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Closed Legendre geodesics in Sasaki manifolds

Knut Smoczyk

Abstract. If L ⊂ M is a Legendre submanifold in a Sasaki manifold, then
the mean curvature flow does not preserve the Legendre condition. We define
a kind of mean curvature flow for Legendre submanifolds which slightly differs
from the standard one and then we prove that closed Legendre curves L in a
Sasaki space form M converge to closed Legendre geodesics, if k2 + σ+3 ≤ 0
and rot(L) = 0, where σ denotes the sectional curvature of the contact plane
ξ and k and rot(L) are the curvature respectively the rotation number of L. If
rot(L) �= 0, we obtain convergence of a subsequence to Legendre curves with
constant curvature. In case σ + 3 ≤ 0 and if the Legendre angle α of the
initial curve satisfies osc (α) ≤ π, then we also prove convergence to a closed
Legendre geodesic.
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1. Introduction

Let (M, g) be a Riemannian manifold and Ft : L → M a smooth family of
immersions such that

d

dt
Ft =

−→
H ,(1.1)
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where −→
H is the mean curvature vector along Lt := Ft(L). This equation is called

mean curvature flow and it is the negative gradient flow of the volume functional of
Lt. Hence the flow decreases the volume energy as fast as possible and stationary
solutions are minimal submanifolds. There is a vast amount of literature on this
equation which belongs to the most important equations in Geometric Analysis.
For a detailed account of what is known, the reader is recommended to look at the
survey article [14] where one can also find more references. If L is 1-dimensional,
then (1.1) is called the curve shortening flow. Most of the known results have
been obtained for hypersurfaces and in higher codimension only a few things have
been done [2], [3], [4], [5], [8], [19], [20], [24], [25], [26]. One example in higher
codimension is the Lagrangian mean curvature flow, in particular the Lagrangian
condition is preserved if (M, g) is Kähler-Einstein [18]. Legendre and Lagrange
submanifolds are closely related because any Legendre submanifold in a contact
manifold M generates a Lagrangian submanifold in the symplectization of M , e.g.,
the Legendre submanifolds of S2n+1 (equipped with its standard contact structure)
are precisely the intersections of S2n+1 with Lagrangian cones in R

2n+2. In contrast
to the situation for Lagrangian submanifolds, the mean curvature flow does not
preserve the Legendre condition (see Section 3 for details). On the other hand one
would like to minimize the volume energy in the class of Legendre immersions. The
aim of this article is to establish such a flow for Legendre submanifolds. We will see
that the flow preserves the Legendre condition, if the Sasaki manifold is pseudo-
Einstein (see Definition 2.6). Then we apply this flow to deform closed Legendre
curves into closed Legendre geodesics or more generally into Legendre curves of
constant curvature, i.e., one of the main theorems states:

Theorem 1.1. Let L ⊂ (M, ξ, g, J) be a closed Legendre curve in a compact Sasaki
manifold M with constant sectional curvature σ on the hyperplane distribution ξ.
Suppose the curvature k of L satisfies

k2 + σ + 3 ≤ 0.(1.2)

Then the Legendrian curve shortening flow (3.11) admits a smooth solution for
t ∈ [0,∞). If rot(L) = 0, then the curves converge in the C∞-topology to a closed
Legendre geodesic and if rot(L) �= 0, then a subsequence of the flow converges in
the C∞-topology to a closed Legendre curve of constant nonvanishing curvature.

The rotation number of a Legendre curve vanishes if and only if the (mean)
curvature form H (see Definition 2.5) is exact, i.e., if there exists a globally defined
Legendre angle α with dα = H. In particular the rotation number of a geodesic
vanishes and the Legendre angle is constant. In case σ + 3 ≤ 0 we will prove

Theorem 1.2. Let L ⊂ (M, ξ, g, J) be a closed Legendre curve in a compact Sasaki
manifold M with constant sectional curvature σ ≤ −3 on the hyperplane distribution
ξ. Suppose the rotation number of L vanishes and the Legendre angle α satisfies

osc (α) ≤ π.(1.3)

Then the Legendrian curve shortening flow (3.11) admits a smooth solution for
t ∈ [0,∞) and the curves converge in the C∞-topology to a closed Legendre geodesic.

Similar theorems for the curve shortening flow of curves on surfaces have been
obtained earlier [10], [17] (see also [11] for more references).
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In [9] the authors provide the classification of topologically trivial Legendrian
knots in tight contact 3-manifolds. They prove that for two topologically trivial
Legendrian knots, if their invariants tb, rot (Thurston-Bennequin invariant and
rotation number) are equal, then these knots are Legendrian isotopic. This together
with Theorem 1.2 implies the following: If a tight Sasaki manifold with σ ≤ −3
admits a Legendre knot L with rot(L) = 0 and osc (α) ≤ π, then any Legendrian
knot with the same rotation number and Thurston-Bennequin invariant is isotopic
to a closed Legendrian geodesic.
In [15] a different and very natural volume decreasing flow of Legendrian immer-

sions is introduced that can be compared with the Willmore flow. This flow is of
fourth order whereas the flow defined here is a second order equation and stems
from the projection of the L2-gradient of the volume energy (the mean curvature
vector) onto the tangent space of the space of Legendrian immersions.
In this article we will discuss general Legendrian isotopies as well. As a result

we obtain the next theorem:

Theorem 1.3. Let L0 be a compact, oriented Legendrian immersion into a Sasaki
pseudo-Einstein manifold (M, ξ, g, J) with

Ric(V,W ) = Kg(V,W ), ∀V,W ∈ ξ.

Assume that the mean curvature form H = dα is exact, where α is the Legendre
angle. Then we have
a) If K = −2 and

∫
L0
cos(α)dµ > 0, then there exists a constant c > 0 depending

only on
∫
L0
cos(α)dµ such that

Vol (L1) ≥ c > 0

for any Legendrian immersion L1 Legendrian isotopic to L0.
b) If K < −2 and α satisfies osc (α) ≤ π, then the same result as in a) holds

with a constant c depending only on osc (α) and Vol (L0) provided L0, L1 are
isotopic by the Legendrian mean curvature flow.

The organization of this article is as follows: Section 2 is seperated into 3 subsec-
tions. In the first subsection we explain our terminology and recall the fundamen-
tal material needed in contact geometry, the second subsection explains associated
metrics, almost complex structures and Sasaki manifolds. Legendre submanifolds
are discussed in Section 2.3. In Section 3 we investigate variations of Legendrian
submanifolds, define the Legendrian mean curvature flow and prove Theorem 1.3.
Our focus in Section 4 is the Legendrian curve shortening flow and the proof of
Theorems 1.1, 1.2.

