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The average length of a trajectory in a certain

S Otk W=

billiard in a flat two-torus

F. P. Boca, R. N. Gologan, and A. Zaharescu

ABSTRACT. We remove a small disc of radius € > 0 from the flat torus T? and
consider a point-like particle that starts moving from the center of the disk
with linear trajectory under angle w. Let 7: (w) denote the first exit time of the
particle. For any interval I C [0,27), any r > 0, and any é > 0, we estimate
the moments of 7 on I and prove the asymptotic formula

/;g(w)dw:Cr|1|€_r+05(€7r+§76) as e — 07,
JI

where ¢, is the constant
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A similar estimate is obtained for the moments of the number of reflections in
the side cushions when T? is identified with [0,1)2.
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and the first exit time (also called free path length by some authors)
Te(z,w) =inf{r >0; 2+ 7w € 0Z.}, z€Z.,, weT,

of a point-like particle which starts moving from the point z with linear trajectory,
velocity w, and constant speed equal to 1. This is the model of the periodic two-
dimensional Lorentz gas, intensively studied during the last decades (see [2], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [20], [21], [29], [31], [32] for a
non-exhaustive list of references). The phase space of the system consists in the
range of the initial position and velocity and is one of the spaces Y. x T with the
normalized Lebesgue measure, or X7 = {(z,y) € Yz x T; w - n, > 0} with the
normalized Liouville measure.

Equivalently, one can consider the billiard table Y. = Z./Z? obtained by remov-
ing pockets of the form of quarters of a circle of radius € from the corners. The
reflections in the side cushions are specular and the motion ends when the point-like
particle reaches one of the pockets at the corners. In this setting 7.(z,w) coincides
with the exit time from the table (see Figure 1).

This paper considers the situation where the trajectory starts at the origin O =
(0,0). In this case the phase space only consists in the range of the initial velocity
of the particle. It is given by the one-dimensional torus T and can be reduced,
for obvious symmetry reasons, to the interval [O, ﬂ From the point of view of
Diophantine approximation this corresponds to a homogeneous problem. We shall
be concerned with estimating the moments of the first exit time 7c(w) = 7:(0, w)
as € — 07 when the phase space is the range [0, 7] of the velocity w. This question
was raised by Ya. G. Sinai in a seminar at the Moskow University in 1981. We
answer the question by supplying asymptotic formulas with explicit main term and
error for all the moments of 7. in short intervals as follows:

Theorem 1.1. For any interval I C [0, %] and any r,d >0, one has

ns(e570) ifr #£2
er/Fg(w)dw:cT\I\—i— 0’6(6175) zfr;é as € — 0T,
Ors5(e3i™%) ifr=2
1
where
r 1wy 1-(a
12 " o 1-(1—2) 1-(1-az)
L= v 1—2)" - .
T <x(x Ao+ re(l — x) (r+1ax(1 - x)) d

The mean free path length is in this case

/4
~ 12 In2 0.421383
f/Tg(w)dwwc—l——-n—zi.
T
0

>~

€ w2 2 €

Note also that
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To prove Theorem 1.1 we first replace the circular scatterers by cross-like scat-
terers [m —e,m+¢] x {n}U{m} x [n—e,n+e], m,n € Z*\ {(0,0)}.) We denote
by l.(w) the free path length in this situation, and first prove:

Theorem 1.2. For any interval I C [0, %] and any r,a,0 > 0, one has

/ dz +{Or,6(852°‘5+15a) ifr+2

cos” x| Os(e379) ifr=2

as e — 0F.

Er/lg(w) dw = ¢,
T

I

We consider the probability measures il and ;! on [0, 00), defined by

A = 4 Te(w)) dw ! :i w)) dw 00
%U)|ﬂ/ﬂu(bd,%ﬁ)|ﬂ/ﬂ%(nd, f € Cul0,50)).

Their supports are all contained in [0, /2] as a result of Lemma 3.1. Moreover, we
infer from Theorems 1.1 and 1.2 that their moments of order n € N* are of the
form?
~I n e” ~n 1 )
e (X") = = | T(w) dw = ¢+ = Ons(e57°);
| 1]
1
8”

I on n Cn dx 1
XM= [ rwde=2 [ 221 0,
:LLs( ) |I|/ s(w) w |I|/COS”$+ |I|O 75(5

I I

These asymptotic formulas show in particular that il (X™) and pf(X™) converge to
the main terms as ¢ — 0. The Banach-Alaoglu and Stone-Weierstrass theorems
now lead to:

o=

75)'

Corollary 1.3. There exist probability measures i and i’ on [0,+/2] such that
pl—7n and pl — u' weakly as ¢ — 0t

Moreover, the moments of i and u' are

o0

[ ann =,

0

T dx

£ dp (t :C—"/ :
/ o) |I| J cos™x
0 1

Besides, we estimate the average of the number of reflections EE (w) in the side
cushions of the billiard table in the case of circular scatterers and prove:

and respectively

Theorem 1.4. For any interval I C [0, %] and any r,0 > 0, one has

5T/]§g(w) dw = ¢, /(sinm +cosz)" dr + Or’g(&:%_é) as € — 0F.
T T

L Actually it is not hard to see that for w € [0, %] the result for cross-like scatterers is asymp-

totically the same as when using vertical scatterers {m} x [n —e,n + €].
2We denote N = {0,1,2,...} and N* = {1,2,3,...}.
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FIGURE 1. The trajectory of the billiard

Again, we first consider the case of cross-like (or vertical) scatterers, let R.(w)
denote the number of reflections in the side cushions of the billiard table in this
case, and prove:

Theorem 1.5. For any interval I C [0, §] and any r, o, > 0, one has

ST/Rg(w) dw = ¢, /(1 +tanz)" dz + Ong(s%_%‘_‘s + |1]e™) ase — 07,
T

We may also consider the probability measures 7/ and v! on [0, 00) associated
with the random variables e R, and eR., and defined by

() = ~ eR.(w)) dw, vl :i eR.(w)) dw 00
7 = ml/f( Rew)) do, vA(f) I/f( R@))dw, [ €Cu([0,50).

