New York Journal of Mathematics

New York J. Math. 10 (2004) 169-174.

Weak- L^1 estimates and ergodic theorems

Ciprian Demeter and Anthony Quas

ABSTRACT. We prove that for any dynamical system (X, Σ, m, T) , the maximal operator defined by

$$N^*f(x) = \sup_n \frac{1}{n} \# \left\{ 1 \le i : \frac{f(T^i x)}{i} \ge \frac{1}{n} \right\}$$

is almost everywhere finite for f in the Orlicz class $L \log \log L(X)$, extending a result of Assani [2]. As an application, a weighted return times theorem is also proved.

Contents

1.	Introduction	169
2.	Main results	171
References		174

1. Introduction

Let T be a measure preserving transformation of a probability space (X, Σ, m) . We call (X, Σ, m, T) a dynamical system. The following return times theorem was proved in [4]:

Theorem 1 (Bourgain). Let $1 \le p \le \infty$ and let 1/p+1/q = 1. For each dynamical system (X, Σ, m, T) and $f \in L^p(X)$, there is a set $X_0 \subset X$ of full measure, such that for any other dynamical system (Y, \mathcal{F}, μ, S) , $g \in L^q(Y)$ and $x \in X_0$, the limit,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f(T^k x) g(S^k y),$$

exists for μ a.e. y.

One of the most interesting unanswered questions that emerges from this result is whether or not the fact that f and g lie in dual spaces is in general necessary in order to have a positive result. Neither of the existing proofs of Theorem 1 gives any indication on this, since each of them relies on Hölder's inequality.

ISSN 1076-9803/04

Received August 14, 2003.

Mathematics Subject Classification. 37A30, 46E30, 60F15.

Key words and phrases. Return times theorem, Orlicz spaces.

The second author's research was partially supported by NSF Grant DMS-0200703.

On the other hand, if (gS^k) is replaced with a sequence (ξ_k) of independent identically distributed random variables such that $\mathbb{E}(|\xi_1|) < \infty$, then the following criterion of B. Jamison, S. Orey and W. Pruitt [5] proves to be an excellent tool to break the duality.

Theorem 2 (Jamison, Orey and Pruitt). Let (a_k) be a sequence of positive real numbers and let $N^* = \sup_n \frac{1}{n} \#\{k : a_k / \sum_{i=1}^k a_i \ge 1/n\}$, then the following are equivalent:

- 1. $N^* < \infty$.
- For any i.i.d. sequence of random variables (ξ_k) such that E(|ξ₁|) < ∞, defining a new sequence (Ξ_n) of random variables by

$$\Xi_n(\omega) = \sum_{k=1}^n a_k \xi_k(\omega) / \sum_{k=1}^n a_k$$

the sequence (Ξ_n) converges pointwise almost surely.

Motivated by this criterion, Assani [1] introduced the following maximal function: given $f \in L^1(X)$, consider

$$N^*f(x) = \sup_n \frac{1}{n} \# \left\{ 1 \le i : \frac{f(T^i x)}{i} \ge \frac{1}{n} \right\}.$$

He proved in [2] for $f \in L \log L(X)$, $N^* f \in L^1$ and in particular $N^* f(x) < \infty$ for a.e. x. Based on this and Theorem 2, the following "duality-breaking" version of Theorem 1 follows almost immediately:

Corollary 3 (Assani). Let (X, Σ, m, T) be a measure-preserving transformation and let the function f satisfy $\int |f| \log^+ |f| dm < \infty$, that is $f \in L \log L(X)$. Then there is a set $X_0 \subset X$ of full measure, such that for any sequence (ξ_k) of i.i.d. random variables on the probability space $(\Omega, \mathcal{F}, \mu)$ with $\xi_1 \in L^1(\Omega)$ and any $x \in X_0$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(T^k x) \xi_k(\omega)$$

exists for μ a.e. ω .

Moreover in [1] it is proved that if Theorem 1 is true for p = q = 1, then $N^*f(x)$ must be finite almost everywhere for all $f \in L^1(X)$. This connection sheds more light on the importance of the operator N^* and motivates its further study.

In the next section we will prove the finiteness of N^* for functions in the larger class $L \log \log L$. Note that while Assani shows that $N^*f \in L^1$ for $f \in L \log L$, our result establishes that $N^*f \in L^{1,\infty}$ for $f \in L \log \log L$ (i.e., that $\sup_t tm\{x: N^*f(x) > t\} < \infty$) so that while our hypothesis is weaker, so is our conclusion. Note however that since our conclusion implies that $N^*f(x) < \infty$ for almost every x, it is sufficient to imply a corollary like Corollary 3 in the case where $f \in L \log \log L$.