2. Basic material

2.1. Contact manifolds. A contact manifold (of restricted type)1) (M,λ) is an
odd-dimensional manifold of dimension 2n+1 together with a one-form λ such that

1)More generally a contact manifold M is a differentiable manifold of odd dimension 2n + 1
with a completely nonintegrable distribution ξ of hyperplanes in the tangent space. Locally such
hyperplane fields can be described as the kernel of a nonvanishing one-form λ. The nonintegrability
then implies that λ ∧ (dλ)n locally defines a volume form. If this one-form λ exists globally then
we speak of a contact manifold of restricted type. In this paper we will only consider contact
manifolds of restricted type.



26 Knut Smoczyk

λ ∧ (dλ)n defines a volume form on M . One observes that a contact manifold is
orientable and that the contact form λ defines a natural orientation.
Assume now that (M,λ) is a given contact manifold of dimension 2n + 1. λ

defines a 2n-dimensional vector bundle ξ over M , where at each point p ∈ M the
fiber ξp of ξ is given by

ξp = kerλp.

Moreover, since λ ∧ (dλ)n is a volume form, we see that
ω := dλ

is a closed nondegenerate 2-form on ξ ⊕ ξ and hence defines a symplectic product
on ξ so that (ξ, ω|ξ⊕ξ) becomes a symplectic vector bundle. Since the dimension of
M is odd, the 2-form ω = dλ must be degenerate on TM . Therefore one obtains a
line bundle l over M via the definition

lp := {V ∈ TpM | ω(V,W ) = 0 ∀ W ∈ ξp}.
The Reeb vector field (sometimes called characteristic vector field) Xλ is given by
the natural section Xλ in l defined by

λ(Xλ) = 1 , Xλ�dλ = 0.(2.1)

Thus a contact form λ on an odd-dimensional manifold M of dimension 2n+ 1
defines a splitting of the tangent bundle TM into a line bundle l with canonical
section Xλ and a symplectic vector bundle (ξ, ω|ξ⊕ξ):

TM = (l,Xλ)⊕ (ξ, ω|ξ⊕ξ).

We denote the projection of TM along l by π, i.e.,

π : TM → ξ,

π(V ) := V − λ(V )Xλ.

A submanifold L of a (2n+1)-dimensional contact manifold (M,λ) is called isotropic
if it is tangent to ξ, i.e., if λ|TL = 0. This implies that dλ|TL = ω|TL = 0 also. An
isotropic submanifold L of maximal dimension n is called Legendrian.
The following example shows that there exist closed Legendre curves:

Example 2.1. Consider M = R
3 with its standard contact form

λ = dz − xdy.

Since dλ = −dx ∧ dy we observe

Xλ =
∂

∂z

and ξx = kerλ|x is given by

ξx =



1

0

0

 ,


0

1

x


 .
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Suppose a, b ∈ Z with a �= b. For any c, d ∈ R we define the curve

γ{a,b,c,d}(φ) :=


c cos(aφ)

d sin(bφ)
bcd
2

(
sin((a−b)φ)

a−b + sin((a+b)φ)
a+b

)
 .

If a, b are chosen such that there do not exist two constants k, l ∈ Z with 2bk =
(2l + 1)a, then γ{a,b,c,d} is a regular Legendre curve.

Proof. A curve γ is Legendre iff λ(γ′) = 0. Here, this is the case if and only if
γ′
z−γxγ

′
y = 0 which is true. γ is regular if γ′ �= 0,∀φ. γ′ can only vanish somewhere,

if there exist constants k, l ∈ Z with 2bk = (2l + 1)a. �

Figure 1 is γ{5,2,2,3}. Figure 2 depicts the same curve projected onto the three
coordinate planes.
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Figure 1. The curve γ{5,2,2,3}
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Figure 2. The projections of γ{5,2,2,3}
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2.2. Associated metrics, complex structures, etc. A Riemannian metric
g = gαβdy

α ⊗ dyβ ∈ Γ(T ∗M ⊗ T ∗M) on a contact manifold (M,λ) is said to
be associated, if

gαβλβ = Xα
λ ,(2.2)

i.e.,

g(Xλ, V ) = λ(V ), ∀ V ∈ TM.

In the sequel we will always assume that a given contact manifold (M,λ) is equipped
with an associated Riemannian metric and we will write

λα = Xα
λ .

If (M,λ, g) is a contact manifold with associated Riemannian metric, then

g(Xλ, Xλ) = 1,(2.3)

and

g(Xλ, V ) = 0, ∀ V ∈ ξ.(2.4)

If (M,λ) is a contact manifold and J̃ ∈ Γ(ξ∗ ⊗ ξ) an almost complex structure on
the symplectic subbundle ξ, then one can extend J̃ to a section J ∈ Γ(T ∗M ⊗TM)
by setting

J(V ) := J̃(π(V )),

where π is the projection from above. Since J̃2(V ) = −V, ∀ V ∈ ξ we obtain

J2 = −π, JβαJ
α
γ = −πβγ .(2.5)

From the definition of J it also follows

kerJ = l.(2.6)

We introduce the bilinear form L by

L(V,W ) := ω(V, JW ) = dλ(V, JW ).(2.7)

J or J̃ is said to be associated to ω, if L is symmetric and positive definite, so that
by definition of Xλ the tensor

g := L+ λ⊗ λ

is an associated Riemannian metric on (M,λ). Thus, in this case

gαβ = λαλβ + ωαγJ
γ
β .(2.8)

The torsion T of J is defined as

T (J) := N(J) + 2ω ⊗Xλ,

where N(J) denotes the Nijenhuis tensor of J , i.e.,

N(J)(X,Y ) := J2[X,Y ] + [JX, JY ]− J [X, JY ]− J [JX, Y ]

and J is called integrable, if T (J) = 0. A contact manifold (M,λ, J) with an
integrable, associated complex structure J is called Sasaki. It turns out that the
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torsion of an associated almost complex structure on a contact manifold (M,λ)
vanishes if and only if

∇αJ
γ
β = δγαλβ − gαβλ

γ .(2.9)

Lemma 2.2. Let (M,λ, J) be a Sasaki manifold and g := λ ⊗ λ + ω(·, J ·) the
corresponding associated metric with ω := dλ. Then the following relations hold:

∇γωαβ = gγβλα − gγαλβ ,(2.10)

Jγβλγ = 0,(2.11)

λδ∇βλδ = 0,(2.12)

∇αλβ = ωαβ ,(2.13)

Rε
βαγλε = gγαλβ − gγβλα,(2.14)

R ε
β λε = 2nλβ ,(2.15)

Rβαεγλ
βλε = gαγ − λαλγ = Lαγ ,(2.16)

Rε
βαγωεδ +Rε

βαδωγε = gβδωαγ − gβγωαδ − gαδωβγ + gαγωβδ,(2.17)

Jβε R
ε
βαγ = R ε

α ωγε + (2n− 1)ωαγ ,(2.18)

Jβε R
ε
γαβ = 2

(
R ε
α ωγε + (2n− 1)ωαγ

)
.(2.19)

Proof. ωαβ = Jγαgγβ and (2.9) imply (2.10). (2.11) follows from (2.1), (2.2), (2.5)
and (2.8). Equation (2.12) follows from covariant differentiation of λδλδ = 1. Then
from (2.11) and (2.9) we obtain

∇αλδJ
δ
γ = −λδ∇αJ

δ
γ = gαγ − λαλγ .

