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The maximal and minimal ranks of A − BXC
with applications

Yongge Tian and Shizhen Cheng

Abstract. We consider how to take X such that the linear matrix expression
A−BXC attains its maximal and minimal ranks, respectively. As applications,
we investigate the rank invariance and the range invariance of A−BXC with
respect to the choice of X. In addition, we also give the general solution of the
rank equation rank(A − BXC) + rank(BXC) = rank(A) and then determine
the minimal rank of A − BXC subject to this equation.
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1. Introduction

Let

p(X) = A−BXC(1.1)

be a linear matrix expression over an arbitrary field F, where A ∈ F
m×n, B ∈ F

m×k

and C ∈ F
l×n are given; X ∈ F

k×l is a variant matrix. One of the fundamental
problems for (1.1) is to determine the maximal and minimal ranks of (1.1) when
X is running over F

k×l. Because the rank of a matrix is an integer between zero
and the minimum of the row and column numbers of the matrix, the maximal and
minimal values of the rank of (1.1) with respect to X ∈ F

k×l must exist and these
two values can be attained for some X in F

k×l. In fact, the maximal and minimal
ranks of any linear or nonlinear matrix expression with respect to variant matrices
in it always exist. A − BXC is one of the simplest cases among various linear
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matrix expressions. The results on the extremal ranks of (1.1) can be used for
finding extremal ranks of many other linear and nonlinear matrix expressions.

The investigation of extremal ranks of matrix expressions has many direct mo-
tivations in matrix analysis. For example, the matrix equation BXC = A is con-
sistent if and only if minX rank(A − BXC) = 0; the matrix equation B1X1C1 +
B2X2C2 = A is consistent if and only if minX1,X2 rank(A−B1X1C1−B2X2C2) = 0;
the two consistent matrix equations B1X1C1 = A1 and B2X2C2 = A2, where X1

andX2 have the same size, have a common solution if and only if minX1,X2 rank(X1−
X2) = 0; there is a matrix X such that the square block matrix

[
A B
C X

]
of or-

der n is nonsingular if and only if maxX rank
[
A B
C X

]
= n. In general, for any

two matrix expressions p(X1, . . . , Xs) and q(Y1, . . . , Yt) of the same size, there are
X1, . . . , Xs, Y1, . . . , Yt such that p(X1, . . . , Xs) = q(Y1, . . . , Yt) if and only if

min
X1,...,Xs,Y1,...,Yt

rank[p(X1, . . . , Xs)− q(Y1, . . . , Yt)] = 0;

p(X1, . . . , Xs) and q(Y1, . . . , Yt) are identical if and only if

max
X1,...,Xs,Y1,...,Yt

rank[p(X1, . . . , Xs)− q(Y1, . . . , Yt)] = 0.

Moreover, the rank invariance and the range invariance of any matrix expression
with respect to its variant matrices can also be characterized by the extremal ranks
of the matrix expression. These examples imply that the extremal ranks of matrix
expressions have close links with many topics in matrix analysis and applications.
Various statements on extremal ranks of matrix expressions are quite easy to un-
derstand for the people who know linear algebra. But the question now is how
to give simple or closed forms for the extremal ranks of a matrix expression with
respect to its variant matrices. This topic was noticed and studied in the late 1980s
in the investigation of matrix completion problems; see, e.g., [5, 6, 10, 11, 25]. In
these papers, minimal ranks of some partial matrices are derived in closed forms.
But the methods used in these papers are not easy to understand for the people
who just learn elementary linear algebra.

It is well-known (see, e.g., [12, 13]) that a powerful tool in the investigation
of ranks of matrices is generalized inverses of matrices. An n × m matrix X is
called a generalized inverse of an m × n matrix A if it satisfies AXA = A, and
is denoted as usual by X = A−. The collection of all generalized inverses of A

is denoted by {A−}. If A is decomposed as A = P

[
Ir 0
0 0

]
Q, where both P and

Q are nonsingular, then the general expression of A− can be written as A− =

Q−1

[
Ir V2

V3 V4

]
P−1, where V2, V3 and V4 are arbitrary matrices. If a generalized

inverse A∼ of A is known, then the general expression of A− can be written as
A− = A∼+(In−A∼A)U1+U2(Im−AA∼), where U1 and U2 are arbitrary matrices.

Generalized inverses of matrices can be used to establish various rank equalities
for matrices. Some well-known rank equalities for block matrices due to Marsaglia
and Styan [12] are presented in Lemma 1.1 of this paper. These rank equalities can
further be used to establish or simplify various rank equalities for matrix expressions
that involve generalized inverses.
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It is well-known that the rank of a given nonzero matrix is a positive integer and
it can be evaluated through row or column elementary operations for the matrix.
This fact motivates us to establish some rank identities for (1.1) by block elementary
operations for matrices, and then find the extremal ranks of (1.1) from these rank
identities.

