(n) and let 7y = 5 —
20 (p ) Since 2AA(<I>>\( )) = p we have /A\A(m) = 0. Then we have from Lemma 4.9
that I'x(1) € D(8) and )\F,\(m) —61(Dx(m)) = 1. From Lemma 4.4 we have
that &) is an extension of § so 4 is an extension of §;. Hence, I'x(1m1) € ©(8) and
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5(Ta(m)) = Ala(m) — An1. In terms of resolvents this means Ry (1) = x(n1).
Let o) be the boundary resolvent of a. Since 2®y(p) = n — 7 it follows from
Definition 4.13 that

Ra(n—m) = 6x(p) + ¢ (p).
Since Ry(m1) = I'a(m1) and p = Ax(n) we find from the above equation that

Ry(n) = 6x(Ax() + Ta(n) + @x(Ax(n)) — 205 (@A (Ar ().

From Equations (4.3f) the last two terms cancel and we have established Equation
(4.4) of the theorem.

Finally, we establish Equation (4.5). Suppose ¢ > 0 and 7 € B(H).. From
Equation (4.4) applied to e*&;(n) instead of 1 we have

Ra(eME,(m) = o3 (A(m) + Ta() + / NAE, (1) ds

t
= RA(U) + / PYI (n)ds = e M,
0

where we have used Equations (4.3a,b) to compute Ay (& (n)) and 'y (& (n)) where
the last equality in the second line is just the definition of ;. In terms of the
generator ¢ this means v, € D(0)

Ay — 3(14) = A& (n) or O(ve) = Mve — &(n))
for ¢ > 0. Since

Vt:ef)\t > ! eAs AS s
(Ra(n) + / AP, (1) ds)

we see that v, is differentiable and
d
= =AMvr = &(n))-
Suppose t, > 0 and ¥ = vy, ¢ for ¢t € [0,%,]. We see that ¥, € @(5) and 9; is
differentiable for ¢ € [0,¢,] and
%ﬁt =6(%)

so from Theorem 2.8 we have ¢, = a;(9,) for t € [0,%,] and for ¢t = ¢, we have
P, = &y, (¥,) which says

o, (B () + / "ANEL(n)ds) = Ba(n)
0

for ¢, > 0. Multiplying this equation by e*** and using Equation (4.4) yields Equa-
tion (4.5). O

We found the next theorem a surprise. It says that CP,-flows are CP-flows.
Theorem 4.15. Suppose « is a CPy-flow over K. Then a is a CP-flow over R.

Proof. Suppose a is a CP.-flow over & and k > 0 is a growth bound for «. Suppose
A > k and 6 is the boundary resolvent of a. We will first show that o (p)(I) < p(I)
for all positive p € B(8K).. Then we will use this to show « is a CP-flow.
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Assume ¢t > 0 and p € B(R),. Applying Equation (4.5) to 2, (p) and using
Equations (4.3) we find
@y (6(p) + 26N TA(E(PA(p)))) = €M(6a(p) + 207 (Pa(0))).
Applying this to the unit I and noting that o (I) = I 4+ (;(ay(I) — I) and using
Equations (4.3) we find
(€ = 1)ar(p)(1) =ax(p)(Glen(I) — 1)) + (e = 1)p(1)
+2eMTA (@A (0))) (Ce(au (1) = 1)).

Now we assume p € B(R), is positive. We have & is a growth bound for a so
(1) < e®T and

Gelae(I) = 1) < (" = G(I) = (e = 1)E(?).

Since oy, 'y, & and @) are completely positive and p is positive if we substitute
(e" — 1)E(t) for (s(ay(I) — I) in the equation above we obtain the inequality

(€ = 1)ar(p)(I) < (e = 1)ax(p)(E(t)) + (X = 1)p(1)
+2(e" = 1M (& (DA () (E(1))-

A direct computation shows the last term in the above inequality is (e — 1)(e* —
1)p(I) so after dividing by (e* — 1) we have

R ent -1 ) .

oA < Syt ox(p) (1) + ¢ (D).
Since 65 (p) is normal we have 65 (p)(E(t)) — 0 as ¢ — 0 + . Then taking the limit
as t — 0+ we find

ax(p)(I) < p(I)

for all positive p € B(R).. Now suppose n € B($). and n is positive. Then we
have from Equation (4.4) that

Ra(n)(1) = ax(Aa(m) (1) + LA(m)(I) < (Ax(m))(I) + (I = Ax(1)) = n(I).

Hence, Rx(I) < I. Suppose t > 0 and n = 1,2,---. Since Ry, is completely
positive we have

(Ripn)"(I) < (Ryyp)" M(I) < -+ < Ryjp(I) < 1.

Since
(1) = nan;O(Rt/n)"(I)

we have oy (I) < I for all ¢ > 0. Since ay is completely positive we have oy is a
contraction for all ¢ > 0 so « is a CP-semigroup. (]

The mappings Ay, Ty, ox, @) and Ry have a subscript A. For CP-flows we will
only need computations with a fixed A\ = 1. While working with CP.-flows it was
necessary to be able to choose A > x where x is a growth bound. Now that we
know that CP-flows are CP-flows so that k = 0 is a growth bound we are free to
fix A = 1. So in the sequel we will write A, I, o, ® and R without a subscript and
we remind the reader that this means we have set A = 1. One exception to this
general rule is A, which we will need occasionally.
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Now we begin our analysis of the boundary resolvent o with no subscript so
we mean o;. We begin with a definition of boundary weights. As we will see the
boundary resolvent is the integral of a boundary weight.

Definition 4.16. Suppose R is a separable Hilbert space and $§ = & ® L?(0, c0).
Suppose U(t) for ¢t > 0 is translation on $) and the mappings 0, ¢, A, I" and ® are
as defined in Definitions 4.6, 4.8 and 4.11. We define the null boundary algebra
A($H) of B($) as the algebra of all operators of the form

A= (T —-AN)2B(I-A\):

with B € B($). We say w is a boundary weight on B(9) if w € 2A(9). or more
explicitly w a linear functional on 2(($)) and there is a normal functional u € B(5)).
so that
w((I = A)2A(I = A)?) = p(A)

for all A € B($). The weight norm of w is the norm of 1 above. When we speak
of the norm of a weight w or say w is bounded and do not explicitly say the weight
norm we mean the usual norm of w which can be infinite as opposed to weight norm
which is always finite. If w is a boundary weight then the truncated boundary weight
wy defined for ¢ > 0 is the normal functional w; € B($). so that

wi(4) = w((I = BE())A(I - E(1)))

for A € B(9). The mapping p — w(p) defined for p € B(K), is a boundary weight
map if this mapping is a linear mapping of B(R). into boundary weights on B($)
and this mapping is a completely bounded with the norm on %B(Rf), the usual norm
and the norm on the boundary weights is the boundary weight norm. A boundary

weight map is positive if it is completely positive. A boundary weight map w is
unital if w(p)(I — A) = p(I) for all p € B(K)..

Maintaining the notation of the above definition we note that U (t) AU (¢)* € 4(9)
for all A € B($) and t > 0. Recall the mapping I" defined in Definition 4.8. Since I"
is completely positive and I'(I) = I — A so I'(I) € A($) it follows that I'(A) € 2A(H)
for all A € B(%). This may be seen as follows. Suppose A € B($H) and 0 < A < [.
Then we have 0 < I'(A) < I — A. Then for f,g € D((I — A)~2) the bilinear form

(f,9) = (I = )72 DA = A)"2g)
is well-defined and 0 < (f, f) < (f, f) so there is a bounded operator B € B($)) so
that (f, Bg) = (f,g) for all f,g € D((I —A)~2). Then we have
(£, T(A)g) = (1 = N[, BU = A)*g)
for all f,g € D((I —A)~2). If follows that
[(A)= (I —A)B(I—A)2

and T'(A) € 2A($). Since each operator A € B($) is the linear combination of
four positive operators it follows that I' maps B($) into the null boundary algebra
2($). Note that if w is a boundary weight then n(A) = w(I'(A)) defined for all
A € B($) defines an element 7 € B(H). so if w is a boundary weight then T'(w) is
a well-defined element of B(9)..
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Theorem 4.17. Suppose a is a CP-flow over K and o is the boundary resolvent
of a. Recall 0:(A) = U(t)AU(t)* for A € B($H) and t > 0. Then for each t > 0 the

mapping
(4.7) p—6(p) — e '0,(6(p))

is completely positive mapping of B(R). into B(9)+. The boundary resolvent sat-
isfies the normalization inequality &(p)(I) < p(I) for all positive p € B(K)« and
G(p)(I) = p(I) for all p € B(R).« if and only if a is unital.

Suppose o is a completely positive o-weakly continuous contraction of B(9) into
B(R) so that the mapping (4.7) is completely positive for all t > 0. Then there is a
completely positive boundary weight map p — w(p) of B(R). into A(H). (boundary
weights on B($)) so that

(48) o)) = [ Ll UOATO) dt = Ewlp) (4
for A € B(9). And w satisfies the normalization condition

(4.9) w(p)(I = A) =6(p)(I) < p(I)

for p positive.

Conversely, if p — w(p) is a completely positive boundary weight map B(RK).
into A(9). satisfying the normalization condition (4.8) and &(p) is defined by (4.7)
then the mapping (4.7) is completely positive for allt > 0 and this mapping satisfies
the normalization condition 6(I)(p) < p(I) for p € B(R). positive.

Proof. Suppose a is a CP-flow over K and o is the boundary resolvent of . We
will show the mapping (4.7) is completely positive for ¢ > 0. From Definition 4.13
we recall

5(0)(A) = / (o) (Bt on (A E (D)) di
for all A € B(H).
Suppose t > 0. Let dy(p) = 6(p) — e~4u(6(p) for p € B(R).. We show the

mapping p — ¥; is completely positive. Suppose p € B(8)., A € B(H) and s > 0.
We have with repeated use of Lemma 4.1 that

e 5(p) (s (4)) =2 / " (o) (Bt s (A)VE() dt
_ /0 T et (o) (B(B)arss(A)) dt
—2 /OOO e TR (p) (Bt + s)aurs(A) = Bt t + s)aus(A)) dt
_ / " () (B(t) o A)E()) dt

- 2/ e TS D(p)E(t, t + s)ayys(A)E(t, t + s) dt.
0
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Hence, we have
Ds(p)(A) =2 /0 (o) (B AE() dt
+2 /0 h e 3 B(p)(E(t,t + s)apy (A)E(t,t + ) dt.

Since all the mappings in the above formula for U, are completely positive in their
dependence on p the mapping p — Jy is completely positive. Then from Lemma 4.1
we have
5(A) = e "o (UM AU (1)) = Du(A) + 1, (A)
where
vi(A) = e~ 6(p) (E(t)ar( A E(D)).

Since oy and the mapping p — 6(p) are completely positive we see that the mapping
p — v is completely positive. Hence, for each ¢ > 0 the mapping p — &(p) —
e~t0,(6(p)) is the sum of two completely positive maps and, hence, it is completely
positive.

The normalization inequality &(p)(I) < p(I) for all positive p € B(R). was
established in the proof of Theorem 4.15. Recalling Equation (4.4) of Theorem 4.14
we have

(4.4) R(n) = 6(A(m) +T(n)
for n € B($). where R is the resolvent of a. Suppose « is unital. Then R is unital
and setting n = 2®(p) for p € B(R). in the above equation and using Equations
(4.3) we have 6(p)(I) = p(I). Conversely, if 6(p)(I) = p(I) for all p € B(K). then
from Equation (4.4) above and Equations (4.3) we have

n(R(I)) = n(A) +n(I = A) = n(I)
for all n € B(H).. Hence, R(I) = I and we have

/Oo (I — oy (1)) dt = 0.

Since the integrand above is positive we have a;(I) = I for all t > 0 so « is unital.

Now suppose o satisfies the conclusion of the first paragraph of the theorem so
the mapping (4.7) is completely positive. We begin by constructing w for fixed p.
Assume p € B(R). is positive. Since p will be fixed for the first part of our argument
we will write expressions like o(p) and w(p) as o and w to simplify notation. If I
is the interval [a,b) let

n1(A) = e %6 (U(a)AU(a)*) — e 26 (U (b)) AU (b)*)
for all A € B($). Since for A € B($H) we have
n1(A) = e %% (U(a)AU (a)* — e~ O~ DU (b — a)U(a) AU (a)*U (b — a)*)

it follows that n; is positive. From the definition of 7; and the properties of 6 we
have

Na+t,b+t) (A) = e_tma,w(U(t)AU(f)*)
Matt,ort) ) < € Moy (1) < Mg py (1)



210 ROBERT T. POWERS

for all numbers a,b, ¢ and ¢ satisfying 0 < a < b <cand t >0 and all A € B($).
We use the same convention used in the definite integral, namely, 9jq.5) = —7p,q).
Suppose a > 0 and n is a positive integer. Then

n—1

M0,a) (I) = Z NMka/n,(k+1)a/n) (I) > NMNa,a+a/n) (I)

k=0
And if n and m are positive integers we have

m—1

Ma,a+ma/n) (I) = Z NMa+ka/n,a+(k+1)a/n) (I) < MMNa,a+a/n) (I)

k=0

Then combining these two inequalities we have

ma _
n[a,a-‘rma/n)(j) < 704 177[0,11) (I)

for all @ > 0 and positive integers n and m. Hence, 14 44 (I) < (t/a)n,q)(I) for
all positive ¢ so that ¢/a is rational. Since 7, 4)(1) is continuous in b it follows that

(4.10) Naa+t) (1) < (t/a)n,a) (1) < (t/a)6(I)

for all t,a > 0. It follows that for every A € B($) and a,t > 0 the function
q(t) = Mja,a++)(A) satisfies a Lipschitz condition of order one. Hence, the derivative
dq/dt exists almost everywhere and

d
Na,b) (A) = / an[a,ath) (A) dt
(a,5)NS(A)

where S(A) is the set of ¢ for which the derivative exists. Suppose a > 0. Let C), be
a sequence of hermitian compact operators whose finite linear span is norm dense
in the compact operators and let C, = I. Let S = N ,S(C,,). Let N be the set of
operators which are finite linear combinations of the C), forn =1,2,--- . Fort € S
let w! be the linear functional on N given by

d
w' (A) = %n[a,a%@) (A) |s:t

and for t ¢ S we define w!(A) = 0 for all A € M. Note from inequality (4.10) it
follows that for A € M we have |[w!(A)| < ||A||6(I)/t for t € S and for t ¢ S we
have w.(A) = 0. Since N is norm dense in the compact operators and w’ is norm
continuous w! has a unique norm continuous extension to the compact operators
which we also denote by w! and [|w!| < &6(I)/t.

We note that w! is positive. To see this suppose A is a positive compact operator
and t € S. Suppose {A,} is a sequence of operators in N converging in norm to A.
Let B, = %An + %A; and D,, = B,, + ||A — B,||I. Since D,, > A > 0 we have

Wt(Bn) + So”A - BnH = l'lLli% hiln[a-&-t,a-&-t-‘rh) (Dn) > 0.

where s, = (d/dt)n(g,a++)(I) > 0. Recall that we have adopted the convention
that ng,)(A) = —npy,2)(A) which is how we interpret the above expression when
h < 0. Hence, w'(B,,) > —s,||A — B,]|. Then we have w'(A) = lim,, . w'(B,) >
lim,, 00 —So||A — By|| = 0. Hence, w' is a bounded positive functional on the
compact operators for ¢t € S.

Suppose 0 < s < t and s,t € S and C € B(H) is compact. We show w'(C) =
e tws(U(t — s)CU(t — s)*). Suppose € > 0. Let x = 26(I)/s. Then for [a,b) C
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[s/2,00) we have from inequality (4.10) and the positivity of ;g that |9 || <
(b — a)k. Also we have [|w*|| < k for x € S and & > s. Since N is dense in the
compact operators there is an operator C; € 91 with ||C — C1|| < (4k)~'e. Then we
have

W' (C) — W'(CY)] < €/4.
Now for h # 0 we have
B iy (C1) = h2e gy (U(E = $)C1U(E — )°).

Since C'y € 9 we have the limit of the left-hand side of the above equation tends
to w!(Cy) and, therefore, the right-hand side also tends to w!(C7) as h — 0. Since
U(t—s)C1U(t — s)* is compact there is a an operator Co € 9 so that [|Co — U(t —
s)C1U(t — s)|| < (4x)"Le. Then we have

Ih= e s somy (Ut — s)CLU(t — 8)*) — h ™ e* s o) (Co)| < €/4
for h # 0 sufficiently small. Hence, we have in the limit that

lwh(C1) — e tw®(Cy)| < €/4.
And we also have
le* 7w (Cy) — e*'w* (U(t — 8)C1LU (t — 8)*)| < €/4

and

¥t (U (t — 8)CLU(t — 5)*) — 5 'w*(U(t — s)CU(t — 8)*)| < €/4.
Combining the four €/4 inequalities above we find

W (O) — e* W (U(t — s)CU(t — 8)*)| < €

and since € > 0 is arbitrary we have w!(C) = e*~'w*(U(t — s)CU(t — s)*). Hence,
wt = e, _,w® for all 0 < s < t with s, € S. Since the complement of S
has Lebesgue measure zero there is a decreasing sequence of real numbers s,, € S

tending to zero. Let us define w? for all £ > 0 by the limit

wh = lim e thw,,
n— oo .

Note that for ¢ € S this leaves w! unchanged and for ¢ ¢ S this defines w! so that w!
is norm continuous in ¢. Note that for the newly defined w! we have w® = e*~f,w*
for all 0 < s < t. Since the complement of S has Lebesgue measure zero we have

b
(4.11) Moty (A) = [5 = / W (A) dt

for all A € 9. Since each side of the above equation is o-weakly continuous the
above equation extends to all A € B(H).

We now define w(A4) = limy_, o4 etw?(U(t)*AU(t)) for A € UpsoU(#)B(H)U(t)*.
We see that for s > 0 and A € B($) we have

w(U(s)AU(s)*) = tli%1+ elw (U)*U(s)AU(s)*U(t))
:tlir&r eWwt(U(s —t)AU(s — t)*) = e*w® (A).

Combining this with Equation (4.11) we have
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for all A € B($H) and a,b € (0,00) with a < b. Since
M) (A) = e 96 (U(a)AU(a)*) — e~ *6(U (b) AU (b))
for A € B(9) and as a — 0+ and b — oo this converges to 6(A) we have
6(A) = / e tw(U@)AU(t)*) dt
0

for all A € B(H).
To establish w is a restriction of a boundary weight to UsoU (£)B(H)U(t)*. we
will need some estimates. As we saw in establishing Equation (4.3f) we have

/OO e UM U@)*dt =1 — A.
0

Then we have

Hence, we have w!(I — A) = e '6(U)U(t)*)
A B(9) let

IN

e~ta(I). Now for ¢+ > 0 and

He(A) =w(UOU ()" (1 = A)2A(I = A)2UMU(1)*)
='W (U(t)*(I — A)2 A(I — A)2U(1)).
Then recalling that w*(I) < 6(I)/t and w'(I — A) < e™'6(I) we have
pu(I) =e'w" (U(t)"(I = MU (1)) = e'w'(I — e "A)
=wt(I = A) + (¢! = D'(I) < e t6(I) + (ef — 1)a(I)/t.

Since p¢(I) increases as t deceases toward zero and the limit of the expression on
the right of the above inequality converges to 26(I) we have p,(I) < 26(I) for all
t>0.

Now from the definition of u; and the fact U(¢)U(t)* commutes with A we have

(4.12) pirs(A) = pe(Ut+ s)U(t+ ) AUt + s)U(t + s)*)

for all A € B(9H) and s,t € (0,00). It then follows from Lemma 2.10 that for
t,s € (0,00) we have

e = preaesl® <2lpell® = 2l persll® = 2(0ell + leses ) Qprell = Npresl)
<Al el (lpzell = Nlpzeesll) < 86Dl peell = 245 11)-

Hence,

liae = psll < 2/26 0 /T Treell — T |

for t,s € (0,00). Since ||p|| converges to a limit as t — 0+ it follows that ¢ —
is a Cauchy net in norm as t — 0+ and, hence, u; converges in norm to a positive
element p € B(H). and from Equation (4.12) it follows that for t > 0 and A € B(9H)
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and ¢ > 0 we have p(A) = w(UR)U()*AU(t)U(¢)*). Since U(t)*U(t) = I and
U(t)U(t)* commutes with A we have

(U8 AU (t)*) = (U (1) AU (2))
=e'W (U ()" (I — A)FU-)AU ()" (I — A)> U (t))
=w(UMU (1) (I = AU AU () (I - A)FU U ()"
=w((I = A U(H)AU()*(I - A)?)

for all A € B($) and t > 0. We extend w to the whole null boundary algebra 2(($))
by the relation

(
)

W((I = A)EA(I — A)%) = pu(A)

for all A € B($). Hence, this extension of to the whole null boundary algebra 2(($))
gives us a boundary weight which satisfies Equation (4.8). As for normalization
condition (4.9) we have only established u(I) = w(I — A) < 26(I). However, now
the existence of u has been established we have u(I) = w(I — A) = 6(I) < p(I) by
direct calculation.

In our calculations we have suppressed indicating the dependence of o, w and
w on p. Now we will return to indicating this dependence by writing o(p), w(p)
and p(p). Summarizing our progress up to this point we have shown that for a
positive p € B(R), the boundary weight w(p) is positive and satisfies Equation
(4.8) We have shown the mapping p — w(p) is positive. To complete the first
part of the proof we must show this mapping is completely positive. To show a
mapping p — w(p) is completely positive is equivalent to showing the mapping
v®p — vw(p) is positive from B(R1). to B(H1). where K, = K, ® K and
1 =Ro®H =R,/ L?(0,00) = K; ® L?(0, 00). The argument that the mapping
p — p is completely positive is obtained by simply repeating our argument above
for the tensored map from B(R1). to B($H1). and replacing our use of positivity
above with complete positivity which is the same as positivity for the tensored
maps. Since all this involves is a change in notation we will skip the details.

Conversely, suppose p — w(p) is a completely positive mapping of B(RK). into
A($). satisfying the normalization condition (4.9). Suppose ¢t > 0. Then we have

¢
Hp)A) e o)) = [ e wlp)U(s)AU(s)) de
0
for A € B($). Since the mappings p — 6, (w(p)) is completely positive for each s > 0
the mapping p — 6(p) — e~40:(5(p)) is completely positive and the normalization

condition follows from direct computation. O

The next two lemmas provide some useful norm estimates.
Lemma 4.18. Suppose p € B(R).. Then

et 4 et
| <l (5= 1)

for all t > 0 so the above expression is O(t?).