We multiply this with Jγβ and (2.5) implies

ωβα = −πδβ∇αλδ = λβλ
δ∇αλδ −∇αλβ .

Then (2.13) follows from (2.12) and ωαβ = −ωβα. To prove (2.14) we observe that
(2.10), dω = 0 and (2.13) imply

gγαλβ − gγβλα = ∇γωβα

= ∇αωβγ −∇βωαγ

= ∇α∇βλγ −∇β∇αλγ

= Rε
βαγλε.

This is (2.14). Equations (2.15), (2.16) follow from Rε
βαγ = R ε

βα γ and by taking
the trace of (2.14) resp. by multiplying this with λβ . With the same method one
can prove the last equation

Rε
βαγωεδ +Rε

βαδωγε = ∇α∇βωγδ −∇β∇αωγδ

= ∇α

(
gβδλγ − gβγλδ

)−∇β

(
gαδλγ − gαγλδ

)
= gβδ∇αλγ − gβγ∇αλδ − gαδ∇βλγ + gαγ∇βλδ
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and (2.17) follows from (2.13). To prove (2.18) it suffices to take the trace of (2.17)
w.r.t. β, δ. Finally, to prove (2.19) we use the Bianchi identity to obtain

Jβε R
ε
γαβ = Jβε

(
Rε
βαγ +Rε

αγβ

)
= 2Jβε R

ε
βαγ

because Jβε = gβδωεδ = −gβδωδε. Then (2.19) is a consequence of (2.18). �

2.3. The geometry of Legendre immersions in Sasaki manifolds. Let L be
a smooth manifold and

F : L → (M, g)

a smooth Riemannian immersion into a smooth Riemannian manifold (M, g), i.e.,
the tensor F ∗g ∈ Γ(T ∗L⊗T ∗L) is positive definite and defines a Riemannian metric
on TL. We set

gij := gαβF
α
i F β

j ,

where Fα
i := ∂Fα

∂xi are the components of the differential dF ∈ Γ(T ∗L⊗ F−1TM),

dF = Fα
i dxi ⊗ ∂

∂yα
.

The second fundamental tensor A ∈ Γ(T ∗L ⊗ T ∗L ⊗ F−1TM) is then given by
A = ∇dF and in local coordinates

A = Aα
ijdx

i ⊗ dxj ⊗ ∂

∂yα

with

Aα
ij = ∇iF

α
j =

∂2Fα

∂xi∂xj
− Γkij

∂Fα

∂xk
+ Γαβγ

∂F β

∂xi
∂F γ

∂xj
.(2.20)

Moreover, dF is normal, i.e.,

gαβF
α
i Aβ

jk = 0.(2.21)

In addition, the Gauss equations and Codazzi-Mainardi equations are

Rijkl = RαβγδF
α
i F β

j F
γ
k F

δ
l + gαβ

(
Aα
ikA

β
jl −Aα

ilA
β
jk

)
,(2.22)

∇iA
α
jk −∇jA

α
ik = −Rl

ijkF
α
l +Rα

βγδF
β
i F

γ
j F

δ
k .(2.23)

In case where F : L → (M,λ, J) is a Riemannian immersion into a Sasaki manifold,
we define the section

ν = ναi dx
i ⊗ ∂

∂yα
∈ Γ(T ∗L⊗ F−1TM)

and the second fundamental form

h = hijkdx
i ⊗ dxj ⊗ dxk ∈ Γ(T ∗L⊗ T ∗L⊗ T ∗L)

by

ναi := Jαβ F
β
i(2.24)

and

hijk := −ωαβF
α
i Aβ

jk.(2.25)
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Now let

F ∗λ := λidx
i := λαF

α
i dxi

and

F ∗ω := ωijdx
i ⊗ dxj := ωαβF

α
i F β

j dx
i ⊗ dxj

be the pull-backs of λ and ω = dλ on L. Then we have:

Lemma 2.3. Let F : L → (M,λ, J) be a Riemannian immersion into a Sasaki
manifold. Then the following relations hold:

∇jν
α
i = λiF

α
j − gijλ

α + JαβA
β
ij ,(2.26)

hkij − hjik = ∇iωkj + gijλk − gikλj ,(2.27)

∇lhijk = λβA
β
jkgli − ωαβA

α
liA

β
jk − ωαβF

α
i ∇lA

β
jk,(2.28)

∇lhijk −∇jhilk = λβ(A
β
jkgli −Aβ

lkgji)− ωαβ(Aα
liA

β
jk −Aα

jiA
β
lk)(2.29)

+ ωimRm
ljk − ωαβR

β
γδεF

α
i F γ

l F
δ
j F

ε
k ,

λαA
α
ij = ∇iλj − ωij .(2.30)

Proof. For (2.26) we compute

∇iν
α
j = ∇i(Jαβ F

β
j )

= ∇γJ
α
β F

γ
i F

β
j + Jαβ∇iF

β
j

= (δαβλγ − gβγλ
α)F γ

i F
β
j + JαβA

β
ij

= λiF
α
j − gijλ

α + JαβA
β
ij .

Also

∇iωjk = ∇i(ωαβFα
j F β

k )

= ∇γωαβF
γ
i F

α
j F β

k + ωαβ(Aα
ijF

β
k + Fα

j Aβ
ik)

= (gγβλα − gγαλβ)F
γ
i F

α
j F β

k + hkij − hjik

= gikλj − gijλk + hkij − hjik

which is (2.27). The covariant derivative of hijk is given by

∇lhijk = −∇l(ωαβFα
i Aβ

jk)

= −(gγβλα − gγαλβ)F
γ
l F

α
i Aβ

jk − ωαβ(Aα
liA

β
jk + Fα

i ∇lA
β
jk)

which due to (2.21) gives equation (2.28). Equation (2.29) then easily follows from
the Codazzi equation (2.23) and (2.28). The last equation of the lemma follows
from

∇iλj = ∇βλαF
α
i F β

j + λαA
α
ij

and (2.13). �
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From now on we will assume that

F : L → (M,λ, J)

is a Legendre immersion into a Sasaki manifold, i.e.,

F ∗λ = λidx
i = 0(2.31)

and dim(L) = n, where dim(M) = 2n+ 1.