In a recent paper [23] on the commutativity of generalized inverses of matrices,
Tian shows an identity for the rank of A − BXC by block elementary operations
as follows:

rank(A−BXC) = rank
[
A
C

]
+ rank[A, B]− rank(M)(1.2)

+ rank[ET1(X + TM−S)FS1 ],

where [A, B] denotes a row block matrix consisting of A and B,

M =
[
A B
C 0

]
, T = [0, Ik], S =

[
0
Il

]
,

T1 = T − TM−M, S1 = S −MM−S, ET1 = Il − T1T
−
1 , FS1 = Ik − S−

1 S1.

Note that rank[ET1(X + TM−S)FS1 ] is a nonnegative term on the right-hand side
of (1.2) and the matrix X in X+TM−S is free. Hence, one can take X = −TM−S
such that ET1(X + TM−S)FS1 = 0. Thus, the minimal rank of A − BXC with

respect to X is rank
[
A
C

]
+ rank[A, B] − rank(M), which looks quite simple and

symmetric. Using this result and some other rank formulas, the first author of this
paper gives a group of formulas for the minimal ranks of AA−−A−A, AkA−−A−Ak

and BB−A − AC−C with respect to A−, B− and C−. But [23] just gives some
introductory results on the extremal ranks of A − BXC. This leads us to give a
compelte consideration for this problem. In Section 2, we shall give a new identity
for the rank of A − BXC and find the extremal ranks of A − BXC with respect
to X from this new rank identity. Through the extremal ranks of A − BXC,
we also investigate the rank invariance and the range invariance of A − BXC
with respect to X, respectively. In Section 3, we shall solve the rank equation
rank(A − BXC) + rank(BXC) = rank(A) for X and then find the minimal rank
of A−BXC subject to this rank equation.

Throughout, F denotes an arbitrary field. For a matrix A over F, the symbols
EA and FA stand for the two oblique projectors EA = I−AA− and FA = I−A−A
induced by A; AT , r(A), R(A) and N (A) denote the transpose, the rank, the
range (column space) and the null space of A, respectively. A matrix X ∈ F

n×m

is called a reflexive generalized inverse of A ∈ F
m×n if it satisfies both AXA = A

and XAX = X, and is denoted by X = A−
r .

In order to find the extremal ranks of A − BXC with respect to X and solve
the rank equation r(A − BXC) + r(BXC) = r(A), we need the following results
on ranks of matrices and general solutions of some matrix equations.

Lemma 1.1 ([12]). Let A ∈ F
m×n, B ∈ F

m×k, C ∈ F
l×n and D ∈ F

l×k. Then:
(a) r[A, B] = r(A) + r(EAB) = r(B) + r(EBA).

(b) r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC).
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(c) r

[
A B
C 0

]
= r

[
EBA
C

]
+ r(B)

= r[AFC , B] + r(C) = r(B) + r(C) + r(EBAFC).

(d) r

[
A B
C D

]
= r(A)+r

[
0 EAB

CFA SA

]
= r

[
A
C

]
+r[A, B]−r(A)+r(EC1SAFB1),

where B1 = EAB and C1 = CFA, the matrix SA = D − CA−B is the Schur

complement of A in M =
[
A B
C D

]
.

Lemma 1.2 ([12]). The rank of a triple matrix product PAQ satisfies the following
identity:

r(PAQ) = r(PA) + r(AQ)− r(A) + r(EAQAFPA).(1.3)

Lemma 1.3 ([16]). Suppose BXC = A is a linear matrix equation over F. Then
this equation is consistent if and only if R(A) ⊆ R(B) and R(AT ) ⊆ R(CT ), or
equivalently, BB−AC−C = A. In this case, the general solution of BXC = A can
be expressed as

X = B−AC− + U −B−BUCC−,

where U is an arbitrary matrix. If, in particular, the matrix A has the form A =
BJC, then the general solution of BXC = A can also be expressed in the form

X = JC(BJC)−BJ + U −B−BUCC−.

The solution of BXC = A is unique if and only if B has full column rank and C
has full row rank.

The following result was shown in [17]; see also [19]:

Lemma 1.4. The general solution of the homogeneous linear matrix equation

AXB = CY D

can be decomposed as

X = X1X2 +X3, Y = Y1Y2 + Y3,

where X1, X2, X3 and Y1, Y2, Y3 are, respectively, the general solutions of the
following four homogeneous matrix equations:

AX1 = CY1, X2B = Y2D, AX3B = 0, CY3D = 0.

By making use of generalized inverses, the general solution of AXB = CY D can
be written as

X = FA1UEB1+U1−A−AU1BB−, Y = C−AFA1UEB1BD−+U2−C−CU2DD−,

or equivalently,

X = A−CFC1UED1DB−+U1−A−AU1BB−, Y = FC1UED1+U2−C−CU2DD−,

where A1 = ECA, B1 = BFD, C1 = EAC and D1 = DFB ; the matrices U, U1 and
U2 are arbitrary.
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Lemma 1.5. Let N ∈ F
n×m, B ∈ F

m×k and C ∈ F
l×n be given. Then the general

solution of the quadratic matrix equation

(BXC)N(BXC) = BXC(1.4)

can be expressed in the form

X = B−BU1(U2CNBU1)−r U2CC
− + U −B−BUCC−,(1.5)

where U1 ∈ F
k×n, U2 ∈ F

m×l and U ∈ F
k×l are arbitrary.

Proof. It is easy to verify that (1.5) satisfies (1.4). On the other hand, for any
solution X0 of (1.4), let U1 = X0C, U2 = BX0 and U = X0 in (1.5). Then (1.5)
becomes

X = B−BX0C(BX0CNBX0C)−r BX0CC
− +X0 −B−BX0CC

−

= B−(BX0C)(BX0C)−r (BX0C)C− +X0 −B−BX0CC
−

= B−BX0CC
− +X0 −B−BX0CC

−

= X0.