/0 6 (Eu(®(p))) ds
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Proof. Suppose p € B(RK).. We have
e*G(Es(@(p))(A) =e*D(p) (U ()" E() AE()U ()
=*®(p)(U(5)U (s)"E()AE()U (5)U (s)")
for all A € B($). For 0 < s <t we have E(t)U(s)U(s)* = E(s,t) so
e*G(Es(B())(A) = €D (p) (E(s, t) AE(s,1)).
Next we will estimate the norm of the above expression. Let S be a partial isometry

so that p(A4) = ¢(AS) where ¢ is positive and ||¢|| = ¢(I) = ¢(S*S) = p(S*) = |lpl-
For A € B(R) we define A,(A) the operator on B($) given by

(Ao (A)f)(x) = Af(x)

»

forx > 0s0 Ap(A) =ART actmg on $ = A ® L?(0,00). Note from the definition
of & we have ®(p)(A) = &(¢)(AA,(S)) for all A € B($). Then we have
e*C(Es(D(p)))(A) =e*D(9)(E(s,1) AE(s, )Ao(S))

)
=> () (E(s,t) AN (S) (s, 1)).
(

Since the functional A — ®(¢)(E(s,t)AE(s,t)) is positive the norm of this func-
tional is obtained by evaluating this functional at A = I. Hence, we have

€ G E (B0 (A)] = @ (D) (B (s, 1) Ao (8) (s, )
<e*d(¢)(E(s, 1)) | AN (S)]| < (e* — 7)ol | A].

Hence, ||e*C,(E5(D(p))|| < (&5 — e271)||p||. Evaluating the above expression with
A = A,(S*) proves the reverse inequality so we have ||e*C:(&s(P(p)))]| = (e® —
e2571)||p||. Hence, we have

/Ot e*C(E4(D(p))) ds

And we have

s— 1 -
<ol [ e = et s = S+t - 2)

t

; e*G(és(D(p))) ds

as t — 0+ (i.e., t~2 times the above expression is bounded). O

=0(t?)

Lemma 4.19. Suppose n € B(9).. Then, we have

1T (Ee(m) — @A)/t — 0
and

16 () — @A)/t — 0

ast — 0+ 50 [|G(T(€(n) = @(AM)))I| and [|G(F(n) —S(A(n)))|| are o(t) ast — 0+.
Proof. Suppose n € B($).. We will prove that

e (T (Ee(m) — '@ (A()))]/t — 0

as t — 0+ . Now from Equations (4.3) we have

T () = ) + / e*é.(n) ds
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We will show that the norm of ¢, applied to the second term is o(t) as t — 0 + .
Now we have

& / €., (n)ds)(A) = / e n(U(s)* E() AE(t)U(s)) ds.

Now suppose n is positive then the norm of the above functional is attained for
A =TI and we have

& / e*E.(n)ds)|| = / e n(U(s)* B®)U(s)) ds = / en(E(t - s)) ds

< / en(E(®)) ds = (¢! — n(E(D)).
0
Since n(E(t)) — 0 as t — 0+ we have

& / ¢*€,(n)ds)

as t — 0+ . Since an arbitrary 1 € B(5)). is the linear combination of four positive
elements the above results holds for all n € B(5)).. With this established we have

16" G (D& (m) = " (Al = 16 (T (n) — " R(AM)))] + oft)-
Let v =1 — 28(A(n)) so n = 2&(A(n)) + v and A(v) = 0. Then
G(D() = e d(Am)) = (1= )G ((AM) + G(T ()

and direct calculation shows that ||C(®(A(n))|| = (1 — e )| A(n)]| so

16 (T () = ' @A) = IG(T @)+ O?)
and combining the with the previous estimate we have

e G (T (&) = @AM = G @) + oft).

Then the proof of the lemma reduces to showing ||, (I'(v))|| is o(t) for all v € B($).
with A(v) = 0. Suppose then that v € B($), and A(v) = 0. Suppose t > 0. We

note the mapping A — I'((;(A)) is completely positive. Hence, the norm of this
mapping is attained at the unit. We have

T(G(I)) = /0 e U () B U (s)" ds.

We recall from Equation (4.3f) we established the formula

tfl

— 0

/00 e U(s)U(s)*ds =1 — A.
0
Then we have
(G (1)) :/o e U (s)(I = UU(1)")U(s)" ds
=I-A-U@)I-ANU®)"
=E(t) — A+ AU@)U(t)*
=(I —A)E(t)+ (e" = 1)AU @)U (t)*.

Note the operator I'((;(I)) is multiplication by function ¢(xz) = 1—e~* for x € [0, t]
and q(z) = e'™% — e~ for x € [t,00). Then ||T'(¢(I))|| =1 — et since 0 < g(x) <
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l—etforall z > 0 and g(z) - 1 —e7t as @ — t. Since A — T(((A)) is
completely positive we have |[T'((:(A))]| < (1 — e Y)||A|| for all A € B($). Hence,
(T (»))]| is O(t). Using the fact that A(v) = 0 we will show [|((T(v))]| is o(t).
Suppose this is not the case. Let A(t) be an element in the unit ball of B($) with
G W) (A®)) = & (T ()] for each ¢ > 0. Let

B(t) =t 'T(¢(A(t) =1 /OOO e *U(s)E(t)A(t)E(t)U(s)* ds.

We have | B(t)|| < (1 —e*)/t <1 and v(B(t)) = |{(I'(¥))]|/t and by assumption
[E(D ()|l /t does not tend to zero as ¢ — 0+ we have limsup, o, v(B(t)) > 0.
Since v(B(t)) is bounded there is a sequence t, — 0+ so that v(B(t,)) — ¢
as n — oo and ¢ > 0. Since the unit ball of B() is o-weakly compact and § is
separable we can by passing to a subsequence (which we also denote by t,,) arrange it
so B, = B(t,) — B, as n — oo and v(B,) = ¢ > 0. We will show that B, = A(C,)
for some C, € B(K). We begin by showing that B, = E(t)B,E(t)+etU(t)B,U (t)*
for each t > 0. As a preliminary to that we show B, commutes with E(t) for all
t > 0. Since U(s)*E(t) = 0 for s > t we have

BuE(t) =t /0 T e U() B(L) A(b) E(b)U ()" E(t) ds

—_— /0 =S U(s) E(t) A(ty) E(b)U (5)* E(t) ds.

And since E(t + t,)U(s)E(t,) = U(s)E(t,) for s € [0,t] we have B,E(t) = E(t +
tn)BrE(t). Hence, if f € (I — E(t))$ and g € E(t)$ we have

(£, Bog)| = lim_|(f, Bug)| = lim_[(E(t,t+tn)f, Bug)|
< Tim [|B(t,t + 1) £ | Ball ]
< lim [|E(t,t+tn)f] llgll = 0.

Hence, (I—E(t))B,E(t) = 0. Calculating E(t)B,, as we did above we find E(¢t)B,, =
E(t)B,E(t +t,) and taking the limit as above we find E(t)B,E(t,00) = 0. Hence,
we have E(t)B, = Bo,E(t) = E(t)B,E(t) for all t > 0.

We now investigate U(t) B,U(t)*. Now for ¢ > 0 we have

Ut)B,U(t)* =t,;* /(><> e U (t+ 8)E(tn)A(tn)E(t,)U(t + s)* ds
0

:t,;let/ e Ut + 8)E(tn) A(tn) E(tn)U (t + 8)* ds.
0
Then we have
¢
B, — e 'U)BU(t)* = t;l/ e *U(s)E(ty)A(ty)E(t,)U(s)" ds.
0
Let C,, = B, — e 'U(t)B,U(t)* — B,E(t). Combining the above equation with
the integral for B, E(t) derived earlier and using the fact that E(t,)U(s)*E(t) =
E(t,)U(s)* for s € [0,t — t,,] we have

Cp=—t1 /t UGB A B(n)U () (I = B(1)) ds.
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Since E(tn,)U(8)* = E(tn,)U(s)*E(t + ty,) for s € [t — t,,t] we have

t
C, = —tgl/ e *U(8)B(tn)Atn) E(tn)U(s)* (E(t + t,) — E(t)) ds.
t—tn
Hence, we have from the above that C, = C,E(t,t 4+ t,) and ||C,|| < 1. Let
Co =lim,, o Cp, = B, — e U (t)B,U(t)* — B,E(t) where we are taking the limit
in the sense of weak convergence. Then we have for f,g € $ that

[(f, Cog)| = nlggo |(f, Crng)| = nlgrolo |(f, CrE(t, t +1,)g)]
< Tn B+ ta)g]] = 0

Hence, C, = 0 and since B,E(t) = E(t)B,E(t) we have that
B, = E(t)B,E(t) + e 'U(t)B,U(t)*

for all t > 0. We will now show that the above equation implies B, = A(C,) for
some operator C, € B(R). Note the above equation implies E(t)B, = B,E(t) =
E(t)B,E(t) for all t > 0. Multiplying the above expression for B, by U(¢)* on
the left we find U(t)*B, = e 'B,U(t)* for all t > 0. And multiplying the above
equation for B, by U(t) on the right we find B,U(t) = e 'U(t)B, for all t > 0. It
follows from differentiating these equations that B,D(d) C ©(d) and B,D(d*) C
D(d*) and B,f = d*B,f — Bod*f for all f € ©(d*). It follows that B, € ©(d1)
and 01(B,) = B,. Hence, it follows from Lemma 4.7 that B, = A(C,) for some
C, € B(R). We recall that v(B,) = v(A(C,)) = ¢ > 0. But this is a contradiction
since A(v) = 0. Hence, ||G(D(v))]| is o(t). O

The next theorem is one of the main results of this section. In the statement of
the theorem we use the norm ||n||; which we now describe. If n € B(9), and 7
is hermitian then n has a canonical decomposition as the difference of two disjoint
positive functionals n4 and n_ so n = ny —n—. For a discussion of this decomposition
we refer to Section 4.3 of [KR] and we present the well-known properties of this
decomposition. For hermitian n € B($). we have ||n]| = |[n+||+ ||n-| and there
are unique hermitian projections Ey, E_ € B(9) so that n(AEy) = n+(A4) and
N(AE_) = —n_(A) for all A € B($H) and E; and E_ are the smallest projections
with this property and Ey + E_ < I. Also ||n4] = sup(n(A) : 0 < A < I) and
the supremum is actually attained for A = E,. If  is an hermitian functional we
define ||n]|+ = ||n+]| =sup(n(A) : 0 < A < I). Note that for an hermitian functional
with n = n4 —n_ its canonical decomposition into the difference of disjoint positive
functional we have || - nlls = [ln— | and g = [lnll+ + || - nlls-

Next we introduce some notation. Suppose ¢ is a o-weakly continuous linear
mapping of B(H) into B(R). Let K, be an infinite dimensional separable Hilbert
space and let $; = 8, ® H and & = K, ® K. Let ¢’ be the mapping of B($)
into B(K;) given by ¢'(A® B) = A® ¢(B) for all A € B(K,) and B € B(H).
The statement ¢ is completely positive or completely contractive is equivalent to
the statement ¢’ is positive or contractive. Suppose o« is a CP-flow over £ so
a is a CP-semigroup of B($) where § = & ® L%(0,00). Let &, be an infinite
dimensional separable Hilbert space and let $; = &, ® § and K; = K, ® K. Let
o/ be the CP-flow over R; given by aj(A® B) = A® ay(B) for t > 0, A €
B(R,) and B € B(H). To show « is a CP-semigroup is equivalent to showing
o’ is a semigroup of positive contractions. Note all the operators and mappings
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U), E(t)y =T -U@®)U@®)*, 0, &, ¢, ,A, ,®, ,T and o all have obvious primed
operators and mappings where we replace K with 8 = &, ® 8 and $; = K, ® 9.
When we put a prime on a mapping (e.g., U’(t), o’ or ® and speak of the tensored
operators or maps we mean the operators or maps one obtains by tensoring with
B(R,). So showing that a map ¢ is completely positive is the same as showing ¢’
is positive. Note all the theorems and lemmas we have proved concerning CP-flows
remain true if we replace the maps and operators in the theorems and lemmas
with the primed maps and operators since all that is needed is to replace & with
R =R, QK

Theorem 4.20. Suppose a is a CP-flow over R and o is the boundary resolvent
of a. Recall E(t) =1 —-U@)U(t)*, 0,(A) =U(t)AU(t)* and ((A) = E(t)AE(t) for
A € B($H) and t > 0. Recall from Lemma 4.16 it follows that for each t > 0 the
mapping p — 6(p) — e~0,(6(p)) is completely positive linear contraction of B(R).
into B(9).. Assumed the primed mappings are the tensored mappings just described
and a subscript one on a Hilbert space mean the Hilbert space without a subscript
tensored with the infinite dimensional Hilbert space R,. Then for each p € B(R1)«
we have

(4.13) lim inf £~ ([¢(e"®(p) + &' (0))]| = lle'5"(p) = 038" (D)) = O
and for each hermitian p € B(8R1). we have
(4.13+)  Tim inf £ (IC(e"® (o) + 6" (0))1+ = ll€'6"(p) = B(6" (p))]|+) = 0

where ||n||+ is the is the norm of ny where n = ny — n_ is the canonical decompo-
sition n as the difference of disjoint positive functionals.

Conversely, suppose p — 6(p) — e*tét(fr(p)) is a completely positive linear con-
traction of B(R). into B(9). for each t > 0 and the primed mappings are defined
as described above and for all p € B(R;). we have

(4.14) lim tsil(ﬂt_l(llét’(et‘i)’(p) +6" () = le'd” (p) = 046" (P)I) = 0

Q

and for all hermitian p € B(R1). we have
(4.14+) limtsu&t’l(\lft’(et‘i”(p) +6" ()4 = €6’ (p) = 0:(6"(p))l|+) = 0.

Then there is a unique CP-flow o over R whose boundary resolvent is o. If in
addition the mapping p — 6(p) is unital the same conclusion follows if one only
requires condition (4.14) (i.e., in the unital case condition (4.144) it follows from
(4.14)).

Proof. Before we begin the proof we remark that conditions given in (4.13+) and
(4.14+4) above imply (4.13) and (4.14), respectively. This is seen as follows. Note
for an hermitian functional n we have ||n|| = ||n]|+ + || — 7|+ and, hence, (4.13)
and (4.14) follow from (4.13+) and (4.144) in the case of hermitian functionals.
Because £, is infinite dimensional the truth of (4.13) and (4.14) for hermitian
functional implies the truth of the relations for arbitrary functionals. This follows
from the following observation. Suppose 9t is a Hilbert space and n € B(N), is an
arbitrary. Let 11 € B(MN & N) the functional given in matrix form as follows:

m = L?* g] som [é g} =n(B) +7(C").
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Let S be an element in the unit ball so that n(S) = ||n|| and let

0o s
s-[2 9.

Note S1 = S} and S75; has positive diagonal entries of norm less than or equal
to one so S7S; < I. Hence, we have ||S1]| < 1 and 1(S1) = 2||n|| and, therefore,
[lm1]l = 2|In|l- On the other hand, suppose T} € B(MN & N) is of the form

A B
n-[é 3]

and ||T1]] < 1. Then we have ||B]| <1 and ||C|| <1 and

Im (T0)] = [n(B) +7(C7)] < Inll + lInll = 2[|]]

and, hence, ||n1]] < 2||n||. Combining this with the previous inequality gives ||| =
2||n||- Hence, the norm of an arbitrary functional n can be obtained from the norm of
the hermitian functional n;. Since £, is infinite dimensional B(8,) is isomorphic to
B(R,DR,) the properties of all the primed mappings persist if R, is replaced by &,®
R, and by the procedure described above the norm of an arbitrary functional can
be determined from the norm of an associated hermitian functional. It follows that
if relations (4.13) or (4.14) hold for hermitian functionals they hold for arbitrary
functionals. In the statement of the theorem we included both the conditions with
and without the (4) because in the unital case the only the versions without the
(4) are needed.

We begin the proof of the theorem by establishing condition (4.13) of the theo-
rem. Suppose p € B(&1), and 1, € B(H1). and A’'(n) = p. Then from Equations
(4.5) and (4.6) of Theorem 4.14 we have

& (&%p) L2+ [ eEmds -+ é;m) — (6" (p) + () — O 0).

Let 1 = 28/ (p) and let

Then
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We calculate the last term in the above equation. Since for t > s we have ég( A; (n) =
015 (0,(E5(m))) = 0;_(n) and, hence,

21;f%<4@%m»ds=zé e8] (8'(p)) ds

:2/0 et (p)ds = (e! — e 1D (p).

Hence, in the expression for &}(C/(v)) the last two terms cancel and we have

& (Ch(v) = €'d' (p) — 0;(6" ().
We have
(4.15) Ci(v) = G(6" (p)+e'® (p) — (" = 1) (p))

+aAe@@me»w

for A € B(9). From Lemma 4.18 we have

as t — 0+ (i.e., t~2 times the above expression is bounded).
We note that the norm of the second to last term in Equation (4.15) is

(e = DE@ ()] = (¢ = 1)1 = e lloll = (¢ + ¢ = 2]

which is also O(t?). Hence, we have

IGE @)1 = 16 (€7@ (p) + 6" () + O(E?).
Since oy is a complete contraction of B($) into itself the extended « is a contraction
of B($1) into itself. Hence, |E/(v)]| > lal(G)I| = [l€6"(p) — 0(5" (p))]| for all
t > 0. From the estimate above for [|¢/(v)|| the limit condition (4.13) of the theorem
follows.
We now show condition (4.13+) holds. Suppose p € B(R1)* and n,v € B(H1).
and A’ (n) = p and all the functionals are hermitian. Repeating the calculations

above we arrive at the expressions for &}((/(v)) and /() given above. We note

Aéd@@mmm5=0w>

&4 ()]l+ < I/ (v)]|+ This may be seen as follows. Note that since oy is com-
pletely positive and completely contractive o is positivity preserving and contrac-
tive. Since for 0 < A < I we have 0 < a}(A) < o} (I) < I we see that

& (&)l =sup(@) (&) (A) : A€ B($1), 0< A< T)
—sup(¢(v) (a(A)) : A € B(H1), 0< A< T)
<sup(&(v)(A) : A€ B(), 0< A< T) = &)
Hence, [(()ll+ > 64+ = lle'6’(p) — 6;(6"(p))||+ for all ¢ > 0. From

expression for (;(v) in Equation (4.15) and the fact that the norm of the second
two terms is O(¢?) it follows that

I )1+ = 116 ("' (p) + 6" ()| + O(F?).
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This with the upper estimate for ||e!6”(p) — 0.(6"(p))||+ gives condition (4.13+) of
the theorem.

Now we prove the reverse implication. Suppose p — 6(p) — e~ 10,(6(p)) is com-
pletely positive linear contraction of B(R), into B($). for each t > 0 satisfying
conditions (4.14) and (4.144). We define § by Equation (4.4) of Theorem 4.14.
Specifically we define the domain of 4 to be all v of the form v = &(A(n))+ I'(n)
for some 1 € B($H), and 6(v) = v — n. It is clear that the range of the mapping
p — p—06(p) from D(8) to B(H). is all of B($).. All we need to establish that &
is the generator of a continuous semigroup of contractions of B($). is show that )
is dissipative. In fact, we will show §is completely dissipative so we will work with
the primed maps. Now each v € ®(’) is of the form v, = 6'(A’(n)) + I"(n) for
some 7 € B(H1).. We will show there is an element S in the unit ball of B($;) so
that 1,(S) = [lvo]| and Re(d(1,(S))) = Re(v,(S) — 1(S)) = [voll — Re(n(S)) < 0.
To slightly simplify some of the following formulae let p = A’(n). Now let v, =
&' (p) + €T (€} (n)) for t > 0. Note vy for t = 0 is v,. We will estimate the difference
[ve]l — €t||vol. We have from Lemma 4.12 that ||v]| > |/ (v0)]| + 110 (v)]|. We have

16 o)l =G (@' (p) + 6" (p) + €T (€] (o)) — €' @' ()

=[G (e (p) + 6" ()| — eI/ (€1 (0)) — &' (P))].

From Lemma 4.19 the second term above is o(t) so

IGi o)l = NI€i(e' @ (p) + 6" ()] + oft).-

Now from Equations (4.3) we have

0, (1) = 0,(6(p)) + €'T" (n).
So we have
vell =116 )l + 116 (v
=[1i(e"®" (p) + 6" ()|l + 1165(6" (p)) + T/ ()| + o(2).
Now
161(5" (p)) + €T ()| =lle'vo — €'6" (p) + 6(6" ()
>et|wo|| — le'e"(p) — 0

16" ()]

Then combining the two inequalities above we have

(4.16)  [vell = €'lloll = G D (p) + 6" (p))I| — lle"6" () — 86" (p))I| + oft).

Now, let S(t) be an element of the unit ball of B($1) so that v:(S;) = ||v||. Since
the superior limit is an accumulation point there is a decreasing sequence t], of
positive numbers converging to zero so that if the limit (4.14) is taken with the
sequence t;, the limit superior is achieved. Since the unit ball of B($)) is o-weakly
compact there is a subsequence t, = t;g(n) so that S(t,) converges o-weakly to a
limit S, as n — oo. Note S, is in the unit ball of B($) since it is the weak limit of
elements in the unit ball. Since ||y, — v,|| — 0 and, therefore, |(v, —vt, )(St, )| — 0
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as n — 0o we have

Vo(S,) = lim v,(Sy,)

:nli—>H;o v, (St,) + (Vo — 141,)(St,)
= lim |v,, || = [|vol|.
n—oo

Hence, S, is an element in the unit ball of B($) with v,(S,) = ||vo]|-
Applying Equations (4.3) to the expression for v, we have

w:aw+&ﬁ@m»:wm+ﬁw+4eﬁWM&

Then, we have

t
nr%w—%wﬂNSfJAnfgmwmwmﬁo
as t — 0+ . Then we have

tn (4, (S(tn)) = vo(S(ta))) = 0(S(ta)) + (15" (v — vo) = 1)(S(tn))-
Since the norm of second functional on the right-hand side of the above equation
converges to zero as n — oo and the S(t,,) are in the unit ball of B($) we have this
term converges to zero as n — oo. Since S(t,) converges o-weakly to S, the first
term on the right-hand side of the above equations converges to 1(S,). Hence, we
have

lim ¢4 (v, (S(tn)) = vo(S(tn))) = 1(So).

n—oo

Then we have
Re(9' (v6(S0))) =Re(vo(So) = 1(S0)) = [|o]| = Re(n(S,))
=[lwoll = lim £ Re(w, (S(t)) — vo(S(t)))
=[lvoll — lim_ £ Re(|lun, | — vo(S(ta)

<ol = tim sup £ Ref(Jvr, | — o)
n—0oo

<lvoll = tim sup 3w, | = e ol + (e = Do)
n—oo

—e"[oll)

= —lim sup t,*(|lus,
n—oo

< —lim sup (I, (" &' (o) + &' ()] — lle' 5" (p) — b, (6" (X))

tp—00
where the last inequality follows from (4.16). Recall that the sequence {t,} is
a subsequence of the sequence {t,,} where for the sequence {¢,} the above limit
superior equals the limit superior as ¢ — 0 + . Hence, the above limit superior
equals the limit superior as ¢ — 0+ and by assumption (limit inequality (4.14))
this limit is greater than or equal to zero. Hence, Re(d (v5(S,))) < 0 and &' is
dissipative and since 8is dissipative 5 is completely dissipative.