Corollary 2.4. Let F : L → (M,λ, J) be a Legendre immersion into a Sasaki
manifold. Then the following relations hold:

λαA
α
ij = 0,(2.32)

∇iF
α
j = Aα

ij = −hkijν
α
k ,(2.33)

∇iν
α
j = −gijλ

α + hkijF
α
k ,(2.34)

hkij = hkji = hjki,(2.35)

∇lhijk −∇jhilk = −ωαβR
β
γδεF

α
i F γ

l F
δ
j F

ε
k .(2.36)

Proof. Since F is a Legendre immersion we must have λi = ωij = 0. In particular

ωij = ωαβF
α
i F β

j = JγαgγβF
α
i F β

j = gγβν
γ
i F

β
j

and dim(L) = 1
2 (dim(M) − 1) imply that the normal bundle NL of L can be

decomposed as

NL = F−1l ⊕ JdF (TL),

where the fiber of the bundle F−1l (the line bundle along F ) at a point x ∈ L is
given by lF (x). On the other hand the second fundamental tensor Aα

ij is normal
and therefore there must exist pij and skij such that

Aα
ij = pijλ

α + skijν
α
k .

From (2.30) we get

pij = λαA
α
ij = 0

which is (2.32). Moreover

hlij = −ωαβF
α
l Aβ

ij

= −ωαβF
α
l skijν

β
k = −ωαβJ

β
γ F

α
l F γ

k s
k
ij

= −gαγF
α
l F γ

k s
k
ij = −glks

k
ij = −skij ,

which by Lemma 2.3 proves (2.33) and (2.34). Then (2.35) and (2.36) are just
equations (2.27) resp. (2.29) because the compatibility of J with ω implies

ωαβν
α
i ν

β
j = ωαβF

α
i F β

j = ωij = 0.

�
Definition 2.5. Let F : L → (M,λ, J) be a Legendre immersion. The mean
curvature form H = Hidx

i ∈ Γ(T ∗L) is given by

Hi := gklhikl.(2.37)
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Since NL = F−1l ⊕ JdF (TL) and F ∗λ = 0 we can decompose a tangent vector
∂
∂yσ along F so that

∂

∂yσ
= gikgσαF

α
i Fk + gikgσαν

α
i νk + λσXλ,

with Fk = F β
k

∂
∂yβ , νk = νβk

∂
∂yβ . For later purposes we compute

gikRγδβεν
β
i F

ε
k =

1
2
gikR

(
∂

∂yγ
,

∂

∂yδ
,

∂

∂yβ
, νβi Fk − F β

i νk

)
=
1
2
gσβR

(
∂

∂yγ
,

∂

∂yδ
,

∂

∂yβ
, gikgσα(ναi Fk − Fα

i νk)
)

= −1
2
gσβR

(
∂

∂yγ
,

∂

∂yδ
,

∂

∂yβ
, J

∂

∂yσ

)
= −1

2
Rβ
γδσJ

σ
β

and with (2.19)

gikRγδβεν
β
i F

ε
k = −R ε

δ ωγε − (2n− 1)ωδγ .(2.38)

Definition 2.6. Let (M,λ, J) be a Sasaki manifold. Then (M,λ, J) is called
pseudo-Einstein, if there exists a constant K such that

RαβV
αW β = KgαβV

αW β

for all V,W ∈ ξ = ker(λ), i.e., the associated metric g is Einstein on the symplectic
subbundle ξ.

The following examples are taken from [6]:

Example 2.7. a) (Tanno [21], [22]). Let S2n+1 be equipped with the standard
contact structure λ, almost complex structure J and metric g that are induced
by C

n+1. Suppose c > 0 is a constant and define

λ̃ := cλ,

g̃ := cg + c(c− 1)λ⊗ λ.

Then (S2n+1, λ̃, g̃, J) is a Sasaki pseudo-Einstein manifold with

K = 1 + (2n− 1)
(
4
c
− 3
)
.

b) (Okumura [16]). Let R
2n+1 be equipped with the contact structure

λ =
1
2
(dz − yidx

i)

and the Riemannian metric

g =
1
4
(
λ⊗ λ+ δij(dxi ⊗ dxj + dyi ⊗ dyj)

)
,

then (R2n+1, λ, g) is Sasaki pseudo-Einstein with

K = 4− 6n.
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c) (Tanno [22]). Let Bn ⊂ C
n be a bounded, simply connected domain with

a Kähler structure (J, g) of constant holomorphic sectional curvature θ < 0.
Let β be the real analytic 1-form such that dβ = ω gives the Kähler form on
Bn. We define a Sasaki structure (λ, g̃) on Bn × R by

λ := π∗β + dt

and
g̃ := π∗g + λ⊗ λ,

where
π : Bn × R → Bn

is the projection and t denotes the coordinate in R-direction. Then (Bn, λ, g̃)
is Sasaki pseudo-Einstein with

K = 1 + (2n− 1)(θ − 3).

Lemma 2.8. Let F : L → (M,λ, J) be a Legendre immersion into a Sasaki pseudo-
Einstein manifold. Then the mean curvature form H is closed.

Proof. H is closed if and only if ∇lHj −∇jHl = 0. We observe

∇lHj −∇jHl = gik(∇lhijk −∇jhilk)
(2.36)
= −ωαβg

ikRβ
γδεF

α
i F γ

l F
δ
j F

ε
k

= −gikRγδβεν
β
i F

ε
kF

γ
l F

δ
j

(2.38)
=

(
R ε
δ ωγε + (2n− 1)ωδγ

)
F γ
l F

δ
j

= RαβF
α
j νβl

and if (M,λ, J) is Sasaki pseudo-Einstein, then (because νl, Fj ∈ ξ)

∇lHj −∇jHl = KgαβF
α
j νβl = 0.

�

3. Variations of Legendre submanifolds

In this subsection we want to study necessary conditions for a variation to pre-
serve the Legendre condition. Geometrical interesting variations are only given by
normal variations because tangential deformations correspond to diffeomorphisms
of the given submanifold. As we have already seen, there exists a natural splitting
of the normal bundle for a Legendre submanifold. Hence a smooth normal vector
field V can be identified with a pair (f, θ) consisting of a smooth function f on L
and a smooth 1-form θ on L via the decomposition

V = fXλ + JdF (θ�),

where 4 denotes the identification of a 1-form with a tangent vector via the metric
tensor g. Now assume that for t ∈ Ω := (−ε, ε), ε > 0 we are given a smooth family
of Legendre immersions Ft : L → Lt ⊂ M such that

∂Ft
∂t

= fXλ + θiνi,
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where (f, θ) is a smooth family of pairs consisting of functions f and 1-forms θ on
L and νi = ν

(
∂
∂xi

)
= JFi = J ∂F

∂xi = JβαF
α
i

∂
∂yβ . To compute time derivatives of

tensor expressions on L it is useful to consider the manifold

L̂ := L× Ω

and the smooth map

F : L̂ → M,

F (x, t) := Ft(x).

