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On Hopf Galois structures and complete groups

Lindsay N. Childs

Abstract. Let L be a Galois extension of K, fields, with Galois group Γ. We
obtain two results. First, if Γ = Hol(Zpe ), we determine the number of Hopf
Galois structures on L/K where the associated group of the Hopf algebra H
is Γ (i.e. L⊗K H ∼= L[Γ]). Now let p be a safeprime, that is, p is a prime such
that q = (p−1)/2 > 2 is also prime. If L/K is Galois with group Γ = Hol(Zp),
p a safeprime, then for every group G of cardinality p(p−1) there is an H-Hopf
Galois structure on L/K where the associated group of H is G, and we count
the structures.
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Let L be a Galois extension of K, fields, with finite Galois group Γ. Then L
is an H-Hopf Galois extension of K for H = KΓ, where KΓ acts on L via the
natural action of the Galois group Γ on L. Greither and Pareigis [GP87] showed
that for many Galois groups Γ, L is also an H-Hopf Galois extension of K for H
a cocommutative K-Hopf algebra other than KΓ. The Hopf algebras H that arise
have the property that L ⊗K H ≡ LG, the group ring over L of a group G of the
same cardinality as Γ. We call G the associated group of H.
From [By96] we know that for H a cocommutative K-Hopf algebra, H-Hopf

Galois structures on L correspond bijectively to equivalence classes of regular em-
beddings β : Γ → Hol(G) ⊂ Perm(G). Here Perm(G) is the group of permutations
of the set G, and Hol(G) is the normalizer of the left regular representation of G in
Perm(G). One sees easily that Hol(G) contains the image of the right regular rep-
resentation ρ : G → Perm(G) and also Aut(G); then Hol(G) = ρ(G) · Aut(G) and
is isomorphic to the semidirect product G � Aut(G). The equivalence relation on
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regular embeddings is by conjugation by elements of Aut(G) inside Hol(G): β ∼ β′

if there exists γ in Aut(G) so that for all g in G, γβ(g)γ−1 = β′(g).
Thus the number e(Γ, G) of H-Hopf Galois structures on L/K where the asso-

ciated group of H is G depends only on G and the Galois group Γ, and reduces to
a purely group-theoretic problem.
If L is a Galois extension of K with Galois group Γ non-abelian simple or ∼= Sn,

then in [CC99] we counted the number of Hopf Galois structures on L/K with
associated group G = Γ by ”unwinding” regular embeddings. The unwinding idea
applies more generally when G is a complete group, i. e. has trivial center and
trivial outer automorphism group. In this paper we apply this unwinding idea to
determine e(G,G) when G is the complete group Hol(Zpe), p an odd prime.
One theme of research on Hopf Galois structures on Galois extensions of fields is

to determine to what extent it is true that if L/K is Galois with Galois group Γ and
is H-Hopf Galois where H has associated group G, then G ∼= Γ. Positive results in
this direction include Byott’s original uniqueness theorem [By96]; Kohl’s Theorem
[Ko98] that if Γ = Zpe then G ∼= Γ; Byott’s recent result [By03a], complementing
[CC99], that if Γ is non-abelian simple then G = Γ; and Featherstonhaugh’s recent
result [Fe03] that if G and Γ are abelian p-groups with p sufficiently large compared
to the p-rank of G and logp of the exponent of G, then G ∼= Γ. (A survey of results
before 2000 in this area may be found in Chapter 2 of [C00]; Chapter 0 of [C00]
describes how Hopf Galois structures on Galois extensions of local fields relate to
local Galois module theory of wildly ramified extensions.)
In the last two sections of this paper we consider this uniqueness question for

Γ = Hol(Zp) when p is a safeprime, that is, p = 2q + 1 where p and q are odd
primes. (The terminology “safeprime” arises in connection with factoring large
numbers related to cryptography—see [C95, pp. 411-413].) Then there are exactly
six isomorphism classes of groups of cardinality p(p − 1). We show that if L/K is
a Galois extension with Galois group Γ = Hol(Zp), then for each of the six groups
G of cardinality p(p − 1) up to isomorphism, there is an H-Hopf Galois structure
on L/K with associated group G, and we count their number. Thus Γ = Hol(Zp)
yields an example of the opposite extreme to the uniqueness results listed above.

1. Regular embeddings

Given a Galois extension L/K with Galois group Γ, and a group G of cardinality
that of Γ, the number e(Γ, G) of Hopf Galois structures on L/K whose Hopf algebra
H has assocated group G is equal to the number of equivalence classes of regular
embeddings of Γ into Hol(G), the semidirect product of G and Aut(G). Here an
embedding β : Γ → Hol(G) is regular if, when viewing Hol(G) inside Perm(G) via
(g, α)(x) = α(x)g−1, the orbit of the identity element 1 of G under β(Γ) is all of G.
Obtaining e(Γ, G) in any particular case involves a number of steps:

(a) determining Aut(G), hence Hol(G);
(b) finding monomorphisms β from Γ to Hol(G) by defining β on generators of Γ

and checking β on the relations among those generators: in particular, it is
helpful to know the orders of elements of Hol(G) in order to choose where to
send the generators of Γ;

(c) checking for regularity of β;
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(d) simplifying β under the equivalence relation of conjugation by elements of
Aut(G) inside Hol(G)—that is, finding a complete set of representatives for
the equivalence classes of regular embeddings β;