Recall § is defined on its domain ®(8) of v € B(H). of the form v = 6(A(n)) +
I'(n) and 6(v) = v — 7. We see that § is a closed dissipative operator and the
range of the mapping v — v — d(v) for v € D(8) is all of B(§H).. Then from
Theorem 2.7 we have ¢ is the generator of a strongly continuous one parameter
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semigroup @& of contractions of B($), and § and, therefore, a is uniquely determined
by the mapping p — &(p). Since 5 is completely dissipative & and, therefore, « is
completely contractive.

We now prove the last statement of the theorem. We assume then the mapping
p — &(p) is unital. Then for v = 6(A(n)) 4+ ['(n) € () we have

Sw)(I) =6(An)(1) + T (n)(1) — n(I)
=n(A) +n(I —A) —n(I) =0.

Hence,
d N ~
%ll(at( )):5(0&15(”))(]) =0

for all v € D(8) and t > 0. Hence, v(I) = v(oy(I)) for all v € D(§) and ¢ > 0 and
since D(8) is dense in B(H). we have a,(I) = I for all ¢ > 0. Hence, a is unital.
Since « is unital and completely contractive « is completely positive.

Now that we have proved the last statement of the theorem we now drop the
assumption that p — &(p) is unital. We will show that condition (4.14+) insures
that a is completely positive or what is the same thing that o’ is positive. As
mentioned earlier in the proof condition (4.14+) implies (4.14) so by the argument
above we have « is a strongly continuous semigroup of completely contractive map-
pings of B(H) into itself. As we saw in Theorem 2.9 o is positivity preserving if
and only if for all A € (0,1) we have v — A§’(v) > 0 implies v > 0 or what is the
same thing o is positivity preserving if and only if for A € (0,1) and v € (') is
hermitian and v is not positive then v — Ad’(v) is not positive. Suppose then that
A€ (0,1) and v € D(¢') is hermitian and v is not positive. Let v = v, — v_ be the
canonical decomposition of v as the difference of two disjoint positive functionals
and let £, and E_ be the support projections of v, and v_, respectively. Since v
is not positive v(E_) = —|lv_|| < 0. Since v € D(’") we have v = &'(A'(n))+ I'(n).
Let P, = E'(t)A(t)E'(t) + 0,(E_) for t > 0 where A(t) is a positive operator in the
unit ball of B($;). We see that P, is positive and in the unit ball so

&' (N () +T' ()P —E-) >0
for t > 0. So for t > 0 we have
&' (K" () (CH(A®))) + T () (C{(A®) + T/ () (B1(E-) — E-)
+ (" = 1)6" (N () (B-) — &' (N () (" E- — 6,(E_)) > 0.

Since
lim ¢~'1() (94(E_) — E_) = I () (E_) — n(E_)

t—0+
and from Lemma 4.19 we have ||/ (I (n) — ' (A'(n)))||/t — 0 as t — 0+ and since
l(ef — 1)¢ (@' (A'(n)))] is O(t?) and, hence, is o(t) we have the above expression is
equal to the expression below

GL(&" (X () €@ (A (m)) (A1) + (6" (A ()
"(n
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So we have
tn(E-) < {{(6"(A'(n)) + €' @' (n))(A
—(e'6"(A"(n)
Recall that the only assumption on A(t) € B($H1) is 0 < A(t) < I. Now let us
choose A(t) so that

GH(&" (N () + €' @' () (A1) = ~ 166" (A" (m) + ' @' ()] -
where ||p||-= = ||p—|| with g = gy — p— is the canonical decomposition of y into
the difference of disjoint positive functionals. Since E_ is a hermitian projection
we have

(16" (W () — 016" (W ()))(B-) > —[le'd" (W () — 016" (K ()|
Hence, we have
n(E-) <(&'(A(n) + () (E-) = t (16" (N () + €'’ () |-
+ 7 e (A () = 0,(6" (A" ()| + o) /¢.
Note (6" (A'(n)) + /() (E_) = v(E_) = —||v||— < 0. Hence, we have
W(E-) < ~[v]l- < ~lim sup Dt

with

D(t) =t~ (IG/(&" (A (m) + €' ()| = lle*s" (K (n)) — 6(8" (A" (m)))|-)-
Since || —pl|+ = |||l - for any hermitian functional p it follows that relation (4.14+)
holds with the | - ||+ norms replaced by the || - |- norms. Since we have assumed

(4.14+) holds and —||v| - is strictly negative we have n(E_) < 0. Hence, we have
(v = A W))(E-) =(1 = N)(&" (N (n)) + T (n)) (E-) + M(E-)

=1 =Nv(E-) +Mn(E-)

<= (@ =N]- <0
and, hence, (v — A\0’(v)) is not positive. It then follows from Theorem 2.9 that &’
is positivity preserving and, hence, « is completely positive.

We show that U(t) intertwines a. We recall each v € D(0) is of the form v =

d(A(n)) + I'(n) for some n € B(H).. If follows that if n € B(H). and A(n) = 0
then I'(n) € ®(4) and §(I'(n)) = T'(n) —n. It follows from Lemma 4.10 that 0 is an

extension of &, (i.e., d(v) = d;(v) for all v € D(6;)). Hence, it follows that d; is an
extension of d. Suppose that f € D(d) and A € ©(J). Then we have

h™ N n (AUt + ) f = a(A)U ) ) =h~H(aern (AU (R) = DU(L)f)
+h7H awn(A) — ar(A)U(E) f
for t > 0 and ¢t + h > 0. Taking the limit as h — 0 we find
A1) =au A)AU(0)f — S(en( ANV ()] =
=—a(A)dU (@) f — 61 (ae(A))U(t) f = —dez (A)U(2) f.

Since f; = o (A)U(t)f € D(d) and (d/dt)fy = —dfy it follows that f, = U(t)f, =
U(t)f. Hence, we have U(t)Af = a(A)U(t)f for all f € D(d) and A € D(4). Since
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for fixed ¢ each side of this equation is norm continuous in f this equation extends
to all f € §. Since each side of this equation is o-strongly continuous in A and D (9)
is o-strongly dense in B($) it follows that U(t)Af = o (A)U(t) f for all A € B(9H)
and f € $). Hence, U(¢) intertwines a. O

We see from the previous theorem that for an understanding of CP-flows it is
essential that we understand the limits (4.13+) and (4.144+). The next lemma
shows us that the superior limit in (4.14+4) is always finite.

Lemma 4.21. Suppose p € B(RK). is hermitian and o € B(9). is hermitian then

IGe(e"@(p) + )|+ — lle'o = Bu(o) |+ < (¢" = D)(llo]|- + Ilpll+)
for allt > 0. The same result holds for an hermitian p € B(R1). and an hermitian

o' € B(9H1). with all the maps above replaced by the primed maps as described
before Theorem 4.20.

Proof. Assume the hypothesis of the lemma and t > 0. Let n = ((e'®(p) + o)
and let 7 = 04 +n— be the unique decomposition of 7 into the difference of disjoint
positive functionals and let E. be the support projection for ny so n(E4) = ||nll+
and E is the smallest projection with this property. It follows that E(¢t)EL E(t) =
E+. Let

o0

B =) U(nt)E,U(nt)".
Since E; < E(t) we have "
B = i Unt)EL U (nt)" < i Umt)E(t)U(nt)* = 1.
Hence, 0 < B < I. \ngeohave "
e'B — 0,(B) =(e — 1) B+ZUnt EL U(nt)* i U(nt)E,U(nt)*
=(e! —1)B+2’+0. "

Since 0 < B < [ we have
lefo = 0,(0) |+ Zo(e' B 0,(B)) = (¢' — 1) (B) +0(Ey)
=(e' = 1)a(B) +n(Ey) = Gi(e' () (E4)
>(¢" = o (B) + [[nll+ = I1¢ ('@ (p)1+
>— (' = Dlloll- +[Inll+ — (" = Dllp]l+

Note in the last line we used the fact that ||C;(e'®(p))||+ = (e* — 1)||p||+ which
follow from direct computation. Recalling n = (;(e!®(p) + o) the estimate of the
lemma follows. The proof for the primed maps is identical. (I

Lemma 4.22. Suppose p — w(p) is a completely positive boundary weight map
of B(R). into A($)s« as described in Definition 4.16 and suppose p — &(p) is the
mapping of B(R). into B($). given by

(48) 5(p)(A) = / " () U AT @) dt = Fw(p)(A)
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for all A € B($). Let R, be an infinite dimensional separable Hilbert space and let
R =RRand H1 = K109 = K, QAR L?(0,00) and let the primed operators and
mappings be the tensored mapping as described before Theorem 4.20. Let A($1) be
then null boundary algebra of all operators of the form

A=(I—-N(I)2B(I—-N()):?

with B € B($1). Then the mapping p — &(p) is the boundary resolvent of a CP-flow
over R if and only if for each hermitian p € B(R1). there is an operator T € B(Ry)
with 0 < T < I so that if A= A* € A($H1) and

(4.17) 0<A+AN(T)<T  then  p(T) > w'(p)(A).

Proof. Assume the hypothesis and notation of the lemma. Suppose for each her-
mitian p € B(Ry). there is an operator T' € B(RK) with 0 < T < I so that for
A= A* € A($H1) inequality (4.17) above is satisfied. From Theorems 4.17 and 4.20
we see that the mapping p — 6(p) defines a CP-semigroup provided limit inequality
(4.14+4) holds. Suppose then that p € B(£;). is hermitian and T € B(K;) with
0 < T < Isothat (4.17) is satisfied. Supposet > 0and C € B(9H;) with0< C < T
and

(6" (p) = 0:(6" (P)))(C) = [l€"8" (p) — 0:(6" (p))l|+-
Note we can let C' be the support projection of the positive part of €6’ (p)—8, (" (p)).

Let B = AL(T)E'(t) where A, was defined in Definition 4.6. Since 0 < T < I we
have 0 < B < I and ¢;(B) = B it follows that

IGE(e"®" () + 6" (D)4 = (e'@'(p) + 6" (p))(B)-
Then we have
(4.18) 16 (e"®"(p) + 6" () |+ = [Ie'6"(p) = 0:(6" (D) 1+ = Q(2)
= (' (p) +6"())(B) = (¢'6" (p) = 0,(6"(p)))(C).-
We examine Q(t). We have

Q(t) = (¢'=1)p(T) + /OOO e W' (p)(U' ()AL (T)E' (1)U (5)") ds

= e (0) (U ()OU ()" ) s,
We can write the above formula in the form
Q(t) = (' = Dp(T) — /' (p)(B1 — Ba)
where
By =¢ /t e *U'(s)CU'(s)* ds
and '
By _/000 e *U'(s)AL(T)E'(t)U'(s)* ds

=A,(T) = A(T) = U'(t)(AL(T) = N(T)U'(t)"
=AL(T)E'(t) = N(T) + e'A(T)(I - E' (1))
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where the second equality comes from applying Equation (4.3f) and the fact that
E'(t) = I —U'(t)U'(t)* and the second equality comes from the commutation
properties of U’(t) with A} (T') as stated after Definition 4.6. We calculate

(e = 1)A(T) — By =e'N'(T) — AL(T)E'(t) — ' N (T)(I — E'(t))
=(e"N(T) — AL(T))E'(t).
For f a & valued function f(z) we have ((e!A'(T) — AL(T))E'(t)f)(z) = (e'e ™ —

1T f(z) for x € [0,1] and the function is the zero vector for x > t. Since T' > 0 we
see the above operator is positive. Since Bj is positive we have

Bl - Bg + (et - 1)A/(T) Z 0.

If in the expression for By above we replace C by the unit I we will obtain a larger
operator. Hence, we have

¢
B <D :et/ e U (s)U'(s)" ds
0

=e'(I - N(I)) = U'(t)I — N(D)U'(1)"

=(e' = 1)(I — E'(t)) + e'(I = N (I))E'(¢).
Hence, we have

(" —=1)I — By + By — (e = 1)A(T)
>(e' —1)I — D + By — (¢! — 1)A'(T)

((e" = )T = (e = 1)(I = E'(1)) — e'(I = N'(1)) E'(1)
— (!N (T) — AL(T))E'(2)
=(e'T —T—e'T+e'N(I)—e'N(T)+ AN(T))E'(t)
=(=Ag(I) + e'N'(I) — e'N'(T) + Ao (T)) E' ()
=('N' (I -T)— A (I-T))E'(t).

For f € $); represented by a & valued function f(z) we have ((e'A’(I—T)— AL (I —
T)E'(t)f)(z) = (ete™® —1)(I — T)f(x) for x € [0,¢] and the function is the zero
vector for = > t. Recalling that T" < I we see the above operator is positive. Hence,
we have

0< By — By+ (e = 1D)A(T) < (ef = 1)I.

Let A = (¢! —1)7Y(B; — Bz). Since By and By are in 2($);) we have A € ()
and we have 0 < A+ A'(T) < I so we have p(T') > w'(p)(A) and we have

Q(t) = (¢" = )p(T) — w'(p)(B1 — B2) > 0.

Hence, Q(t)/t > 0 so from (4.18) we see the limit (4.144) of Theorem 4.20 is
nonnegative. Hence, from Theorem 4.20 it follows that the mapping p — &(p)
defines a unique CP-flow a.

Conversely, suppose ¢ is the boundary resolvent of a CP-flow «. Suppose p €
B(R1), is hermitian. Let A(t) € B($H1) be hermitian with 0 < A(t) < E’(t) for
each t > 0 so that

e (p) + 6 () (A(E) = 161 ("' (p) + 6" ()| +-
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Let -
B(t) =Y e U (nt) A(t)U' (nt)*.
n=0

Let X(t) = t7TV(¢/(A(t))) = tT’(A(t)). Note that X(t) — B(t) converges o-
weakly to zero as t — 0+ . The fact that for f,g € 91 (f, (X(t) — B(t))g) — 0 as
t — 04 is just the argument that the Riemann integral can be replace by Riemann
sums for a continuous function. And then since X (t) — B(t) is uniformly bounded
one obtain o-weak convergence. Repeating the argument in the proof of Lemma 4.19
we have there exists a decreasing sequence of positive ¢, so that t, — 0 asn — oo
and X (t,) — N(T) o-weakly as n — oo. In constructing the sequence ¢, we can
arrange it so it is a subsequence of any given sequence converging to zero so we
will make the further assumption that ¢, = 2-%() (i.e., t, is the reciprocal of a
power of two). Since the X (t) are positive and || X (¢)|| < 1 (see the argument in
the proof of Lemma 4.19) we have 0 < T < I. Since X (¢t) — B(t) — 0 o-weakly as
t — 0+ we have B(t,) — A'(T) as n — co. We claim condition (4.17) is satisfied
for this operator T Suppose this is not the case so there an hermitian 4; € (1)
so that 0 < A; + A'(T) < T and p(T) < w'(p)(A;1). Note ' (E'(t,00) A1 E'(t,00)) —
w'(A1) as t — 0+ so there is a t, > 0 so that if A, = E’(t,,00)A1E’(tg, 00) then
p(T) < w'(p)(A,). Furthermore, shrinking ¢, if necessary we can assume ¢, is the
reciprocal of a power of two. One checks that since 0 < A; + A/(T) < I we have
0<A,+N(T)<I
We will need to introduce some notation. Let

¢
wi(A) = t71/ e W (p)(U'(s)AU' (s)*) ds
0
and
vi(A) = W' (E'(ty, 0)AE (t,,0))
for all A € B($1) and t > 0. As we saw in the proof of Theorem 4.17 the expression
for w! is well-defined and is given by

W' =116 (p) — e710,(57 (p))).
As for vy, since w'(p) restricted to U'(t,)B($H1)U’(t,)* is a normal functional we
have v; € B(9H1)+ and vy converges in norm to the limit v, as ¢t — 0+ where

Vo(A) = W' (p)(E' (to, 0)AE' (t,,00)) for all A € B(H1). In terms of w' we have for
t > 0 that

And K
71" (p) — 0:(6"(p)))(A) = e'w'(A)
for all A € B(91). We define

a(t) =t (IG (' D (p) + 6 (0)) |+ — ‘s (p) — 1(5" (P))]+)-
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Since o is the boundary resolvent of a CP-flow over £ we have liminf; o4 ¢(t) >0
from Theorem 4.20. Now for C(t) € B($1) hermitian and 0 < C(¢) < I for t > 0
we have

(e — e )P (p)(B()) + ' (B(t) = e'w'(C(1)) + q(t).
Dividing by e’ and with a slight rearrangement we have

11— e )Y (p)(B(t) — e 'q(t) > W' (CO(t) — e " B(1))
for ¢ > 0. Then we have for all hermitian A € U'(t,)B(H1)U’ (t,)*
711 — e 2 (p)(B(t)) — e q(t) > w'(A)  if  0<A+e'B(t)<I.

Since t, and t, for n = 1,2,--- are the reciprocals of a power of two we have
E'(t,) commutes with B(t,) for t,, <t, so we have if A satisfies the inequality 0 <
A+ e ' B(t,) < I then the operator A" = E’(t,,00)AE’(t,,0) satisfies the same
inequality. Hence, we have for all hermitian A € B(9;) with 0 < A+e " B(t,) < I

tn (L —e )@ (p)(B(t)) — a(tn) = 1, (A).

Note 14, converges in norm to v, as n — oo and

tn (1= e 20" (p)(B(tn)) — 2¢'(p)(A'(T)) = p(T)
and the inferior limit of the e~»¢(t,) is nonnegative. From these facts it follows that
for every € > 0 there is an integer N so that for each n > N if A = A* € B($;) with
0 < A+e ™ B(t,) < I we have p(T)+¢€ > v,(A). Note p(T) < w'(p)(As) = vo(As)
and 0 < A, + A/(T) < I. We choose € = €, = 1(vo(A,) — p(T)) > 0 so for
n>N=N(e)if A=A* € B($H1) and 0 < A+ e " B(t,) < I we have

o(T) + €, > v,(A).

We will show that this inequality leads to the conclusion that p(T") > v,(A,) which
is a contradiction.
Suppose D; = exp(—tp,)B(tn,), \i >0and n; > N fori=1,--- ,p and

i

Zp: A\ = and C= Z \;D;.
=1 =1

Suppose A = A* € B($H;) and 0 < A+ C < I. We show p(T) + €, > vo(A). Let
A;=A+C—D;fori=1,--- ,p. Then 0 < A;+D; < I sowe have p(T)+¢€, > vo(A;)
fori=1,---,p. Then we have

P

T)+e = Z)\ )+ €0) > D vo(Aid) = vo(A).

i=1
Since the set of C' of the above form is a convex set and the o-weak and o-strong
closure of a convex set are equal and since e™‘» B(t,,) — A’(T) o-weakly as n — oo
we have A’(T) can be approximated arbitrarily well by operators C' in the above
form in the o-strong topology. Hence, there is a sequence C,, of operators of the
above form so that C,, — A’(T) as n — oo in the o-strong topology. Let ¢ be the
real valued function given by ¢(x) = 0 for z < 0, ¢(z) = z for x € [0,1], ¢(z) = 2—x
for z € [1,2] and ¢(x) = 0 for > 2. Note ¢ is a continuous function of compact
support. As shown in (Theorem 5.3.4, p. 328 of [KR]) the mapping A — ¢(A)
is strongly continuous on the hermitian operators. Recall A, was the hermitian
operator satisfying 0 < A,+A'(T) < I.Let A, = (A, +Cp)—Cp forn=1,2,---
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Since 0 < ¢(A,+Cp) < I wehave 0 < A, +C,, < I and, hence, p(T)+¢€, > v,(A,)
forn=1,2,--- . Since C,, = A'(T) and ¢(Ao+Ch) — (Ao + A (T)) = A, + N (T)
as n — oo in the strong operator topology we have

Ap — A+ N(T) — N(T) = A,

strongly as n — oo and since the A,, are uniformly bounded we have convergence
in the o-strong topology. Hence, v,(4,) — v,(A,) as n — oo and since p(T) + €, >
Vo(Ay) for all n =1,2,--- we have p(T) + €, > v,(A,). We recall €, = 3(1vo(A,) —
p(T)) so we have 2p(T) > 1v,(A,). But this is a contradiction since p(T') < vo(4,).
Hence, p(T') > w'(p)(A) for all hermitian A € A(H1) with 0 < A+ AN (T)<I. O

Theorem 4.23. Suppose p — w(p) is a completely positive boundary weight map
B(R), into A($).. For s > 0 suppose wy is the truncated boundary weight map so
ws(p)(A) = w(p)(E(s,00)AE(s,00)) for all A € B(H) and s > 0. Suppose p — &(p)
is the mapping of B(R). into B(9). given by

(4.8) o)) = | e () (U AU (D)) di

for all A € B(9). Let R, be an infinite dimensional separable Hilbert space and let
Rl =K @R and H1 = K @H = K, ® AR L%(0,00) and let the primed operators
and maps be the tensored operators and maps as describe before Theorem 4.20.
Suppose the mapping o is the boundary resolvent of a CP-flow over K. Then for
each hermitian p € B(R1)« and each s > 0 we have

(4.19) llp + N (@i (o)) 1+ = [l ()]]+
Conversely, suppose for each hermitian p € B(R1). we have
(4.20) tim sup lp+ @)+ = (o)l = 0.