The canonical connections on tensor bundles over L can then be extended to con-
nections on corresponding bundles over L̂, e.g.,

∇ ∂
∂t

∂

∂yα
= Ḟ γΓβγα

∂

∂yβ
,

∇ ∂
∂t
dxi = 0,

where here and in the following Ḟ = Ḟ γ ∂
∂yγ = ∂F

∂t . We have

∇ ∂
∂t
dFt = ∇ ∂

∂t

(
Fα
i dxi ⊗ ∂

∂yα

)
=
(
∂2Fα

∂xi∂t
+ ΓαγβḞ

γF β
i

)
dxi ⊗ ∂

∂yα

= ∇iḞ
αdxi ⊗ ∂

∂yα
,

i.e.,

∇ ∂
∂t
Fα
i = ∇iḞ

α.(3.1)

In addition, for a section V ∈ Γ(T ∗L⊗ F−1TM)

∇ ∂
∂t
∇iV

α
j = ∇i∇ ∂

∂t
V α
j +Rα

βγδḞ
βF γ

i V
δ
j(3.2)

because T ∗L does not depend on t but F−1TM does. The condition for Lt being
Legendre is λidxi = F ∗

t λ = 0. We compute

∇ ∂
∂t
λi = ∇ ∂

∂t
(λαFα

i )

= ∇γλαḞ
γFα

i + λα∇ ∂
∂t
Fα
i

(2.13),(3.1)
= ωγαḞ

γFα
i + λα∇iḞ

α

= ωγα(fλγ + θkνγk )F
α
i + λα∇i(fλα + θkναk )

(2.1)
= θkωγαν

γ
kF

α
i +∇if

+λα(∇γλ
αF γ

i +∇iθ
kναk + θk∇iν

α
k )

(2.11),(2.12),(2.13)
= θkωγαν

γ
kF

α
i +∇if + λαθ

k∇iν
α
k

(2.5),(2.34)
= θk(λβλα − gβα)F

β
k F

α
i

+∇if + λαθ
k(hlikF

α
l − gikλ

α)
= ∇if − 2θi,

because Lt is Legendre. Therefore we have shown:
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Lemma 3.1. Let L be a smooth n-dimensional manifold and for t ∈ [0, ε), ε > 0
let (f, θ) be a smooth family of pairs consisting of functions f and 1-forms θ on L.
Moreover let Ft : L → M, t ∈ [0, ε) be a smooth family of immersions into a Sasaki
manifold (M,λ, g) such that ∂Ft

∂t = fXλ + θkνk and assume that L0 := F0(L) is
Legendre. Then Lt := Ft(L) is Legendre for all t ∈ [0, ε) if and only if df = 2θ.

In view of Lemma 3.1 we will from now on assume that Ft : L → M, t ∈ [0, ε) is
a smooth family of Legendre immersions into a Sasaki manifold (M,λ, g) such that

Ḟ = 2fXλ +∇kfνk(3.3)

for a smooth family of functions f : L → R. Next we compute the evolution
equations for various objects.

Lemma 3.2. If a family of Legendre immersions into a Sasaki manifold evolves
according to (3.3), then

∇ ∂
∂t
gij = 2∇kfhkij ,(3.4)

∇ ∂
∂t
hijk = −∇j∇k∇if +∇lf(hlimhmjk + hlkmhmji)(3.5)

− 2∇jfgik − ∇kfgij −∇lfωαβF
α
i Rβ

γδεν
γ
l F

δ
j F

ε
k ,

∇ ∂
∂t
Hj = −∇j∆f − 2∇jf −∇lfRαβF

α
l F β

j .(3.6)

Proof.

∇ ∂
∂t
gij = ∇ ∂

∂t
(gαβFα

i F β
j )

= ∇γgαβḞ
γFα

i F β
j + gαβ(∇ ∂

∂t
Fα
i F β

j + Fα
i ∇ ∂

∂t
F β
j )

∇g=0, (3.1)
= gαβ(∇iḞ

αF β
j + Fα

i ∇jḞ
β)

= gαβ
(∇i(2fλα +∇kfναk )F

β
j

+Fα
i ∇j(2fλβ +∇kfνβk )

)
= 2∇ifλj + 2∇jfλi

+2f∇γλβF
γ
i F

β
j + 2f∇γλαF

γ
j F

α
i

+∇i∇kfg(νk, Fj) +∇j∇kfg(Fi, νk)

+∇kf
(
g(∇iνk, Fj) + g(Fi,∇jνk)

)
F∗λ=F∗ω=0, (2.13)

= ∇kf
(
g(∇iνk, Fj) + g(Fi,∇jνk)

)
(2.34), F∗λ=0

= 2∇kfhkij .

∇ ∂
∂t
hijk = −∇ ∂

∂t
(ωαβFα

i ∇jF
β
k )

(3.1)
= −∇γωαβḞ

γFα
i ∇jF

β
k

− ωαβ
(∇iḞ

α∇jF
β
k + Fα

i ∇ ∂
∂t
∇jF

β
k

)
(2.10),(2.33),(3.2)

= (gγαλβ − gγβλα)(2fλγ +∇lfνγl )F
α
i ∇jF

β
k

+ ωαβ∇i(2fλα +∇lfναl )h
m
jkν

β
m

− ωαβF
α
i

(∇j∇ ∂
∂t
F β
k +Rβ

γδεḞ
γF δ

j F
ε
k

)
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F∗λ=0, (2.34),(3.1)
= 2fωαβ∇γλ

αF γ
i h

m
jkν

β
m

+ ωαβ∇lf(hpilF
α
p − gilλ

α)hmjkν
β
m

− ωαβF
α
i

(∇j∇kḞ
β +Rβ

γδεḞ
γF δ

j F
ε
k

)
(2.13), F∗λ=0

= ∇lfhmilh
m
jk − ωαβF

α
i

(∇j∇k(2fλβ +∇lfνβl )

+Rβ
γδεḞ

γF δ
j F

ε
k

)
.

Now

−ωαβF
α
i ∇j∇k(2fλβ) = −ωαβF

α
i

(
2∇j∇kfλ

β + 2∇kfJ
β
γ F

γ
j

+ 2∇jfJ
β
γ F

γ
k + 2f∇j(Jβγ F

γ
k )
)

= −2∇kfgij − 2∇jfgik

− 2fωαβ∇δJ
β
γ F

α
i F δ

j F
γ
k − 2fωαβJβγ F

α
i ∇jF

γ
k

(2.9)
= −2∇kfgij − 2∇jfgik

and

−ωαβF
α
i ∇j∇k(∇lfνβl ) = −ωαβF

α
i

(∇j∇k∇lfνβl +∇k∇lf∇jν
β
l

+ ∇j∇lf∇kν
β
l +∇lf∇j∇kν

β
l

)
= −ωαβF

α
i ∇j∇k∇lfνβl

− ωαβF
α
i ∇j(hmklF

β
m − gklλ

β)∇lf

= −∇j∇k∇if

+ ωαβF
α
i hmklh

p
jmνβp∇lf + gklωαβF

α
i Jβγ F

γ
j ∇lf

= −∇j∇k∇if +∇lfhmklhijm +∇kfgij .