(e) counting the representatives.
Of these tasks, checking regularity is the least natural. If we view Hol(G), the

semidirect product of G and Aut(G), as G×Aut(G) as sets, the operation is

(g, α) · (g′, α′) = (gα(g′), αα′)

for g, g′ ∈ G,α, α′ ∈ Aut(G). Then G ∼= {(g, 1)} is a normal subgroup of Hol(G),
and the projection π2 onto Aut(G) by π2(g, α) = α is a homomorphism; however
the projection π1 onto G, π1(g, α) = g, is not. But since an element (g, α) viewed
in Perm(G) acts on the identity element 1 of the set G by (g, α)(1) = α(1)g−1 =
g−1, checking regularity of a 1-1 homomorphism β : Γ → Hol(G) is the same as
determining whether the function (non-homomorphism) π1β : Γ→ G is bijective.
Let Inn(G) be the group of inner automorphisms of G, then Inn(G) is normal

in Aut(G) and Aut(G)/Inn(G) = O(G), the outer automorphism group, fits in the
exact sequence

1→ Z(G)→ G → Aut(G)→ O(G)→ 1

where the map C : G → Aut(G) is conjugation: C(g)(x) = gxg−1 for g, x ∈ G, and
Z(G) is the center of G.
Suppose Z(G) = (1) and the composition of the 1-1 homomorphism β : Γ →

Hol(G) with the homomorphism Hol(G) → O(G) yields a trivial homomorphism
from Γ to O(G). Then β maps into G � Inn(G), and, following [CC99], we may
decompose β as follows: we have a homomorphism

j : G � Inn(G)→ G×G

by j(g, C(h)) = (gh, h) for g, h ∈ G, with inverse sending (g, h) to (gh−1, C(h)).
Letting pi : G × G → G be projection onto the ith factor, i = 1, 2, the homomor-
phism β yields homomorphisms β1 = p1jβ and β2 = p2jβ : Γ→ G such that

β(γ) = (β1(γ)β2(γ)−1, C(β2)).

Then β is regular iff

{π1β(γ)|γ ∈ Γ} = {β1(γ)β2(γ)−1|γ ∈ Γ} = G.

Thus whenever Z(G) = (1) and β(Γ) ⊂ G � Inn(G), we may describe β, and in
particular the function π1β : Γ → G, in terms of the homomorphisms β1, β2 : Γ →
G, namely,

π1β(γ) = β1(γ)β2(γ)−1.

A class of groups G where Z(G) = (1) and β(Γ) ⊂ G � Inn(G) is the class of
complete groups, that is, finite groups G with Z(G) = (1) and O(G) = (1). The
best-known examples of finite complete groups are Aut(A) where A is simple and
non-abelian, Sn for n ≥ 3, n �= 6, and Hol(Zm) where m is odd. (See [Sch65,
III.4.u-w] .) Another class is the class of simple groups, for if G is simple, then
O(G) is solvable, so any β : G → Hol(G) has image in G � Inn(G).
In [CC99] we let Γ = G and determined e(G,G), the number of regular embed-

dings of G to Hol(G), when G is simple non-abelian or Sn, n ≥ 4. In the next
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section we examine the case where Γ = G = Hol(Zq) where q = pe and p is an odd
prime.

2. Hol(Zpe)

Let G = Zpe �Z∗
pe , the holomorph of Zpe . Let b be a number < pe that generates

Z∗
pe . Let Γ = G. In this section we prove:

Theorem 2.1. If G = Hol(Zpe), p odd, then up to equivalence there are

e(G,G) = 2pe−1φ(pe−1) + 2peφ(pe−1)(φ(p− 1)− 1)

regular embeddings of G into Hol(G). Thus e(G,G) is the number of H-Hopf Galois
structures on a Galois extension L/K with Galois group G where the associated
group of H is G.

Proof. We wish to find equivalence classes of regular embeddings of G in Hol(G).
Since G is complete, we know from the last section that any homomorphism β :
G → Hol(G) may be decomposed as

β(g) = β1(g)β2(g)−1C(β2(g))

for homomorphisms β1, β2 : G → G. So we begin by describing the homomorphisms
from G to G.
Let α : G → G be a homomorphism. Then α is determined by

α(1, 1) = (m, c) of order dividing pe, and

α(0, b) = (n, d) of order dividing pe−1(p− 1).

If α(1, 1) has order dividing pe, then c = 1. To see this, first note that for any
s > 0,

(m, c)s = (m(1 + c+ c2 + . . . cs−1), cs)

so cmust have order dividing pe, which implies that c ≡ 1 (mod p). Also, for α(0, b)
to have order dividing pe−1(p − 1) we require that d �≡ 1 (mod p) or p divides n.
For if d ≡ 1 (mod p) one sees by induction that (n, d)p

e−1
= (pe−1n′, 1) where p

divides n′ iff p divides n. Thus if p does not divide n, then (n, d) has order pe. On
the other hand, if d �≡ 1 (mod p), then

(n, d)p−1 =
(
n

(
dp−1 − 1
d− 1

)
, dp−1

)
and p divides dp−1 − 1 but not d− 1, so the order of (n, d) divides pe−1(p− 1).
Now we check the relation

(b, 1)(0, b) = (b, b) = (0, b)(1, 1).

Applying α yields:

(m(1 + c+ . . . cb−1), cb)(n, d) = (n, d)(m, c),

hence

(m(1 + c+ . . . cb−1) + cbn, cbd) = (n+ dm, dc).