This result implies that any solution of (1.4) can be represented through (1.5).
Hence, (1.5) is the general solution of (1.4). �

2. The maximal and minimal ranks of A − BXC with
respect to X

Suppose that p(X) is given by (1.1). If the corresponding linear matrix equa-
tion BXC = A is consistent, then we say that p(X) is a consistent linear matrix
expression. In addition to (1.2), we are also able to derive another identity for the
rank of p(X) from Lemma 1.1 (a), (b) and (c).

Theorem 2.1. Let p(X) be given by (1.1). Then:
(a) p(X) satisfies the following rank identity:

r(A−BXC) = r[A, B] + r

[
A
C

]
− r

[
A B
C 0

]
(2.1)

+ r(EA2AFA1 − EA2BXCFA1),

where A1 = EBA and A2 = AFC .

(b) The linear matrix expression

p̂(X) = EA2AFA1 − EA2BXCFA1(2.2)

is consistent.

Proof. We first show the following rank equality:

r

[
A B
C 0

]
= r

[
A
C

]
+ r[A, B ]− r(A) + r(EA2AFA1).(2.3)

It is easy to see by block Gaussian elimination that

r

[
A AFC

EBA 0

]
= r

[
A 0
0 EBAFC

]
= r(EBAFC) + r(A).
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Also note by Lemma 1.1 (c) that

r

[
A AFC

EBA 0

]
= r(EBA) + r(AFC) + r(EA2AFA1).

Hence,
r(EBAFC) = r(EBA) + r(AFC)− r(A) + r(EA2AFA1).

Substituting this rank equality into Lemma 1.1 (c) and applying Lemma 1.1 (a)
and (b) yields (2.3). Replace the matrix A in (2.3) with p(X) = A − BXC and
observe that

r

[
A−BXC B

C 0

]
= r

[
A B
C 0

]
, r

[
A−BXC

C

]
= r

[
A
C

]
,

r[A−BXC, B] = r[A, B], EB(A−BXC) = EBA, (A−BXC)FC = AFC .

Then (2.3) becomes

r

[
A B
C 0

]
= r

[
A
C

]
+ r[A, B]− r(A−BXC)

+ r(EA2AFA1 − EA2BXCFA1),

as claimed in (2.1). On the other hand, one can obtain from EA2A2 = 0 and
A1FA1 = 0 that EA2AC

−C = EA2A and BB−AFA1 = AFA1 . Thus

R(EA2AFA1) = R(EA2BB−AFA1) ⊆ R(EA2B),

R[(EA2AFA1)
T ] = R[(EA2AC

−CFA1)
T ] ⊆ R[(CFA1)

T ].

These two equalities imply that the matrix equation EA2BXCFA1 = EA2AFA1 is
consistent. Thus p̂(X) is a consistent linear matrix expression. �

For convenience of statement, we call p̂(X) in (2.2) the adjoint linear matrix
expression of p(X) in (1.1). If p(X) is consistent, then A1 = 0 and A2 = 0 in (2.2).
In this case, p̂(X) and p(X) are identical, since A1 = 0 and A2 = 0 in (2.2).

From (1.3), we can also derive another interesting rank identity:

Theorem 2.2. Let A ∈ F
m×n, P ∈ F

p×m and Q ∈ F
n×q be given and let

p(X) = A− FPXEQ,(2.4)

where X ∈ F
m×n is a variant matrix. Then:

(a) p(X) in (2.4) satisfies the following rank identity:

r[p(X)] = r(PA) + r(AQ)− r(PAQ)(2.5)
+ r(EAQAFPA − EAQFPXEQFPA).

(b) The matrix expression p̂(X) = EAQAFPA − EAQFPXEQFPA is consistent.

Proof. Equality (2.5) follows from (1.3) by replacing A with p(X) = A−FPXEQ

and simplifying. The consistency of the matrix equation EAQFPXEQFPA =
EAQAFPA can be seen from the two simple facts FPAFPA = AFPA andEAQAEQ =
EAQA. �

Equality (2.1) implies that the rank of A − BXC is the sum of a nonnegative
constant and the rank of a consistent linear matrix expression. Thus, the extremal
ranks of A − BXC with respect to X can be determined through this consistent
linear matrix expression.
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Lemma 2.3. Suppose that p(X) in (1.1) is consistent. Then:
(a) The maximal rank of p(X) with respect to X is

max
X

r(A−BXC) = min{r(B), r(C)}.(2.6)

The general expression of X satisfying (2.6) can be written in the form

X = B−AC− − Y,(2.7)

where Y is any matrix satisfying r(BY C) = min{r(B), r(C)}.
(b) The minimal rank of p(X) with respect to X is

min
X

r(A−BXC) = 0.(2.8)

The general expression of X satisfying (2.8) is the general solution of the
matrix equation BXC = A.

Proof. The consistency of the equation BXC = A implies that BB−AC−C = A
by Lemma 1.3. Hence, we can rewrite A−BXC as

A−BXC = BB−AC−C −BXC = B(B−AC− −X)C = BY C,

where Y = B−AC−−X. The results in this lemma follow from this expression. �
Applying Lemma 2.3 to the rank identity in (2.1), we obtain the following two

results:

Theorem 2.4. Let p(X) be given by (1.1). Then the maximal rank of p(X) with
respect to X is

max
X

r(A−BXC) = min
{
r[A, B], r

[
A
C

]}
.(2.9)

The general expression of X satisfying (2.9) is

X = (EA2B)−EA2AFA1(CFA1)
− − U,(2.10)

where the matrix U ∈ F
k×l is chosen such that

r(EA2BUCFA1) = min{r(EA2B), r(CFA1)}.
Proof. We see from (2.1) that

max
X

r[p(X)] = r[A, B] + r

[
A
C

]
− r

[
A B
C 0

]
+ max

X
r[p̂(X)].