Then the mapping p — &(p) defines a CP-flow over f.

Proof. Assume the hypothesis and notation of the theorem. First let us assume
the mapping p — 6(p) defines an CP-flow over R. Suppose p € B(RK;) is hermitian
and s > 0. Then from the previous lemma there is an operator T' = T* € B(R;)
with 0 < T < I so that p(T) > w'(p)(A) for A = A* € A($H1) (the null boundary
algebra) with 0 < A+ A’(T) < I. Note if A satisfies 0 < A+ A'(T) < I so does
A’ = FE'(s,00)AE’(s,00). Hence, we have p(T) > w.(p)(A) for all A = A* € B($1)
with 0 < A+ A'(T) < I. Hence, we have p(T) + w.(p)(A'(T)) > wi(p)(A+ A'(T))
for all A = A* € B(9H;) with 0 < A+ A'(T) < I. Since ||w}(p)|l+ = sup(wi(p)(C) :
C € B(H) with 0 < C < I) we have (p + A (W, (p)))(T) > ||w'(p)||+ and since
0 < T < I we have [[p+ A (W.(p)|l+ > (p+ N(W.(p))(T) and inequality (4.19)
follows.

Conversely, suppose inequality (4.20) holds for all hermitian p € B(£;).. Sup-
pose p € B(R1), is hermitian. Then there is a decreasing sequence s, — 0 so that
if

an = o+ K@l (DIl — It )+
then lim, .. ¢, > 0. Let P, be the support projection of the positive part of

p+ AW, (p)) so
(p+ N (Wl (0)(Pn) = llp+ N (W, (p))]+



CP-FLows 231

Then for each n = 1,2,--- we have

p(Po) +wg, (p) (N (Pn)) = o, ()(B) + an

for all hermitian B € B($H;) with 0 < B < I and, therefore, we have p(P,) >
w, (p)(A) 4 g, for A = A* € B($H1) with 0 < A+ A'(P,) < I. And from the defi-
nition of w; (p) we have p(P,) > w'(A) + g, for all A = A* € U'(5,)B(H1)U’(sn)
with 0 < A+ A'(P,) < I. Since the unit ball of B(9;) is o-weakly compact and
$1 is separable there is a subsequence s,,(xy so that P, ) converges o-weakly to an
operator T" as k — oo. We relabel the subsequence as s, and Py so si is a decreasing
sequence converging to zero and P, — T o-weakly as k — oco. We claim inequal-
ity (4.17) holds with T the operator just constructed. Suppose this is not the
case. Then there is a ¢ > 0 and a hermitian operator A, € U'(c)B($H1)U’(¢)*
and 0 < A, + A(T) < I so that p(T) < w'(p)(4y) = w.(A,). Note that if
A=A € B(H1) and 0 < A+ AN(P,) <Tor0< A+ AN(T) < I then the
same inequalities hold with A replaced by A’ = E’(c,00)AFE’(c,00). Hence, we
have p(P,) > w.(A) + gy, for hermitian A € B(H1) with 0 < A+ A’(P,) < I. Since
P, — T o-weakly as n — oo and lim,_, g, > 0 for each € > 0 there is an integer
N so that for each n > N if A= A* € B($;) with 0 < A+ A'(P,) < I we have

p(T) + € > wL(A).

We are now in precisely the same situation we had in the proof of the second
part of Lemma 4.22 and repeating the argument there produces the contradiction
p(T) > wl(A,). Hence, inequality (4.17) holds and from Theorem 4.22 we have
p — &(p) defines a CP-flow. O

A natural way to construct E,-semigroups or CP-flows is through the bound-
ary representation m, as given in Definition 4.5. One may simply require that the
boundary representation m, of ©(J) be o-weakly continuous and, therefore, have a
o-weakly continuous extension 7 to all of B($). In earlier work it was natural to
focus on the boundary representation. For example, it was shown in [P3] (Theo-
rem 4.6) if « satisfies the conclusion of Theorem 4.20 then « is a completely spatial
E,-semigroup of B(H) if and only if the mapping A — 7,(A) from the domain of
the generator § of a to B($)) extends to a o-weakly continuous *-representation 7
of B($H) on B(K) and with the further property that A = 7(A(A)) only if A = 0.
Here are ways to connect a normal boundary representation with a CP-flow.

Theorem 4.24. Suppose o is the boundary resolvent of a CP-flow over & and § is
the generator of a. Suppose w is a completely positive normal contraction of B(5))
into B(R). Then the following are equivalent:

(1) ®(p) EA’D(S) and (i(i)(p)) =7(p) — ®(p) for each p € B(RK)..
(ii) o(p — A7 (p))) = T'((p)) for all p € B(R)..
(iii) m(A) = 7 (A) for all A € ©(0) where m, is the boundary representation
introduced in Definition 4.5.

Proof. Assume the hypothesis and notation of the theorem apply. Assume condi-
tion (ii). Since a is defined from & we have for all n € B($), that 6(A(n))+I'(n) €
D(0) and §(6(A(n)) + I'(n)) = 6(A(n)) + I'(n) — n where § is the generator of a.
For n = 2®(p) — #(p) we have A(n) = p — A(#(p)) and I'(n) = (p)— I'(7(p)) and,
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therefore, from the equation above we have ®(p) € D(8) and 6(P(p)) = #(p) —®(p).
Hence, (ii) = (i).

Conversely if o satisfies (i) we have ®(p) € D(5) and §(®(p)) =
where § is the generator of &. Then for p € B(K). there is an n € B($). so
5(A(m))+T(n) = (p) and then 5(&(A(n)+T(n)) = #(A(m))+T(m)—1 =
#(p) — ®(p). Hence, n = 28(p) — #(p). Since I'(®(p)) = 32(p) and A(D(p)) = 3p
we have 6(A(n)) =6(p — A(7(p))) = T'(7(p)). Hence, (i) = (ii).

Next we show (ii) and (iii) are equivalent. Since « is defined from the map
p — 6(p) means that each element of ®(4) is of the form &(A(n)) + I'(n) and
S(6(A(m)+T(n)) = 6(A(n)) +T(n) —n for some n € B($),. This translates over to
the dual space B($) to give that each element of ©(4) is of the form A(c(A))+T'(A4)
and 0(A(o(A)) + T'(A)) = A(oc(A)) + T'(A) — A. Recalling the properties of the
boundary representation we note that m,(I'(A)) = 0 and 7,(A(B)) = B for all A €
B(H) and B € B(R). Hence, we have 7,(A(c(A))+T(A)) = o(A) for all A € B(9H).
It follows that condition (iii) is then equivalent to the equation o(A) = w(A(c(A))
+T'(A)) for all A € B(H). Note all the mapping in this equation are o-weakly
continuous so translating this equation to the predual gives condition (ii). Hence,
(ii) and (iil) are equivalent. O

Definition 4.25. We say a CP-flow a over £ is derived from the completely pos-
itive normal contraction m of B($) into B(K) if it satisfies one and, therefore, all
the conditions of Theorem 4.24.

The next theorem shows that for each such 7 there is a CP-flow « derived from
.

Theorem 4.26. Suppose 7 is a completely positive o-weakly continuous linear con-
traction of B(9) into B(R). Then for each p € B(R), the sum

5(p) = L(#(p) + 7 (A(#(p))) + FAGAG(P))) +---)

converges in norm and o is the boundary resolvent of a CP-flow o which is derived
from w. Furthermore, this a is the minimal CP-flow derived from 7 in that if p —
G2(p) defines a second CP-semigroup derived from 7 then &(p) < &a2(p) for all
positive p € B(R).. Furthermore, if (m o A)*(I) — 0 weakly as n — oo then «
defined above is the unique (i.e., « is the only CP-flow derived from ).

Proof. Suppose 7 is a completely positive o-weakly continuous linear contraction
of B(9H) into B(R). For p € B(K). let

Gu(p) = D((p)) + T (Z #(Ao ﬁ)%))) .

k=1

Note the mapping p — &,(p) is completely positive and each of the terms in the
sum for &,, are completely positive. Suppose p € B($). and p is positive. Using
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the fact that 7w(I) < I we find

Gulp) (1) =p(w(I = A) + 3 pl(x 0 A)¥m(I — A)
k=1

<p(I = 7(8)) + 3 pl(m o M)(L — ()
k=1
—p(I) = pl(r o A)"1(D)) < p(1)

for all n > 1. Since for n > m we have ||6y, — 6, || = Gn(I) — G (I) and this tends to
zero as n, m — oo it follows that &,, converges in norm to a limit which we denote
by 6(p) as n — oo. Since each p € B(R). is the complex linear combination of four
positive elements it follows that &, (p) converges in norm to a limit as n — oo for
all p € B(R).. Note for p € B(R). and A € B(H) we have

(6n(p) = €' 0:(60(p))(A) = /O ey p((mo N)en(U(s)AU(s))) ds.
k=0

Since each of the terms in the above sum is completely positive the mapping p —
6n(p) — €70,(6,(p)) is completely positive. Since 6, converges in norm to & as
n — oo the mapping p — 6(p) —e 0,(5(p)) is completely positive. To show that &
defines a CP-flow we need to establish the limit inequality (4.14+) of Theorem 4.20.
We do not know how to do this directly because although the expression for &(p)
converges in norm as n — oo the expression on which I' acts in the definition of
&(p) need not converge. (In fact, we know of examples where it fails to converge.)
To fix this problem we will replace m by Am with 0 < A < 1 which makes the typical
sums which occur convergent. Then we will take the limit as A — 1 — .
For p € B(R), and 0 < XA < 1 we define

pr=p+ )\/A\(ﬁ-(p)) + )\2]\(7?'(]\(7%(/))))) +-
and

& (p) = AD(7(p2)).

Note that since A < 1 the series for p) converges in norm. We show the mapping
p — 6*(p) defines a CP-flow over &. This mapping is completely positive by the
same argument that the mapping p — &(p) is completely positive and 6*(p)(I) <
p(I) for p > 0 by the same computation that showed this for 6(p). We show dA(p)
satisfies the limit inequality (4.144). As describe before Theorem 4.20 we use the
primed maps to indicate the extension of the unprimed map to tensor product space
R1 = R, ® K by rule v(A® B) = A® v(B). Suppose p € B(K;), is hermitian and
t > 0. Then we have

G (p) + 6™ (p)) =1 @' (p) + AP (A (7 (p2))))
+AG (7 (p2)) — (A (7' (p2))))-



234 ROBERT T. POWERS

By Lemma 4.19 the norm of the second term on the left-hand of the above equation
is o(t). Hence, we have

. — 1 Fr t&! AN
Jm 176 (e (p) + 5™ (p)l+
- tli%l+t*1|\§;(etci>’(p) + A (A7 (p2)) 1+
T 11—t t N
= Jim (1 = e’ p + A(® (o)) +

= o+ AN (& (p2))ll+ = llpall+-

And we have
t
EHEE (o) = eV () = ¢t [ e ) ds
0

— A (px)

as t — 0+ . Hence, we have

lim +74e'6™ (p) = 0u(6™ (0))ll+ = All7" (o)1

t—0+

Hence, inequality (4.14+) is satisfied if and only if

A" (o)l < llpall+

for all hermitian p € B(R;).. But this follows immediately from the fact that A < 1
and 7 is a completely positive contraction so 7’is a positive contraction. Hence, by
Theorem 4.20 there is a CP-flow a* of B($)) whose boundary resolvent is o*. The
properties of the semigroup o are essential to the remainder of our argument.

Suppose p € B(RK;) is hermitian. Suppose ¢ > 0. Then from Equations (4.15) in
the proof of Theorem 4.20 we have

aM(E W) = eV(p) — 0167 ()
and
&) = 86 (p) + €' () — (e — DE ()
Lo / e CU(E(S () ds

where the somewhat complicated expression for v (which fortunately we do not
need) is given in the proof of Theorem 4.20. Since ;' is completely positive and,
therefore, a is positive for ¢ > 0 we have ||& (/ () ||+ < IC/(v)]|+. We note that
both & (¢/(v)) and ¢/(v) converge in norm to limits as A\ — 1— and, hence, the
inequality [|a(¢/(v))]l+ < |I€/(¥)]|+ holds in the limit obtained by setting A = 1.
Hence, we have

UG+ — lle's” (p) = 867 (p))l1+) = 0

where /() is the expression given above with 6 (p) replaced by &(p). As shown
in the proof of Theorem 4.20 (after Equation 4.15) the norm of each of the second
two terms in the expression for (/(1) are O(¢2). Combining this with the inequality
above we have

lim inf = (ICH (e (p) + 6" (0)) 1+ — lle6” (p) — 036" (p))I|+) = 0
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which is the limit inequality (4.134) which implies (is stronger than) that the limit
inequality (4.144). Hence, by Theorem 4.20 ¢ is the boundary resolvent of a CP-
flow over K. We show « is derived from 7. Suppose p € B(R).. A direct computation
from the definition of & shows that

o(p— A#(p))) =T(7(p))-
for p € B(R).. From Theorem 4.24 it follows that « is derived from 7.
Next suppose then that 3 is a CP-flow over £ derived from 7 and let o2 be the
boundary resolvent of 5. Since 3 is derived from 7 we have from Theorem 4.24 that

&*(p = M#(p)) = T(#(p))
for all p € B(RK).. For p € B(R). let
pn =Y _(A-7)5(p).
k=0
Then p, — A7 (pn)) = p — (A - 7)"+1(p) and, hence,
*(p = (A7) (p)) = D((pn)-

Early in this proof when we constructed o we showed that T'(#(p,)) converges in
norm to d(p) as n — oco. Hence, we have

5%(p) = 6(p) + lim 62((A-7)"(p))
" are
(p) is

where the above limit exists. Since the mappings p — 62%(p) and (A )
completely positive for all n = 1,2,--- is follows the mapping p — 62(p) — &
completely positive.

Now suppose p > 0. Then ||(A - 7)™ (p)|| = p((7 0 A)"(I)). Now let us make the
assumption (moA)™(I) — 0 weakly as n — oco. It then follows that ||(A-7)"(p)|| — 0
as n — oo and since each p € B(RK). is a linear combination of four positive elements
this limit holds for all p € B(8).. From the normalization condition for &5 it follows
that & ((A - %)) — 0 in norm. Hence, we have

52(p) = 5(p) + lim 5a((A-7)"(9)) = ().
Hence, 8 = a and « is the unique CP-flow derived from = if (w o A)"(I) — 0

strongly as n — oo. O

Next we show that if the weights w(p) are bounded for all p € B(RK). then the
CP-flow defined from w is derived from a completely positive normal contraction m

of B(H) into B(R).

Theorem 4.27. Suppose « is a CP-flow over R and o is the boundary resolvent
of a.. Suppose

a(p)(A) = /OOO e w(p)(U()AU(t)") dt

for all A € B($) where w(p) is the weight defined in Theorem 4.17 and suppose
the weight w(p) is bounded for each p € B(R).. Then there is a unique completely
positive o-weakly continuous contraction m of B(H) into B(R) so that « is the
unique CP-flow derived from m and the relation between m and w is given by

w=#rI—-A-7)"" and r=wl+A-w)™t
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In particular, it follows that if « is a CP-flow over R and p — wi(p) are the
associated maps for t > 0 as described in Theorem 4.23 then for each t > 0 there
is a unique completely positive normal contraction m; of B(H) into B(K) so that
there is a unique CP-flow o) derived from m, and the associated map p — o*(p)
is given by

) = [ e alp) UV (E)) ds
0
for A € B(9). The relation between 7, and wy is given by the relations
Wt :ﬁ't<I—A'7ATt)_1 and thwt(l-i-[\'wt)_l
for each t > 0.
Proof. Assume the hypothesis and notation of the first paragraph of the the-
orem holds. We first show that the mapping p — w(p) is closed. We must
show that if ||pn]] — 0 and |jw(pn) — 7] — 0 as n — oo then n = 0. Let
ws(p)(A) = w(p)(E(s,00)AE(s,00)) for s > 0 and A € B($). Suppose p € B(K).
and p is positive. Since w(p)(I — A) < p(I) we have for s > 0 that
ws(p)(I) =w(p)(I — E(s)) < (1 —e ) lw(p)(I — A)
<(1—e ) 1p(0).
Hence, ||ws(p)|| < (1 —e=%)7L|p|| for p positive and since the mapping p — w(p)
is completely positive we have this inequality holds for all p and the mapping
p — ws(p) is bounded with bound less than or equal to (1 —e~%)~! for all s > 0.
Suppose then that ||p,|| — 0 and ||w(pn) —n]| — 0 as n — oo. Then we have
ws(pn)(A) — 0 as n — oo for each s > 0. Hence, n(E(s,0)AE(s,o0)) = 0 for all
s> 0and A € B(H). Hence n = 0 and the mapping p — w(p) is closed and, hence,
by the closed graph theorem the mapping is bounded so there is a constant K so
that ||w(p)|| < K]||p|| for all p € B(K)..

The next step is to show that mapping p — p + A(w(p)) is invertible. We have
G(p) = I'(w(p)) for all p € B(R).. We use the primed maps as described before
Theorem 4.20. Then for all hermitian p € B(8;). we have

G (' (p) + 6" (p) =({(" ¥ (p) + &' (N (' (p))))
+ G (w(p) = @' (K (W (p))))-
By Lemma 4.19 the norm of the second term in the above equation is o(t) and,
hence,

i G () + 6 ()]«
= Jim G e+ O = o+ A O
And we have
wﬂm—mawmmzaAZﬁﬂmwwmw@ww
for all A € B($) and ¢t > 0. It follows from the above that

Jim 7 (€'’ (p) = 61" (0))) = /()
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and, therefore,

Jim 71 e6" (0) = 006" (0)) 1+ = 1’ (D)l

Then it follows from Theorem 4.20 (inequality (4.134)) that

llp+ AW () 1+ = [l (p)]I+

for all hermitian p € B(R;1).. As described in the proof of Theorem 4.20 this
implies [|p + A'(W'(p))| > ||’ (p)| for all p € B(K;). and this trivially implies
lp+ Aw(p)l = w(p)]| for all p € BR).. Note |p+ Alw(p) | > |w(p)| implies

llo+ A (o)l = lloll = AN = ol = lw(p) = llell = llp +Alw (o).

So we have ||p + Aw(p))|| > Lllpll for all p € B(R).. It follows that the map
p — p+ Alw(p)) is one to one and this map has a bounded left inverse.

We will show that this mapping has range B(R), and so this left inverse is also
a right inverse and the mapping is invertible. Suppose 0 < y < 1. Consider the
mapping p — y&(p) and then p — yw(p) is the corresponding differentiated map.
Note from Lemma 4.22 that the mapping p — yw(p) satisfies inequality (4.17)
since the mapping p — w(p) does. Hence, the mapping p — y&(p) corresponds
to a CP-flow and by the argument above (with yw(p) replacing w(p)) we have
o+ yA(w(p)| > |p|| for all p € B(K). and y € [0,1]. Let T, be the mapping
p — p+yA(w(p)) for p € B(R). and let O, be the left inverse of T}, for y € [0,1].
Recall [|w(p)|] < K||p|| for p € B(R).. Now for y € [0,1/K) we have

0y(p) = p — yA(w(p)) + y* Mo (Aw(p)))) — -

and the geometric series converges. Note for y € [0,1/K) we have ©, is both a
right and left inverse of T}, so the range of T} is B(RK). for y € [0,1/K). Suppose
y € [0, 1] and for this value of y we have T} has range B(8), so ©, is both a right
and left inverse of T,. Then for z € [0, 1] we have

Tovy =Ty + ah-w = (Ty + zA - w)0,T, = (I+ z(A - w)O,)T,.

Note since ||Typ|| > 3llp| for p € B(8K). we have ||©,] < 2 and, hence, |z(A -
w)O,|| < 22K. Hence for z € [0, 3 K~') we have (I+z(A-w)O,) is invertible (since
the geometric series for it converges). Since T, has range B(8). it follows that
T4y has range all of B(K). for x € [0, 5K !). Then we can extend the interval
[0, (2/3)K~'] on which we know T}, has range B(RK). to [0, K~'] on which T, has
range B(K). then to [0,(4/3)K '] on which T} has range B(K). and in a finite
number of steps we can extend the interval for which we know T, has range B(8).
to an interval containing [0, 1]. Hence, T7 has range B(R). and ©; is both a right
and left inverse for T7.

It follows that ©,(p) + A(w(©1(p))) = p for all p € B(K).. Then for the primed
maps we have

loll+ = 165(p) + X' (@5 (O ()14 = [lwi (O3 (0))l|+

for all hermitian p € B(R1).. Let 7(p) = w(O1(p)) for all p € B(K).. Then the
above inequality says |pll+ > ||#'(p)||+ for all hermitian p € B(R1). which is

equivalent to saying 7 is a completely positive normal contraction of B($)) into
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for all p € B(R).. Hence, we have 6(p — A(7(p))) = ['(7(p)) for p € B(R), and a
is derived from 7.
As in the proof of Theorem 4.26 for p € B(R). and n > 0 let

pn=p+AFP) +- -+ (A-7)"(p).
Then we have w(p— (A-7)"*1(p)) = #(pn). Then assuming further that p is positive

we have A
(pn)(I) = w(p)(I) = w((A - 7)" H(p)(I) < w(p)(]).

foralln = 1,2, - - - and this implies 7 ((A-7)"p)(I) = ((A-#)"p)(7(I)) — 0 as n — oo
for all positive p € B(R),. Since A < I we have ((A-7)"T1p)(I) < (A-7)"p)(x (1))
for p positive so p((m - A)™(I)) — 0 for all positive p € B(R). as n — oo. Since
each element in B(RK). is the linear combination of four positive elements we have
(m - A)™(I) tends weakly to zero so from Theorem 4.26 we have « is the unique
CP-flow derived from 7.

Note we have shown that [Jws(p)|| < (1 —e™*)7Y|p|| for p € B(K). and s > 0
so the theorem’s last paragraph is an immediate consequence of the theorem’s first
paragraph and the proof is complete. O

We consider the following exercise. Suppose 7 is a completely positive normal
contraction of B($) into B(K) so that ||A - 7| < 1 and « is the unique CP-flow
derived from 7. Suppose o is the boundary resolvent of a. As we saw in the above
proof for A € [0, 1] the mapping p — \G(p) gives rise to a CP-flow o and since
the mapping p — Aw(p) is bounded it follows from the above theorem that o) is
derived from a completely positive normal contraction 7 of B($) into B(K). We
leave as an exercise determining the relation between 7 and ) which is given by
7x=M(I = (1—=A)A-7)"! for the predual maps and 7y = A(/ — (1 — A\ - A) "7
for the operator maps.