Thus cbd = cd. Since d is a unit modulo pe it follows that cb = c, hence cb−1 = 1.
But since c = 1 + pf for some f ,

1 = (1 + pf)b−1.
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Since b− 1 is relatively prime to p and (1+ pf)p
e−1

= 1, it follows that 1+ pf = 1,
hence f = 0 and c = 1.
Thus for any homomorphism α : G → G,

α(1, 1) = (m, 1)

for some m.
Since c = 1, the requirement

(m(1 + c+ . . . cb−1) + cbn, cbd) = (n+ dm, dc)

becomes

(mb+ n, d) = (n+ dm, d)

which implies that bm = dm. Thus if m �= 0, then b ≡ d (mod p), and if m is a
unit (i.e. relatively prime to p), then b = d. In the latter case, α(1, 1) = (m, 1) has
order pe and α(0, b) = (n, b) has order pe−1(p− 1).
Clearly if α is an automorphism then m is relatively prime to p and so b = d.

Conversely, if α(1, 1) = (m, 1) with m relatively prime to p, then α(0, b) = (n, b)
for some n. Conjugating α by (h, c) in G yields

(h, c)α(1, 1)(h, c)−1 = (h, c)(m, 1)(−c−1h, c−1)
= (h+ cm− h, 1)
= (cm, 1).

We choose c so that cm = 1. Then we choose h so that

(0, b) = (h, c)α(0, b)(h, c)−1 = (h, c)(n, b)(−c−1h, c−1)
= (h+ cn, bc)(−c−1h, c−1)
= (h+ cn− bh, b)
= ((1− b)h+ cn, b) :

we set h = −(1 − b)−1cn, possible because b has order pe−1(p − 1) (mod pe) and
hence b �≡ 1 (mod p). With these choices of h and c, the homomorphism C(h, c)α :
G → G is the identity on the generators (1, 1) and (0, b) of G, and so α = C(h, c)−1

is an automorphism of G.
Now we ask about regularity: for which pairs of endomorphisms (β1, β2) is

{β1(g)β2(g)−1|g ∈ G} = G,

or equivalently, π1β = β1 · β−1
2 is a 1-1 function from G to G? Let βi(1, 1) =

(mi, 1), βi(0, b) = (ni, di) for i = 1, 2.
If neither β1 nor β2 is an automorphism, then p divides m1 and m2, so

β1(pe−1l, 1)β2(pe−1l, 1)−1 = (pe−1lm1, 1)(−pe−1lm2, 1)
= (0, 1)(0, 1) = (0, 1)

for all l, and so β1 · β−1
2 is not 1-1.

Suppose both β1 and β2 are automorphisms. If m1 ≡ m2 (mod p) then

β1 · β−1
2 (pe−1, 1) = (pe−1m1 − pe−1m2, 1)

= (0, 1)
= β1 · β−1

2 (0, 1)
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so β1 · β−1
2 is not 1-1. If m1 �≡ m2 (mod p), then let s(m1 −m2) = n1 − n2. Then

β1 · β−1
2 (0, b) = (n1 − n2, 1)

= ((m1 −m2)s, 1)
= β1 · β−1

2 (s, 1),

so again, β1 · β−1
2 is not 1-1.

Thus for β to be regular, exactly one of β1 and β2 is an automorphism.
We return to looking at regularity after we look at equivalence by Aut(G) =

Inn(G) inside Hol(G).
For g, h, k ∈ G we have

(1, C(g))(h,C(k))(1, C(g)−1) = (C(g)(h), C(g)C(k)C(g)−1)
= (ghg−1, C(gkg−1).

Thus if β(x) = (β1(x)β2(x)−1, C(β2(x))) for x ∈ G, then β ∼ β′ with

β′(x) = (gβ1(x)β2(x)−1g−1, C(gβ2(x)g−1))
= (gβ1(x)g−1 · (gβ2(x)g−1)−1, C(gβ2(x)g−1)) :

we get from β to β′ by simultaneously conjugating β1 and β2 by g ∈ G.
Assume β2 is an automorphism, then, up to equivalence, we may assume that β2

is the identity automorphism on G and β1 is not an automorphism. Then e(G,G)
will be twice the number of possible β1, since the case where β1 is an automorphism
and β2 is not is the same.
Returning to the regularity question, we ask, for which β1 is {β1(g)g−1} = G?
Assume

β1(1, 1) = (m, 1)
β1(0, b) = (n, d)

for some m divisible by p, some d �= 1 and some n. Then

β1(l, bk) = β1(l, 1)β1(0, bk)

= (lm, 1)
(
n

(
dk − 1
d− 1

)
, dk

)

=
(
lm+ n

(
dk − 1
d− 1

)
, dk

)
.

For any h, r we want to find l, k so that

β1(l, bk)(l, bk)−1 =
(
lm+ n

(
dk − 1
d− 1

)
, dk

)
(−b−kl, b−k)(∗)

=
(
lm+ n

(
dk − 1
d− 1

)
− dkb−kl, dkb−k

)
= (h, br).

In order that for any r, there is a k so that br = (db−1)k, we require that db−1

generates Z∗
pe . Now for β1 to be a homomorphism, we need bm = dm, and this is

possible only if m = 0 or b ≡ d (mod p). But in the latter case, db−1 ≡ 1 (mod p),
so cannot generate Z∗

pe . Thus if {β1(g)g−1} = G, then m = 0, and d = bf+1 such
that bf generates Z∗

pe .
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Thus β1 is defined by
β1(1, 1) = (0, 1)
β1(0, b) = (n, d),

and (∗) becomes
(n(1 + d+ · · ·+ dk−1)− bfkl, bfk) = (h, br),

which is solvable for all n and for all f such that bf generates Z∗
pe . We have two

cases:
If d = bf+1 ≡ 1 (mod p), then p − 1 divides f + 1 and p divides n (or else β is

not a homomorphism).
If d = bf+1 �≡ 1 (mod p), then n is arbitrary.
The first case gives pe−1 choices for n and φ(pe−1) choices for f .
The second case gives pe choices for n and

φ(pe−1(p− 1))− φ(pe−1) = φ(pe−1)(φ(p− 1)− 1)

choices for f . The theorem follows. �

Corollary 2.2. If G = Hol(Zp), then e(G,G) = 2(1 + p(φ(p− 1)− 1)).

