ABSTRACT. We remove a small disc of radius $\varepsilon > 0$ from the flat torus \mathbb{T}^2 and consider a point-like particle that starts moving from the center of the disk with linear trajectory under angle ω . Let $\tilde{\tau}_{\varepsilon}(\omega)$ denote the first exit time of the particle. For any interval $I \subseteq [0, 2\pi)$, any r > 0, and any $\delta > 0$, we estimate the moments of $\tilde{\tau}_{\varepsilon}$ on I and prove the asymptotic formula

$$\int_{I} \tilde{\tau}_{\varepsilon}^{r}(\omega) \, d\omega = c_{r} |I| \varepsilon^{-r} + O_{\delta}(\varepsilon^{-r + \frac{1}{8} - \delta}) \qquad \text{as} \quad \varepsilon \to 0^{+},$$

where c_r is the constant

$$\frac{12}{\pi^2} \int_{0}^{1/2} \left(x(x^{r-1} + (1-x)^{r-1}) + \frac{1 - (1-x)^r}{rx(1-x)} - \frac{1 - (1-x)^{r+1}}{(r+1)x(1-x)} \right) dx$$

A similar estimate is obtained for the moments of the number of reflections in the side cushions when \mathbb{T}^2 is identified with $[0,1)^2$.