From Theorems 1.4 and 1.5 we derive:

Corollary 1.6. There exist probability measures 7' and v' on [0,/2] such that

1 I I

vl vl and vl —v' oas e — 0t

Moreover, the moments of 71 and v! are

oo

/t" dv' (t) = |CT"| /(sinx + cosz)" du,
0 T
and respectively

/t” dvl(t) = % /(1 + tanz)" dz.
0 1

In the case I C [F, 5] one gets formulas similar to the ones in Theorems 1.1, 1.2,

1.4 and 1.5 after performing a symmetry with respect to a diagonal of the square,
i.e., replacing (o, 8) by (5 — 3,5 — ).

The proofs make use of techniques employed in the study of the spacings between
Farey fractions, pioneered in [23], [24], [25], and furthered recently in [3], [4], [1],
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[28] where estimates for Kloosterman sums are being used. The first step consists
in proving Theorems 1.2 and 1.5, which refer to the case of cross-like or vertical
scatterers. In this case one can directly take advantage of the fact that the intervals

Lojqg = [%5, a;rg], with £ Farey fraction of order @ = [1], provide a covering of

[0,1] such that two intervals I,,, and I, /4 overlap if and only if % and ‘;—: are
consecutive Farey fractions of order Q.

Finally, the case of circular scatterers is settled by partitioning the range I into
[e7?] intervals of equal size for a convenient value of the exponent 6, and replacing
the small circles of radius ¢ first by vertical scatterers of type {m} x[n—e_(m,n), n+
g4 (m,n)], and finally by scatterers of type {m} x [n—&, n+¢] for appropriate choices
of ex(m,n) and €.

It should be possible in theory to compute the densities of the limit measures from
their moments using either the Cauchy transform or the inverse Mellin transform.
An attempt of this kind does not seem to easily lead however to a tractable formula
for these densities. The convergence of the measures fil and 7/ was proved in a
different way and the limit measures were explicitly computed in [5].

Techniques using Farey fractions and Kloosterman sums were recently used in
[6] to establish the existence, and compute the distribution, of the free path length
for the periodic two-dimensional Lorentz gas in the small-scatterer limit in the case
where the trajectory does not necessary start from the origin, and one averages
over both initial position and initial velocity.

This is the final version of the paper with the same title, circulated as preprint
arXiv math.NT/0110208.

2. Farey fractions and Kloosterman sums

For each integer ) > 1, let F denote the set of Farey fractions of order @, i.e.,
irreducible fractions in the interval (0,1] with denominator < ). The number of
Farey fractions of order ) in an interval J C [0, 1] can be expressed as

#(JINFg) = C;C(QJJ +0(QnQ).

Recall that if % < Z—: are two consecutive elements in Fg, then

aqg—aq =1 and qg+4q > Q.

Conversely, if ¢,¢' € {1,...,Q} and q¢ + ¢’ > @Q, then there are a € {1,...,q— 1}

and o’ € {1,...,¢' — 1} such that % < ‘;—: are consecutive elements in Fg. Proofs
of these well-known properties of Farey fractions can be found for instance in [26],
[23], [30].

Throughout the paper we shall denote by .7-'57 and respectively by .7-'5 , the set

of pairs (%, g—:) of consecutive elements in Fg with ¢ < ¢’, and respectively with
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q > ¢'. We also set
Z}%r = {(a,b) € Z2; ged(a, b) = 1};

J J
> = X and > = )
a/a  (a/g.d’/q)EFS a/q (a/g.a’/q")EFS
a/qeJ a/qed
Ag={(z,9) €Z5;0<a,y<Q, z+y>Q;
R = [mym+1] x [n,n + 1], m,n € R.

For each region R in R? and each C' function f : R — C, we denote

Il = s (o)l 10fler = sw (|5 @]+ |3 @)
(z,y)ER (z,y)ER €T Y

The notation f < ¢ means the same thing as f = O(g); that is, there exists
an absolute constant ¢ > 0 such that |f| < cg for all values of the variable under
consideration. When the constant depends on a parameter §, this dependence will
be indicated by writing f <5 g. The notation f < g will mean that f < ¢ and
g < f simultaneously.

We shall be mainly interested in consecutive Farey fractions % < Z—,/ in Fg with

+

the property that, say, % belongs to a prescribed interval J C [0, 1]. The equality
a'q—aq = 1yields a = ¢—q', where & denotes the unique integer in {1,2,...,¢—1}

for which 2z = 1 (mod ¢). Thus ¢ € J = [t1,t] is equivalent to q € J(gl) =

[(1—t2)g, (1 —1t1)q]. Moreover, Z—: € J is equivalent to q € Jé?) = [t14/, t2¢’], where
this time ¢ denotes the multiplicative inverse of ¢ (mod ¢’).

An important device employed in [3], [4], [1] to estimate sums over primitive
lattice points is the Weil type [33] estimate

(2.1) 1S(m, 15 9)| < 7(q) ged(m, n, q)2q?

on complete Kloosterman sums

St = 3 4W%m)
z€[1,q] 1
ged(x,q)=1
in the presence of an integer albeit not necessarily prime modulus ¢, proved in [27]
(see also [19]). The bound from (2.1) can be used (see [4, Lemma 1.7]) to prove the
estimate

(2:2) NA(Z.5) = E 21171+ 0s(aH )
for the number Ny (Z,J) of pairs of integers (z,y) € Z x J for which zy = 1
(mod ¢), whenever Z and J are intervals which contain at most ¢ integers.