Therefore in a first step

∇ ∂
∂t
hijk = ∇lfhmilh

m
jk − 2∇kfgij − 2∇jfgik

− ∇j∇k∇if +∇lfhmklhijm +∇kfgij

− ωαβF
α
i Rβ

γδεḞ
γF δ

j F
ε
k

= −∇j∇k∇if +∇lf(hlimhmjk + hlkmhmji)− 2∇jfgik

− ∇kfgij − ωαβF
α
i Rβ

γδεḞ
γF δ

j F
ε
k .

It remains to compute

−ωαβF
α
i Rβ

γδεḞ
γF δ

j F
ε
k = −ωαβF

α
i Rβ

γδε(2fλ
γ +∇lfνγl )F

δ
j F

ε
k

= −2fωαβFα
i Rγ β

δ ελγF
δ
j F

ε
k

− ∇lfωαβF
α
i Rβ

γδεν
γ
l F

δ
j F

ε
k

(2.14)
= −2fωαβFα

i (gδελ
β − δβδ λε)F

δ
j F

ε
k

− ∇lfωαβF
α
i Rβ

γδεν
γ
l F

δ
j F

ε
k

= −∇lfωαβF
α
i Rβ

γδεν
γ
l F

δ
j F

ε
k
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so that finally

∇ ∂
∂t
hijk = −∇j∇k∇if +∇lf(hlimhmjk + hlkmhmji)− 2∇jfgik

− ∇kfgij −∇lfωαβF
α
i Rβ

γδεν
γ
l F

δ
j F

ε
k .

For the mean curvature form we compute

∇ ∂
∂t
Hj = ∇ ∂

∂t
(gkihijk)

= −hijkg
kmgip∇ ∂

∂t
gmp + gik∇ ∂

∂t
hijk

= −2∇lfhlmph
p m
j −∇j∆f + 2∇lfhlpmhm p

j

− (2n+ 1)∇jf −∇lfgikωαβF
α
i Rβ

γδεν
γ
l F

δ
j F

ε
k .

= −∇j∆f − (2n+ 1)∇jf −∇lfgikωαβF
α
i Rβ

γδεν
γ
l F

δ
j F

ε
k

= −∇j∆f − (2n+ 1)∇jf −∇lfνγl F
δ
j g

ikRγδβεν
β
i F

ε
k

(2.38)
= −∇j∆f − (2n+ 1)∇jf +∇lfνγl F

δ
j (R

ε
δ ωγε + (2n− 1)ωδγ)

= −∇j∆f − 2∇jf −∇lfRαβF
α
l F β

j .

�

Corollary 3.3. If Ft : L → (M,λ, J), t ∈ [0, ε) is a smooth family of Legendre
immersions into a Sasaki pseudo-Einstein manifold (with Jαδ Rαβ = Kωδβ) that
evolves according to (3.3), then the mean curvature form H satisfies

∇ ∂
∂t
Hj = −∇j

(
∆f + (2 +K)f

)
.(3.7)

In particular, the cohomology class of H is fixed. If H is exact at t = 0, then there
exists a smooth family of functions α on L, smoothly depending on t ∈ [0, ε), such
that

∇ ∂
∂t
α = −∆f − (2 +K)f(3.8)

and

dα = H.(3.9)

The family α is unique up to adding a function depending only on t. The volume
form dµ satisfies the evolution equation

∇ ∂
∂t
dµ = H(∇f)dµ.(3.10)

Definition 3.4. If F : L → (M,λ, J) is a Legendre immersion such that the mean
curvature form H is exact, then any function α with H = dα is called the Legendre
angle of F (L).
In general one can find a unique pair (β, θ) consisting of a smooth function β : L →
R and a harmonic 1-form on L such that

H = dβ + θ,

∫
L

β = 0.

We call β the Legendre pseudo-angle of L.
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Definition 3.5. Let L ⊂ (M,λ, J) be a Legendre submanifold of a Sasaki pseudo-
Einstein manifold. Then the Legendrian mean curvature flow is the solution of

d

dt
Ft = −2βXλ −∇kβνk,(3.11)

where β is the Legendre pseudo-angle of Lt := Ft(L).

Remark 3.6. To explain how β depends on Ft let Ht denote the mean curvature
form of Ft. Assume F0 ∈ C∞(L,M) and fix a smooth 1-form θ0 on L such that
[H0] = [θ0]. Define

C∞
0 (L,R) := C∞(L,R) ∩

{
f : L → R

∣∣∣ ∫
L

fdµ = 0
}
.

For F ∈ C∞(L,M) we then obtain a map

Ξ : C∞(L,M)→ C∞
0 (L,R)

by
Ξ(F ) := ∆−1(d†θ0),

where d† is the negative adjoint of d w.r.t. the metric gij induced by F and

∆−1 : C∞
0 (L,R)→ C∞

0 (L,R)

is the Green’s operator for the Laplacian ∆ = gij∇i∇j . Let αt ∈ C∞
0 (L,R) be the

solution of
∆αt = d†θ0

and define βt ∈ C∞
0 (L,R) through

dβt := Ht − θ0 + dαt

for all Ft sufficiently close to F0 so that [Ht] = [H0]. Then ∆βt = d†Ht and (3.11)
can be written as

d

dt
F = −→

H − 2βXλ + (θk0 −∇kα)νk.

This differs from the mean curvature flow (1.1) only by −2βXλ + (θk0 − ∇kα)νk
which in view of α, β ∈ C∞

0 (L,R) has a non-local nature. From standard PDE
theory we deduce that (3.11) admits a smooth solution for a short time and that
the Legendre condition is preserved during the evolution. In case n = 1, the
flow is analogue to the volume preserving mean curvature flow of curves in R

2

(compare with [13]) because then the ξ-component of the velocity has length equal
to
∣∣∣k −

∫
L
kdµ∫

L
dµ

∣∣∣, where
k := g(H, dµ)

denotes the curvature of the curve. In this case β is the function such that

dβ =
(
k −

∫
L
kdµ∫
L
dµ

)
dµ,

∫
L

β = 0.