In a preprint that appeared at around the time this paper was submitted, Assani, Buczolich, and Mauldin [3] show that there exists an $f \in L^1(X)$ such that $N^*f(x) = \infty$ almost everywhere.

2. Main results

Throughout this section we will denote the natural logarithm of x by $\log x$ and the weak- L^1 norm of f by

$$\|f\|_{1,\infty} = \sup_{\lambda>0} \lambda m\{x : |f(x)| > \lambda\}$$

We will also need to refer to the *entropy* of a sequence of positive real numbers. Specifically, for a sequence (a_n) of nonnegative real numbers (not all 0), define the entropy by

$$H((a_n)) = \sum_{n} -\frac{a_n}{\sum_j a_j} \log\left(\frac{a_n}{\sum_j a_j}\right),$$

under the convention $0 \log 0 = 0$.

We define f^* to be the ergodic maximal function, $f^*(x) = \sup_n \left| \frac{1}{n} \sum_{k=1}^n f(T^k x) \right|$. The maximal ergodic theorem asserts that $\|f^*\|_{1,\infty} \leq \|f\|_1$ for all $f \in L^1(X)$. The following inequality from [7] turns out to be extremely useful to our investigation:

Lemma 4. Suppose that for $i = 1, 2, ..., g_i(x)$ is an $L_{1,\infty}$ function on a measure space such that $\sum ||g_i||_{1,\infty} < \infty$. Then

$$\left\|\sum_{i=1}^{\infty} g_i\right\|_{1,\infty} \le 2(K+2)\sum_{i=1}^{\infty} \|g_i\|_{1,\infty},$$

where K is the entropy of the sequence $(||g_n||_{1,\infty})$.

We can now prove our main result.

Theorem 5. For each dynamical system (X, Σ, m, T) and each $f \in L \log \log L(X)$ (that is f satisfying $\int |f| \log^+ \log^+ |f| dm < \infty$), $N^* f(x) < \infty$ for a.e. x.

Proof. It is enough to consider f positive. Making use of the fact that $f(x) \leq \sum_{i=1}^{\infty} 2^i \chi_{A_i}(x)$, where $A_i = \{x : 2^{i-1} < f(x) \leq 2^i\}$ for $i \geq 2$ and $A_1 = \{x : f(x) \leq 2\}$, it easily follows that for each n,

$$\frac{1}{n} \# \left\{ k \ge 1 : \frac{f(T^k x)}{k} \ge 1/n \right\} \le \frac{1}{n} \sum_{i=1}^{\infty} \sum_{k=1}^{n2^i} \chi_{A_i}(T^k x) \le \sum_{i=1}^{\infty} 2^i (\chi_{A_i})^* (x).$$

We will show that the last term in the above inequality is finite a.e. by proving that its $L_{1,\infty}$ norm is finite.

Let $a_i = 2^i \|\chi_{A_i}\|_{1,\infty}$. By the maximal ergodic theorem, we see that $a_i \leq 2^i m(A_i)$. The fact that $f \in L \log \log L$ implies that $\sum_i a_i \log i < \infty$ (and hence clearly M, which we define to be $\sum_i a_i$, is finite). From the lemma above, we see that it is sufficient to show that the entropy of the sequence (a_i) is finite: $\sum_i -a_i/M \log(a_i/M) < \infty$. One quickly sees that this is equivalent to establishing $\sum_i -a_i \log a_i < \infty$.

Consider now $S_1 = \{i : a_i \le 1/i^2\}$ and $S_2 = \{i : a_i > 1/i^2\}$. Now

$$\sum_{i\in S_1} -a_i\log a_i \leq 1 + \sum_{j=2}^\infty \log(j^2)/j^2 < \infty$$

since $\psi(t) = -t \log t$ is increasing on [0, 1/e]. On the other hand

$$\sum_{i \in S_2} -a_i \log a_i < 2 \sum_{i \in S_2} a_i \log i < \infty.$$

Corollary 6. For each dynamical system (X, Σ, m, T) and nonnegative function $f \in L \log \log L(X)$, there is a set $X_0 \subset X$ of full measure, such that for any sequence (ξ_k) of i.i.d. random variables on the probability space $(\Omega, \mathcal{F}, \mu)$ with $\xi_1 \in L^1(\Omega)$ and any $x \in X_0$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(T^k x) \xi_k(\omega)$$

exists for μ a.e. ω .

There does not seem to be better way of exploiting Lemma 4 in order to extend even more the class of functions for which N^*f is almost everywhere finite. Moreover, as we show in the following proposition, the inequality in Lemma 4 is sharp up to a constant. We note that a more general version of this proposition appears in work of Kalton [6].

Proposition 7. Given positive numbers a_1, \ldots, a_n , there exist functions g_1, \ldots, g_n with $||g_i||_{1,\infty} = a_i$ such that $||g_1 + \ldots + g_n||_{1,\infty} \ge \frac{1}{6}(2+K) \sum ||g_i||_{1,\infty}$, where K is the entropy of the sequence (a_i) .