Example 2.3. For p = 5 there are, up to equivalence, 2(1+5(2− 1)) = 12 regular
embeddings of G = Z5 �Z∗

5 into Hol(G). If we choose b = 2 then b and b3 generate
Z∗

5 , so d = b0 = 1 or d = b2 = 4. Thus if we let β2 be the identity automorphism,
then β1(1, 1) = (0, 1) and β1(0, 2) = (n, 4), n = 0, 1, 2, 3, 4, or (0, 1).

3. Groups of order p(p − 1)

Let Γ = Hol(Zp) with p an odd prime, as above, and let p − 1 = 2q. Then
there are at least five non-isomorphic groups G of order 2qp other than Γ, namely,
Z2qp, Dqp, Dp × Zq, Dq × Zp, and (Zp � Zq) × Z2 (where Zq is identified as the
subgroup of Aut(Zp) of index 2, and Dn is the dihedral group of order 2n). The
five groups are non-isomorphic because their centers have orders 2pq, 1, q, p and 2
respectively.
If q is also an odd prime, then q is called a Sophie Germain prime, resp. p is

called a safeprime, and in that case, these five groups, together with Γ = Hol(Zp),
are the only groups of order 2pq, up to isomorphism. To see this, we first obtain
the following lemma, needed also in the next section:

Lemma 3.1. Let p be prime, p = 2q + 1. Then

Aut(Dp) = Aut(Zp � Zq) = Aut(Hol(Zp)) = Inn(Hol(Zp)).

Proof. Let G = Zp �Za with a = 2, q or 2q = p− 1. Write Zp additively and view
Za as the cyclic subgroup of order a inside Z∗

p = Aut(Zp) and G ⊂ Hol(Zp). Let b
generate Za. If α is an automorphism of G, then:
1. α(1, 1) = (m, 1) for p not dividing m, and
2. α(0, b) = (n, b) for any n (as one sees by applying α to the relation (b, 1)(0, b) =

(b, b) = (0, b)(1, 1).)
So there are p(p− 1) = |Hol(Zp)| automorphisms of G. Now if (l, d) is any element
of Hol(Zp), then conjugation by (l, d) is an automorphism of G, since

(l, d)(m, br)(l, d)−1 = (l + dm− brl, br) ∈ G.
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Hence the conjugation map C : Hol(Zp)→ Aut(G),

C(l, d)(m, br) = (l, d)(m, br)(l, d)−1 = (l + dm− brl, br),

is defined. Then C is 1-1. For if C(l1, d1) = C(l2, d2) on G, then

l1 + d1m− brl1 = l2 + d2m− brl2

for all m, r: in particular for m = 1, r = 0 we get d1 = d2 and for m = 0, r = 1 we
get l1 = l2. Thus C is an isomorphism. �
Proposition 3.2. If q and p = 2q + 1 are odd primes, then, up to isomorphism,
there are exactly six groups of order p(p− 1).

This is probably well-known, but we sketch a proof for the reader’s convenience.

Proof. If G has order p(p − 1) then by the first Sylow Theorem, G has a unique
normal subgroup Gp of order p. By Schur’s Theorem, Gp has a complementary
subgroup of order 2q, and hence a subgroup K of order q. Then GpK = J is a
subgroup of G of order pq, hence normal in G. By Schur’s Theorem again, J has
a complementary subgroup of order 2 in G, so G is isomorphic to a semidirect
product J �α Z2.
If J ∼= Zpq then G ∼= Zpq �α Z2 where

α : Z2 → Aut(Zpq) ∼= Zp−1 × Zq−1

has four possibilities, α(−1) = (±1,±1). These yield G ∼= Dpq, Dp × Zq, Dq × Zp

and Z2pq.
If J ∼= Zp � Zq ⊂ Hol(Zp), then G ∼= J �α Z2 where α : Z2 → Aut(Zp � Zq) ∼=

Inn(Hol(Zp)). If α is trivial, we obtain (Zp �Zq)×Z2. Otherwise, the elements of
order 2 in Inn(Hol(Zp)) are of the form C(l,−1) for any l ∈ Zp. Define

αl : Z2 → Inn(Hol(Zp))

by αl(−1) = C(l,−1). One checks easily that
(Zp � Zq)�α0 Z2

∼= Zp � Z2q = Hol(Zp)

by the map sending ((a, b), ε) to (a, εb) for a ∈ Zp, b ∈ Zq ⊂ Zp−1, ε ∈ Z2 ⊂ Zp−1.
Now 〈α0〉 = 〈C(0,−1)〉 and 〈αl〉 = 〈C(l,−1)〉 are conjugate in Inn(Hol(Zp)) for
l �= 0 by C(m, 1) where 2m ≡ l (mod p): C(m, 1)C(0,−1)C(−m, 1) = C(2m,−1).
It follows from [DF99], p. 186, Exercise 6 that