From Corollary 3.3 we get that

d

dt
dµ = −g(H, dβ)dµ,(3.12)
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provided L evolves according to (3.11) because f = −β. From this it follows that

d

dt

∫
L

dµ = −
∫
L

g(H, dβ) dµ =
∫
L

β d†H dµ =
∫
L

β∆β dµ(3.13)

= −
∫
L

|∇β|2 dµ ≤ 0,

so that the Legendrian mean curvature flow is always volume decreasing.

Proof of Theorem 1.3. a) Let L0, L1 be Legendrian isotopic and assume that
the isotopy is generated by a smooth family of functions f , i.e., by the flow

d

dt
F = 2fXλ +∇kfνk.

Since K + 2 = 0, there exists a Legendrian angle α that satisfies

dα = H,
d

dt
α = −∆f,

∫
L0

cos(α)dµ > 0.

We compute

d

dt

∫
cos(α)dµ =

∫
(sin(α)∆f + cos(α)〈df,H〉) dµ

and partial integration gives

d

dt

∫
cos(α)dµ =

∫
(− cos(α)〈dα, df〉+ cos(α)〈df,H〉) dµ = 0,

i.e.,
∫
cos(α)dµ is a Legendrian isotopy invariant. Since

Vol (L) ≥
∫
cos(α)dµ

and
∫
L0
cos(α)dµ > 0 we are done.

b) Here, there exists a Legendre angle α with

dα = H,
d

dt
α = ∆α+ (2 +K)α,∫

L0

cos(α)dµ > 0, cos(α) ≥ 0 at t = 0.

In particular α and β differ only by a function m that depends on t only. The
maximum principle and K + 2 < 0 imply

cos(e−(2+K)tα) > 0,∀t > 0

and as above we compute

d

dt

∫
cos(e−(2+K)tα)dµ

=
∫ (

− sin(e−(2+K)tα)∆(e−(2+K)tα)− cos(e−(2+K)tα)|H|2
)
dµ

=
∫ (

e−2(2+K)t − 1
)
cos(e−(2+K)tα)|H|2dµ

≥ 0
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so that

Vol(Lt) =
∫
Lt

dµ ≥
∫
Lt

cos(e−(2+K)tα)dµ ≥
∫
L0

cos(e−(2+K)tα)dµ > 0.

�

4. Shortening Legendre curves

From now on we will only consider the case n = 1. Therefore L is always a closed
Legendre curve. The (mean) curvature form can be decomposed as

H = dβ + hdµ,

where dµ is the line element and h is given by

h =

∫
L
H∫

L
dµ

.

Let us define the function

p := dµ(∇β).

Then

pdµ = dβ(4.1)

and

|∇β|2 = p2.(4.2)

The curvature k of L as defined above becomes

k = p+ h.

Next we compute
d

dt
dβ =

d

dt
H −

(
d

dt
h

)
dµ− h

d

dt
dµ

= d
(
∆β + (2 +K)β

)−(∫ d
dtH − h

∫
d
dtdµ∫

dµ
− hp(h+ p)

)
dµ

= d
(
∆β + (2 +K + h2)β

)
+ h

(
p2 −

∫
p2dµ∫
dµ

)
dµ.

Let q be the uniquely determined function with∫
L

qdµ = 0, dq =
(
p2 −

∫
p2dµ∫
dµ

)
dµ.

Then
d

dt
dβ = d

(
∆β + (2 +K + h2)β + hq

)
.(4.3)

Moreover
d

dt
∇β = ∇∆β + (2 +K + h2)∇β

+ h∇q + 2H(∇β)∇β

= ∆∇β + (2 +K + h2)∇β

+ h∇q + 2p(h+ p)∇β.(4.4)
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Since dµ is parallel we compute

∆p = ∆(dµ(∇β)) = dµ(∆∇β).

Hence
d

dt
p =

d

dt
(dµ(∇β))

= ∆p+ (2 +K + h2)p+ h

(
p2 −

∫
p2dµ∫
dµ

)
+ 2p2(h+ p)− p(h+ p)p

= ∆p+ (2 +K + (h+ p)2)p− h

∫
p2dµ∫
dµ

,(4.5)

where the term −p(h+ p)p in the second to last line occurs due to d
dtdµ = −p(h+

p)dµ. Since
d

dt
h = h

∫
p2dµ∫
dµ

we also observe
d

dt
k =

d

dt
(p+ h)

= ∆k + (2 +K + k2)p.(4.6)

In particular
d

dt
k2 = ∆k2 − 2|∇k|2 + 2kp(2 +K + k2).(4.7)

The strong maximum principle now implies:

Corollary 4.1. Assume k2+K+2 ≤ 0 for t = 0 and that h = 0, i.e., the rotation
number of L vanishes. Then there exist constants c, λ > 0 such that

k2 ≤ ce−λt, ∀ t.

Proof. In case h = 0 we have
d

dt
k2 = ∆k2 − 2|∇k|2 + 2k2(2 +K + k2).

and by the strong parabolic maximum principle we must either have k ≡ 0,∀t ≥ 0
or k2 + 2 + K < −ε for a positive constant ε and for all t ≥ t0, where t0 > 0 is
fixed. But then

d

dt
k2 ≤ ∆k2 − 2εk2

implies the result. �

If h �= 0, then we can still derive a bound for k2 because from (4.6) we obtain a
nice evolution equation for the quantity

r := k2 +K + 2,

namely
d

dt
r = ∆r − 2|∇k|2 + 2pkr.(4.8)

Again the maximum principle gives:
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Corollary 4.2. Assume k2 +K + 2 ≤ 0 for t = 0. Then this remains true during
the evolution.

Remark 4.3. Let e1, e2 be an orthonormal basis of ξ. Then the 3 sectional curva-
tures of M are

σ(Xλ, e1) = 1 = σ(Xλ, e2), σ := σ(e1, e2) = K − 1.

In particular K + 2 = 3 + σ and if we compute K + 2 for the three cases given in
Example 2.7 we obtain:
a) K + 2 = σ + 3 = 4

c > 0,
b) K + 2 = σ + 3 = 0,
c) K + 2 = σ + 3 = θ < 0.

H does not change its cohomology class and therefore

h(t) = h(0)
∫
dµ0∫
dµt

,(4.9)

in particular the sign of h remains the same. This implies that if

rot(L) :=
1
2π

∫
H �= 0,

then the stationary curves of the Legendrian curve shortening flow are no longer
geodesics but Hamiltonian minimal curves, i.e., curves for which

H = hdµ

is a harmonic 1-form and k = h is constant.

Lemma 4.4. Under the assumptions made in Theorem 1.1 there exists for each
m ≥ 0 a constant cm > 0 such that

||∇mk||2t ≤ cm, ∀ t ∈ [0, T ),(4.10)

where [0, T ) denotes the maximal time interval on which a smooth solution of (3.11)
exists and

||∇mk||2t = sup
Lt

|∇mk|2.