Proof. For each *i*, let ξ_i be a random variable taking the value 1/n with probability $(1-a_i)^{n-1}a_i$. Moreover, the ξ_i 's will be chosen to be independent. One can then check that $\mathbb{P}(\xi_i > \lambda) \leq a_i/\lambda$ while $\mathbb{P}(\xi_i \geq 1 - \epsilon) = a_i$ for ϵ small enough, so that $\|\xi_i\|_{1,\infty} = a_i$.

We see that

$$\mathbb{E}(\xi_i) = \sum_{n=1}^{\infty} a_i \frac{(1-a_i)^{n-1}}{n}$$
$$= -\frac{a_i}{1-a_i} \log a_i \ge -a_i \log a_i$$

Similarly, we see that

$$\mathbb{E}(\xi_i^2) = a_i \sum_{n=1}^{\infty} \frac{1}{n^2} (1 - a_i)^{n-1} \le a_i \sum_{n=1}^{\infty} \frac{1}{n^2} \le 2a_i.$$

In particular, setting $\Xi = \xi_1 + \cdots + \xi_n$, we see that $\mathbb{E}(\Xi) \ge K$ but $\operatorname{Var}(\Xi) \le 2$. Using Tchebychev's inequality, we see that

$$\mathbb{P}(\Xi \ge K - 2) \ge \mathbb{P}(|\Xi - \mathbb{E}(\Xi)| \le 2) \ge 1 - \frac{\operatorname{Var}(\Xi)}{2^2} \ge \frac{1}{2}.$$

If K > 4, we have $\mathbb{P}(\Xi \ge K/2) \ge \frac{1}{2}$ so that the weak- L^1 norm exceeds K/4, which in turn exceeds (K+2)/6. If $K \le 4$, take f to be any function of weak L^1 norm 1 and let $f_n = a_n f$, so that $||f_n||_{1,\infty} = a_n$. Then $\sum f_i = f$, so that $||\sum f_i||_{1,\infty} =$ $1 \ge \frac{1}{6}(K+2)\sum ||f_i||_{1,\infty}$. This completes the proof of the proposition. \Box **Remark 8.** Note that although $f \in L \log \log L$ is sufficient to guarantee that $N^* f < \infty$ almost everywhere, there are functions f outside $L \log \log L(X)$, for which $N^* f(x) < \infty$ for a.e. x. In particular, it is easy to construct functions outside $L \log \log L$ for which the entropy computed in Theorem 5 is finite, guaranteeing the finiteness of $N^* f$.

Further, if we are willing to restrict the system, we see that no condition on the distribution of f ensures the divergence of $N^*f(x)$. Specifically, Lemma 1 of [1] guarantees that whenever $T^k f$ are independent (identically distributed) random variables with an arbitrary L^1 distribution, then $N^*f(x) < \infty$ for a.e. x.

Another consequence of Theorem 5 is the following weighted version of Corollary 3.

Theorem 9. For each dynamical system (X, Σ, m, T) and $f \in L^1(X)$, there is a set $X_0 \subset X$ of full measure, such that for any sequence (ξ_k) of i.i.d. random variables on the probability space $(\Omega, \mathcal{F}, \mu)$ with $\xi_1 \in L^1(\Omega)$ and any $x \in X_0$

$$\lim_{n \to \infty} \frac{1}{n \log \log n} \sum_{k=1}^{n} f(T^k x) \xi_k(\omega) = 0$$

for μ a.e. ω .

The proof will be based on the following relative of Theorem 5. Define

$$L^* f(x) = \sup_n \frac{1}{n} \# \left\{ 1 \le i : \frac{f(T^i x)}{i \log \log i} \ge \frac{1}{n} \right\}.$$

Lemma 10. Let (X, Σ, m, T) be a measure-preserving system. For each $f \in L_1(X)$, $L^*f(x) < \infty$ for a.e. x.

Proof. As usual, we can assume f is positive. Fix an $n \in \mathbb{N}$. Using the fact that $f(x) \leq \sum_{i=1}^{\infty} 2^i \chi_{A_i}(x)$ we get that

$$\frac{1}{n} \# \left\{ 1 \le k : \frac{f(T^k x)}{k \log \log k} \ge 1/n \right\} \le \frac{1}{n} \sum_{i=1}^{\infty} \sum_{k=1}^{p_i} \chi_{A_i}(T^k x) \le \frac{1}{n} \sum_{i=1}^{\infty} p_i(\chi_{A_i})^*(x)$$