We shall use the following slight improvement of Corollary 1 and Lemma 8 in
[4]. The proof follows literally the reasoning from Lemmas 2, 3 and 8 in [4].
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Lemma 2.1. Let Q C [1, R] x [1, R] be a convex region and let f be a C function
on Q. Then:

. 1
(i) > b= / / J(eay) dedy + Eno .

(a,b)€QNZZ,
where

Eras < | flwoRR+ Y [Dflor,,,nR.

(m,n)€z?
Rm,,n (@]

(ii) For any interval J C [0, 1] one has

J
S fab) = C(z,') é [ 1)ty + Frog,

(a,b)EQNZ,

beJ,
where
Fro.fs <o | fllsoamsR2* + | fl|oc olength(0) M R+ > [ Df ok, In R
(m,n)eZ2
Rom,n€Q

for any 6 > 0, where b denotes® the multiplicative inverse of b (mod a), J,

is either Jél) or Jy), and my is an upper bound for the number of intervals
of monotonicity of each of the functions y — f(x,y).

The proof of (ii) relies on (2.2). We also note the following important corollary
of (2.2), which will be often employed in this paper and in the subsequent work
from [5] and [6].

Lemma 2.2. Assume that ¢ > 1 is an integer, T and J are intervals which contain
at most q integers, and f : TxJ — R is a C function. Then for any integer T > 1
one has

> flab) = @(3) //f(%y)dfvderEq,IJ,f,T»

q
a€Z, beJ
ab=1(mod q) IxJ

where
1 3 ZHINNDflloo
Ey1.0. 50 < T8 flloo + TqH0 D+ T 1P e
for all § > 0. Here || - || denotes the L>°-norm onZ x J.

Proof. If T > ¢, then the error is larger than the sum to estimate and there is
nothing to prove.

If T < q, we partition the intervals Z and J respectively into T intervals
Ty,...,Zr and Ji,...,Jr of equal size |Z;| = % and |J;| = % The idea is
to approximate f(z,y) by a constant whenever (z,y) € Z; x J;. For, we choose for

each pair of indices (¢,5) a point (xi;,yi;) € Z; x J; for which

(2.3) [ 1=zl 5w,

IiXJj

3When writing b € J, we implicitly assume that ged(a,b) = 1.
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For (z,y) € Z; x J; the mean value theorem gives
Fa,y) = f(xij yi5) + O((Zil + 1 T3DIID S llo)
(2.4) - q
= f(@ij,yi5) + O 7 1D flloo )

This gives in turn

T
(2.5) Yoo flab)y=> > [l

a€T,beJ 4,J=1 (z,y)€Li x J;
ab=1(mod q) zy=1(mod q)
T
q||D floo
= Z N,(Z;, ;) <f(1'ij7yij)+o< 1Dl >> .
ij=1

Since each interval Z; and J; contains at most ¢ integers, estimate (2.2) applies
to them and gives

(2.6) No(Zi, Jj) = IZi] 1751 + Os(q>™+°).

(q)
e
As a result of (2.6) and (2.3), the main term in (2.5) becomes
) T

Z Tl 51 i i) + 05T f o)

i,j=1

T2q§+6|‘f||00)7

IxJ
while the error term in (2.5) will be

« W0 (0 711914 72450 ) < Do (P 4 1),

3. The second moment of the first exit time for cross-like
scatterers

Throughout this section we keep 0 < £ < % fixed, and take

1 1
Q=Q: = {] = the integer part of .
€ €

We also denote
z** =72\ {(0,0)},
C. = {0} x [—¢,e]U[—¢,¢] x {0},
Ve = {0} x [—&,¢],
l.(w) = inf{T > 0; (T cosw, Tsinw) € C. + Z**}
p = the slope of the line OP,

(x|l = Va2 +y2, z,yeR.



LENGTH OF A TRAJECTORY IN A CERTAIN BILLIARD 311

A N
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(O q
S7
N |

W% @ (?.qg)

y

FIGURE 2. The case ¢ < ¢’

Let
Q:E:OE+{(Q7G’); a/quQ}

denote the translates of C, at all integer points with slope in Fq,.

For each point A(g, a) with g € Fg we construct a vertical segment NS of length
2¢ and a horizontal segment W E of length 2¢, both centered at A.

Performing symmetries with respect to the integer vertical and horizontal lines,
the problem translates into a covering version in R2. It is clear that one can discard
the points (¢’,a’) with ged(q’,a’) = d > 1, which are already hidden by (%, %)

The trajectory will now originate at O = (0,0) and end when it reaches one of
the components (¢, a) +C: of €, % € Fg, as seen in the next elementary but useful
lemma.

, 4] which originates at O inevitably in-
a

. / . . .
tersects €.. Moreover, if v = % <4 = &7 are two consecutive Farey fractions in

Lemma 3.1. Any ray of direction w € [0

Fo and tanw € [y,7'], then the ray of direction w intersects either (q,a) + Ce or
(¢',a') + C. and does not intersect any other component of €..*

Proof. We shall utilize the inequalities ¢ + ¢ > Q + 1 > % > @ > max{q,q'},
getting

<te =

ta = < .
q q q

In the case ¢ < ¢/, we set {Wo} = OW N NS and {N[} = ON N N'S’ (see
Figure 2 and note that a < @), inferring that

ESEES]

a;S, aj;e}, % € Fgq, cover [0,1] and two such intervals

’
1,/q and I,r 4 overlap if and only if % and % are consecutive elements in Fq.