Since p̂(X) in (2.2) is consistent, its maximal rank by (2.6) is

max
X

r[p̂(X)] = min{ r(EA2B), r(CFA1) },
where

r(EA2B) = r[A2, B]− r(A2) = r[AFC , B]− r(AFC) = r

[
A B
C 0

]
− r

[
A
C

]
and

r(CFA1) = r

[
A1

C

]
− r(A1) = r

[
EBA
C

]
− r(EBA) = r

[
A B
C 0

]
− r[A, B]

by Lemma 1.1 (a), (b) and (c). Thus (2.9) follows. Equality (2.10) is derived from
(2.7). �
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Theorem 2.5. Let p(X) be given by (1.1). Then the minimal rank of p(X) with
respect to X is

min
X

r(A−BXC) = r[A, B] + r

[
A
C

]
− r

[
A B
C 0

]
.(2.11)

The matrix X satisfying (2.11) is the general solution of the following consistent
matrix equation:

EA2BXCFA1 = EA2AFA1 ,(2.12)

where A1 = EBA and A2 = AFC . Through generalized inverses, the general expres-
sion of X satisfying (2.11) can be written in the following two forms:

X = (EA2B)−EA2AFA1(CFA1)
− + U(2.13)

− (EA2B)−EA2BUCFA1(CFA1)
−,

X = B−AFA1(EA2AFA1)
−EA2AC

− + U(2.14)
− (EA2B)−EA2BUCFA1(CFA1)

−,

where U ∈ F
k×l is arbitrary.

Proof. We see from (2.1) that

min
X

r[p(X)] = r[A, B] + r

[
A
C

]
− r

[
A B
C 0

]
+ min

X
r[p̂(X)].

Applying Lemma 2.3 (b) and Lemma 1.3 to the consistent linear matrix expression
p̂(X) = EA2AFA1 − EA2BXCFA1 yields the desired results in this theorem. �

From now on, we call any matrix X satisfying (2.11) a minimal rank solution
of the matrix equation BXC = A. The two general expressions of minimal rank
solutions of BXC = A are given in (2.13) and (2.14).

From the rank identity (2.5), we are also able to find the extremal ranks of p(X)
in (2.4).

Theorem 2.6. Let p(X) = A− FPXEQ be given by (2.4). Then:
(a) The maximal rank of A− FPXEQ with respect to X is

max
X

r(A− FPXEQ) = min {m+ r(PA)− r(P ), n+ r(AQ)− r(Q)} .(2.15)

The general expression of X satisfying (2.15) is

X = (EAQFP )−EAQAFPA(EQFPA)− − U,

where the matrix U ∈ F
k×l is chosen such that

r(EAQFPUEQFPA) = min{r(EAQFP ), r(EQFPA)}.

(b) The minimal rank of A− FPXEQ with respect to X is

min
X

r(A− FPXEQ) = r(PA) + r(AQ)− r(PAQ).(2.16)

The general expression of X satisfying (2.16) is the general solution of the
consistent matrix equation EAQFPXEQFPA = EAQAFPA. Through general-
ized inverses, the general expression of X satisfying (2.16) can be written in
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the following two forms:

X = (EAQFP )−(EAQAFPA)(EQFPA)− + U −G−GUHH−,

X = AFPA(EAQAFPA)−EAQA+ U −G−GUHH−,

where G = EAQFP and H = EQFPA; the matrix U is arbitrary.

Proof. Observe from (2.5) that

max
X

r[p(X)] = r(PA)+ r(AQ)− r(PAQ)+max
X

r(EAQAFPA −EAQFPXEQFPA),

min
X

r[p(X)] = r(PA) + r(AQ)− r(PAQ) + min
X

r(EAQAFPA −EAQFPXEQFPA).

Applying Lemma 2.3 to the consistent matrix expression p̂(X) = EAQAFPA−
EAQFPXEQFPA yields the results in this theorem. �

Several consequences of Theorems 2.4 and 2.5 are given below.

Corollary 2.7. Let p(X) be given by (1.1). Then the matrix X satisfying (2.11) is
unique, i.e., the minimal rank solution of the matrix equation BXC = A is unique,
if and only if r(B) = k, r(C) = l and

r

[
A B
C 0

]
= r

[
A
C

]
+ r(B) = r[A, B ] + r(C).(2.17)

In such case, the unique matrix X satisfying (2.11) can be expressed as

X = (EA2B)−EA2AFA1(CFA1)
− = B−AFA1(EA2AFA1)

−EA2AC
−,(2.18)

where A1 = EBA and A2 = AFC . The uniqueness of X satisfying (2.11) implies the
two matrix expressions on the right-hand side of (2.18) are invariant with respect
to the choice of A−, B− and C−.