(Zp � Zq)�αl
Z2

∼= (Zp � Zq)�α0 Z2

for all l. Thus J = Zp �Zq yields only two possible groups, up to isomorphism. �

4. Nonuniqueness

If we begin with the Galois group Γ of a Galois extension L/K of fields, then to
determine the K-Hopf Galois structures on L, we need to count equivalence classes
of regular embeddings of Γ into Hol(G), where G varies over isomorphism classes
of groups of the same cardinality as Γ. This can be a formidable task for certain
cardinalities!
In this section, we let Γ = Hol(Zp), p = 2q + 1 a safeprime > 5, and determine

e(Γ, G), the number of regular embeddings of Γ into Hol(G), for all six groups G
of order p(p − 1) = 2pq. We did the case G = Γ in Theorem 2.1 and found that
e(G,G) = 2 + 2p(q − 2). Here is the result for G �∼= Γ:
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Theorem 4.1. Let Γ = Hol(Zp), with p and q = (p− 1)/2 odd primes. Then:
(1) e(Γ, Zp � Zq × Z2) = 2p(q − 1);
(2) e(Γ, Dq × Zp) = 2p;
(3) e(Γ, Dp × Zq) = 2p;
(4) e(Γ, Z2qp) = p;
(5) e(Γ, Dpq) = 4p.

Proof. We do each case in turn, following the steps outlined in Section 1.
(1): Proof that e(Γ, Zp � Zq × Z2) = 2p(q − 1). Using Lemma 3.1 we have

Hol(Zp � Zq × Z2) = Hol(Zp � Zq)×Hol(Z2)
= ((Zp � Zq)� Inn(Hol(Zp))× Z2

⊂ (Hol(Zp)� Inn(Hol(Zp))× Z2∼= Hol(Zp)×Hol(Zp)× Z2;

thus we may unwind any homomorphism β : Γ → ((Zp � Zq)� Inn(Hol(Zp))× Z2

as in Section 1. If

β(γ) = ((m, b2r), C(l, bs))× ε

with ε = ±1, Z∗
p = 〈b〉 and m, l are modulo p, then β(γ) maps to (m, b2r)(l, bs) ×

(l, bs)× ε under the map to Hol(Zp)×Hol(Zp)×Z2. So β induces homomorphisms
β1 : Γ→ Hol(Zp), defined by β1(γ) = (m, b2r)(l, bs), and β2 : Γ→ Hol(Zp), defined
by β2(γ) = (l, bs). If we define β0 : Γ→ Z2 by β0(γ) = ε, then

β(γ) = (β1(γ)β2(γ)−1, C(β2(γ))× β0(γ).

Let γ ∈ Hol(Zp), γ = (m, bt). Then the only non-trivial homomorphism β0 is
given by β0(γ) = −1 if t is odd, and = 1 if t is even. (If β0(γ) = 1 for all γ, then β
will not be regular.) As for the possibilities for the homomorphisms β1 and β2, we
determined these in the proof of Theorem 2.1, namely:
1. If βi is an automorphism, then βi(1, 1) = (m, 1), m �= 0 and βi(0, b) = (n, b)

for any n.
2. If βi is not an automorphism, then βi(1, 1) = (0, 1) and βi(0, b) = (n, d) for

d = br, r �= 0, and any n, or βi(0, b) = (0, 1).
As in the proof of Theorem 2.1, if both β1 and β2 are not automorphisms, or if

both β1 and β2 are automorphisms, then β1 · β−1
2 is not 1-1, so β is not regular.

Thus we can assume one is an automorphism and the other not. Assuming β2 is an
automorphism, we can conjugate it by an automorphism of Hol(Zp) to transform
it to the identity map. Then

β1(0, b)β2(0, b)−1 = (n, d)(0, b)−1

= (n, db−1) :

this must lie in Zp �Zq, which means that d = br must be an odd power of b. Then

β1 · β−1
2 (l, bs) = (n, d)s(l, bs)−1

=
(
n

(
ds − 1
d− 1

)
− l(db−1)s, (db−1)s

)
.

For β to be regular, β1 · β−1
2 must map onto Zp �Zq, so we need that db−1 = br−1

generates Zq. Thus r−1 must be coprime to q. There are q−1 odd numbers r < p
with r − 1 coprime to q.
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For any such r, (db−1)s is a unit of Zp, so given any n, h in Zp there is some l in

Zp so that n
(

ds−1
d−1

)
− l(db−1)s = h. Hence for any suitable r and any n, β1 · β−1

2

maps Hol(Zp) onto Zp � Zq.
Thus we have determined all regular β: we have p choices for n, and q−1 choices

for d. Interchanging the roles of β1 and β2 yields the same result. Thus there are
2p(q − 1) regular embeddings of Hol(Zp) into Hol(Zp � Zq × Z2), as claimed.

(2): Proof that e(Γ, Dq × Zp) = 2p. We seek regular embeddings

β : Γ→ Hol(Dq × Zp).

We have

Hol(Dq × Zp) ∼= Hol(Dq)×Hol(Zp)

and by Lemma 3.1, the map

Hol(Dq) ∼= Dq � Inn(Hol(Zq))→ Hol(Zq)×Hol(Zq)

is 1-1 and maps (m, ε)C(n, d) to (m, ε)(n, d)× (n, d). Suppose

β(1, 1) = (q, ε)C(n, d)× (m, c).