4Equivalently, the intervals Iyjq = [
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N N
S (g, @84 .
W S, /;? (q’ q ) S(’,(q, (a(;’ Sq )
A
N S N’
S
WA W 1A
S S’
0 0 -
FIGURE 3. The case ¢’ < q and tg < tyw, respectively ¢’ < g and
tgr > tw.
arctan v’
(3.1) /l?(w) dw = 2area( AOAN) + 2 area( AON|A") — 2 area( AAW W)
arctan vy
/
=&q + q/ (a/ — (a—’—qg)q> + 0(52)

! _ 2 2
=179 79) E(qq a) +0(e?).

In the case g > ¢’ one has @’ < a. Moreover,

a a —¢

q7€7 q, ) SmaX{tW7tS/}§'Y/:tA/.

ta =7 < min(tw,ts) = min <

This shows that any ray of slope tanw € [vy,7’] intersects either (g,a) + C. or
(¢',a') + C¢ and no other component of €. (see Figures 2 and 3).

Besides, we estimate the average of the second moment of the length . (w) of the
trajectory when tanw € [,~'].

When tg < tw (i.e., ' +q>e+1), weset {So} = OS'"NAW, {S)} = OS'NNS,
and note (see the first picture in Figure 3) that

arctan /
(3.2) / I?(w) dw = 2area(AOA'S’) + 2 area( AOAS)) — 2 area( AAS)S})

arctan vy
a —¢
= 5q/ + q<(ql)q — a) + 0(62)

2 12
q—&lqg” —¢q
— (q, )+O(€2>
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0,Q (1,0 xQ Q.Q)
(x,Q-x) |
! (Q/2,Q72)
Ly
v
/I
/
!
/ |
/ !
/ |
0,0) (x,0) (Q,0)

FIGURE 4. The region {2

When tg: > tyw, we set {Wpo} = OW N NS, {S{} =085 NNS, and get (see the
second picture in Figure 3)

arctan v’

3.3 12(w) dw = 2area( AOA’S") + 2area( AOAS!) — 2 area( AAW W,
€ 0
arctan vy
22
_ q E(QQI q ) +O(€2).

We consider the region
Qo ={(z,y) eR* 1< <y<Q, z+y>Q}
and the function

flag =L V) W) e,

Consider also I = [o, 5] C [0, %], take t; = tana, t = tanf3, and let J =
[t1,t2] € [0,1]. For (z,y) € Qg one has * > Q —y > + — 1 — gy, which gives

€

1—ecy<e(x+1) <2z Itis also seen that 1 —ey > 1 — % > (0. As a result we
find that || f||ec,0, < 3. Since e2#Fq < 1, formulas (3.1), (3.2), (3.3) provide

arctan“—;
7 7
(3.4) /zg(w) do=2"%" / 2(w)do+0(1) =2" 3 f(g,q) + O(1).
I a/q arctan 2 a/q

To master the latest sum, we aim to apply Lemma 2.1 to Qg. With the notation
from Section 2, relation (3.4) yields

(3.5) /zg(w) do=2 3 flab)+0().
; ()00
beJ{t
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Wealsoseethatfor(gcy)EQQonehaS‘af|—‘€ v 8y)|<<€ + 2% < 3 and

’af| — [1=2ey| 25?" < 1 : hence

Q Q Q
1
(3.6) > IDflloora, <D > - < Y 1=Q
(a,b)ez? z=1 y=max{Q—z,x} =1
RawaQQ

Now we can apply Lemma 2.1 (ii) to the sum from (3.5), and employ (3.6) and
my < 2, to infer that

t —t
(3.7) /12 Ata— 1) / f(a,y) dedy + O5(Q5 7).
When a =0 and = 7, Lemma 2.1 (1) improves upon the error in (3.7) to
w/4
2
(3.8) / (w)dw = @ / f(z,y)dzdy+O(QnQ).
0 Qg
In summary, (3.7), (3.8) and the equality
1+2In2
/ fz,y)de dy = g Q?
lead to:
71'/4
1 +2In2

Theorem 3.2. (i) 1%(w) dw 5— +O(e[Ingl) as € —07F.

™

QO\

(ii) For any0 <a < B <7 andé >0, one has

8
52/z2(w) do = (1 +2In2)(tan — tana)

T2

+ 0s(c279) as € — 0.

(e

Part (i) of this result was already proved in [22].

4. The r** moment of the first exit time for cross-like
scatterers

In this section we estimate the average of the first exit time for cross-like scat-
terers, thus proving Theorem 1.2. The first step towards estimating the integral
J; L (w) dw = [;1272(w)I2(w) dw consists in approximating I[L~? by a step function.

We take I= [ ﬁ] C [0,%], t1 = tana, ty = tanf, J = [t1,t2] C [0,1]. For
consecutive Farey fractions 2 7 < a— from J N Fgq, where Q = [ ] we denote

/! !/

a a+e , a —¢
wyp = arctan —, wo = arctan , Wy = arctan , w3 = arctan — .
q q q q

The function I7~2 will be approximated by the constants I7~2(w;) = ||(g, a)||" 2
on [wy,ws] and by I772(w3) = ||(¢’,a’)||"~2 on [wa,ws] when q < ¢/, and respectively
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by 177%(w1) on [w,wh] and by IZ72?(w3) on [wh,ws] when ¢ > ¢’. To be precise, we
set

w2 w3
J J
Avge= Y g, )2 B(w)dw+ "> I(dsa)|"? | 1E(w) du,
a/q w1 a/q wa
J Wy w3
Bra= Y a2 [ 2w do+ 327 e o)l / () do,
a/q w1 a/q wl
Sr,J,e = AT,J,E + BT,J,e-
Next we estimate the quantities
J wS
1 r 1
Eﬁ,.},s = Z /ls (w) dw — AT‘,.],E ( < E’JE,[%),I],E>7
a/q o,