Proof. The matrix X satisfying (2.11) is unique if and only if the solution to (2.12)
is unique, which, from Lemma 1.3, is equivalent to

r(EA2B) = k and r(CFA1) = l.(2.19)

Note that r(B) � k and r(C) � l. Hence, (2.19) is equivalent to the following four
rank equalities:

r(B) = k, r(C) = l, r(EA2B) = r(B), r(CFA1) = r(C).(2.20)

Applying Lemma 1.1 (a), (b) and (c) to the last two rank equalities in (2.20) yields
(2.17). The unique matrix X satisfying (2.11) is derived from (2.13) and (2.14). �

Corollary 2.8. Let p(X) be given by (1.1). Then the following four statements are
equivalent:
(a) minX r(A−BXC) = r(A).

(b) r

[
A B
C 0

]
= r

[
A
C

]
+ r[A, B]− r(A).

(c) EA2AFA1 = 0, where A1 = EBA and A2 = AFC .

(d) EC1CA
−BFB1 = 0, where B1 = EAB and C1 = CFA.

In such cases, the matrix X minimizing r(A−BXC) is the general solution of the
homogeneous matrix equation EA2BXCFA1 = 0.
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Proof. It follows immediately from the combination of (2.11), (2.3) and Lemma
1.1 (d). �

Corollary 2.9. Let p(X) be given by (1.1). Then the rank of p(X) is invariant
with respect to the choice of X if and only if

r

[
A B
C 0

]
= r

[
A
C

]
or r

[
A B
C 0

]
= r[A, B ].(2.21)

Proof. From (2.9) and (2.11),

max
X

r[p(X)]−min
X

r[p(X)](2.22)

= min
{
r

[
A B
C 0

]
−r

[
A
C

]
, r

[
A B
C 0

]
− r[A, B ]

}
.

Letting the right-hand side of (2.22) be zero gives the result in this corollary. �

Using (2.9) and (2.11), we are also able to characterize the range invariance of
A−BXC with respect to the choice of X. The analogous problems were examined
in [3] and [9] for the range invariance of the product AB−C with respect to the
choice of B−.

Corollary 2.10. Let p(X) be given by (1.1). Then:
(a) The range of p(X) is invariant with respect to the choice of X if and only if

C = 0 or

R
[
B
0

]
⊆ R

[
A
C

]
.(2.23)

(b) The range of pT (X) is invariant with respect to the choice of X if and only
if B = 0 or

R([C, 0 ]T ) ⊆ R([A, B]T ).(2.24)

Proof. Notice a simple fact that two matrices A1 and A2 have the same range, i.e.,
R(A1) = R(A2), if and only if r[A1, A2] = r(A1) = r(A2). Applying this result
to A − BXC, we see that the range of A − BXC is invariant with respect to the
choice of X if and only if

r[A−BXC, A−BY C] = r(A−BXC) = r(A−BY C)(2.25)

for any X and Y . Obviously, this rank equality holds for any X and Y if and only
if

r(A−BXC) = r(A)(2.26)

for any X and

r[A−BXC, A−BY C ] = r

(
[A, A ]−B[X, Y ]

[
C 0
0 C

])
= r(A)(2.27)

for any X and Y . From Corollary 2.9, the equality (2.26) holds for any X if and
only if (2.21) holds. Also from Corollary 2.9, the equality (2.27) holds for any
[X, Y ] if and only if

r

[
A B
C 0

]
= r

[
A
C

]
or r

[
A B
C 0

]
+ r(C) = r[A, B ].(2.28)
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Combining (2.21) with (2.28), we see that (2.25) for any X and Y holds if and only
if C = 0 or

r

[
A B
C 0

]
= r

[
A
C

]
,

which is, in turn, equivalent to (2.23). Similarly, one can show (b) of this corollary.
�

Combining the above two corollaries gives the following result:

Corollary 2.11. Let p(X) be given by (1.1) with B 	= 0 and C 	= 0. Then the rank
of p(X) is invariant with respect to the choice of X if and only if the range of p(X)
is invariant with respect to the choice of X or the range of pT (X) is invariant with
respect to the choice of X.

In the remainder of this section, we present some equivalent statements for the
results in Theorems 2.4, 2.5 and 2.6.

Let B ∈ F
m×k, C ∈ F

l×n, P ∈ F
p×m, Q ∈ F

n×q and let Θ and Ω be the
following two matrix sets:

Θ d=
{
Z ∈ F

m×n | R(Z) ⊆ R(B) and R(ZT ) ⊆ R(CT )
}
,(2.29)

Ω d=
{
Z ∈ F

m×n | R(Z) ⊆ N (P ) and R(ZT ) ⊆ N (QT )
}
.(2.30)

Then we have the following results:

Theorem 2.12. Let A ∈ F
m×n and Θ be defined in (2.29). Then:

(a) The maximal rank of A− Z subject to Z ∈ Θ is

max
Z∈Θ

r(A− Z) = min
{
r[A, B], r

[
A
C

]}
.(2.31)

The general expression of Z satisfying (2.31) can be written in the form

Z = B(EA2B)−EA2AFA1(CFA1)
−C −BUC,

where the matrix U is chosen such that

r(EA2BUCFA1) = min {r(EA2B), r(CFA1)} .

