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Scalar curvature, covering spaces, and
Seiberg-Witten theory

Claude LeBrun

Abstract. The Yamabe invariant Y(M) of a smooth compact manifold is
roughly the supremum of the scalar curvatures of unit-volume constant-scalar-
curvature Riemannian metrics g on M . (To be precise, one only considers
those constant-scalar-curvature metrics which are Yamabe minimizers, but
this technicality does not, e.g., affect the sign of the answer.) In this article, it
is shown that many 4-manifolds M with Y(M) < 0 have have finite covering

spaces M̃ with Y(M̃) > 0.

Two decades ago, Lionel Bérard Bergery [2] pointed out that there are high-
dimensional smooth compact manifolds M which do not admit metrics of positive
scalar curvature, but which nevertheless have finite coverings that do admit such
metrics. For example, let Σ be an exotic 9-sphere which does not bound a spin
manifold, and consider the connected sum M = (S2×RP

7)#Σ. On one hand, M is
a spin manifold with nonzero Hitchin invariant â(M) ∈ Z2, so [7] there are harmonic
spinors on M for every choice of metric; the Lichnerowicz Weitzenböck formula for
the Dirac operator therefore tells us that no metric on M can have positive scalar
curvature. On the other hand, the universal cover M̃ = (S2 × S7)#2Σ of M
is diffeomorphic to S2 × S7, on which the obvious product metric certainly has
positive scalar curvature.

As will be shown here, the same phenomenon also occurs in dimension four.
Indeed, far more is true. In the process of passing from a 4-manifold to a finite
cover, it is even possible to change the sign of the Yamabe invariant.

The Yamabe invariant is a diffeomorphism invariant that historically arose from
an attempt to construct Einstein metrics (metrics of constant Ricci curvature) on
smooth compact manifolds. A standard computation [3] shows that the Einstein
metrics on any given smooth compact manifold M of dimension n > 2 are exactly
the critical points of the normalized total scalar curvature

S(g) = V (2−n)/n
g
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M
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considered as a functional on the space of all Riemannian metrics g on M ; here
s, dµ, and V respectively denote the scalar curvature, volume measure, and total
volume of the relevant metric. However, one cannot possibly hope to find a critical
point of S by either maximizing or minimizing it, as it is bounded neither above
nor below. Nevertheless, as was first pointed out by Hidehiko Yamabe [23], the
restriction of S to any conformal class

γ = [g] = {ug | u : M C∞
−→ R

+}
of metrics is always bounded below. The trail blazed by Yamabe eventually led
[20, 1, 15] to a proof of the fact that, for each conformal class γ, this infimum is
actually achieved, by a constant-scalar-curvature metric known as a Yamabe min-
imizer. Yamabe’s ultimate goal was to construct Einstein metrics by maximizing
the restriction of S to the set of these Yamabe minimizers. This last idea turns out
to be unworkable in practice, but it nonetheless gives rise to a beautiful, real-valued
diffeomorphism invariant [8, 16, 10]

Y(M) = sup
γ

inf
g∈γ

S(g),

called the Yamabe invariant (or sigma constant) of M . It is not hard to show
that Y(M) > 0 if and only if M admits a metric of positive scalar curvature; thus
the problem of computing the Yamabe invariant may be thought of as a quantita-
tive refinement of the question of whether a given manifold admits positive-scalar-
curvature metrics. On the other hand, if M does not admit metrics of positive scalar
curvature, the number Y(M) ≤ 0 is just the supremum of the scalar curvatures of
all unit-volume constant-scalar-curvature metrics on M . Dimension 4 turns out to
be remarkably special so far as this invariant is concerned. Indeed, Seiberg-Witten
theory allows one to show [10] that there are many simply connected 4-manifolds
with Y(M) < 0. By contrast, however, Petean [13] has shown that every simply
connected compact manifold Mn of dimension n ≥ 5 has Y(M) ≥ 0.

The main construction used in this paper primarily depends on properties of the
oriented 4-manifold

N = (S2 × S2)/Z2,

where the Z2 action is generated by the double antipodal map

(�x, �y) �→ (−�x,−�y).

Let X be any non-spin compact complex surface of general type which can be
expressed as a complete intersection of complex hypersurfaces in some complex
projective space; for example, one could take X to be the Fermat hypersurface{

[v : w : x : y] ∈ CP3 | vm + wm + xm + ym = 0
}

for any odd m ≥ 5.

Theorem 1. Let X and N be as above, and let M = X#N . Then M has negative
Yamabe invariant, but its universal cover M̃ has positive Yamabe invariant.

Proof. Since X is a complex algebraic surface with b+(X) > 1, the Seiberg-Witten
invariant of X is well-defined and nonzero for the canonical spinc structure deter-
mined by the complex structure. On the other hand, N satisfies b2(N) = b1(N) = 0,
and a gluing result of Kotschick-Morgan-Taubes [9] thus implies that the Seiberg-
Witten invariant is nonzero for the associated spinc structure on M = X#N with
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c1 = c1(X). This tells us [22] that M does not admit any metrics of positive scalar
curvature, and that [10], moreover,

Y(X#N) ≤ −4π
√

2c21(X).