B =3 /r Jo— B (<ED.).

ald o

An inspection of the case ¢ < ¢’ in the proof of Lemma 3.1 leads to

sup  [IL7H(w) — 172 wi)| < (@ a+ o)™ =g —,a)l|"? < Q7 72,

wE[wi,ws]

and to
r—2

r— r— - a+e)qd
sup |272(w) — 2 (wa)] < (¢ —H(q())

wE|wa,ws] q

< (a’—(a+€)q/)Q’” i
q q

w3 wa w3
/ 1" (@) dw — 2=2(w1) / 2(w) dw — 172 (w3) / 2(w) dw

Therefore

(4.1)

<5 Pwr — w1)eQ" % + ¢ (w3 — wo) p

!’
But wy —wy < “ff—ﬂziandwg—wg < %—‘”E == Eq <

7, so the right-hand
q qq’ qq
side in (4.1) is

Q

<, q@ZQPS

r—2 r—2
Q <<Q
> 7

As a result we infer that

Q
(4.2) Ed 1. =O: <Q” Z‘Z) QI Q).
=1
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In the case ¢’ < ¢ we get (in both subcases tg: <ty and tg > ty)

- 2 (£52)

<, <(a/q€)Q_a+6>Qr 3< QT 3

/

r—2
- H(qva - €)|

sup |r—2

w€[w1,wp]

q
and
sup  [IZ72(w) — 12 (ws)| < (I a)I"2 = [I(d,a — &) <, eQ" 2.
we[wh,ws]
. r _a— _a _1 eq _ a _ad-e _ e
Employing also wgy —w; = 7 .= a0 < qq, and w3 —wh = a2
we get in the case ¢’ < ¢ the estimate

w3 wi w3
/ 1" (w) dw — 12=2(w1) / 2(w) dw — 17~ (ws) / 2(w) dw

r—1 r—3 r—2
<5 q;q@ + qu < Qq, :

Hence
r—2
w9 -0 ¥ &)oL 4 0@ ne)
(9,9") €A ¢’

Since the contribution of a single term f N (w) dw is < %f’/}r < QT we
infer from (4.2) and (4.3) that

(4.4) I'(w) dw = Sy sz + O (e77).
/

Next, we adjust the second integral in the expression of A, j., writing

2 2
a a 1
“'2*‘1'2“1'2<<qf) “) - ((qw) “)
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This gives in turn

!
(45) I a2 = (‘;) o) 2(1+0 )
In a similar way
. g\~ -
(4.6) l@ o)~ = (q) N2 (1404

@)

For further use, it is also worth to note

Ly (eg0so) 1t 1
O EE T arenirog) T ieer | o(g))
Making use of (see the proof of Lemma 3.1)

w2

/l?(w) dw = 2area( AOAN) 4 O(e?) = eq + O(e?)

w1

w3

"1 — =
lg(w) dw = 2 area( AONJA") = M ,
q

w2
and (4.5), we see that A, ;. can be expressed as

w T war(1) D (1 0,(L))

Q
+2"S g ) 2+ 0, (1).

a/q
If Z denotes the inverse of the integer z (mod ¢) in [1, ¢, then a’q —aq’ = 1 gives
S : —eq’

— / — ]
a=q—q. Since :=2 < ¢, the error in the first sum in (4.8) is <, Q*Q"'eQ~!
Q" !, and so A, j. is equal up to an error term of order O,.(Q" ') to

(4.9) "Z|<q,a>|r—2(sq+ i q)

r—1
a/q q

Q 2 r—1 T
r—2 &
S S S e PR CA-= -]
g=1 max{q,Q—¢}<z<Q q 4

zeJ{M

with Jél) as defined in Section 2

When ¢ > ¢/, we employ (see the proof of Lemma 3.1)

’
L)

/12( )dw = 2area( ANOAS)) + O(e?) = (1 —eq)q

w1

/
q
w3

/ I?(w) dw = 2area(ANOA'S’) =

/
]

+0(e%),

)
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together with Q" ~2e?#Fo < Q" 2, relation (4.6), and the fact that a’q —ag’ =1
implies ¢’ = ¢ (mod ¢’), to infer that B, ;. is expressible as

-2

7 r—2 (1 —eq)q I(q\ — ,,,
S g, a)l Z%+Z (q) (@, a)l"22q’ + 0,(Q" )
a//q/ a//ql

r—1
r— q eq” r—
)l 2(&q'+q,m—q )+0<Q 1)

~ r—2 xrfl ex” B
Y. (@ +d?) (HI' M= q/r_1> +0,(Q"7),
1 max{q’,Q—q'}<z<Q
TE Is )

=3
a'/q
P>

where Z denotes the inverse of an integer = (mod ¢’) in [1,¢’]. Changing notation,
B, je can be rewritten as

T

Q 9 r—1
B r=2 T EX r—
o Y Y (@) <sq+ v ) L 0.@Q ).
g=1 max{q,Q—q}<z<Q 4 1
zeJ{®
By (4.4), (4.9) and (4.10), we infer that
(4.11) /z;j(w) dw =Ty j.+0.(Q"Y),

I

where T, ;(¢) = S1(Q) + S2(Q), with

Q
9=1 max{Q—q,q}<z<Q
zeJ{M

and

r—2 r—1 r
Falay,2) = (P +22) 7 <€Z+x —;xl)
fl(xay7z):f2(xaz_y7z)'

For each ¢ € [1,Q)], the functions fi(,,q), defined on [1,Q] x [1, ¢], manifestly
satisfy the estimates

r—1
and
Qr—Q Qr—l

Thus we may consider in Lemma 2.2 for each ¢ € [1, Q)] the function fy(-,-,q), the
intervals 7 = (max{@ — ¢,¢},Q] and J = J(Sk) with |Z] < g and |J| = ¢|I|, and
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take T = [Q?], to infer that the inner sum in (4.12) can be expressed as

Q

80(](261) / dm/dy fr(@,y,9)

max{Q-q,q} s

+ O(;m(q7%+5Qrfl+2a + q7%+5Qr71+a + |I|Qrflfoc).