At this point we have reached the most important result of this section. We
see how a CP-flow is characterized by the family of completely positive normal
contraction 7 of the previous theorem and these contractions completely determine
the CP-semigroup «. Because of their importance we give this family a name.

Definition 4.28. If « is a CP-semigroup over 8 we say p — w(p) is the boundary
weight map of « if the boundary resolvent o of « is given by Equation (4.8). We
denote by 7% called the generalized boundary representation of a (or w) the family
of mappings ﬂf = m; (where 7; are mappings defined in Theorem 4.27) for ¢ > 0. A
boundary weight map p — w(p) is said to be g-positive if the generalized boundary
representation maps m; are completely positive contractions of B($)) into B(R) for
all t > 0.

Theorem 4.27 shows that the problem of constructing CP-flows is equivalent to
constructing g-positive boundary weight maps. We consider this to be the most im-
portant result of this paper. Since every spatial E,-semigroup is cocycle conjugate
to one dilated from a unital CP-flow this gives us a way to construct E,-semigroups.
There are a number of strategies for constructing g-positive boundary weight maps.
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When the Hilbert space K is one dimensional they are simply given by a simple
boundary weight on L?(0,00). When 8 is finite dimensional we have not classified
the g-positive boundary weight maps but the problem seems tractable. And in
the case where R is infinite dimensional we can construct new FE,-semigroups with
surprising properties as we will see at the end of this section. Note the general-
ized boundary representation of o completely determines . Also note that if 7#
is a generalized boundary representation of a CP-semigroup then 7rt# is determined
by 7# for all t > s so it is the properties of 77 as s — 0+ that are important.
The generalized boundary representation is of importance in determining the order
structure for CP-semigroups.

Theorem 4.29. Suppose o and (3 are CP-flows over £ and ©# and ¢* are the
generalized boundary representations of a and (3, respectively. If B is a subordinate
of a then ©¥¥ > ¢7 (i.e., the map A — 77 (A) — ¢7(A) from B(H) to B(K) is
completely positive) for all s > 0. Conversely, if Wi > ¢ff" for allm = 1,2,---
where s, — 0+ as n — oo then B is a subordinate of .

Proof. Suppose o and 3 are CP-flows over & and 7% and ¢# are the generalized
boundary representations of a and [, respectively. Suppose a dominates (. Let
O be the semigroup of B(H @ $H) constructed from « and B as described in the
Lemma 3.6. Since a dominates  we have O is a CP-semigroup and, hence, its
generalized boundary representation which is given below

[ﬂf Wf]

of of
is by Theorem 4.27 completely positive for all s > 0. Then 77 > ¢¥ for all s > 0.

Conversely, suppose 71'f’f1 > qﬁfi for all n where s,, — 0+ as n — oco. Let 2 be the

boundary weight given by the matrix of weights

5

non

where w is the boundary weight associated with « and 7 is the boundary weight
associated with . Consider the matrix of truncated weights

|:Ws 773:|

Ns Ms

where ws(A4) = w(E(s,0)AE(s,00)) for A € B(9H) and the same for n,. Since
Wf > (bi we have the above weight is the weight of a CP-flow over 8 ® K for
s = 8,. Since s,, — 0+ it follows from Theorem 4.23 that the above matrix of
weights is the boundary weight of a CP-flow over & & & and this is clearly a CP-
flow of the form of ©; given in Lemma 3.6. Since ©; is a CP-flow we have a > (3

from Lemma 3.6. O

Lemma 4.30. Suppose a and 3 are CP-flows over 8 and 7% and ¢# are their
generalized boundary representations, respectively. Suppose for somet > 0 we have
7T‘Z# > ¢t#. Then ©# > ¢7 for all s > t.

Proof. Assume the hypothesis and notation of the theorem. Let w and n be the
boundary weights of a and 3, respectively and let w; and 7; the truncated weights
at t, so

wi(p)(A) = w(p)(E(t, 00)AE(t, 00)) and  n:(p)(A) = n(p)(E(t, 00) AE(t, 00))
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for all A in the null boundary algebra 2(($)) and p € B(RK).. Theorem 4.27 shows
there are CP-flows a' and 8' associated with w; and 7, respectively. Let v the
mapping of B(H S H) into B(K @ R) given by

(Fo ) - [y ey

for X;; € B($). One checks that v is completely positive and there is a unique
CP-semigroup O derived from ~ which is given for each ¢t > 0 by the matrix

o ([ ) - [t iG]

Note the fact that © is unique follow from the fact that ||y - Al < e™' < 1. From
Lemma 3.6 it follows that o' > 8! and from Theorem 4.29 that w; > (;5; for all
s > 0 where 7'# and ¢'# are the generalized boundary representations of o' and
B, respectively. Since 7l# = 77 and ¢l# = ¢¥ for s > t the conclusion of the

lemma follows. O

The difficulty in computing the generalized boundary representation from the
boundary weight for a CP-flow is computing the inverse of the map Tp = p+Aw(p).
Even when R is two dimensional this is a complicated problem in linear alge-
bra. The situation is tractable in the case of Schur maps which we now describe.
A mapping ¢ of B(9) into itself is called Schur product with respect to an or-
thonormal basis {f; : ¢ = 1,2,---} of § if there are complex numbers ¢;; so that
(fi, #(A) f;) = 045 (fi, Af;) for 4,5 = 1,2,---- . This means ¢ acts on A by multiply
the matrix coefficients of A by ¢;;. This product has been called the Schur product,
the Hadamard product or Kronecker product. We will call this the Schur product.
In the case where § is finite dimensional one easily sees that if ¢ is diagonal with
coefficients ¢;; then ¢ is completely positive if and only if the coefficients ¢;; are
those of a positive operator. A similar result holds for infinite dimensional Hilbert
spaces. Note the spectrum of ¢ as a mapping are the numbers ¢;;. We see then
that a completely positive mapping can have negative spectrum and even complex
spectrum.

Definition 4.31. The mapping p — w(p) from B(R). to weights defined on the
null boundary algebra 2($) is said to be Schur diagonal with respect to an or-
thonormal basis {f; : ¢ = 1,2,---} of R if p;;(A) = (fi, Af;) for A € B(K) and
eif = (fi, f)fi then

w(pij)(A) = wlpij)((e; @ I)A(e; @ 1))

for all A in the null boundary algebra 4($)) for all 4,5 = 1,2,--- . In this case the
matrix elements of the mapping p — w(p) are the weights

wij(A) = w(pij)(es; ® A)

defined for A in the null boundary algebra A(L?(0,00) where {e;;} are the set of
matrix units defined by e;; f = (f;, f)fi for all f € Rand 4,j =1,2,---- .

The next lemma shows that if the mapping p — w(p) is completely positive to
show the mapping is Schur diagonal we need only check the diagonal entries.
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Lemma 4.32. Suppose the mapping p — w(p) from B(R). to weights defined on
the null boundary algebra A(9) is completely positive. Suppose {f; :i=1,2,---} is
an orthonormal basis for & and p;;(A) = (fi, Af;) for all A € B(R) and all i and
j and ei;f = (f5, f)fi for f € R. Suppose wi; = w(pi;) and suppose the diagonal
weights w;; are Schur diagonal, so w;;(A) = wi((e;; ® IA(ey; @ I)) for A in the
null boundary algebra A(L?(0,00)) for each i and j. Then w is Schur diagonal with
respect to {f; :i=1,2,--}.

Proof. Assume the hypothesis and notation of the lemma are satisfied. Suppose
fi and f; are distinct vectors in the orthonormal basis for R Since p — w(p) is
completely positive we have

for A, B in the null boundary algebra 2A(L?(0,00)) Multiply B by z with z a com-

plex number and minimizing the above expression we find the above inequality is

equivalent to the inequality

wij (A*B)|* < wii(A* A)w;;(B*B)

for A, B € %(L?(0,00)) Replacing B by B((I—ej;)®1I) we have w;j(A*B((I—e;;)®

I)) =0 or w;j(A*B) = w;;(A*B(ej; ® 1)) for all A, B € A(L?(0,00)). Applying this

argument to A, and replacing A by A((I —e;;) ® I) we recalculate that w;;(A*B) =

wij((ei; ® I)A*B) for all A,B € A(L*(0,00))U(t). Since A and B are arbitrary

we combine these results to obtain w;;(A) = w;;((e;; @ I)A(ej; ® I)) for all A €

2(L%(0,00)). Hence w is Schur diagonal with respect to the basis {f; :i =1,2,---}.
O

The following theorem gives a reasonably computable condition that the Schur
diagonal mapping p — w(p) gives rise to a CP-flow.

Theorem 4.33. Suppose R is finite dimensional and p — w(p) is a linear mapping
of B(R). into weights w(p) on the null boundary algebra A(H) which is Schur diago-
nal with respect to an orthonormal basis {f; 1 i = 1,2,---- ,n} and p;; (A) = (fi, Af;)
for each i and j and for A € B(K). Fort >0 and p € B(R). let

wi(p)(A) = w(p)(E(t, 00) AE(t, 0))

for all A € A(H). Note p — wi(p) is Schur diagonal with the same basis. For
pEB(R), let

5(p)(A) = / o) (U AU (1)) dt

for all A € B(9). Then the mapping o is the boundary resolvent of a CP-flow if
and only if for each t > 0 the matriz with entries given by

i = wt(Pz‘j)
Y Tt wielpig)(A)
fori,5=1,2,---  n are the matriz elements of a completely positive contraction of

B(R)« into B(H)..

Proof. Assume the hypothesis and notation given in the statement of the theorem
apply. Suppose the mapping p — w(p) is the boundary weight map of a CP-flow.
Suppose t > 0. From Theorem 4.23 it follows the mapping p — w(p) defines a CP-
flow. From Theorem 4.27 it follows that this semigroup is derived from a completely
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positive normal contraction 7 of B($)) into B(RK) and from the details of the proof
of Theorem 4.27 it follows that 7(p) = wt(O(p)) for all p € B(R), where O is the
inverse of the map p — p + A(wi(p)). Let pi;(A) = (fi, Afj) for A € B(R) and
eijf = (f;, f)fi for i,j = 1,--- ,n. Let © be the linear mapping of B(R), into
B(R). given by ©(p;;) = (L +wi(pi;j)(A))tpi; for i, j =1, n. Since p — wi(p)
is Schur diagonal with the basis {f; : ¢ = 1,--- ,n} a direct calculations shows
that ©' is the inverse of the map p — p+ A(w(p)) and since the inverse is unique
©' = O. Hence, we have

. wi(pij)
) = T o) @)
and since p — wy(p) is Schur diagonal and 7 is a completely positive contraction of
B(R). into B(9). the conclusion of the theorem follows for the n;;.

Conversely, suppose for each ¢ > 0 the matrix entries 7;; given in the statement
of the theorem are define a completely positive contraction 7; of B(RK). into B(H)..
Then it follows from Theorem 4.26 that p — w:(p) is the boundary weight map of
a CP-flow which is derived from ;. Since p — wy(p) gives rise to a CP-flow for
each t > 0 it follows from Theorem 4.23 that inequality (4.19) of Theorem 4.23
is satisfied and this implies weaker limit inequality (4.20) which implies p — w(p)
defines a CP-flow. O

We begin our investigation of the limit 7, of 77 as s — 0+ where 77 is a
generalized boundary representation.

Lemma 4.34. Suppose o is a CP-flow over & and 7 is the associated generalized
boundary representation. Ift, > 0 and 0 < s < t < t, then the mapping A —
7t (E(to, 00)AE (o, 00)) — Ts(E(to, 00)AE(ty,0)) is completely positive (i.e., the
mapping ¢s(A) = ws(E(ty, 00)AE(t,,00)) is an increasing (in sense of complete
positivity) function for s € (0,1,]).

Proof. Suppose 7% is a generalized boundary representation described above. As
we have done before when we will put a prime on mapping to indicate the associated
map where R is replaced by & = R ® K, and 9 is replaced by $; = H ® K, where
R, is a separable infinite dimensional Hilbert space and the primed mapping is
the usual tensor extensions. To prove the lemma all we need do is prove the
mapping described in the lemma is positive for the primed maps. Suppose then
that A € B($;) is positive. Suppose t, > 0 and 0 < s < t < t,. We show
T # (B (t,00) AE(t, 00)) < 7/ (E'(t,00)AE' (t, ). Suppose p € B(8R1), and p > 0.
Let

Q(t) = p(m/* (E'(t, 00) AE'(t, 00)) — m# (E'(t, 00) AE'(t, 00))).
Then we have

Q) =(7," — 7#)(p)(E'(t, 00) AE' (1, 00))
=(wi (] + Awp) ™ =l (I + Aw)) ™) (p) (E'(t, 00) AE'(t, 00)).
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Because W, (E’(t,00)AFE’(t,00)) = w;(A) we have
Q(t) =(wi (I + Awp) ™! = wi(l + Nw))7H)(p)(4)
=wy (1 + Nwp) (I + M) — (T + Nwp) (I +Aw) ™) (p)(A)
=wy (1 + Nwp) A (@] — o)+ M) ") (p)(4)
=i (N (ws = we) (T + Nwy—1p))(4).

Since A > 0 we see Q(t) > 0 if the mapping in the brackets following 772# is positive.
To give this mapping a name we call it U. Suppose B € B(K;) and B > 0 and
1 € B(R1). is positive, then we have

W(n)(B) =A"(w} —wp)((I + A'wl)"'n)(B)
=/ (I + A'w))™'n)(E'(s,00) ' (B)E'(s,00) — E'(t,00)A'(B)E'(t, 00)).
Since E'(z,00) commutes with A’(B) for all © > 0 we have
Y(n)(B) = W' ((I+A'w))™'n)(E' (s, )N (B)E'(s,1)).
Since w'(E'(s,t)CE’(s,t)) = wl(E'(s,t)CE'(s,t)) for all C € B($H) we have
W (n)(B) =w, (I + A'w)) ™) (E'(s, )N (B)E' (s, 1)).
= () (E' (s, 1) A (B)E' (5, 1)).

Since 7/ is positivity preserving W is positivity preserving and Q(t) = frZ"é U(p))(A)
is positive. Replacing A by E'(t,, 00)AE’(t,, A) in the expression for Q(t) completes
the proof of the lemma. [l

Theorem 4.35. Suppose « is a CP-flow over & and ©# is the generalized boundary
representation of o. Then n# (A) — 7#(A) for as s — 0+ in the o-strong topology
for each A € Ui=oU()B(H)U(t)* where 7 is a o-weakly continuous completely
positive contraction of B($) into B(RK).

Proof. Suppose a is a CP-flow over 8 with generalized boundary representation
7. Let ¢5(A) = 77 (E(t,00)AE(t,00)) for 0 < s < t and A € B($). From the
previous lemma we have ¢, is an increasing function of s in the sense of complete
positivity. From the Stinespring Theorem we have ¢1(A) = V*v(A)V for A € B(9H)
where 7 is a *-representation of B($)) on a Hilbert space ), and V is a linear
contraction from £ to $),. Since ¢5 < ¢ for s < t we have ¢5(A) = V*Coy(A)V
for A € B(9H) where Cs € y(B($))’ and 0 < Cs < I. Since the ¢, are increasing
we have 0 < C, < Cy < [ for 0 < x < y < t. Since the C are decreasing as
s — 0+ we have the Cy converge strongly to a limit C, as t — 0 4 . Hence, ¢4(A)
converges o-strongly to ¢,(A) = V*Coy(A)V as s — 0+. For A€ U(t)B(H)U(¢)*
then we define m,(A4) = ¢,(A). The mapping ¢, depends on ¢ but we note that
for two ¢'s defined for two t's the ¢, from the smaller ¢; agrees with the ¢, from
the larger to on U(te)B(H)U(t2)*. Then for A € U(t)B(H)U(t)* we define 77 (A)
defined from any ¢, constructed from a t; < t. This defines the mapping 7# on
UesoU(#)B(H)U(t)* and we have 7#(A) — 7 (A) in the o-strong topology as
s — 0+ for A € UisoU(#)B(H)U(t)* We now show 77 is o-weakly continuous.
Note that ¢,(A) = V*Coy(A)V for A € B(9H) is o-weakly continuous since 7
is a x-representation of B(£)) and, hence, we have A — 77 (E(t,00)AE(t,0)) is
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o-weakly continuous for all ¢ > 0. Suppose 7 € B(K), and n > 0 and p;(A) =
N(mo(E(t,00)AE(t,00))) for t > 0 and A € B($). Then from Lemma 2.10 we have

lpe = psll? < 2n(x (E(s,00)))? = 2n(nf (E(t,00)))* < 4llnlln(m¥ (E(s,1)).
Since limg o4 n(7# (s,00)) < n(I) we have if s, is a sequence of positive numbers
decreasing to zero we see from the above estimate that the p,, form a Cauchy
sequence in norm. Since each element of B(RK). can be written as a sum of four
positive elements we see that functionals A — n(7#(A)) are norm limits of normal
functionals and, hence, these functionals are normal so 7# is normal which implies
77 is o-weakly continuous. O

Definition 4.36. If « is a CP-flow over & and 7# is the generalized boundary
representation of o then 77 as defined in the previous theorem is called the normal
spine of .

Lemma 4.37. Suppose ¢ is a o-weakly continuous completely positive contraction
of B($) into B(R) and « is the minimal CP-flow derived from ¢. Suppose ¥ is the
generalized boundary representation for oo and ©¥ is the normal spine of a. Then
Tt = ¢.

Proof. Assume the hypothesis and notation of the lemma. For ¢ > 0 let ¢1(A) =
G(E(t,00)AE(t,00)) for A € B($). We establish a formula for 7. From Theo-
rem 4.26 we have the boundary weight w(p) for « is given by

w(p) = o(p) + ¢(A(4(p))) + ¢(A(S(A(B(p))))) + -
where the sum converges on the null boundary algebra 2(($)) and for p positive the
sum satisfies w(p)(I — A) < p(I). Suppose ¢t > 0. The truncated weight w; is given
by

wi(p) = ¢1(p) + De(A(D(p))) + D (A(D(A(D(p))))) + - --
Where now the sum converges in norm. Then WZ# is given by 7Tt =w(I + Awt)
or 7] (I + Awt) = wy. Then applying this equation to I Aqﬁ and cancehng terms
which is permissible since the sums converge we find 77 (I — A(¢ — ¢;)) = ¢;. Then
applying this equation to the finite geometric sum of powers of A(qﬁ — ¢¢) we find

AL = (A& = d0)™) = oI + MG = d) + -+ + (A = d)").

Since E(t,00) commutes with A(A) for A € B($) it follows that

(¢ — &) (A(A)) =¢(A(A) — E(t, 00)A(A)E(t, o0))
¢((I = E(t,00))A(A4))
O(E(H)A(A)) = ¢(E(L)A(A)E()).
Hence, A(qg — (;Aﬁt) is a completely positive map. Since the terms in the above
equation are positive it follows that the series converges in norm. We will show
that the 77 ((A(¢ — ¢¢))™ ! term converges to zero as n — co. Recall the equation
##(I + Awy) = wy. Applying this to (A - ¢)™ we find

il (A-§)" = (I - af Dw(A- )"

n

Since the series for w; converges it follows that wt(f\ . ({)) converges pointwise to

zero in norm. Since 7rt# is a contraction ﬁ';# (A - @)™ converges pointwise to zero in
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norm as n — oo. A bit of computation shows that (A - ¢)" > (A(¢ — ¢¢))™ so for
positive p € B(R), we have
157 (A= @) pll =(&F (A - §)"p)(I) = (7 (A(d — 6))"p) ()
(|77 (A& — )"l
Since each p € B(R), is the linear combination of four positive elements we have
|77 (A(¢ — d¢))"p|| — 0+ as n — oo. Using this in the equation for 4} we find
(a21) A = L4 RG - 6+ (AG— )P -+

where the series converges in norm for each p € B(R).. Assume s > 0. Applying
this to a positive p € B(R), we have for ¢ € (0, s] and a positive A € B(H) that

7 (p)(E(s,00)AE(s,00)) = (05 (I + A — &) + (A6 — 60))* +---))(A)

for A € B(9). Since the terms above are positive and decreasing as ¢ decreases
it follows that 7 (p)(E(s, 00)AE(s,0)) — ¢(E(s,00)AE(s,00)) as t — 0+ . By
linearity this result extends to all p € B(RK). and A € B($). Since s > 0 is arbitrary
and from the definition of 7% we have 7% = ¢. O

We suspect that in the previous lemma with more work one could show ||ﬁf (p)—
#(p)|| — 0 as t — 0+ for each p € B(R)..

Lemma 4.38. Let o be a CP-flow over & and let m# be the generalized boundary
representation for a. Let o be the minimal CP-flow derived from =% for s > 0.
Then of(A) — ai(A) o-weakly as s — 0+ fort > 0 and A € B(H) and the
convergence is uniform for t in a finite interval.

Proof. Assume the hypothesis and notation of the lemma. We will use the Trotter
convergence theorem for resolvents. Let R® and R be the resolvent of a® and o and
let w® and w be the boundary weights of a® and «. Then we have from Theorem
4.17 and the Definition (4.13) of the boundary resolvent that

R*(n) = T(w*(A(n))) + T'(n)
and
R(n) = T(w(A(m)) +T(n)
for n € B(9H).. Suppose further that 7 is positive and [|n|| < 1. We have
IR =T (w(A(m)) +n

(D)
<Po(Rm))(I) = / ht)dt <1

where h(t) = e tw(A(n))(E(t,00)). Now suppose A € B(£) with [|A|| < 1. Then
we have




246 ROBERT T. POWERS

Now U(t)*E(s,00) = E(s — t,00)U(t)* for t € [0,s] and U(t)*E(s,00) = U(t)* for
t > s. Hence, we have

(= B =| [ elhmIOOA - B - 1.5)AB(s ~ ,50)U(0) )|

— /O e 'Bw(A(n))(A— E(s — t,00)AE(s — t, oo))dt’

<\ etznétw(m»ndt\

_ /O e~ 20(A() (E(t, oo))dt’ :2/:;1(15) dt.