(b) The minimal rank of A− Z subject to Z ∈ Θ is

min
Z∈Θ

r(A− Z) = r[A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
.(2.32)

The general expression of Z satisfying (2.32) can be written in the following
two forms:

Z = B(EA2B)−EA2AFA1(CFA1)
−C + V(2.33)

− B(EA2B)−EA2V FA1(CFA1)
−C,

Z = AFA1(EA2AFA1)
−EA2A+ V(2.34)

− B(EA2B)−EA2V FA1(CFA1)
−C,

where A1 = EBA and A2 = AFC ; the matrix V ∈ Θ is arbitrary.
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Proof. From (2.29) and Lemma 1.3, we easily see that any Z ∈ Θ can be expressed
as Z = BXC. Hence, the matrix set Θ in (2.29) can equivalently be rewritten as

Θ =
{
Z = BXC | X ∈ F

k×l
}
.

Thus we see from (2.1) that the rank of A − Z with Z ∈ Θ satisfies the following
identity:

r(A− Z) = r(A−BXC)

= r[A, B] + r

[
A
C

]
− r

[
A B
C 0

]
+ r(EA2AFA1 − EA2BXCFA1)

= r[A, B] + r

[
A
C

]
− r

[
A B
C 0

]
+ r(EA2AFA1 − EA2ZFA1).

Applying Theorems 2.4 and 2.5 to this equality yields the results in this theorem.
�

The matrix Z satisfying (2.32) is called a shorted matrix of A relative to Θ in
the literature. Equations (2.33) and (2.34) are two general expressions of shorted
matrices of A relative to Θ. We can also derive from (2.33) and (2.34) a necessary
and sufficient condition for the uniqueness of the matrix Z ∈ Θ satisfying (2.32).
This problem was studied by several authors (see, e.g., [1, 8, 14, 15]).

Corollary 2.13 ([14]). Let A ∈ F
m×n and let Θ be defined in (2.29). Then shorted

matrix of A relative to Θ is unique if and only if

r

[
A B
C 0

]
= r

[
A
C

]
+ r(B) = r[A, B] + r(C).

In this case, the unique shorted matrix can be written in the following three forms:

Z = B(EA2B)−EA2AFA1(CFA1)
−C

= AFA1(EA2AFA1)
−EA2A

= A−A(EBAFC)−A,

where A1 = EBA and A2 = AFC . These matrix expressions are invariant with
respect to the choice of the generalized inverses in them.

Theorem 2.14. Let A ∈ F
m×n and let Ω be defined in (2.30). Then:

(a) The maximal rank of A− Z subject to Z ∈ Ω is

max
Z∈Ω

r(A− Z) = min {r(PA) + r(FP ), r(AQ) + r(EQ)}.(2.35)

The general expression of Z satisfying (2.35) can be written as

Z = FP (EAQFP )−EAQAFPA(EQFPA)−EQ − FPUEQ,

where the matrix U is chosen such that

r(EAQFPUEQFPA) = min {r(EAQFP ), r(EQFPA)} .

(b) The minimal rank of A− Z subject to Z ∈ Ω is

min
Z∈Ω

r(A− Z) = r(PA) + r(AQ)− r(PAQ).(2.36)
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The general expression of the matrix Z satisfying (2.36) can be written in the
following two forms:

Z = FP (EAQFP )−EAQAFPA(EQFPA)−EQ + V

− FP (EAQFP )−EAQV FPA(EQFPA)−EQ,

Z = AFPA(EAQAFPA)−EAQA+ V

− FP (EAQFP )−EAQV FPA(EQFPA)−EQ,

where V ∈ Ω is arbitrary.

Proof. From Lemma 1.3, Ω in (2.30) can also be written as

Ω =
{
Z = FPXEQ | X ∈ F

m×n
}
.

Hence, we see from (2.5) that the rank of A− Z satisfies the following identity:

r(A− Z) = r(A− FPXEQ)
= r(PA) + r(AQ)− r(PAQ) + r(EAQAFPA − EAQFPXEQFPA)
= r(PA) + r(AQ)− r(PAQ) + r(EAQAFPA − EAQZFPA).

Applying Theorem 2.6 to this equality yields the results in this theorem. �
Theorem 2.15 ([8]). Let A ∈ F

m×n and Ω be defined in (2.30). Then shorted
matrix of A relative to Ω is unique if and only if

r(PAQ) = r(PA) = r(AQ).

In this case, the unique shorted matrix can be expressed in the following three forms:

Z = FP (EAQFP )−EAQAFPA(EQFPA)−EQ

= AFPA(EAQAFPA)−EAQA

= A−AQ(PAQ)−PA,

These expressions are invariant with respect to the choice of the generalized inverses
in them.

3. Solutions to the equation
rank(A − BXC) + rank(BXC) = rank(A)

Let p(X) = A− BXC be given by (1.1). In this section, we solve the following
rank equation induced by p(X):

r(A−BXC) + r(BXC) = r(A),(3.1)

and then consider the minimal rank of p(X) subject to (3.1) and some related
topics.