where p_i is the largest integer such that $p_i(\log \log p_i) \leq n2^i$. Letting $\phi: (1, \infty) \to \mathbb{R}$ be the increasing function $\phi(x) = x \log \log x$, we see that $p_i \leq \phi^{-1}(n2^i)$. We claim that there exists a C > 0 such that $p_i \leq C \frac{2^i n}{\log(i+1)}$ for all $i, n \in \mathbb{N}$. To see this, we check the existence of a C such that $\phi^{-1}(2^x) \leq C \frac{2^x}{\log(x+1)}$ or equivalently $2^x \leq \phi(C \frac{2^x}{\log(x+1)})$ for all $x \geq 0$. Hence

$$\sup_{n} \frac{1}{n} \# \left\{ 1 \le i : \frac{f(T^{i}x)}{i \log \log i} \ge \frac{1}{n} \right\} \le C \sum_{i=1}^{\infty} \left(\frac{2^{i}}{\log(i+1)} \right) (\chi_{A_{i}})^{*}(x).$$

Based on Lemma 4 and on the maximal ergodic theorem, it suffices to prove that $\sum_{i=1}^{\infty} -\left(\frac{2^i \|\chi_{A_i}\|_1}{\log(i+1)}\right) \log\left(\frac{2^i \|\chi_{A_i}\|_1}{\log(i+1)}\right) < \infty$. By splitting the sum in two parts depending on whether or not $\frac{2^i \|\chi_{A_i}\|_1}{\log(i+1)} < \frac{1}{i^2}$ and reasoning as in the proof of Theorem 5, it easily follows that the sum from above is finite.

Proof of Theorem 9. It suffices to assume that both f and ξ_1 are positive. According to the previous lemma, let X_0 the subset of full measure of X containing all the points x for which $L^*f(x) < \infty$. For a fixed $x \in X_0$ denote $w_k := f(T^k x)$ and also $W_k := k \log \log k$. The argument of Jamison, Orey and Pruitt from [5] can be extended with really no essential changes to this case, to conclude that since

$$\sup_{n} \frac{1}{n} \# \left\{ 1 \le i : \frac{w_i}{W_i} \ge \frac{1}{n} \right\} < \infty,$$
$$\lim_{n \to \infty} \frac{1}{W_n} \sum_{k=1}^n w_k \xi_k(\omega) = 0$$

for μ a.e. ω .

Remark 11. It is not known whether in Theorem 9 the weight $n \log \log n$ can be replaced with a smaller one, like $n \log \log \log n$. Any improvement on this weight will necessarily have behind it an extension of the result of Theorem 5 to a larger Orlicz class. On the other hand, a combination of Theorem 2 and the result from [3], shows that this weight can not be chosen to be n.

Remark 12. It would be interesting to find the largest Orlicz class that would guarantee that $N^*f(x) < \infty$ almost everywhere. The above establishes that such an Orlicz class would contain $L \log \log L$.

A careful examination of the proof of [3] demonstrates that in any Orlicz class with an essentially smaller weight than the class $L \log \log \log L$, there exists a function f such that $N^* f(x) = \infty$ almost everywhere.

In particular, these two results demonstrate that the largest Orlicz class that would guarantee that $N^*f(x) < \infty$ almost everywhere lies between $L \log \log L$ and $L \log \log \log L$.

References

- I. Assani, Strong laws for weighted sums of independent identically distributed random variables, Duke Math. J. 88 (1997), 217–246, MR 1455518 (98g:60059), Zbl 0883.60023.
- [2] I. Assani, Convergence of the p-Series for stationary sequences, New York J. Math. 3A (1997), 15–30, MR 1604577 (99c:60061), Zbl 0915.28009.
- [3] I. Assani, Z. Buczolich, and R. Mauldin, An L¹ counting problem in ergodic theory, arXiv math.DS/0307384.
- [4] J. Bourgain, H. Furstenberg, Y. Katznelson and D. Ornstein, *Return times of dynamical systems* (appendix to Bourgain's 'Pointwise ergodic theorems for arithmetic sets'), Inst. Hautes Études Sci. Publ. Math. **69** (1989), 47–50, MR 1019960 (90k:28030), Zbl 0705.28008.
- [5] B. Jamison, S. Orey, and W. Pruitt, Convergence of weighted averages of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 40–44, MR 0182044 (31 #6268), Zbl 0141.16404.
- [6] N. J. Kalton, Sequences of random variables in L_p for p < 1, J. Reine Angew. Math. 329 (1981), 204–214, MR 0636454 (83a:46040), Zbl 0461.60020.
- [7] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35–54, MR 0241685 (39 #3024), Zbl 0182.10801.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA, URBANA, IL 61801 demeter@math.uiuc.edu

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-6429 $\,$

aquas@memphis.edu

This paper is available via http://nyjm.albany.edu:8000/j/2004/10-10.html.