Since this estimate is true for all A € B($) with ||A|| < 1 and h € L'(0,0) we
have

IR - B ()| < 2/08h<t>dmo

as s — 0+. Since each ) € B(K). is the linear combination of four positive elements
we have ||(R — B*)(n)|| — 0 as s — 0+ for all € B(K),. Then by the Trotter
resolvent convergence theorem [BR] (Theorem 3.1.26) we have ||&§(n) — d&:(n)|| — 0
as s — 0+ for all n € B(R). and t > 0 where the convergence is uniform for ¢ in
a bounded interval. This result for the predual maps implies the conclusion of the
lemma for the maps o® and a. [

Lemma 4.39. Suppose ¢ is a o-weakly continuous completely positive contraction
of B(9) into B(R). Let ps(A) = ¢(E(s,0)AE(s,00)) for s > 0 and A € B(H).
Let o be the minimal CP-flow derived from ¢ and let o® be the minimal CP-flow
derived from ¢4 for s > 0. Then af(A) — a:(A) o-weakly as s — 0+ fort >0 and
A € B(9) and the convergence is uniform for t in a finite interval.

Proof. Assume the hypothesis and notation of the lemma. Again we will use the
Trotter convergence theorem for resolvents. Let R® and R be resolvents of a® and
« and let w® and w be the boundary weights of a® and «. Then from Theorem 4.27
and Definition 4.28 we have

Re(n) = T(w*(A(n))) +T'(n)
and
R(n) =T(w(A(n))) + T(n).

for s > 0 and 7 € B(K).. Assume 7 € B($), is positive and let p = Az. Then from
Theorem 4.26 we have

D(w(p)) = T(b(p) + S(A(6(p))) + (A(S(A(S(p)))) + )
and
D(w*(p)) = T(0s(p) + 85 (A(D5(p))) + D5 (A5 (A(Ds(p)))) +---).
As we saw in the proof of Theorem 4.26 the series above converge with the I' term

included. Note the series above is uniformly bounded since we can compute the
norms by evaluating on the unit I and we obtain the estimates

(s (Al (D5(p)) - I < IT(SAL-- (D)) --)))II-
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Since each of the terms with the ¢4 converge to the corresponding term with the ¢
and since we have uniform bounds on the sum of the norms of the terms we have
[P (p) = D(w(p))l| — 0 as s — 0+ . Hence, (R — R*)(n)]| — 0 as 5 — 0 +.
Again since each 1 € B(5)). is the linear combination of four positive elements this
results holds for all 7 € B($).. Then using the Trotter convergence theorem as we
did in the previous lemma the result of the lemma follows. [

Lemma 4.40. Suppose w and ¢ are two o-weakly continuous completely positive
contractions of B($) into B(R). Suppose o and B are the minimal CP-flows derived
from m and ¢, respectively. Then o > B if and only if m > (.

Proof. Assume the hypothesis and notation of the lemma. Assume further that
7w > ¢. Let ms(A) = w(E(s,00)AE(s,00)) and ¢5(A4) = ¢(E(s,00)AE(s,00)) for
s > 0and A € B(H). For each s > 0 let o® and (° be the minimal CP-flows
derived from 74 and ¢, respectively. Suppose 7} # and ¢f# and are the generalized
boundary representations of o and 3. Note w57 = 75# = 7, and ¢% = ¢°# = ¢,
for t € (0, s]. Since 75 > ¢ we have @® > (3° from Theorem 4.29. From Lemma 4.39
we have of (A) — a4(A4) and 7 (A) — Bi(A) o-weakly as s — 0+ for all t > 0 and
A € B($). Since o® > [3* is follows that & > 3 in the limit of s — 0+ .
Conversely suppose a > 3. Then 7# > ¢7 for all s > 0 where 77 and ¢* are
the generalized boundary representations of o and . Since the normal spines of «
and (3 (77 and ¢¥, respectively) are limits of the 7 and ¢# we have 7# > ¢¥.

o

From Lemma 4.37 we have 77 = 7 and ¢7 = ¢ so 7 > ¢. O

Lemma 4.41. Suppose o is a CP-flow over & and 77 is the normal spine of a.
Suppose 3 is the minimal CP-flow derived from w¥f. Then a > 3.

Proof. Assume the hypothesis and notation of the lemma. Let ¢ = 7/ and let
¢s be defined as in Lemma 4.39. For s > 0 let 5° be the minimal CP-flow derived
from ¢, and let o® be the minimal CP-flow derived from 7# where the family
7# is the generalized boundary representation of «. From Lemma 4.34 and the
definition of the normal spine 77 we have 7# > ¢, for each s > 0. Then from
Lemma 4.40 we have a® > $°. From Lemmas 4.38 and 4.39 we have of(A) — a:(4)
and 7 (A) — B:(A) o-weakly as s — 0+ for all t > 0 and A € B(9). Since o® > 3°
it follows that o > /3 in the limit as s — 0+ . (]

Theorem 4.42. Suppose a is a CP-flow over & and 7# is the normal spine of a.

Suppose ¢ is a o-weakly continuous completely positive contraction of B($) into

B(R) and B is the minimal CP-flow derived from ¢. Then a > [ if and only if
# >

T > .

Proof. Assume the hypothesis and notation of the theorem. Suppose @ > . Let
wf& and (bf be the generalize boundary representations of a and 3, respectively.
From Theorem 4.29 we have wf > qﬁf for all t > 0. Let 77 and ¢7 be normal
spines of a and 3, respectively. Since 77 and ¢ are defined in terms of limits of
the 71';# and gbf& we have 77 > ¢#. From Lemma 4.37 we have ¢ = ¢ so 77 > ¢.

Next suppose 77 > ¢. Let v be the minimal CP-flow over & derived from 7.
From Lemma 4.41 we have o > = and from Lemma 4.40 we have v > (. Hence,
a>f. O
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Arveson defines the index of a unital CP-semigroup « in terms of semigroups
S(t) of contractions so that if Q:(A) = S(t)AS(t)* for A € B(H) and ¢ > 0 then
eFay > Q,. This index is of great importance since if 7 is the minimal dilation of «,
S0 7y is an E,-semigroup then the index of «y is the Arveson index of «. The factor of
ekt which Arveson allowed we will eliminate by rescaling S(t) with a factor of e~ 3kt
The following lemmas lead up to a Theorem 4.46 which enables us to determine
when a CP-semigroup of the form Q;(A) just given is a subordinate of «. This will
enable us to show the Arveson index of a CP-flow is just the rank of the normal

spine.

Lemma 4.43. Suppose « is a CP-flow over & and S(t) is a strongly continuous
one parameter semigroup of contractions of $ and Qi (A) = S(t)AS(t)* for all
A€ B(H) and t > 0 and oy — Q is positive for all t > 0. Then if —d is the
generator of U(t) (so U(t) = exp(—td)) and —D is the generator of S(t) there is a
complex number ¢ with nonnegative real part and a linear operator V- from $ to R
with norm satisfying ||V] < v/2Re(c) so the domain of D is ®(D) = {f € D(d) :
f(0) = Vf} and Df = —d*f + cf. (Note as we saw in the discussion of the
boundary representation that each element of ®(d*) has a unique representation as
a continuous K-valued function f(x) so in particular f(0) is well defined.)

Proof. Assume the hypothesis of the lemma. It follows that for all A € B($) with
A >0 and t >0 we have from Lemma 4.1 that

U)*S(HASE)* U(t) < Ut)* ar(A)U(t) = A.

If A is a rank one projection and f is a units vector in the range of A if follows
that U(¢)*S(t)f = = f for some complex number z. Now if g is a second unit vector
orthogonal to f then U(¢)*S(t)g = yg and U (¢)*S(¢)(f+g) = z(f+g) = xf+yg with
y and z complex numbers. Since f and g are orthogonal we have x = y = z = a(t)
where a(t) is constant independent of the vector f so U(t)*S(t) = a(t)I. Since both
U(t) and S(t) are semigroups we have

a(t1 + tQ)I = U(tg)*U(tl)*S(tl)S(tQ) = a(tl)U(tQ)*S(tg) = CL(tl)CL(tQ)I.

Since a(t) is continuous we have a(t) = e~ for all ¢ > 0 where ¢ is a complex
number and since U(t) and S(t) are contractions the real part of ¢ is nonnegative.
Let W(t) = e“*S(t). Then U(¢)*W(t) = I for all t > 0. Since S(t)AS(t)* < a;(A)
for A >0 and ¢t > 0 we have

W(t)W(t)* _ eQRe(c)ts(t)S(t)* < 62Re(c)toétE (I)
and since ||[W(2)||? = ||W ()W (t)*|| we have ||[W(t)|| < eRe(©) for all t > 0. Let —T
be the generator of W (t) so W (t) = e~*T. Suppose f € D(d) and g € D(T). Then
we have

d
It follows that g € ®(d*) and Tg = —d*g. Hence, T is a restriction of —d*. Note
that for f € ®(T') we have

(W)™ f, W) f) + W) [f,W(t)d"f)
(WO, W L) + (W), dW(E)f) = (W () F)(0)].

d
L0
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So s(t) = ||[W(t)f]|? is a function with a continuous positive derivative and since
5(0) = || £]|? and s(t) < 2| £]|? for t > 0 we have

d
TNV @ fIPl=o = IFO)I* < 2Re(<) | £

For f € ©(T) C ©(d*) the mapping f — V f = f(0) is clearly linear and from the
above inequality we have ||V < (2Re(c))2. We show D (T) consists of all f € D(d*)
so that f(0) = V f. Suppose A > Re(c). Since ||[W(t)|| < R for ¢ > 0 it follows
that the integral of e~ W (t) from zero to infinity exists and gives the inverse of
(T + A\I). Hence, we have

(T+ X))t = /Oo e MW (t) dt.
0

Now suppose f € D(d*) and f(0) =V f. Let g = —d*f + \f. Let fi = (T +XI)"'g.
Then
—d*fi+Mfi=T+N)fi=g=—-df+ ).
Hence, d*(f — f1) = AM(f — f1). But this implies (f — f1)(z) = e **(f — f1)(0) so
we have
1F(0) = f1(0)[* = 2\l f = full*.

Now we have

1£(0) = A1) = V(f = f)II* < 2Re(o) | f — full*.
Combining these inequalities we have
20\ = Re(0))|If = f1]* 0.
Since A > Re(c) we have f = f;. Hence, we have shown that ©(7T) consists of all

f € D(d*) so that f(0) = Vf. Since S(t) = e W (t) for t > 0 the conclusion of
the lemma follows. O

Lemma 4.44. Suppose D satisfies the conclusion of the previous lemma so D is
defined on ® (D) = {f € D(d*) : f(0) =V f} by Df = —d* f+cf whereV is a linear
operator from $ to R with norm satisfying |V] < v/2Re(c) and Re(c) > 0. Then
—D is the generator of strongly continuous semigroup S(t) of contractions and if f €
9 is of the form f(z) = e *%h forx > 0 withs > 0 and h € K thent=1S(t)*E(t)f —
V*h ast — 0+ and we have the uniform estimate t=1|S)*E®)f|| < |V |h]| for
all h € R.

Proof. The proof of the lemma can be extracted from [PP]. Since the situation is
different we give a complete proof.
Suppose D satisfies the hypothesis of the lemma. Now for f € ©(D) we have

Re(f, ~Df) =Re((f,d" ) — e(f. £)) = 3 |7/(O)| ~ Re(e) 1]

Z%IIVfIIQ = Re(9)|f1* < 5(IV]I* = 2Re(c)) I f]|* < 0.

N~

Hence, —D is dissipative. We show ©(D) is dense in $). For s > 0 let Q5 be
the isometry of from £ to § given by (Q.k)(z) = \/ske 257 for k € R. Then
IVQs|| < V| and, hence, (I — s 2VQ,) is invertible for s > [[V|2. Suppose



250 ROBERT T. POWERS

feD(d)and s> ||[V]2 Let g = f+52Q,(I—s~2VQ,) "1V f. We have g € D(d*)
and
Vg=Vf—s3(I—53VQ,)s 2(I —s 2VQ,) 'Wf+srs 3(I—s2VQ,) 'V
=Vf=Vf+I-5s2VQ) " f = g(0)
Hence, g € ©(D). Now we have
s 2|V £
1—s7z|[VQs

and as s — oo the above tends to zero. Hence, for each f € ©(d) and each € > 0
there is a element g € ®(D) with ||f — g|| < e. Since, D(d) is dense in $ we have
D (D) is dense in $). Next we show that the range of D + I is . Suppose g € 9. If
(D+I)f = g then f satisfies the differential equation

Y @)+ e+ 1f@) = g2)

and solving this equation we find

f(ac) _ f(0)67(6+1)x + 67(C+1)w/ e(c+1)tg(t) dt

0

Is™3Qu(I =57 3VQy) W F < s (T =573V Q) WV <

or in operator form f = W f(0) + Bg where W is the operator from £ to $) given
above and B is the operator from $ to $ given above. Note B = (—d+ (c+ 1)[)_1
Since f € ®(D) we must have

fO)=Vf=VW[0)+VBg or (I-VW)f(0)=VBy.
Now [[W{| = (2Re(c) + 2)_% which implies

1
2Re(c) \?

V| < <1

v (40

so (I — VW) is invertible and we find f(0) = (I — VW)~V Bg and the range of

D+1 is all of $. Hence, —D is a densely defined dissipative operator with the range

of I + D is $ and by the standard tools described in section II we have —D is the

generator of a strongly continuous one parameter semigroup of contractions S(t).
We show U (¢)*S(t) = e~“I for t > 0. Suppose f € D(d) and g € D(D). Then

d .
7 LU S(t)g) == (dU®)f,5(t)g) — U®)f, DS(t)g)
— (U@ f,d"5(t)g) — (UH)f, (=d" + cI)S(t)g)
:—C(ﬁ )"S(t)g)-

It then follows that (f,U(t)*S(t)g) = e~ “!(f, g) for all f € D(d), g € D(D) and t >
0. This equation extends by continuity to all f,g € $ and we find U(¢)*S(t) = eI
for all t > 0. Then we have S(t) = E(t)S(t) + U(t)U(t)*S(t) = E(t)S(t) +e U (t)
for all t > 0. Using this we can establish the uniform estimate of the lemma.

Since the range of E(t) and U(t) are orthogonal compliments we have ||S(t)f||* =
IE)S(t)f]|? + e~ 2Re(t||U () f||2. Since S(t) is a contraction if follows that

IE@S@fI? < 1117 — e 22 £
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for all £ > 0. Hence,
IE@®)S@)]| < (1 - e 22 < \/2tRe(c)
for all t > 0. Now if f(z) = e *"h for z > 0 with s > 0 we have
IS E@)fI| <[ISEE®E®)f]| < (2tRe(c))? | E(®)f]|

€

1 1— —2st % 1
< e} (55 ) Il < eCRe(e) al < AV

for t > 0.
Asin [PP] compute the action of D* on D (d*). Suppose f € D(d*) and g € D(D).
Then we have
(f; Dg) =—(f,d"g) + <(f,9)
(f.d*g) = (d"f.9) + ((d" +2l)f,9)
(£(0),9(0)) + ((d@* +<I) [, 9)
(£(0),Vg) + ((d* +eI)f,9)
=(((d" +el)f = V*f(0)),9).
Hence, f € ©(D*) and D*f = (d* +¢l)f — V*f(0). Then for f € D(d*) we have
t=1(S(t)* = I)f — —D*f as t — 0+ . Hence, for f € D(d*) we have
tISE) E@)f =t S(H) (I = U®UH)) f
=t~ (S(t)" f — e U f)
=t~ H(S(t)" f — f— (eTTUW®)f - f))
e D*f — (—d* —eI)f = V*£(0).

Ast — 0+. Now if f(x) = e *"h for > 0 with s > 0 and h € R we have f € ©(d*)
and f(0) = h. O

Lemma 4.45. Suppose {S(t) : t > 0} is a strongly continuous semigroup of con-
tractions of § = R ® L?(0,00) satisfying the conclusion of the Lemma 4.43 so
S(t) = e~tP where the domain of D is given by D(D) = {f € D(d*) : f(0) =V f}
and Df = —d*f + cf and V is a linear operator from § to R with norm satisfying
IV < +/2Re(c). We assume further that Re(c) > 0 and |V < y/2Re(c). For
t>0 let

Bi(A) = (1 — e ZReONTIR)S(H)AS(t)* E(t) + U(t) AU (t)*

for A € B($H). Then for A € B(H) we have (Bi/n)"(A) — 7:(A) in the strong
operator topology as n — oo for each t > 0 where v is the minimal CP-semigroup
of B($) derived from the completely positive normal map 7(A) = (2Re(c)) "1V AV*
as defined in Definition 4.25 and constructed in Theorem 4.26.

Proof. Assume the hypothesis and notation of the lemma. We have made the
further hypothesis that ||V|| < y/2Re(c). With this additional assumption ||7(A)|| <
(1 —e)||A|| for A € B(H) with € > 0 and by Theorem 4.26 there is only one CP-
semigroup -y derived from 7 and, furthermore, the geometric series occurring in the
calculations we need converge.
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We use the ingenious inequalities of Chernoff [Ch] and let Dy, (A) = n(8,/n(A) —
A). Note D,, is the generator of a semigroup given by
n Ctn e R (Bgyn)" (A)
(4) = exp(tDy)(4) = etn 30 B
k=0

We note each of the term in the above series is completely positive and, hence, §")

is completely positive. Evaluating ﬁt(n)(l) we see that 0 < ﬁgn)(l) <Tso ﬁ§”> is a
contraction. Using Chernofl’s inequality (see Lemma 3.1.11 of [BR]) we have

187 (A) = (Bsyn)™(A)]| < Vatl| Boyn(A) — A

for A € B($). For a typical operator |3,/,(A) — Al| is the order of one as n — oo
so the above inequality is not very helpful. However, at this point it is profitable
to work on the predual and the same inequality holds there, namely,

(4.22) 187 (1) = (Baya)" @ < Vil By (n) =

for all n € B(H).. Let v be the minimal CP-semigroup which is intertwined by U (t)
derived from . Since ||7]] < 1 it follows from Theorem 4.26 that -y is the unique
CP-semigroup derived from 7. Let d be the generator of v and 5 be the generator
4 (the action of v on the predual). We establish the key estimate of the lemma
which says that D,n — sd(n) as n — oo for all € D(6). Our arguments draw
heavily on Theorem 4.26 and we assume the notation used in that theorem is in
effect. Let p — 6(p) be the integrated boundary map which generates +. Since v is
derived from 7 we have 6(p — A(#(p))) = ['(7(p)) for all p € B(RK).. Since ||7| < 1
the mapping p — p — A(#(p)) is invertible and we have

6(p) = (@ (p) + 7(A(R(p) + )
where the geometric series converges for all p € B(R).. From the definition of 6 we
have each element of D(4) is of the form &(A(n)) + I'(n) for some 1 € B($H). and

8(6(Am)) + T () = 6(A(m) +T(n) — 1.
It follow that each element of () is of the form I'(v) and
(L)) =T(w)—n

where

v=n+#x(An) + #AGEAM))) + -
for some 1 € B(H).. The above equation for v is equivalent to the equation n =
v—a(A(v)). We compute D, (I'(v)). From direct calculation for A € B($)) we have

Dp(P())(A) =n(1 — e 2R/ "D (E(s/n)S(s/n) AS (s/n) " E(s/n)))
— ne’/m /é/n e"tw(U)AU(t)*) dt + n(e’/™ — 1) (T(A)).
0

Then rewriting this purely in terms elements of B($). we have
Do (T () =n(1 — e 2R/ ") ({o (T (1))

s/n R .
—ne*/™ / e 10, (v) dt + n(e*/™ —1)D(v)
0
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where (A) = S(t)AS(t)* for all A € B($H) and t > 0. It is clear that the second and

third term above converge to sv and sI'(v) in norm as n — co. From Lemma 4.19
we have ||G:(T'(v) — ©(A(v)))||/t — 0 as t — 0+ so we have

Dy () =n(1 — e 2Re@s/my=1i (¢, (B(A(1))))
— sv+ sD(v) + o(n)

as n — 0o0. Now A(v) has a decomposition so that for A € B(8)

A@)(A) = Xi(hs, Ak;)
=1

where h;, k; € K are unit vectors and \; > 0 for i = 1,2,--- and the sum of the )\;
is bounded. Then

d(A(v))(A) = Z i(fis Agi)

for A € B(H) where fi(z) = e 2%h; and gi(x) = e~ 2%k; for all z € [0,00) for
i=1,2,---. Then we have

n(l . 6—2Rc(c)s/n)fllﬁs/n(gs/n((i)(f\(l/)))) = Zmn

where
0} (A) = n(l — e RO TIN(S (s /n) " E(s/n) fi, AS(s/n) E(s/n)g;)
for A€ ®B(9H) and i =1,2,--- . From the previous Lemma 4.44 we have
(n/s)[|S(s/n)"E(s/n) fill < [IVI[ [[hill < [V < v/2Re(c)
for i =1,2, -+ and the same estimate applies with the f; replaced by g;. Also, from
Lemma 4.44 we have
(n/s)S(s/n)*E(s/n)fi — V*h; and (n/s)S(s/n)*E(s/n)g;i — V*k;

asn — oo for i =1,2,--- . Hence, 0] — 1n;° as n — oo where
s
F(A) = —=——=XNi(V*h;, AV*E;
M) = g M )

for A € B($) and we have the uniform estimate that ||n?|| < s independent of n
for ¢ =1,2,--- . Since the sum of the \; converges and with our uniform estimate
and the convergence for each i = 1,2,---- and the definition of 7 we have

n(l— e 2RO (L (@AW)) - si(Aw))

as n — oo. Hence, we have D, (I'(v)) — sit(A(v)) — sv+sI'(v) as n — oo. Recalling

n=v — 7(A(v)) we have that
Dy (D(v)) — —sn+ sI'(v) = s6(0(v))

as n — oo. Hence, D, (1) — s6(n) for all n € D(4). Then from Chernoff’s inequality
(4.22) we have

187 (1) = Bayn)™ ()| < V2l Besn(m) = 0l = 1Da(m)|l/v/7 — 0
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as n — oo for all n € D(4). Now by standard convergence arguments we have for

n € D(0) that

B (1) = F(n) = / B (D — 58)(Aat (n)) dt.
0

Since the integrand is uniformly bounded and converges pointwise to zero in norm
we have ||B£n)(77) —As(M)|| — 0 as n — oo. Combining this with our previous
inequality we have ||(Bg/n)”(77) —45(n)|| = 0 as n — oo for all n € D(4). Since D(5)
is dense in B(H). and the mappings are uniformly bounded we have || (Bs/n)"(n) -
As(n)]] — 0 as t — 0 for all n € B(H). and this immediately gives us o-strong
convergence on B(9). O

The next theorem gives a relatively computable condition that a CP-semigroup «
of B(9) intertwined by U(t) dominates §2; with Q;(A) = S(¢t)AS(t)* for A € B(9H)
and ¢t > 0.