To solve the rank equation (3.1), we need the following result due to Marsaglia
and Styan [12]:

Lemma 3.1. Two matrices A, S ∈ F
m×n satisfy the following rank equality:

r(A− S) + r(S) = r(A)

if and only if

R(S) ⊆ R(A), R(ST ) ⊆ R(AT ) and {A−} ⊆ {S−}.
Applying Lemma 3.1 to (3.1) gives the following result:
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Lemma 3.2. The rank equation (3.1) and the system of matrix equations

(BXC)A−(BXC) = BXC, BXC = AY A(3.2)

have the same solution for X, where A− ∈ {A−} is arbitrary.
Proof. From Lemma 3.1, Equation (3.1) is equivalent to

R(BXC) ⊆ R(A), R[(BXC)T ] ⊆ R(AT ) and {A−} ⊆ {(BXC)−}.(3.3)

From Lemma 1.3, the first two range inclusions in (3.3) hold if and only if the matrix
equation BXC = AY A is solvable for Y . By definition of generalized inverse, the
third set inclusion in (3.3) holds if and only if (BXC)A−(BXC) = BXC for any
A− ∈ {A−}. Thus we have (3.2). �

Theorem 3.3. The general solution of the rank equation (3.1) can be expressed in
the following two forms:

X = B−AFA1U1(U2EA2AFA1U1)−r U2EA2AC
− + U −B−BUCC−,(3.4)

X = B−BFB1U3(U4EC1CA
−BFB1U3)−r U4EC1CC

− + U −B−BUCC−,(3.5)

where A1 = EBA, A2 = AFC , B1 = EAB and C1 = CFA; the matrices U ∈ F
k×l,

U1 ∈ F
n×n, U2 ∈ F

m×m, U3 ∈ F
k×n and U4 ∈ F

m×l are arbitrary.

Proof. From Lemma 1.4, the general solution X of BXC = AY A in (3.2) can be
expressed in the following two forms:

X = B−AFA1V1EA2AC
− + U −B−BUCC−,(3.6)

X = FB1V2EC1 + U −B−BUCC−,(3.7)

where U ∈ F
k×l, V1 ∈ F

n×m and V2 ∈ F
k×l are arbitrary. Substituting (3.6) into

the first equation in (3.2) and observing that BB−AFA1 = AFA1 and EA2AC
−C =

EA2A gives

(AFA1V1EA2A)A−(AFA1V1EA2A) = AFA1V1EA2A.

From Lemma 1.5, the general solution of this equation is

V1 = (AFA1)
−(AFA1)U1(U2EA2AFA1U1)−r U2(EA2A)(EA2A)− + Z,(3.8)

where U1 ∈ F
n×n and U2 ∈ F

m×m are arbitrary, Z is the general solution of the
matrix equation AFA1ZEA2A = 0. Substituting (3.8) into (3.6) yields (3.4) for the
general solution X to (3.1). Similarly, one can obtain (3.5) from (3.7). �

Some special cases of Theorem 3.3 are listed below.

Corollary 3.4. The rank equation (3.1) and the matrix equation BXC = 0 have
the same solution if and only if

r

[
A B
C 0

]
= r

[
A
C

]
+ r[A, B ]− r(A).(3.9)

Proof. Any solution of the equation BXC = 0 also satisfies the equation (3.1).
Conversely, substituting the general solution (3.4) of (3.1) into BXC gives

BXC = AFA1U1(U2EA2AFA1U1)−r U2EA2A.

Hence, both (3.1) and BXC = 0 have the same solution if and only if EA2AFA1 = 0,
which is equivalent to (3.9) by Corollary 2.8. �
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Corollary 3.5. The rank equation (3.1) only has null solution if and only if B has
full column rank, C has full row rank and (3.9) holds.

Proof. It follows from the general solution (3.4) of (3.1). �
Corollary 3.6. Suppose that the matrix equation BXC = A is consistent. Then
the general solution of rank equation (3.1) is

X = B−AU1(U2A
−U1)−r U2AC

− + U −B−BUCC−,(3.10)

where U , U1 and U2 are as in (3.4).

Proof. Note that the consistency of BXC = A is equivalent to A1 = EBA = 0
and A2 = AFC = 0. Hence, (3.4) is reduced to (3.10). �
Corollary 3.7. If the matrices A, B and C satisfy

R(B) ⊆ R(A) and R(CT ) ⊆ R(AT ),(3.11)

then the general solution of (3.1) is

X = B−BU1(U2CA
−BU1)−r U2CC

− + U −B−BUCC−,(3.12)

where U1 ∈ F
k×n, U2 ∈ F

m×l and U ∈ F
k×l are arbitrary.

Proof. Clearly, (3.11) is equivalent to B1 = EAB = 0 and C1 = CFA = 0. Hence,
(3.5) is reduced to (3.12). �

In the remainder of this section, we consider the minimal rank of A−BXC when
X satisfies the rank equation (3.1). For this purpose, let

∆ d=
{
X ∈ F

k×l | r(A−BXC) + r(BXC) = r(A)
}
.(3.13)

Obviously, ∆ is a nonempty set.

Theorem 3.8. Let ∆ be defined in (3.13). Then

max
X∈∆

r(BXC) = r(A)− r[A, B]− r

[
A
C

]
+ r

[
A B
C 0

]
,(3.14)

min
X∈∆

r(A−BXC) = r[A, B ] + r

[
A
C

]
+ r

[
A B
C 0

]
.(3.15)

The matrix X satisfying (3.14) and (3.15) is given by (3.4) and (3.5), where the
matrices U1, . . . , U4 in them are choosen such that

r(U2EA2AFA1U1) = r(EA2AFA1),
r(U4EC1CA

−BFB1U3) = r(EC1CA
−BFB1).