In particular, Y(X#N) < 0.
On the other hand, the universal cover of M is M̃ = X#X#(S2 × S2). But

Gompf [5], inspired by the earlier work of Mandelbaum and Moishezon [12], has
used a handle-slide argument to show that X#(S2×S2) dissolves, in the sense that

X#(S2 × S2)
diff≈ k1CP2#�1CP2,

where k1 > 2 and �1 
= 0. Since (S2 × S2)#CP2 ≈ 2CP2#CP2, it follows that

X#2CP2#CP2 ≈ (k1 + 1)CP2#�1CP2,

and hence that

M̃ = 2X#(S2 × S2) ≈ X#k1CP2#�1CP2 ≈ kCP2#�CP2,

where k = 2b+(X) + 1 and � = 2b−(X) + 1. Since a connected sum of positive-
scalar-curvature manifolds admits metrics of positive scalar curvature [6, 17], we
thus conclude that Y(M̃) > 0. �

It is unclear whether an analogous change in the sign of the Yamabe invariant
ever occurs in higher dimensions. At any rate, this phenomenon certainly does not
occur in Bérard Bergery’s examples. For example, we obviously have Y(S2×RP

7) >
0; and we also know that Y(Σ9) = 0 by Petean’s theorem [13]. The Petean-Yun
surgery theorem [14] therefore implies that their connected sum has Y ≥ 0, too; and
since (S2×RP

7)#Σ9 does not admit metrics of positive scalar curvature, this shows
that Y([S2 × RP

7]#Σ) = 0. (Indeed, so far as we seem to know at present, every
compact n-manifold with |π1| < ∞ and n ≥ 5 could turn out to have nonnegative
Yamabe invariant; for an interesting partial result in this direction, see [4].)

It is also perhaps worth mentioning that one can actually compute the exact
value of the Yamabe invariant for any of the manifolds M = X#N considered in
Theorem 1. Indeed, as already noted, the Seiberg-Witten argument tells us that
Y(M) ≤ −4π

√
2c21(X). On the other hand, Y(N) > 0 and Y(X) < 0, a general

inequality due to Osamu Kobayashi [8] tells us that

Y(X#N) ≥ Y(X).

However, because X is a minimal complex surface of general type, its Yamabe
invariant is given [10] by Y(X) = −4π

√
2c21(X). The above inequalities therefore

allow us to ascertain the exact value

Y(X#N) = −4π
√

2c21(X)

of the Yamabe invariant for any of the manifolds in question.
By contrast, however, exact calculations of the Yamabe invariant are notoriously

difficult in the positive case, owing to the fact that in the positive regime a constant-
scalar-curvature metric need not be a Yamabe minimizer. However, we do know
[11] that Y(CP2) = Y(CP2) = 12π

√
2. Thus Kobayashi’s inequality [8] predicts

that any connected sum of CP2’s and CP2’s satisfies

Y(kCP2#�CP2) ∈ [Y(CP2),Y(S4)] = [12π
√

2, 8π
√

6],
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and we can thus at least conclude that the Yamabe invariant of the corresponding
universal cover M̃ is always somewhere in this narrow range.

Finally, let us observe that the examples in Theorem 1 can be greatly generalized,
provided one does not insist on passing to the universal cover.

Theorem 2. Let Y be a symplectic 4-manifold with b+ > 1, |π1| < ∞, and non-
spin universal cover. Let N = (S2 × S2)/Z2, as before. Then M = Y #2N does
not admit metrics of positive scalar curvature, but nonetheless has finite coverings
M̃ → M which do carry such metrics. Moreover, if the symplectic minimal model
of Y has c21 
= 0, the Yamabe invariant reverses sign as one passes from M to M̃ .

Proof. By a celebrated theorem of Taubes [18], the canonical spinc structure of the
symplectic manifold Y has nonzero Seiberg-Witten invariant, and since N#N has
b1 = b2 = 0, the same gluing argument [9] as before implies that the Seiberg-Witten
invariant is nonzero for a spinc structure on M = Y #2N with c1 = c1(Y ). It thus
follows that M does not admit metrics of positive scalar curvature. But even more is
true. By another remarkable result of Taubes [19], we can express Y as an iterated
symplectic blow-up of a symplectic manifold Y0, called the symplectic minimal
model of Y , which contains no symplectic (−1)-spheres, and satisfies c21(Y0) ≥ 0.
On the other hand, the same argument used in the proof of [10, Theorem 2] then
shows that, for every metric g on M , there is a Seiberg-Witten basic class for which
(c+1 )2 ≥ c21(Y0). The estimate Y(M) ≤ −4π

√
2c21(Y0) then follows immediately.

This shows that M actually has negative Yamabe invariant whenever c21(Y0) 
= 0.
Next, let X denote the universal cover of Y , and observe that Y #2N has an

n-fold cover of the form X#2nN , where n = |π1(Y )|. Thus, unfolding copies of N

one by one, we obtain a sequence of covering spaces M̃	 → M with

M̃	 = 2	X #
(
2	 − 1

)
(S2 × S2) #

[
2	+1(n− 1) + 2

]
N

for each � ≥ 1. On the other hand, since X is simply connected and non-spin by
assumption, a justly famous result of Wall [21] asserts that there is an integer k0

such that

X#k0(S2 × S2) ≈ [k0 + b+(X)]CP2#[k0 + b−(X)]CP2.

Since (S2 × S2)#CP2 ≈ 2CP2#CP2, it then follows that

X#(k0 + 1)CP2#k0CP2 ≈ [k0 + 1 + b+(X)]CP2#[k0 + b−(X)]CP2.

Induction therefore gives us

mX#k(S2 × S2) ≈ [k + mb+(X)]CP2#[k + mb−(X)]CP2

for any k ≥ k0 and m ≥ 1. Thus, setting M̃ = M̃	 for any � > log2 k0, we have
constructed a finite covering M̃ → M with

M̃ ≈ pCP2#qCP2#rN,

and such an M̃ admits positive-scalar-curvature metrics because it is a connected
sum of manifolds with positive scalar curvature. �

It is perhaps worth noting that when the given Y is not simply-connected, es-
sentially the same argument would also work for Y #N .
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