Theorem 4.46. Suppose o is a CP-flow over 8 and S(t) is a strongly continuous
one parameter semigroup and Qi (A) = S(t)AS(t)* fort > 0 and A € B(9H) is
a subordinate of o. Then S(t) is a strongly continuous one parameter semigroup
of contractions with generator —D where ©(D) = {f € ®(d*) : f(0) = Vf} and
Df = —d*f + cf where c is a compler number with nonnegative real part and V is
a linear operator from § to & with norm satisfying ||V ||* < 2Re(c). Furthermore,
if T(A) = (2Re(c)) "'V AV* for all A € B(H) and 7 is the minimal CP-semigroup
derived from m then o dominates v. In the case Re(c) = 0 we take define m = 0.

Conversely, if ¢ is a complex number with Re(c) > 0 and V' is a linear operator
from $ to & with norm satisfying |V ||? < 2Re(c) and if m(A) = (2Re(c)) "1V AV*
for A € B(9) and ~ is the minimal CP-semigroup derived from w and o dominates
v then if D is an operator with domain ©(D) = {f € ©(d*) : f(0) = Vf} and
Df = —d*f +cf. Then —D is the generator of a contraction semigroup S(t) and
if %(A) = SE)AS@)* fort >0 and A € B(9H) and o dominates Q.

Proof. Suppose the hypothesis and notation of the first paragraph of the theorem
is satisfied. Then it follow from Lemma 4.43 that S(¢) is a strongly continuous
one parameter semigroup of contractions with generator —D where ©(D) = {f €
D(d*) : f(0) = Vf} and Df = —d*f + ¢f where ¢ is a complex number with
nonnegative real part and V is a linear operator from § to £ with norm satisfying
V> < 2Re(c). Let m(A) = (2Re(c)) " *VAV* for all A € B($) and let v be the
minimal CP-semigroup derived from 7. (In case Re(c) = 0 we define m# = 0.) Here
we make a slight change. Note if we replace ¢ with ¢+ ¢ with € > 0 we replace S(t)
with e~ “*S(t) and all the hypothesis concerning ; remains true. Note with this
change we have ||7|| < 1. In what follows we will assume this replacement of ¢ with
¢+ € has been made.
Let A € B($) be a positive. Then we have

SH)AS(t)" < au(A) = E(t)ar(A)E(t) + U(L) AU (t)*.
Since U(t)*S(t) = e~ “*I we have
St)=U®)U@)*S(t)+ E@)S(t) =e U(t) + E(t)S(t).
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Combining this with the previous inequality we have
E(t)(au(A) — S(t)AS(t)*)E(t) — e " E(t)S(t) AU (t)*
e tU)ASH)* E(t) + (1 — e 2ROYT (1) AU (£)* > 0.
If X denotes the operator above and h = U(t)g + E(¢)f then we have
(h, Xh) =(E(t)f, (o (A) = S(t)AS(t)")E(t) f) — 2Re(e” " (f, E()S(t) Ag))
+ (1 — e 2ReO) (g, Ag) > 0.

for all f,g € $. Then by the Schwarz inequality the above inequality is satisfied if
and only if

(f, E@0)S(1)Ag)]® < (27" — 1)(E(t)f, (ar(A) — S(H)AS (1)) E(t) f) (g, Ag)
for all f,g € 9. Specializing this inequality to the case when A = E with E an
hermitian rank one projection and g is a unit vector in the range of F (so Eg =g
and Ef = (g, f)f for f € $) we find

RN (f, E()S(t)g)]” < (2R —1)(E(t) f, ar(E)E(1) f)
for all f € . Then we find

IESt)*E@®)fI* < (1 — e 2RO (E) f, au(E)E(t) f)
for all f € $ and this is equivalent to the operator inequality
E@®)((1- e_QRe(C)t)at(E) - S({t)ES(t)")E(t) > 0.

Now if A € B(H) is of the form A = 31" | \;E; where the E; are hermitian rank
one projections and the A\; > 0 for ¢ = 1,--- ,n then it follows from the above
inequality that

E(t)((1 — e 2R, (A) — S(t)AS(t)*)E(t) > 0.

And since every positive A € B($) can be approximated in the o-strong topology
by expressions of the above form it follows that the above inequality is valid for all
positive A € B(9). For t > 0 let 8; be the map

Bi(A) = (1 — e 2RO TLB(1)S(4) AS(8)* B(t) + U(t) AU (t)*
for A € B(9). Note that

ay(A) = Bi(A) = B(t)(ar(A) = (1 = e 2RO TIS(1) AS()*) E(t)
for A € B($). We have shown that oy — ; is positive for each ¢ > 0. As was
done in the last section we can introduce the primed maps which are obtained by
replacing §) with $® K, with K, in infinite dimensional separable Hilbert space and
making the obvious definitions. Since for each ¢ > 0 we have A — oy (A) — Q(A4) is
completely positive the mapping A — aj(A) — Q;(A) is positive and the argument
that ay — ; is positive extends directly to the primed maps and we find that a} — i
is positive and this is equivalent to the fact that a; — 8 is completely positive. Now

for each t > 0 we have
n

at<A) - (ﬂf/n)n(A) = Z(at/n)k ((af/n ﬂf/n)(ﬂf/n) ( ))

k=1
for A € B($H). Since the mappings above are all completely positive we have
A — ay(A) = (Biyn)"(A) is completely positive. Now from Lemma 4.5 we have
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(Be/n)"(A) — 7:(A) o-strongly as n — oo for all A € B(H) and ¢ > 0. Here, is
where we needed the fact that we had replaced ¢ with ¢+ € since we needed ||| < 1.
Taking the limit as n — oo we have the mapping A — «;(A) — v (A) is completely
positive for all t > 0 and, hence, @ dominates .

Now we deal with the fact that we replaced ¢ with ¢ + €. Let us now denote the
dependence of 7 and 7y on € by writing 7€ and v¢. We have shown that o dominates
~¢ for all € > 0 and ¢ is the unique CP-semigroup derived from 7¢. As was shown
in the proof of Theorem 4.26 we have ~§(A) converges o-weakly ~.(A) for each
A € B(H) and ¢t > 0 where v° is the minimal CP-semigroup ~° derived from 7°.
Hence, we have a dominates v where =y is the minimal CP-semigroup derived from
7 (now e = 0). This completes the proof of the implication of the theorem in one
direction.

Now suppose the hypothesis and notation of the second paragraph of the state-
ment of the theorem is satisfied. As we did in the first part of the proof of this
theorem we replace ¢ by ¢ + ¢ with € > 0 in the definition of D (and, therefore,
S(t)) and 7. Again the hypothesis remain true after this replacement. For ¢ > 0 let

Be(A) = (1 — e ZReONTLR)S(H)AS(t)* E(t) + U(t) AU (t)*
and (,(A) = A for A € B($). Since S(t) = E(t)S(t) + e “'U(t) we have

(Be(A) = Qu(A)) = (R —1)7' B(t) AB(1)”
with
B(t) = E(t)S(t) — (e*Ret _ 1)e~tU (1)

from which it follows that the mapping A — £;(A) — Q:(A) is completely positive
for all ¢ > 0. Note (2,(A)) = Quys(A) for all A € B($H) and ¢, s > 0. Then we
have

(Beyn)" (A) = Qe(A) =(Byyn)" (A) — (Qun)" (4)
Z ﬁt/n ﬁt/n Qt/n)((Qt/n)n_k(A)))

for A € B($H) and t > 0 and n a positive integer. Since all of the mappings in the
above sum are completely positive we have the mapping A — (8;/,)"(A4) — Q:(A)
is completely positive. From Lemma 4.5 we have (8;/,,)" (A) — 7:(A) o-strongly as
n — oo for all A € B($H) and ¢ > 0. Hence, v > Q.

Now we deal with the fact that we replaced ¢ by ¢ + €. Again we denote the
dependence of v, ; and 7 on € by writing ¢, f and 7. Then we have shown
that v¢ > Q€ where 7€ is the unique CP-semigroup derived from 7¢. As ¢ — 0+ we
have from the proof of Theorem 4.26 that ~f(A) — 77 (A) in the o-strong topology
for all A € B(H) and t > 0 where ~° is the minimal CP-semigroup derived from
7°. Since Q5(A) — Q9(A) as € — 0+ for each A € B(H) and ¢ > 0 in the o-strong
topology we have v° > Q°. Or with ¢ = 0 we have v > Q. Since a > v we have
a > 0. (]

Before we show how to compute the Arveson index of a CP-flow we make a
simple definition and prove a useful lemma.
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Definition 4.47. Suppose « is a CP-semigroup and 3 is a subordinate of o. We
say [ is trivially maximal if 3; = e*'3; for t > 0 with s > 0 then (3’ is not a
subordinate of a.

Note that if 3 is a subordinate of « there is a unique subordinate 3’ of the form
B = e®tf; for t > 0 with s > 0 so that 3’ is a trivially maximal subordinate of . In
discussing subordinates it is often useful to consider trivially maximal subordinates.

Lemma 4.48. Suppose « is a spatial E,-semigroup of B($) and [ is an extremal
subordinate of a which is trivially mazimal (where by extremal we mean every sub-
ordinate v of (3 is of the form vy = e~%!8; for all t > 0 where s > 0). Then there is
a strongly continuous one parameter semigroup of isometries S(t) which intertwine
ay for each t > 0 so that

Bi(A) = S()S(t)" e (A) = o (A)S(t)S(t)" = S(t)AS(t)"
for all A€ B($H) and t > 0.

Proof. Assume the hypothesis of the lemma. Since « is spatial there is a strongly
continuous one parameter semigroup of isometries U (t) which intertwine «; for each
t > 0. As we saw in Theorem 3.4 there is a local cocycle C so that G, (A) = C(t)a:(A)
for all A € B($) and t > 0. Let v,(A) = C(t)*a(A) for A € B(H) and ¢t > 0. Since
0 < CO() <1 wehave 0 < C(#)? < C(t) for all t > 0 so v is a subordinate of
B3 and since 3 is extremal we have v; = e7%!3; for all t > 0 with s > 0. Hence,
C(t)? = e7*1C(t) for all t > 0. Hence, Q(t) = e*'C(t) is a projection valued local
cocycle so if 9, (A) = Q(t)a(A) for all A € B(H) and ¢ > 0 then n is a subordinate
of a and (3 is a subordinate of . Since ( is trivially maximal if follows that n = (3
and C(t) is a projection for all ¢ > 0.
Next consider R(t) = C(t)U(t). We have

R(t)R(s) =C(H)U()C(s)U(s) = C(t)au(C(s))U (U (s)
=C(t+s)U(t+s)=R(t+s)
for ¢, s > 0. Note that R(t) intertwines oy for each ¢ > 0 since
Rt)A=CHt)U()A =C({t)ar(A)U(t) = ar(A)C)U(t) = ar(A)R(2).
We note R(t)*R(t) commutes with A for all A € B($)) since
R(t)*R(t)A = R(t)*a(A)R(t) = AR(t)*R(¢).

Hence, R(t)*R(t) is a multiple of the identity and from the semigroup property of
R we have R(t)*R(t) = eI for t > 0 where s > 0. Let S(t) = e2**R(t) for t > 0.
We see S(t) is a strongly continuous one parameter semigroup of isometries which

intertwines oy for t > 0. Note t — F(t) = S(¢)S(t)* is local cocycle so v given by
v(A) = F(t)ae(A) for A € B($H) and t > 0 is a subordinate of a. Since

F(t) = S#)S(t)* = e Ct)U)U)*C(t)

and C(t) for ¢ > 0 are projections we see that F(t) < C(t) and, hence, v is a
subordinate of 3. Since 3 is extremal we have v, = e~ %3, for t > 0 with a > 0.
Since C'(t) and F'(t) are projections we have a = 0 and § = v. Hence,

Bi(A) = 5()S(t)"ar(A) = ai(A)S(8)S(8)" = S(t)AS (1)
for all A € B($) and t > 0. O
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Theorem 4.49. The Arveson index of a unital CP-flow o which is equal to the
index of the minimal dilation o of a to an E,-semigroup is the rank (given in
Definition 3.2) of the normal spine of «.

Proof. Suppose a is a CP-flow over K. Arveson’s definition of the index of a CP-
semigroup involves identifying the semigroups S(t) so that Q(A) = S(¢t)AS(¢)*
for A € B(9) and t > 0 is subordinate of @ and computing the covariance of two
such semigroups. From Theorem 4.46 we can easily identify such semigroups but
computing the covariance is not something we know how to do easily. The Arveson
index of « is equal to the index of the minimal dilation a? of a to an E,-semigroup.
(This was the point of Arveson’s definition.) So to prove the corollary we will show
the index of the minimal dilation a? of « is the rank of the normal spine of a.

Suppose a? is the minimal dilation of v to an E,-semigroup and 7, is the normal
spine of a. Recalling the relation between « and a? as described in the last section
we have af is an E,-semigroup of B($H;) and W is a isometry of § into $; so
that WW* is an increasing projection for a¢ and a? is minimal over the range
of W and ay(A) = W*ad(WAW*)W for all A € B(H) and ¢t > 0. Now it was
shown in [P4] (see Section 4) that E,-semigroup o is of index p if and only if there
are p + 1 minimal projective local cocycles F; for i = 0,1,--- ,p which are lattice
independent and maximal in that one can not add another minimal projective local
cocycle and maintain lattice independence. In greater detail F' is a projective local
cocycle if F(t) is a projection valued local cocycle (i.e., F(t)ad(F(s)) = F(t+s) and
F(t) € af(B($H1)) for t,s > 0). And F is minimal if G is a projective local cocycle
so that 0 < G(t) < F(t) for t > 0 then G(t) = F(t) for all ¢ > 0. The projective
local cocycles F; are lattice independent if the suprema of the F; for ¢ # j is not
greater than F.

In the language of subordinates a minimal projective local cocycle F for o
corresponds to an extremal subordinate v of a® which are trivially maximal. This
means F is a minimal projective local cocycle for a? if and only if the mapping
1 (A) = F(t)ad(A) for A € B(H;) and t > 0 is an extremal subordinate of a.
Note that extremal subordinates of a? which are trivially maximal correspond to
minimal projective local cocycle as was shown in Lemma 4.48.

Now we use Theorem 4.46 and the order isomorphism of Theorem 3.5 which
gives us an order isomorphism from the extremal subordinates of a? to the extremal
subordinates of a. Suppose the normal spine 7, of « is of finite rank p. This means
7, is of the form

p
mo(A) =Y CiAC]
1=1

for A € B(9) where the C; are linearly independent operators from §) to £ for
i=1,---,p. Let ¢;(A) = C;AC} for i =1,--- ,p and let ¢,(A) =0 for A € B(H).
Let D; be the operator with domain ®(D;) = {f € D(d*) : f(0) = C;f} and
Df = —d*f—l—%f fori=1,--- ,pandlet D, = d. Let 3; be the minimal CP-flow over
R derived from ¢; for i = 0,1,---- ,r. Since 7, > ¢; we have from Theorem 4.42 that
a > (B; foreachi=0,1,--- ,p. And from Theorem 4.46 we have D, is the generator
of a contraction semigroup S;(t) and ;;(A) = S;(t)AS;(t)* for A € B($H) and
t > 0 is a subordinate of « for i = 0,1,--- ,p. It is clear that the ; are extremal
subordinates of « which are trivially maximal. The fact that the €2; are lattice
independent may be seen as follows. Let n; be the suprema of the §2; with j <4 for
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1=0,1,---,p. Note n; is the minimal CP-flow over K derived from ¢,+¢1+- - -+ ;.
We see then for each i = 1,--- ,p we have n; is strictly greater than n;_;. If the ;
were not lattice independent we would have 7; = n;_; for some i = 1,--- ,p. Note
7p is the CP-flow over R derived from 7,. Now suppose 3 is an extremal subordinate
of a which is trivially maximal. From the order isomorphism of Theorem 3.4 there
is an extremal subordinate v of a?

Bi(A) = Wiy (WAWS )W

for all A € B(H) and ¢t > 0. Since + is extremal we have from Lemma 4.48 there is a
strongly continuous semigroup of isometries S (t) which intertwine af for each t > 0
so that v (A) = S1(t)AS1(¢t)*. Hence, we have [ (A) = W*S1(t)WAW™*S,(¢)*W
for A € B($H) and t > 0. Since WW* is an increasing projection for a? it follows
that S7(t)* maps the range of W into itself. This is seen as follows. Suppose ¢ > 0.
Then S (t)WW* = o (WW*)S;(t) and taking adjoints and multiplying by WW*
on the right we find

WW* S (t) WW* = 81 (t)* o (WW)WW* = S (t) WW*
so S1(t)* maps the range of W into itself. It follows that S(t)* = W*S1(¢)*W is a
strongly continuous semigroup of contractions since

S)* S(s)* =W*S1(t)* WW*S1(s)*W = W*S1()*S1(s)"W

=W*Si(t+ s)*W =St +s)*

for s,t > 0. Hence, §;(A) = S(t)AS(t)* for A € B($) and ¢t > 0. Since 3 is a
subordinate of @ Theorem 4.46 applies to the semigroup S(t) and the generator of
S(t) has to satisfy certain conditions regarding the normal spine 7, of «. But ,
is also the normal spine of 1y and therefore S(t) satisfies these same continuous

for the normal spine of 7y and, hence, by Theorem 4.46 we have that 3 is a sub-
ordinate of 74. Hence, we have shown that every nonzero extremal subordinate of

« is a subordinate of 74 so we have proved the subordinates 3; for « = 0,1,--- ,p
are a lattice independent set and maximal in the sense that any other extremal
subordinate (3 of « is a subordinate of 7y the suprema of the 3; for i =0,1,--- | p.

Hence, the index of a? is p and the Arveson index of a is p. In the case where the
normal spine 7, is of infinite rank the above argument shows that the index of a¢
is greater than any positive integer so the index of a? is infinite. U

In the next lemma we show that if a is a unital CP-flow over & and a? is the
minimal dilation of o to an E,-semigroup then a? is a CP-flow over &;.

Lemma 4.50. Suppose a is a unital CP-flow over & and o is the minimal dilation
of o to an E,-semigroup and suppose the relation between o and o is given by

a(A) = W*ad(WAW W

for all A € B($) (with H = K ® L*(0,00)) and t > 0 where W is an isometry
from $ to $H, and WW* is an increasing projection for a® and o is minimal over
the range of W. Then 1 can be expressed as H; = &1 @ L*(0,00) and a? is a
CP-flow over Ry so that if U(t) and Uy(t) are right translation on $ and $H1 for
and o, respectively, then Uy ()W = WU(t) and Uy (t)*W = WU(t)* for all t > 0.
This means W as a mapping of § = & ® L*(0,00) into H; = £1,® L?(0,00) can be
expressed the form W = Wy ® I where W71 is an isometry from R into K.
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Proof. Assume the hypothesis and notation of the lemma are satisfied. Since a?

is minimal over the range of W the linear combination of vectors of the form
o WAW*) - af (WAW*)W f
with f € Rand A; € B(H) and ¢; >0fori=1,--- ,nand n = 1,2,---- are dense
in $;. For t > 0 we define U;(t) on a vectors of the above form by the equation
U (o, (WAW™) - aft (WA W)W f
=af (WATW™) ol (WA WHWU()f.

By expressing the inner product of such vectors in terms of « and using the fact
that U(t) intertwines «; one first checks that (Uy (¢)F, U1 (t)G) = (F,G) for F and
G vectors of the above form. Then it follows that these relations uniquely define an
isometry Uy (t) of $;. Recalling how a? is defined as explained in the last section
we can show that Ui (t) intertwines af so Ui (t)A = ad(A)U,(t) for all A € B(H)

and ¢ > 0. Next it follows from the above equation that Uy (¢)W = WU(t) for all
t > 0. We note that

ULy WU(@) = U ()" UL ()W =W = WU (¢)*U(t)
for all t > 0. It follow that Uy (¢t)*W = WU(¢)* for all ¢ > 0 if and only if B(t) =
Uy (8)*W (I — UHU(t)*) = 0 for all t > 0. We find
B(t)*B(t) =(I —U@Q)U@)" )W UL()Ur ()" W (I = U[U (1))
=W*U,()Ur ()W — U#)U(t)*.
We show B(t)*B(t) = 0. Since Uy (t)*af(A) = AU (t)* we have
WU () UL (1) (W AW YW = WU, (£ )W AW*U, (t)*W = U(t) AU (t)*

for all A € B($) and t > 0. Then setting A = I in this equation and noting that
since WW* is an increasing projection for a? we have af(WW*)W = W so the
above equation gives
WU, (UL (t)*W = U(t)U(t)*
for all t > 0. Hence, B(t) =0 for all t > 0 and Uy (¢)*W = WU(¢t)* for all t > 0.
Next we show Uj (t)* — 0 strongly as t — o0o. Since U (¢) intertwines o we have
fort; >0, A; € B(H) fori=1,--- ,nand t > ¢; that

Ur(t) ol (WAW?) ot (WA W)W f
= U1 (t — tl)*WAlI/V*Ul (tl)*at2 (AQ) te Ck(tin+t(WAnW*)WU(t)f
— WUt — t1)* AW Uy (1), (As) - - @l (WA WHWU(L)f.