Summing up over ¢ € [1, @], we arrive at

Q
(4.15) Q) =329 g(g) + 05, (@424 1 1jgr ),
g=1 1
where
Q (1—t1)=z

1
9(2) = - / dx /dy fi(z,y,2)
max{Q—=z,z} (1—t2)z

toz

% / dx /dy fo(z,y, 2), z € [1,Q].

max{Q—z,z} tiz

The formulas

bz bz

dci(l /de/dyh(ff,y,z)> =——/dm/dyh(x Y, z)

z az az

Q bz
1 1
+;/dx/dy (z,y,2) — /h(Zy, z)dy

az

b Q Q
+7/hz bz, z dx—g/h(a:,az,z)d:c,
z z

Q bz
1
dz \ z
Q az
17 oh 1 f
Q—=z az

b Q Q
+ - / h(gc,bz,z)dac—g / h(z,az, z)dx,
z
Q-z Q-z

and the estimates (4.13) and (4.14) show that |¢’'(2)| <, QTA As a result we get
le lg'(2)|dz <, Q"' InQ. It is also clear that [|g|lec <, Q"1, so we are in the
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position of being able to apply Lemma 2.3 in [3] to g, collecting

Q ? 7
> 2D gt0) = 5 [ o) dz+0<(goo + [19610:) an>

Q
/g dz+0,.(Q" ' 1In* Q).
1

Ty
—_

(2)

Comparing the previous relation with (4.15), we infer that both S;(Q) and S2(Q)
can now be expressed as

Q
(1.10) i [ 901 ds 4 05, (@ 4 g,
1
Taking into account (4.11) and (4.12), we gather
Q
(4.17) /l;(w)d %/g 2)dz + 05, (QU™2+2F0 1 11Q ).
1 1

Integrating with respect to y in the formula that gives g and changing then z
into @z, we may express the main term in (4.17) as

r—1 T
(4.18) Err /dz / dz (e—i— sz - ajr )zr_l

max{Q—z,z}

1

1
K, Q! / / ( ,ooamt sxr>
=——— [ dz de (ez" " + —— )
¢(2) Qz  z
1/Q max{1l—z,z}

where

ta

d
Kr71:2/(1+t2) dt_2/ T
cos” x

t1 I

Up to an error term of order O,(Q~2), the double integral in the right-hand side
of (4.18) is given by

1/2 1/2

_ 1—-(1-2)" € 17(172)TJrl

r—1 o \r—1

s/z(z +(1=2)"")dz+ Q/ 20— %) r—i—l/ 21— dz.
0

0

Since Q™! = 1 (o L), we now infer from (4.17) and (4.18) the equality
Cr d _ ,
(4.19) / _ ¢ L + O&,r(5_7+%_2a_6 + |I|€_r+a)7
cos" x
I I

with ¢, as in Theorem 1.1. The proof of Theorem 1.2 is now complete.
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5. The moments of the number of reflections

We take as before ) = [%] and keep up with the notation from the beginning

of Section 4. An inspection of the proof of Lemma 3.1 shows that 1f L < —/ are
consecutive in Fq, then

q+a if tanw € [, 2%7)
g+a+1 iftanwe[qf67“;’) if g <q';
/ / 3 ate a’
qd +a 1ftanw€[ql,q,]
q+a if tanw € [, 232) i
R.(w) = S if g >¢ and tg < ty;
() {q’—f—a’ if tanw € [* 75, %] =4 5=
q+a if tanw € [, 2%
g+a+1 iftanwe[q “qTe) if g >¢q and tg > tyw.
q+a if tanw € [aq, o v

A first immediate remark is that we may replace ¢+ a+ 1 by ¢+ a in the above
formulas, since the contribution of the corresponding arcs is small, as we see from
|arctan z — arctany| < |z — y|, and from

a+e a B elg—a—¢) 1
S () X et X

a/qeFq a/qeFq q(q € a/qeFq
and
a —¢ a 1—¢e(qg+a') +e? 1
2 ( q _q—6>: 2 q(’(iq—é)) < 2 i
a/qEFqQ a/qEFq a/qEFqQ

As a result we may write
[ By do =), + 18+ 0,@ ),

where we set

7 5
Tr(,lJ),a = Z(q +a)" (arctan ate_ arctan Z)
a/q
J a a+e
+ qd +a) <arctan — — arctan )
5+ (stan s — s
a/q
and
2) J , a —e¢ a
Tr,J,e = Z (¢ +a)" | arctan — — arctan —
q q
a/q
J / ’r_
+ Z (¢ +d)" (arctan a—/ — arctan 2 . 6) )
q q
a/q
Employing

h

h
arctan(z + h) — arctanz = T2 (h?) = T h?