Now β(1, 1) must have order p (or else β is not 1-1), so (n, d) = (q, ε) = (0, 1), c = 1
and m �= 0, hence

β(1, 1) = (0, 1)C(0, 1)× (m, 1)

with m �= 0.
Suppose β(0, b) = (l, ε)C(k, d)×(s, c) in Dq � Inn(Hol(Zq))×Hol(Zp) for l, ε, k, d

mod q and s, c mod p. If ε = 1, then no element of Dq of the form (∗,−1) is hit by
π1(β), and so β is not regular. Thus ε = −1.
Applying β to the condition (b, 1)(0, b) = (0, b)(1, 1) yields c ≡ b (mod p). Hence

(k, b) has order p − 1. We require that (n,−1)C(l, d) have order dividing 2q in
Dq � Inn(Hol(Zq), which maps 1-1 to Hol(Zq) × Hol(Zq) as noted above. Thus
(n− l,−d) and (l, d) must have order 1, 2 or q in Hol(Zq). But then d = 1 or −1.
Thus any regular embedding β satisfies:
1. β(1, 1) = (0, 1)C(0, 1)× (m, 1) with m �= 0 in Zp, and
2. β(0, b) = (n,−1)C(l, d)× (k, b) with d = ±1.
Now modify β by conjugating by

(0, 1)C(h, c)× (0, br) ∈ Aut(Dq × Zp) ⊂ Dq � Inn(Hol(Zq))×Hol(Zp).

First, looking at β(1, 1):

((0, 1)C(h, c)× (0, br)))((0, 1)C(0, 1)× (m, 1))((0, 1)C(h, c)× (0, br))−1)
= ((0, 1)C(0, 1)× (brm, 1).

Now, looking at β(0, b):

((0, 1)C(h, c)× (0, br)))((n,−1)C(l, d)× (k, b))((0, 1)C(h, c)× (0, br))−1)
= (2h+ cn,−1)C(cl + h− dh, d)× (brk, b).

Let β henceforth denote the conjugated embedding. Choose r so that brm = 1.
Then

β(1, 1) = (0, 1)C(0, 1)× (1, 1).
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We choose h, c in

β(0, b) = (2h+ cn,−1)C(cl + h(1− d), d) + (brk, b).

We have four possibilities.
If d = 1 and l = 0 we can choose c �= 0 and h so that

β(0, b) = (0,−1)C(0, 1) + (brk, b).

But then β is not regular, for π1β does not map onto Dq.
If d = −1 and l = n, then we can choose c = 2, h = −n, but then

β(0, b) = (0,−1)C(0,−1) + (brk, b),

so β is not regular.
If d = 1 and l �= 0, choose c ≡ l−1 (mod q) and h so that 2h+ cn ≡ 0, then

β(0, b) = (0,−1)C(1, 1) + (brk, b).

If d = −1 and l �= n, then we can choose c, h �= 0 with

2h+ cn = 0
cl + 2h = 1,

giving

β(0, b) = (0,−1)C(1,−1) + (brk, b).

One verifies that

β(1, 1) = ((0, 1)C(0, 1)× (1, 1)

β(0, b) = ((0,−1)C(1,±1)× (brk, b)

is regular, for any k. There are p choices for k, and hence, up to equivalence, there
are 2p regular embeddings of Hol(Zp) into Hol(Dq ×Zp): e(Hol(Zp), Dq ×Zp) = 2p.

(3): Proof that e(Γ, Dp × Zq) = 2p. This argument is similar to the last case.
We seek regular embeddings

β : Hol(Zp)→ Hol(Dp × Zq) ∼= Hol(Dp)×Hol(Zq).

We have

Hol(Dp × Zq) ∼= Hol(Dp)×Hol(Zq)

and by Lemma 3.1, the map

Hol(Dp) ∼= Dp � Inn(Hol(Zp)→ Hol(Zp)×Hol(Zp)

is 1-1 and maps (m, ε)C(n, d) to (m, ε)(n, d)× (n, d).
Suppose β(1, 1) = (m, ε)C(n, d)×(l, c). Then β(1, 1) must have order p, so (n, d)

and (m+ εn, εd) have order dividing p. This implies d = ε = 1. Also (l, c) has order
dividing p in Hol(Zq), so (l, c) = (0, 1). Thus

β(1, 1) = (m, 1)C(n, 1)× (0, 1)

with m or n �≡ 0 (mod p).
Suppose β(0, b) = (l, ε)C(k, d)× (s, c), of order 2q. Then ε = −1 or else β is not

regular. Also, (s, c) must have order dividing 2q in Hol(Zq). But since β is regular,
we must have (t, ∗) in the image of β for all t in Zq, so c = 1 and s �= 0.
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Applying β to the relation (b, 1)(0, b) = (0, b)(1, 1) yields

((bm, 1)C(bn, 1)× (0, 1))((l,−1)C(k, d)× (s, 1))
= ((l,−1)C(k, d)× (s, 1))((m, 1)C(n, 1)× (0, 1)).

This yields no condition on s, but on the left components we obtain

(bm+ 2bn+ l,−1)C(bn+ k, d) = (l − dm,−1)C(dn+ k, d).

Thus
2bn+ bm = −dm

bn = dn.

If n �= 0, then b = d and n = −m. If n = 0, then d = −b. Thus
β(1, 1) = (m, 1)C(−m, 1)× (0, 1)
β(0, b) = (l,−1)C(k, b)× (s, 1),

or
β(1, 1) = (m, 1)C(0, 1)× (0, 1)
β(0, b) = (l,−1)C(k,−b)× (s, 1).

One then sees easily that β(0, b) has order dividing 2q.
Now we modify β by an automorphism of Dp × Zq.
If we conjugate the right factors by (0, s−1) in Aut(Zq), then (s, 1) is transformed

into (1, 1).
If we conjugate the left factors by (0, 1)C(g, c) in Aut(Dp), then

(m, 1)C(n, 1) becomes (cm, 1)C(cn, 1)

and

(l,−1)C(k,±b) becomes (2g + cl,−1)C(g + ck ∓ bg,±b).