Since U (t)* — 0 strongly as ¢ — oo we have the above expression tends to zero in
norm as t — oo. Since the linear span of vectors of the above form is dense in $;
it follows that Uy (t)* — 0 strongly as ¢t — oco. Hence, U;(t) is a pure shift. Since
Ui (t) is a pure shift we can realize $; in the form &1 ® L?(0, co) where U (t) is right
translation by ¢ for ¢ > 0. The details of this realization are as follows. Let M7 be
the von Neumann algebra generated by U; () for ¢ > 0. Since the action of the right
shift operators S(t) are irreducible on L2?(0, ) we have M; can be identified with
B(L%(0,00)) and U(t) corresponds to the right shift S(t) for all ¢+ > 0. Since M is
a type I factor its commutant M/ is a type I factor which we identify as B(K;). In
this way we realize $; = £; ® L?(0,00) and Uy (t) as the right shift by ¢ on §; for



CP-FLows 261

all t > 0. Similarly in the realization of ) as = &® L?(0, c0) we let M be the von
Neumann algebra generated by U(t). Since W intertwines the action of Uy () and
Uy (t)* with U(t) and U(t)* we see that if ¢ is the natural isomorphism of M with
M, induced by identifying U (t) with U;(t) we see that (I ® ¢(A))W =W(I ® A)
for all A € M. Note WW* is in the commutant of M; so WW™* corresponds to a
projection in B(8;). Let M be the subspace of & corresponding to the range of
this projection. Now if we simply think of ¢ as the identity map by which we mean
we identify Uy (t) = I ® S(t) and U(t) = I ® S(t) where in the first case I is the
unit of B(K;) and in the second case I is the unit of B(RK) for ¢ > 0 then W is of
the form W = W; ® I where Wi is an isometry of K into K; with range 91. This
completes the proof of the lemma. O

Theorem 4.51. Suppose « is a unital CP-flow over & and o is the minimal
dilation of « to an E,-semigroup and suppose the relation between o and o is
given by

a(A) = W*ad(WAWH W

for all A € B(9) (with H = A® L*(0,00)) and t > 0 where W is an isometry from
9 to H1 and WW* is an increasing projection for a® and a® is minimal over the
range of W. Suppose S(t) is a strongly continuous semigroup of contractions of $
and Q given by Qi (A) = S(t)AS(t)* for A€ B(9H) andt > 0 is a subordinate of c.
Further assume € is trivially mazimal. Then there is a unique strongly continuous
one parameter semigroup of isometries Sy (t) which intertwine of for each t > 0
and

S(t) = W*S1 ()W

for allt > 0.

Conversely, if S1(t) is a strongly continuous one parameter semigroup of isome-
tries which intertwine of for each t > 0 then if S(t) is as defined in the equation
above we have S(t) is a strongly continuous one parameter semigroup of contrac-
tions so that Q0 defined by Q(A) = S(t)AS()* for A € B(H) andt > 0 is a
subordinate of a which is trivially mazimal.

Proof. Assume the hypothesis and notation for  and a is in effect. The sec-
ond paragraph in the statement of the theorem was established in the proof of
Theorem 4.49.

Suppose the hypothesis of the first paragraph of the lemma is satisfied. Since Q2
is an extremal subordinate of a which is trivially maximal it follows from the order
isomorphism of Theorem 3.5 that there is an extremal subordinate v of a? which
is trivially maximal and Q;(A) = W*y(WAW*)W for all A € B(H) and ¢ > 0.
From Lemma 4.48 we have + is of the form

7(A) = S1()S1(8) af (A) = S1(t) AS1(1)*

for all A € B(H1) and ¢ > 0 where S1(t) is a strongly continuous one parameter
semigroup of isometries which intertwine a¢ for each ¢ > 0. Note since 7 is uniquely
determined by €2 we have the semigroup Si(t) is uniquely determined except for
a unitary phase factor (i.e., the semigroup Sj(t) = e%!S(t) for t > 0 with s real
gives the same ~). We have

S(HAS(H)* = Qu(A) = W*S, ()W AW* Sy ()W
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for all A € B($) and t > 0. It follows that S(t) = e!*W*S(t)W. for all t > 0
where s is real. Now replacing Sp(t) with €*'S;(¢t) we have S(t) = W*S1(t)W
and we have established the connection between S(¢) and Si(t) as stated in the
theorem. O

Theorem 4.52. Suppose « is a unital CP-flow over & and o is the minimal
dilation of o to an E,-semigroup. Then o is completely spatial if and only if a is
the minimal CP-flow derived from ¥ the normal spine of a.

Proof. Assume the notation of the theorem. As shown in the last paragraph
of Section 4 of [P3] a spatial F,-semigroup is completely spatial if an only if it is
least upper bound of its extremal subordinates (in [P3] these extremal subordinates
were called minimal compressions). From Theorem 3.5 we know there is an order
isomorphism from the subordinates of a¢ with the subordinates of . Hence, a¢
is completely spatial if and only if « is the least upper bound of its extremal
subordinates.

Let v be the least upper bound of the extremal subordinates of a and let ¢
be the normal spine of . Since the extremal subordinates of « are of the form
Bi(A) = S(t)AS(t)* for t > 0 (see Lemma 4.48 and Theorem 4.51) with S(¢) a
strongly continuous one parameter semigroup and if 3 is such a CP-semigroup then
v > [ is determined only by ¢ (see Theorems 4.42 and 4.46) it follows that v must
be the minimal CP-flow derived from ¢. To see this simply replace « by the CP-
flow derived from ¢ and we have a CP-flow 7/ with v >+’ and 4/ is still an upper
bound for the extremal subordinates of «. Then it follows that ¢ is the least upper
bound of all subordinates of 77 of the form 7(A4) = CAC* for A € B(H) with C
an operator from § to K. Since ¢ is an upper bound we have ¢ > 77 and since
é is a least upper bound we have 7# > ¢ so ¢ = 7. Hence, we have shown that
the least upper bound of the extremal subordinates of « is the minimal CP-flow
derived from 7#. Hence, a is the least upper bound of its extremal subordinate if
and only if « is the minimal CP-flow derived from 77 . U

As in Theorem 3.14 of the last section we characterize corners for CP-flows. We
begin with a definition.

Definition 4.53. Suppose a and § are CP-flows over £; and Rs, respectively. We
say v is a flow corner from « to § if v is a one parameter family of o-weakly
continuous maps ~y; of B(H2) to B(H) (with H; = K; ® L?(0,00) for i = 1,2) so

that
on ([ 22])= [ 3]

for ¢ > 0 and A;; is a bounded linear operator from §; to $; is a CP-flow over
£1 @ R where the translation operator U(t) on (&; @ f2) ® L?(0,00) is given by

U(t) = [Ulo(t) UQO(t)}

for t > 0 where U, is the translation operator on $); = &; ® L?(0,00) for i = 1,2.

Theorem 4.54. Suppose « is a unital CP-flow over & and o is the minimal
dilation of o to an E,-semigroup and suppose the relation between o and o is a
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stated in Lemma 4.50. We assume the notation of the Lemma 4.50. Suppose C' is
an o contractive local cocycle so that C(t)Uy(t) = Uy(t) for t > 0. Then
20(A) = W C(t)a (W AW )W

fort >0 and A € B(9) is a flow corner from « to a. Conversely, if v is a flow
corner from o to a then there is a unique o contractive local cocycle C so that

C(t)Ur(t) = Uy (t) and
1(A) = WC(t)af (WAW )W
for A€ B(9) for allt > 0.

Proof. Assume the notation and set up of the theorem. Suppose C is an a?

contractive local cocycle and C(t)Uy(t) = Uy (¢) for t > 0 and + is given in terms of
C as stated in the theorem. Then we have
Y (AU () = W*C(t)ad(WAWH WU (t) = W*C(t)ad(WAW U, (t)W
=W*C) U ()W AW*W = W*U, ()W AW*W
=UQ{)W*WAW*W =U(t)A
for t > 0 and A € B(9). Hence, U(t) intertwines 7; so we see that © as defined in
terms of v in Definition 4.53 is a CP-flow.
Conversely, suppose 7 is a flow corner from « to «. Since 7 is a corner from «
to a we have from Theorem 3.14 that there is a a? cocycle C' so that
Ye(A) = W*C(t)a(WAW* )W

for t > 0 and A € B(9). Since v is flow corner from « to o we have U(t)A =
v (A)U(¢) for all t > 0 and A € B($H). And setting A = T in the equation yields

the result that
(DU (t) = W*C(t)ad(WWHWU(t) = W*C (t)ad(WW*)U, (t)W

ge,
SCOULEWWW = W*C(6) UL ()W = U(?)

for t > 0. Note S1(t) = C(t)Up(t) is a strongly continuous semigroup which inter-
twines a? and W*S; (t)W = S(t) = U(t) for t > 0, where we introduce S(t) = U(t)
to recall the notation of Theorem 4.51. Note if Q,(A) = S(t)AS(t)* for t > 0
and A € B($H) then Q is a subordinate of a and applying Theorem 4.51 we see
that S; is uniquely determined from S = U so S1(t) = Uy(¢) for ¢ > 0. Hence,
C(t)Uy(t) = Uy (t) for t > 0. O

One ambiguity that occurs with flow corner comes with the definition of maximal
and hyper maximal flow corners. In the definition of maximal and hyper maximal
we speak of the subordinates © of © (see Definition 3.7). The question is do
we means subordinates of ©® or do we mean flow subordinates of ©® which are
subordinates which are also CP-flows. The next lemma shows that the subordinates
©' are necessarily CP-flows. This means that for flow corners the two notions of
maximal or hyper maximal are equivalent.

Lemma 4.55. Suppose a and 3 are CP-semigroups over $; = &1 ® L?(0,00) and
H2 = Ry ® L?(0, 00), respectively. Let U;(t) be translation on $; fort >0 and i =
1,2. Suppose v is a corner from « to 5. with the property that Uy (t)A = v (A)Us(t)
forall A € B(H1,92) andt > 0 (so v is a flow corner). Then a and B are CP-flows.
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Proof. Assume the hypothesis and notation of the lemma. Let © and U be defined
as in the above Definition 4.53 and let W;(A) = U(t)*O:(A)U(t) for t > 0 and
A€ B(H1 D H2). Then we find

v ([XX{* X)*(XD - [Ul(t)*at(ﬁf{x*wl(t) a0 X X))

for all partial isometries X from )5 to $;. Note the diagonal entries in the above
matrix are positive contractions since 0O is a CP-semigroup. Since ©; is completely
positive the matrix on the right-hand side of the above equation must also be
positive. One checks that this implies Uy (t)*a:(E)U1(t) > E for all projections
E € B(91) and for all t > 0. Since oy is a contraction we have Uy (t)*a(I)U1(t) = I
and using additivity we find Uy (¢)*a:(A)U1(t) = A for all projections A € B(91)
and for all ¢ > 0. By linearity this extends to all A € B(9;). Now fix ¢ > 0 and
let ¢(A) = ay(A) for A € B($H1) and let V = Uy (t). Note V*¢(A)V = A for all
A € 9B($1). Since ¢ is completely positive we have

B(A) = S;AS;
il
for A € B($1) and the S, are linearly independent over ¢?(N). Since V*¢(A)V = A
for A € B($H1) we have V*S; is a multiple of the unit operator for all ¢ € I. Then
with a change of basis we can rewrite the sum for ¢ with a new set of S; where
V*S; = 0 except for ¢ = 1 and V*S; = I. Since V is an isometry and S; is a
contraction it follows that S; = V. Then we have

G(A) =VAV* + )" S;AS;
i€J
for A € B($1) where J is the index set I with the index ¢ = 1 removed. Since

V*S; =0 for j € J we have VA = ¢(A)V for A € B($1). Hence, a is a CP-flow.
The same argument shows [ is a CP-flow. O

Theorem 4.56. Suppose o and 3 are unital CP-flows over & and R and o
and 3 are the minimal dilations of a and 8 to E,-semigroups. Suppose vy is a
hyper mazimal flow corner from o to 3. Then o and B are cocycle conjugate.
Conwversely, if a® is a type II, and o and 3% are cocycle conjugate then there is a
hyper mazimal flow corner from « to (.

Proof. The first statement of the theorem is just an application of Theorem 3.13.
Assume the hypothesis and notation of the last statement of the theorem. We
know from Lemma 4.50 that the relation between the CP-flows and the dilated
FE,-semigroups is given by

ar(A) = Wiad(WiAW)Wy  and  Bi(B) = W3 B (WaBW3 )W,

fort > 0 and Wy, W5, ; A and B are operators on the appropriate Hilbert spaces with
the properties described in Lemma 4.50. Now a? and 3¢ are cocycle conjugate and
mapping that establishes the cocycle conjugacy maps one parameter semigroups
of intertwining isometries for a¢ onto one parameter semigroups of intertwining
isometries for 3%. Since a? and 3% are type II, there is only one semigroup of
intertwining isometries up to multiplication by a phase factor. This means that the
corner which establishes the cocycle conjugacy for a¢ and ¢ is after multiplication
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by a phase factor €' a flow corner and taking things back to the original CP-

semigroups this gives us a hyper maximal flow corner from « to 3. O

An important question in the theory of CP-flows is whether two CP-flows dilate
to cocycle conjugate F,-semigroups if and only if there is a hyper maximal flow
corner from one to the other. The previous theorem shows the implication one way
and both ways in the type II, case. It would be very nice to know if the implication
goes both ways in the type II,, case with n > 0. If follows from the papers of
Alevras ([Al1],[A12]) this is a question of whether there a unitary local cocycles for
and FE,-semigroup maps that maps one semigroup of intertwining isometries onto
any other semigroup of intertwining isometries.

In the last section we defined (n X n)-matrices of corners. There is the corre-
sponding notion of flow corners.

Definition 4.57. Suppose « is a CP-flow over K and n is positive integer. We say
© is a positive (n x n)-matrix of flow corners from « to « if © is a matrix with
coefficients 6() where the (%) are strongly continuous semigroups of B($) for
i, =1,---,n so that © is a CP-flow over (®?_,K) and the diagonal entries of ©
are subordinates of .

Definition 4.58. Suppose a? is CP-flow over & which is also a E,-semigroup of
B(H) with H = A® L?(0,00) and n is a positive integer. We say C is a positive
(n x n)-matrix of a? contractive local flow cocycles if the coefficients C;; of C are
contractive local cocycles for a? for 4,5 = 1,--- ,n which fix the translations U ()
meaning C;;(¢)U(t) = U(t) and the matrix C(¢) whose entries are C;;(t) is positive
for all t > 0.

We remark if C' is a contractive local flow cocycle then C* is also a contractive
local flow cocycle. This is seen as follows. Suppose C' is a contractive local cocycle
for a? and C(t)U(t) = U(t) for t > 0. Then we have

CHU®) -U®) (CH)UR) -U®))
=U@)"CH)CR)'UR)-U@)*CHUE)-U@®)*C)U®)+1I
=U@®)"Ct)CH)'UR)—I<U@)UE)—I=0.

Since the above expression is positive it must be zero so C(¢)*U(t) = U(t) for t > 0.

Theorem 4.59. Suppose « is a unital CP-flow over £ and o is its dilation to an
E,-semigroup a® of B(H1). The relation between o and a? is given by

i (A) = W*ad(WAW )W

as described in Lemma 4.50.

Suppose n is a positive integer and © is positive (n X n)-matriz of flow corners
from « to a. Then there is a unique positive (n x n)-matriz C of contractive local
flow cocycles Cyj for a? fori,j=1,---,n so that

0 (A) = W*Cij (1)l (W AW )W

for all A € B($H) and t > 0. Conversely, if C is a positive (n X n)-matriz of
contractive local flow cocycles for o then the matriz © whose coefficients 09) are
give above is a positive (n x n)-matriz of flow corners from « to «.
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Proof. Once one sees that there is a one to one mapping from flow corners from
a to a and flow cocycles for a? as was established in Theorem 4.54 the theorem
follows from Theorem 3.16. [

Theorem 4.60. Suppose o is a unital CP-flow over & and o is its dilation to
an E,-semigroup and the relation between o and o is as given in the previous
theorem. Suppose 6 is a flow corner from « to a and C is the local contractive flow
cocycle for a? associated with 6. Then C(t) is an isometry for all t > 0 if and only
if 0 is mazimal and C(t) is unitary for all t > 0 if and only if 6 is hyper mazimal.

Proof. The proof is the same as the proof of Corollary 3.17 taking into Theo-
rem 4.54. O

We think the next theorem is a surprising result. It is a basically a corollary of
Theorem 4.15.

Theorem 4.61. Suppose « is a CP-flow over & and U(t) is translation on $ =
A® L?(0,00). Suppose v is a corner from « to a so that

Ut)A = e*' 4, (AU (1)

fort >0 and A € B(H) where z is a complex number with nonnegative real part.
Let By = €'y fort > 0. Then 3 is a flow corner from « to a.

Proof. Assume the hypothesis and notation of the theorem. Suppose a? the di-
lation of o to an E,-semigroup and the relation between a and o is as stated in
Lemma 4.50. We assume all the notation of the statement of Lemma 4.50. From
Theorem 3.16 there is a local contractive a? cocycle so that

W(A) = W*C ()l (W AW )W
for allt > 0 and A € B(H). From Lemma 4.50 we have
U(t) ="'y (I)U(t)
=" W*C(t)af (WW
="' W*C(t)af (WW
=e*'W*C(t) Uy (t)W

IWU(t)
LW

for all t > 0. One checks that S(t) = e**C(¢)U; (t) is a one parameter semigroup that
intertwines af for ¢ > 0. Since S(t) intertwines af we have S(¢)*S(t) commutes with
B(9H1) so S(t)*S(t) is a multiple of the unit for ¢ > 0. Then S(t) = e**V (¢) for t > 0
where V is semigroup of intertwining isometries for a?. Since U(t) = W*S(t)W
it follows from Theorem 4.51 that S(¢t) = Uy(¢) for ¢ > 0. Hence, C(t)Uy(t) =
e U, (t) for t > 0. Now let D(t) = e2*'!C(t)*C(t) for t > 0 where x is the real part
of z. and let ©,(A) = D(t)af(A) for A € B($H;). One sees O is a CP,.-flow with
growth bound xk = 2x. Then by Theorem 4.15 we have © is a CP-flow so | D(t)|| < 1
for all ¢ > 0. Hence, e**C(t) is a contractive flow cocycle and 8 is a flow corner
from o to «a. O

For the case of type II, CP-flows this theorem is very useful in calculating the
local cocycles for the dilated FE,-semigroup. It says they can all be obtained by
analyzing flow corners.
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Next we will present some results which show that the relation between a CP-flow
and its normal spine 77 is not as simple as one would expect. Since 77 determines
7rt# for t > s for a generalized boundary representation one gets the impression that
the limit 77 of a boundary representation 77 as s — 0+ determines the CP-flow.
The next theorem shows the situation is quite delicate. This theorem shows that if m
is a completely positive contraction of B($) into B(R) and A = lim,, oo (7-A)™ (1)
is not zero then there are CP-flows over K derived from 7 other than the minimal
one constructed in Theorem 4.26. This theorem is of importance because it shows
that the boundary representation does not completely specify the CP-flow. The
generalized boundary representation contains more information than the boundary
representation.

Theorem 4.62. Suppose 7 is a completely positive contraction from B($) to B(R).
Note (m - A)" (1) = (7 - A)*(x(A)) < (7 - AN)"(I) so (7 - A)"(I) is a decreasing
sequence of positive operators which then must converge strongly to a limit A as
n — oo. Suppose A is not zero. Suppose v is an positive element of B(9). with
v(I) <1 and
wo = v+ 7(AW)) + #(AF(AW)))) + -

where the sum converges as a weight on (I — A)2B(H)(I — A)=z. Let p — w(p) be
the mapping given by

p(A)
wl(p) = g
(1-v(A(A)))
for all p € B(R).. Then the mapping p — w(p) is a boundary weight mapping of a
CP-flow a and « is derived from w. Furthermore, if v(I) =1 then « is unital.

wo +7(p) + 7 (A(F(p))) + 7 (AF(A(R(p)))) + -

Proof. Assume the hypothesis and notation of the theorem apply. Since A is
not zero we have ||A|| > 0. Note w(A(A)) = A. We have (7 - A)"(||A|IIl — A) =
A7 A)™(I) — A — (J|]A]| — 1)A and since the limit is positive we have ||A] > 1
and since m and A are contractions we have ||A]| < 1 so we have ||A| = 1. The
arguments of Theorem 4.26 show the series for w(p) and w, converge as weights.
Suppose A € (0,1) and let ¢* be the mapping of B($) into B(K) given by

Np) = A (p) + (1= Np(A)v
for p € B(R).. It is clear that ¢* is completely positive so to check that ¢ is a
contraction we need iny check ¢* on the unit. One easily checks that for positive
p € B(R). we have ¢*(p)(I) < p(I) and since v(I) < 1 we have v(A(A)) < 1 so
||f\¢)‘|| < 1. Hence, the CP-flow derived from ¢* is unique and its boundary weight
map is given by
W (p) = 0 (p) + 0 A (p) + S AN AN (p) + - -
for p € B(R).. Computing the series which converges in norm we find
A p(A)
WAp) = T
(1-v(A(A)))
for p € B(R). where
wy = v+ M (AW)) + Na(A(F(AW)))) + -+

Following the argument of Theorem 4.26 we can take the limit as A — 1— obtain
the mapping p — w(p) given in the statement of the theorem and we find the limit

W) + Mt (p) + N (A(7(p)) + Na(AFAGF () + -



268 ROBERT T. POWERS

inequality (4.13+) of Theorem 4.20 is satisfied. Hence, the mapping p — w(p) is
the boundary weight map of a CP-flow a where now we have set A\ = 1. Since
A =7(A(A)) we have

w(p = A(#(p))) = p(A — T(A(A)))wo + 7(p) = 7(p)
so from Theorem 4.24 we have that « is derived from .
Note that if v(I) =1 and p € B(R). is positive we have

()T = 8) = (&) P TR 4 (T = ) = (1)

so in this case « is unital. O

We show that the previous theorem is not vacuous in that there are examples
of representations m where A is not zero. Let K be the infinite tensor product of
L?(0,00) so & = @2, L?(0,00) with the reference vector (see [vN] for details of
infinite tensor products of Hilbert spaces)

F, = M\e Mt @ hge 3252 g ...
and where \; > 0 for ¢ > 0 and
- -2 |)‘ - )‘n+1|
Z)\n < 00 and Z N A,
We note both these conditions are satisfied for \,, = n and the second condition is
not satisfied for \,, = 2". Let S be the unitary mapping of $ = & ® L?(0, 00) into
R given by

S(fivfr®-)Qh)=hRfixfo®- -

and let m(A) = SAS* and A = e *® e * ® --- where e~ * is shorthand for the
operation of multiplication by e~* on L?(0,00). The first sum condition insures
that A is not zero and the second condition insures that S is well defined. One
checks that

(T A"IN=e"Re"® e "RI®IQ---
where there are n factors of e=® and (7 - A)"(I) — A as n — oo.
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