Proof. We prove this by induction onm. The casem = 0 is Corollary 4.2. Suppose
now that Lemma 4.4 holds for all 0 ≤ l < m, where m > 0. With the evolution
equation for k we obtain for any 0 ≤ l ≤ m that there exists a constant al > 0 such
that

d

dt
|∇lk|2 ≤ ∆|∇lk|2 − 2|∇l+1k|2 + al

(|∇lk|2 + 1
)
.

Then define
φ := |∇mk|2 + am|∇m−1k|2.

For φ we get
d

dt
φ ≤ ∆φ+ am

(|∇mk|2 + 1
)− 2am|∇mk|2 + amam−1

(|∇m−1k|2 + 1
)

= ∆φ− amφ+ am(am + am−1)|∇m−1k|2 + am(am−1 + 1)

≤ ∆φ− amφ+ am(am + am−1)cm−1 + am(am−1 + 1)

and the maximum principle implies that φ and then also |∇mk|2 must be uniformly
bounded. �
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Lemma 4.5. Under the assumptions made in Theorem 1.1 there exist constants
l0, l∞ > 0 such that

l0 ≥ l(Lt) :=
∫
Lt

dµ ≥ l∞, ∀ t ∈ [0, T ).(4.11)

Proof. For l0 we may choose l(L0) because by (3.13) we have d
dt l(Lt) ≤ 0. Now

we distinguish two cases:
(i) rot(L) �= 0: From (4.9) we deduce that h becomes unbounded if and only if

l(Lt) tends to zero. On the other hand k = h+ p is bounded by Corollary 4.2
and since p = dµ(∇β) we conclude that p must vanish in at least two points
on L so that in these points k = h. Consequently, since h is constant in space,
we have shown that h is uniformly bounded from above and l(Lt) must admit
a lower positive bound l2.

(ii) rot(L) = 0: Then we use Corollary 4.1 and (3.13) to estimate

d

dt
l(Lt) = −

∫
Lt

k2dµt ≥ −ce−λtl(Lt)

so that
l(Lt) ≥ l0e

1
λ (e−λct−1).

�

Corollary 4.6. Under the assumptions made in Theorem 1.1 there exists for each
m ≥ 0 a constant bm > 0 such that

||∇mF ||2t ≤ bm, ∀ t ∈ [0, T ).(4.12)

Proof. For m ≥ 2 the estimates follow from Lemma 4.4. The case m = 1 follows
from Lemma 4.5 and the compactness of M implies a bound for F as well. Here,
the norm of F shall be defined as the distance from a fixed point p ∈ M . �

Proof of Theorem 1.1. From Corollary 4.6 we know that F is uniformly bounded
in C∞. Thus T = ∞ and we can extract a convergent subsequence. The smooth
limit curve must be a stationary solution of (3.11) and therefore a curve of constant
curvature. In case rot(L) = 0, the limit curve must be a geodesic. We show that
the L2-norm of β tends to zero if rot(L) = 0. Let us first compute the evolution
equation for β. From (4.3) we conlude that there exists a function c = c(t) such
that

d

dt
β = ∆β + (h2 +K + 2)β + hq + c

and then
∫
β dµ = 0,∀ t implies

c =
1∫
dµ

∫
(pkβ − hq) dµ

and in particular

d

dt

∫
β2dµ = −2

∫
|∇β|2 dµ+ 2(h2 +K + 2)

∫
β2 dµ

+ 2h
∫

qβ dµ−
∫

pkβ2 dµ.
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If rot(L) = 0, then h = 0, k = p, p2 = |∇β|2 and the last equation simplifies to
d

dt

∫
β2dµ = −2

∫
|∇β|2 dµ+ 2(K + 2)

∫
β2 dµ−

∫
|∇β|2β2 dµ.

Note that by assumption K + 2 + k2 ≤ 0, so that K + 2 ≤ 0. Since by Lemma 4.5
all metrics are uniformly equivalent and by definition

∫
βdµ = 0 we can apply the

Poincare inequality to estimate
d

dt

∫
β2dµ ≤ −ε

∫
β2dµ

with a fixed constant ε > 0. Hence there exists a positive constant c with∫
β2dµ ≤ ce−εt, ∀ t ∈ [0, T )

and T = ∞ implies that
∫
β2dµ converges to 0 in L2. Standard arguments (e.g.,

see [7]) then show that not only the subsequence but also the complete family of
curves must converge to a geodesic in the C∞-topology. �

Proof of Theorem 1.2. From (4.3) we deduce that there exists a smooth family
of functions α such that dα = H, cos(α) ≥ 0 at t = 0 and

d

dt
α = ∆α+ (3 + σ)α.

We see that β and α differ only by a function c depending only on time. Let us
define the function

:(t) := e−(3+σ)t.

Then
d

dt
(:α) = ∆(:α)

and the maximum principle implies that cos(:α) > 0 for all t > 0, in particular the
oscillation of :α is strictly bounded from above by π. In a next step we compute
the evolution equation of the quantity

l := mk2,

where m = m(α, t) is a function to be determined. We let

ṁ :=
∂m

∂t
, m′ :=

∂m

∂α

and obtain
d

dt
l = ṁk2 +m′k2

(
∆α+ (3 + σ)α

)
+ 2mk

(
∆k + k(3 + σ + k2)

)
= ∆l − 1

2mk2
|∇l|2 − m′

m
〈∇l,∇α〉 − lk2

(
m′′

m
− 3
2

(
m′

m

)2
)

+ ṁk2 + (3 + σ)m′αk2 + 2l(3 + σ + k2)

= ∆l − 1
2mk2

|∇l|2 − m′

m
〈∇l,∇α〉 − lk2

(
m′′

m
− 3
2

(
m′

m

)2

− 2

)

+ l

(
ṁ

m
+ (3 + σ)

m′α
m

+ 2(3 + σ)
)
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at those points where k �= 0. Now we choose

m :=
:2

cos2(:α)

and get
ṁ

m
= −2(3 + σ) (1 + :α tan(:α))

as well as
m′′

m
− 3
2

(
m′

m

)2

− 2 = 2(:2 − 1)

so that if σ + 3 ≤ 0 we deduce

d

dt
l ≤ ∆l − m′

m
〈∇l,∇α〉

at all points where k �= 0. l is well-defined for t > 0 since cos(:α) > 0 and l vanishes
if k vanishes. Therefore the maximum principle implies that there exists a constant
c > 0 with

k2 ≤ ce2(3+σ)t cos2(e−(3+σ)tα) ≤ ce2(3+σ)t ≤ c.

As in the proof of Theorem 1.1 this implies C∞-bounds, that the curvature must
tend to zero and that the Legendrian loops converge to a closed Legendrian geodesic.

�
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