Choose c so that cm = 1. Then cn = 0 or −1.
Choose g so that 2g + cl = 0. Then we have the following representatives of

equivalence classes of β:
β(1, 1) = (1, 1)C(−1, 1)× (0, 1)
β(0, b) = (0,−1)C(k, b)× (1, 1),

and
β(1, 1) = (1, 1)C(0, 1)× (0, 1)
β(0, b) = (0,−1)C(k,−b)× (1, 1).

It is a routine check that for any k modulo p, both β are regular Thus we have 2p
equivalence classes of regular embeddings of Hol(Zp) into Hol(Dp × Zq).

(4): Proof that e(Γ, Z2qp) = p. Let

β : Hol(Zp)→ Hol(Z2pq) ∼= Hol(Zp)×Hol(Zq)× Z2

be a regular embedding. Then β(1, 1) has order p, so

β(1, 1) = (m, 1)× (0, 1)× 0

for some m �≡ 0 (mod p). Also, β(0, b) has order p− 1 = 2q, so

β(0, b) = (n, d)× (l, 1)× e

with d �≡ 1 (mod p). If e ≡ 0 (mod 2) or l ≡ 0 (mod q) then β is not regular,
hence we have e ≡ 1 (mod 2) and l �≡ 0 (mod q).
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The condition (b, 1)(0, b) = (0, b)(1, 1) implies that d ≡ b (mod p). Thus in
Hol(Z2pq),

β(1, 1) = (2qm, 1)
β(0, b) = (n, c)

with p not dividing m, 2q not dividing n, and c ≡ b (mod p), c ≡ 1 (mod 2q).
Now we consider β under equivalence by automorphisms of Z2pq. We conjugate

β by (0, d) with d coprime to 2pq:

(0, d)(2qm, 1)(0, d−1) = (2dqm, 1)
(0, d)(n, c)(0, d−1) = (dn, c).

Choose d so that
dm ≡ 1 (mod p)
dn ≡ 1 (mod 2q).

Then after conjugating, β becomes:

β(1, 1) = (2q, 1)
β(0, b) = (1 + 2ql, c).

We check that β is regular for any l modulo p. We have

β(n, bk) = β(n, 1)β(0, b)k

= (2qn, 1)((1 + 2ql)(1 + c+ · · ·+ ck−1), ck)
= (2qn+ (1 + 2ql)(1 + c+ · · ·+ ck−1), ck).

Let a be any element of Z2pq. To solve

a ≡ 2qn+ (1 + 2ql)(1 + c+ · · ·+ ck−1) (mod 2pq)

for n and k it suffices to solve

a ≡ 2qn+ (1 + 2ql)(1 + c+ · · ·+ ck−1) (mod p)
a ≡ 1 + c+ · · ·+ ck−1 ≡ k (mod 2q).

Clearly for each a modulo 2pq there are unique values for k, n that solve these
congruences. Thus for any l, β is 1-1 and regular, and so e(Hol(Zp), Z2pq) = p.

(5): Proof that e(Γ, Dpq) = 4p. Let β : Hol(Zp) → Hol(Dpq) be a regular
embedding. We have

Hol(Dpq) = Dpq � Inn(Hol(Zpq))→ Hol(Zpq)×Hol(Zpq)

by (m, ε)C(n, d) �→ (m, ε)(n, d)× (n, d). Also,

Hol(Zpq) ∼= Hol(Zp)×Hol(Zq)

by (l, c) �→ ((l, c)mod(p), (l, c)mod(q)). Under this map, Dpq maps into Dp ×Dq.
Let β(1, 1) = (m, ε)C(n, d), of order p. Then β(1, 1) maps to

(m+ εd, εd)× (n, d) mod p, (m+ εd, εd)× (n, d) mod q,

which must have order p. Hence

(m+ εd, εd) ≡ (0, 1) (mod q)

(n, d) ≡ (0, 1) (mod q)
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and

εd ≡ d ≡ 1 (mod p)

n or m+ εn �≡ 0 (mod p).

Let β(0, b) = (l, ε)C(k, c). By regularity we must have ε = −1, or else π1(β)
maps into {(∗, 1)} ⊂ Dpq. Then β(0, b) maps to

(l − k,−c)× (k, c) mod p, (l − k,−c)× (k, c) mod q.

This has order 2q = p− 1, so we must have

c ≡ ±1 (mod q).

From (b, 1)(0, b) = (0, b)(1, 1) we obtain

(bqm, 1)C(bqn, 1)(l,−1)C(k, c) = (l,−1)C(k, c)(qm, 1)C(qn, 1),

hence

(bqm+ 2bqn+ l, C(k + bqn, c) = (l − cqm,−1)C(k + cqn, c)

and so
bqn = cqn
cqm = bqm+ 2bqn.

This yields no conditions modulo q, but modulo p, we have:
1. If n �≡ 0, then c = b and m = −n.
2. If n ≡ 0, then c = −b and m �≡ 0.
Now we look for a nice representative for β modulo conjugation by elements of

Inn(Hol(Zpq)). For (g, d) ∈ Hol(Zpq),

C(g, d)β(1, 1)C(g, d)−1 = (g, d)(qm, 1)(g, d)−1C((g, d)(qn, 1)(g, d)−1)
= (dqm, 1)C(dqn, 1),

C(g, d)β(0, b)C(g, d)−1 = (g, d)(l,−1)(g, d)−1C((g, d)(k, c)(g, d)−1)
= (2g + dl,−1)C(g + dk − cg, c).