+ O(h?)
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we now arrive at

(51) /RZQU) dw = S'I‘,J,E + TT,J,E + OT(QT_l)’
where
JZ £ 1*€/q’
(5.2) ST7J,€ = (an (q + a)r _|_ Lﬂ, (q/ _|_ a/)r)
a/q 1+(a) 1+(?)2
and
7 l—eq €
53 T’I‘ = ‘ qiql r qil / IANE )
( ) ,J,e az/; <1+(2)2 (q+a’) + (i/) (q +a‘) )

To further simplify the expressions in (5.2) and (5.3) we employ
a a 1
AR +O< ): (1+) <1+O = )
q q q¢ q Q q (Q)
1
(15) = (+5) (o@)).

14

and

a/q€FQ a/q€EFq
to infer that
J (1+2)" 1—¢eq
00 e Sy (e I 0@
a/q a

and also that

r A+ 1—eq .
T e = Z W <€q by p q 1) +0,.(Q h.
a/q q

The main term in (5.4) can now be conveniently expressed as

(55) TJE Z Z f('r7£7Q)a

¢=1 max{Q—q,q}<z<Q
zeJ®

where Z is the multiplicative inverse of  in {1,...,¢ — 1}, and this time we set
T=(max{Q-q.q}Q, T =JP",
q=y\r
(1 + q ) (gqr—l + 1—ex xr—l)

2+ () 7

(2¢ —y)" 1—ex a1
:q2q+q(q—yy)2 <6+ qs (5> )

[z, y) = f(2,y,9) =
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Since 0 < 1 —ex < 1, it is easy to check that

(2 —y)" 2
£ KL 55— < ¢ 7
00, IxJ§ @+ (q—y)?
B 2 1
o7 C Ik ) AP
dx OOzXJm q +( y)? q
2 _ T
(2 q y) > <o q" -3
ooIXJ<1) +(q_

Taking these estimates into account and applying Lemma 2.2 for each ¢ € [1, Q]

to f=f(,q),Z=(max{Q—q,q},Q], T = Jél) and T = [Q®], we infer that the
inner sum in (5.5) can be expressed as

Q
¢(q) / ( l—ex/z 7"—1> / q(2q —y)"
e+ — dx ———dy
q? q (q) >+ (g —y)?
max{Q—q,q} I
+Or§(Q2a 2+5 r— 2+Qa 2+6 r— 3+‘I‘Q « 2 7" 3)
OT I@( )

_ _3 1
= AL g, (0) 4 Onp(Q R Q).

where

(1—t1)q tag
o, =t / (2g —y)" dy = /(q+y)r
Tt 7+ (q—y) ) Pty

(1—t2)q tig
to 1
t T
:/( +t) dt:/(l—&-tanx)rd;v

14 ¢2
ty I

and

gr(@) = /Q (5 +1 _qu (z)rl) da.

max{Q—q,q}
‘We now arrive at
_ CT‘I r—3492q r—o—
(5.6) > f@,3,0) = == hel@) + Ors (@737 e,
max{Q-q,q}<z<Q
zeJM
where
Q

max{Q—q,q}
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Since ||h]l < Q"' and le |h'(q)|dg < Q"~!, Lemma 2.3 in [3] together with
(5.5) and (5.6) show that

= Cor S P D () 4 0 (@ 1)

qlq

Q
C Q
I /hr dq+OT§(QT_%+2a+6+|I|Qr_a).
1

Making use of eQ = 1 + O(e) we arrive by a straightforward computation to

Jr
” / 1 —max{l — z,z}"
/ q)dg=@Q /( 17max{1fx x}) "
0

1 — max{1l — z,z} !
(r+ 1)z

H

) dz + O0.(Q" ).

The integral above is seen to coincide with

1/2

r—1 — )1 1_(1_z)r_1_(1_x)r+1 Jj:@
O/(m(x +(1-2) )+ ra(l — ) (r—l—l)w(l—x))d 12

hence

-r

Q

2, Q" — w2cne .
/hr<q>dq: Vo =T 0,
1

12 12

and as a result

6 m2ce T I _
Syge= R DR /(1 +tanz)" dr + O, 5(e7 "2 200 4 [T|e="e)
T
cre™ "

/ (L tanz)" da + Op s H2 72070 4 |Tjemr ).
1

2

By reversing the roles of ¢ and ¢’ it is seen in a similar way that

cre "

TT,J,E = 5 /(1 —+ tanx)r dx + OT(€7T+%72a75 + |I|€7r+a).
I

This concludes the estimates of S, j. and T} j.. Theorem 1.5 now follows from
(5.1).

6. The case of circular scatterers

Note first that the statements of Theorems 1.2 and 1.5 hold true if we replace
the scatterers C. + Z** by V. + Z2*.
In this section we consider the circular scatterers D, + Z2*, where

D, = {(z,y) e R?; 2% + y* = £°}.
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(qa+e,)

(g,2)

(q.a- )

FIGURE 5. A circular scatterer

For each integer lattice point (g, a), let (¢,a+e+) denote the intersections of the
line x = ¢ with the tangents from O to the circle

Dega=(q,0) + D ={(2,y) € R?; (v — ¢)* + (y — a)? = £2},

where 1 = e4(q,a) are computed from the equality

_ |a—%q\ €+q

€= 4 = )
\/1+ (E=£)? V@ +(aEes)

which gives in turn
¢ = P 4 lates),
or
(® — %)% F 2ae?es — *(¢* +a?) = 0.
The latter provides

a£2

€
_ 44 2,2 _ 2.2
(6.1) ei—iq2_€2+q2_€2\/q + a?q? — a?e2.