Proof. Substituting the two general solutions (3.4) and (3.5) of (3.1) into BXC
yields

BXC = AFA1U1(U2EA2AFA1U1)−r U2EA2A,

BXC = BFB1U3(U4EC1CA
−BFB1U3)−r U4EC1C,

respectively. In such cases, the rank of BXC is

r(BXC) = r(U2EA2AFA1U1) or r(BXC) = r(U4EC1CA
−BFB1U3).

Thus,
max
X∈∆

r(BXC) = r(EA2AFA1) = r(EC1CA
−BFB1).
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Combining this result with (2.3) and Lemma 1.1 (d) yields (3.14). Again from
(3.13) we see that

min
X∈∆

r(A−BXC) = r(A)− max
X∈∆

r(BXC).(3.16)

Hence, (3.15) follows from (3.16) and (3.14). �
The results in Theorems 2.5 and 3.8 show that

min
X∈∆

r(A−BXC) = min
X

r(A−BXC).

Theorem 3.3 can be restated as follows:

Corollary 3.9. Let Θ be defined in (2.29). Then the general solution of the rank
equation

r(A− Z) + r(Z) = r(A) subject to Z ∈ Θ
can be expressed in the two forms

Z = AFA1U1(U2EA2AFA1U1)−r U2EA2A,

Z = BFB1U3(U4EC1CA
−BFB1U3)−r U4EC1C,

where U1, . . . , U4 are as in (3.4) and (3.5).

Proof. It follows from Theorem 3.3. �
Let

ΘA
d=

{
Z ∈ F

m×n | r(A− Z) + r(Z) = r(A) and Z ∈ Θ
}
,(3.17)

where Θ is defined in (2.29). Obviously, ΘA ⊆ Θ.

Theorem 3.10. Let ΘA be defined in (3.17). Then

min
Z∈ΘA

r(A− Z) = r[A, B ] + r

[
A
C

]
+ r

[
A B
C 0

]
.(3.18)

The general expression of Z satisfying (3.18) can be expressed in the following two
forms:

Z = AFA1U1(U2EA2AFA1U1)−r U2EA2A(3.19)

and

Z = BFB1U3(U4EC1CA
−BFB1U3)−r U4EC1C,(3.20)

where U1, . . . , U4 satisfy

r(U2EA2AFA1U1) = r(EA2AFA1), r(U4EC1CA
−BFB1U3) = r(EC1CA

−BFB1).

Proof. It follows from Theorem 3.8. �
Any matrix Z ∈ ΘA satisfying (3.18) is also a shorted matrix of A relative to ΘA,

and is called a shorted matrix relative to ΘA. Two general expressions of shorted
matrices of A relative to ΘA are given in (3.19) and (3.20). The conclusion on the
uniqueness of shorted matrix of A relative to ΘA is the same as that in Corollary
2.13.

As a special case of (3.1), one now is able to solve the following rank equation:

r

[
A B
C D

]
= r

[
A B
C D −X

]
+ r(X)
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for block matrices. This equation can also be rewritten as the following standard
form:

r

[
A B
C D

]
= r

([
A B
C D

]
−

[
0
Il

]
X[0, Ik]

)
+ r

([
0
Il

]
X[0, Ik]

)
.

4. Summary

In this paper, we show a new identity for the rank of the linear matrix A −
BXC and derive from the identity the maximal and minimal ranks of A − BXC
with respect to X. Many consequences and applications of these results are also
presented. These results are so elementary that any people with some knowledge of
linear algebra can understand. Besides the work in the previous sections, the first
author of this paper also gives the closed forms for the extremal ranks of the matrix
expressions A − BX − Y C, A − B1X1C1 − B2X2C2, A − (A1 − B1X1C1)D(A2 −
B2X2C2), etc., where X, Y , X1 and X2 are variant matrices; see [18, 20, 21,
22]. Besides these matrix expressions, one can also consider extremal ranks of
matrix expressions that involve generalized inverses. One of the simplest matrix
expressions that involve a generalized inverse is the Schur complement D−CA−B.
This expression is well-known in matrix analysis and applications; see, e.g., [2, 4, 7].
If A− is not unique, the rank of D − CA−B is variant with respect to the choice
of A−. It is easy to derive the extremal ranks of D − CA−B with respect to A−

from the extremal ranks of A−B1X1C1 −B2X2C2. The corresponding results are
given in [22]. It should be pointed out that it is an interesting and fruitful research
topic to determine extremal ranks of matrix expressions that involve generalized
inverses. As an example, we present a simple formula for the minimal rank of a
block matrix consisting of three generalized inverses

min
A−, B−, C−

r

[
A− C−

B− 0

]
= max{r(A), r(B) + r(C)}.

This formula is proposed as a problem in [24]. Its solutions will appear in Bull.
International Linear Algebra Society, 31.

Finally, we mention two open problems related to the results in this paper: it
is well-known that the least squares solution of the matrix equation BXC = A
over the field of complex numbers is X = B†AC† + (Ik −B†B)V1 + V2(Il − CC†),
where (·)† denotes the Moore-Penrose inverse of a matrix; V1 and V2 are arbitrary.
In such case, minX ||A − BXC ||F = ||A − BB†AC†C ||F , where || · ||F denotes
the Frobenius norm of a matrix. On the other hand, minimal rank solutions to
BXC = A are given in (2.13) and (2.14). Then:
(a) What is the relationship between least squares solutions and minimal rank

solutions to the matrix equation BXC = A?
(b) What is minX ||A−BXC ||F subject to r(A−BXC) = min?
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