We may choose d and g modulo pq by choosing them modulo p and modulo q
separately.
Modulo p:
1. If n �≡ 0, choose d so that dqn ≡ −1, then dqm ≡ −dqn ≡ 1 and c ≡ b.
2. If n ≡ 0, choose d so that dqm ≡ 1 and c ≡ −b.
Choose g so that 2g + dl ≡ 0. Then, since d �≡ 0, g − cg + dk is arbitrary, so

(letting β now denote the conjugated embedding) we have, modulo p:

β(1, 1) = (1, 1)C(−1, 1), β(0, b) = (0,−1)C(k, b)
or

β(1, 1) = (1, 1)C(0, 1), β(0, b) = (0,−1)C(k,−b).

Modulo q:

β(1, 1) = (0, 1)C(0, 1)

β(0, b) = (2g + dl,−1)C((1− c)g + dk, c)

where c ≡ ±1.
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If c ≡ 1 and k �≡ 0, set dk ≡ 1 and

2g + dl ≡ 0.

Then

β(1, 1) = (0, 1)C(0, 1)

and

β(0, b) = (0,−1)C(1, 1)
or (if k ≡ 0)

β(0, b) = (0,−1)C(0, 1).
However, in this last case, β is not regular: π1β maps to {(0,±1)} ⊂ Hol(Zq).
If c ≡ −1, we have

β(0, b) = (2g + dl,−1)C((2g + dk,−1).
If l ≡ k we can choose g so that 2g + dk = 2g + dl ≡ 0, but then β is not regular.
Thus we must have l �≡ k, and then we may choose d �= 0 and g so that

2g + dl ≡ 0
2g + dk ≡ 1

and so

β(1, 1) = (0, 1)C(0, 1)

and

β(0, b) = (0,−1)C(−1, 1).
To summarize, any regular embedding is equivalent to

β(1, 1) = (1, 1)C(−1, 1), β(0, b) = (0,−1)C(k, b)
or

β(1, 1) = (1, 1)C(0, 1), β(0, b) = (0,−1)C(k,−b)

modulo p and to

β(1, 1) = (0, 1)C(0, 1), β(0, b) = (0,−1)C(1, 1)
or

β(1, 1) = (0, 1)C(0, 1), β(0, b) = (0,−1)C(−1, 1)
modulo q.
We show that all four combinations give regular embeddings of Hol(Zp) to

Hol(Dpq), and so, since k is arbitrary in Zp, we have 4p equivalence classes of
regular embeddings.
Note that in every combination,

β1(l, br)β2(l, br)−1 = (∗, (−1)r)
both modulo p and modulo q, and so β1 · β−1

2 maps to Dpq ⊂ Hol(Zp). To show
regularity, we need only show that modulo p every element of Dp is in the image
of β1 · β−1

2 , and similarly modulo q.
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Mod p: If

β(1, 1) = (1, 1)C(−1, 1), β(0, b) = (0,−1)C(k, b)
modulo p, then

β1(l, br)β2(l, br)−1 =
(
−k

(
1− (−b)r

1 + b

)
+ (−1)r

(
−l + k

(
1− br

1− b

))
, (−1)r

)

and for r and l arbitrary we can obtain all elements (m,±1) of Dp.
If

β(1, 1) = (1, 1)C(0, 1), β(0, b) = (0,−1)C(k,−b)

modulo p then

β1(l, br)β2(l, br)−1 =
((

l + (−k)
1− br

1− b

)
+ (−1)rk

(
1− (−b)r

1 + b

)
, (−1)r

)

and again for r and l arbitrary we can obtain all elements (m,±1) of Dp.

Mod q: If

β(1, 1) = (0, 1)C(0, 1), β(0, b) = (0,−1)C(1, 1)
modulo q, then

β1(l, br)β2(l, br)−1 =

{
(−r, 1) if r is even,
(−1 + r,−1) if r is odd.

Since 0 ≤ r < 2q and we’re working modulo q, we can obtain all elements (m,±1)
of Dq.
If

β(1, 1) = (0, 1)C(0, 1), β(0, b) = (0,−1)C(−1, 1)
modulo q, then

β1(l, br)β2(l, br)−1 =

{
(−r, 1) if r is even,
(1− r,−1) if r is odd.

Again, since 0 ≤ r < 2q and we’re working modulo q, we can obtain all elements
(m,±1) of Dq.
Thus

{β1(l, br)β2(l, br)−1} =
{
Dp modulo p

Dq modulo q,

and so all four combinations of β modulo p and modulo q are regular. This com-
pletes the proof that e(Hol(Zp), Dpq) = 4p. �

Combining Theorems 2.1 and 4.1 yields:

Corollary 4.2. a) If L is a Galois extension of K, fields, with Galois group
Γ = Hol(Zp), p > 5 a safeprime, then for every group G of cardinality that of
Γ, there is a H-Hopf Galois structure on L/K where the associated group of
H is G.

b) The number of Hopf Galois structures on L/K is 2 + 3p+ 4pq.
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Remark 4.3. N. Byott [By03b] has obtained the analogous result to Corollary 4.2a)
for both the cyclic group and the non-abelian group of order pq, p and q primes
with q dividing p − 1. His approach is not to determine regular embeddings of Γ
into Hol(G) up to equivalence, but rather to determine the set of regular subgroups
of Hol(G) whose intersection with Aut(G) is a given cardinality.
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