Employing also

V@t +a2@2 — /g + a2? — a2e? < €2,
5

2
€ €
- s(io()
g% — 2 qz( ¢
2 2
ae €
2 of®),
qg°—¢ q
we arrive at

2 2 2
(6.2) gi(q,a)s,/1+%+o<€)€a+0<5).
q q CcOs arctang q

and
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Proof of Theorem 1.1. We wish to compare [, 7/ (w) dw with [} 7:'2 (w) dw where
?E(w), the smallest 7 > 0 for which

(Tcosw, Tsinw) € U {¢} x [a —e_(q,a),a+£4(q,a)],
(q,a)€Z2*

denotes the first exit time in the case where the scatterers are the vertical segments
{¢} x [a—e_(¢g,a),a+ e4(q,a)]. From Figure 5 it is apparent that

sup |7 (w) — %g(w)| < 2¢,
w
and so, since sup,, e (w) <sup,, l(w) < g, we get
sup |77 (w) — %;(w)| <5 e(?)r_l & et
w
which gives

(6.3) [F@ o= [Fiw)d+ 0.,

1 1
To estimate [, ?E(w) dw, we divide the interval I into N = [¢7] intervals of
equal size I; = [wj,w;41] with |I;| = % = &? for some 0 < § < . Then one has
for all j that
COSw;  COSWjt1

< e,

e—e32  e+4e3?

thus the integers Q;r = [Z%%] +1 and Q; = [S2228L ] satisfy

e+4e3/2
+ - o—1
(6.4) 0<Q; —Q; K¢
and
_23/2 3/2
(6.5) iga € SeJra Si_-
QF COSWwj coswit1 ~ Q]

Furthermore, it follows from (6.2) that there exists g = €¢(6) > 0 such that for all
€ < gg, all 7, and all % € [tanwj, tanw;41], one has

g —ed/? €+ e3/2
S Ei(qaa) S .
COS W COS Wj4+1

This implies in conjunction with (6.5), for all % € [tanwj, tanw; 1], the inequalities

1
(66) — =< €+ (Q7a’) < e
@ Q;
Since Qj[ = 224 4 O(e?71), one has
(6.7) QF) = 22X 4 0,(7m).

E'I"
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The first exit time increases when all the sizes of scatterers decrease. Thus we
infer from (6.6) the inequalities

(6.8) / 1"y (w)dw < / F(w)dw < / 1"y (w)dw.

But by Theorem 1.2 and by (6.7) we may write

60 [riama@y [ ot s

cos" x

Q;
n 7 I;

with the better error term =279 for 7 = 2. Also using [, —2— <, |I;| < €’ we
J
infer that the first integral in (6.9) is expressible as

wit1
¢ cos” w; dx _ gl _oq_ _
(610) T — J / o~ +Or’6(5 7‘+29+€ r+35—2a 5+€ r+9+o¢)7
X
wij

with the better error term e~ 2t 4 =39 for y = 2,
Summing up over j we infer from (6.8), (6.10) and (6.3) that

Wit1 d
T
6.11 72 (w cos” w; _r
( ) / Z J / cos" x
T wj
+ Org(E_r+§_2a_9_6 + c—Tta + E—r+9)
with the better error term =2 9=9 4 ¢=2+0 for p = 2.

Finally, we apply the mean value theorem and chose some §; € [wj,w;t1] to
evaluate the sum

dx
ZCOS wj cos”
i=1 2
as
N w wi)cos” w; N
41—
Z . COS,J@ L= Z(Wj-H - Wj)(l + Or(wjs1 — Wj))
j=1 j=1
N
= (@it —wi) (14+0:()
j=1
= I+ 0,(%)

This implies Theorem 1.1 in conjunction with (6.11) by taking § = o = % for r # 2
and@ziforr:Q. |

Proof of Theorem 1.4. We proceed along the same line to estimate the moments

of R. Here we denote by ﬁ( ) the number of reflections in the side cushions in
the case of vertical scatterers (of variable size) {q} x [a — e_(q,a),a + £4(q,a)],
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(q, ) € Z**. Tt is seen as in the proof of Theorem 1.1 that | i RT ) dw differs from

f ; R.(w) dw by an error term of order O, (e277). One can also show that
(6.12) /RT w)dw < ﬁe(w) dw < /RL (w) dw
I I o

Applying now Theorem 1.5 to the vertical scatterers V; JQE on the intervals I; =
[wj,w;j4+1] of equal size |I;| = % = &% with = o = %, and also using (6.7), we find
that

/Rm (@) do = S5 /(1 +tana)" da + O, (e,

QF e”

I; ! I;

and thus
Wi+1
(6.13) /E Zcos w; / 1+ tanz)" dz + O, (e "+579).
1 wj

By the mean value theorem we find &;,n; € I; such that

Wi+l N
(6.14) Zcos w; / (1+tanz)" dx = Z(wj+1 —wj)cos” w;(1+tang;)",
2z j=1
J
and respectively
Wi+l
/(Sinz +cosx) dr = Z / sinz + cosx)" dx
I =l
N N
Z (wjg1 — wj)(sinmy; + cosn;)" = Z(w]H w;) cos” n; (14 tann;)".
j=1 j=1
From
cos" wj = cos" n; + Op(wjp1 —w;) = cos’” n; + O,(c%)
and

(1+tang;)" = (1+tann;)" + O (|tan&; — tann,|) = (1 + tann;)" + O,(£%)

we infer that the sum in (6.14) is equal to
N
1 1
Z Wil — wj (cosr n; + Or(sg)) ((1 +tann;)" + OT(€§))
j=1

= /(sinx +cosz)" dx + Op(e3).
T
This can be combined with (6.13) to collect

/Rg(w) dw = Z—: /(sinx + cosx)" dx + Om;(g—“‘é—‘s)’
I
which concludes the proof of Theorem 1.4. 0
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