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Weak-L1 estimates and ergodic theorems

Ciprian Demeter and Anthony Quas

Abstract. We prove that for any dynamical system (X, Σ, m, T ), the maxi-
mal operator defined by

N∗f(x) = sup
n

1

n
#

{
1 ≤ i :

f(T ix)

i
≥ 1

n

}
is almost everywhere finite for f in the Orlicz class L log log L(X), extending
a result of Assani [2]. As an application, a weighted return times theorem is
also proved.
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1. Introduction

Let T be a measure preserving transformation of a probability space (X, Σ, m).
We call (X, Σ, m, T ) a dynamical system. The following return times theorem was
proved in [4]:

Theorem 1 (Bourgain). Let 1 ≤ p ≤ ∞ and let 1/p+1/q = 1. For each dynamical
system (X, Σ, m, T ) and f ∈ Lp(X), there is a set X0 ⊂ X of full measure, such
that for any other dynamical system (Y,F , µ, S) , g ∈ Lq(Y ) and x ∈ X0, the limit,

lim
n→∞

1
n

n∑
k=1

f(T kx)g(Sky),

exists for µ a.e. y.

One of the most interesting unanswered questions that emerges from this result
is whether or not the fact that f and g lie in dual spaces is in general necessary in
order to have a positive result. Neither of the existing proofs of Theorem 1 gives
any indication on this, since each of them relies on Hölder’s inequality.

Received August 14, 2003.
Mathematics Subject Classification. 37A30, 46E30, 60F15.
Key words and phrases. Return times theorem, Orlicz spaces.
The second author’s research was partially supported by NSF Grant DMS-0200703.

ISSN 1076-9803/04

169

http://nyjm.albany.edu:8000/j/2004/10-10.html
http://nyjm.albany.edu:8000/j/2004/Vol10.htm
http://nyjm.albany.edu:8000/nyjm.html


170 C. Demeter and A. Quas

On the other hand, if (gSk) is replaced with a sequence (ξk) of independent
identically distributed random variables such that E(|ξ1|) < ∞, then the following
criterion of B. Jamison, S. Orey and W. Pruitt [5] proves to be an excellent tool to
break the duality.

Theorem 2 (Jamison, Orey and Pruitt). Let (ak) be a sequence of positive real
numbers and let N∗ = supn

1
n#{k : ak/

∑k
i=1 ai ≥ 1/n}, then the following are

equivalent:

1. N∗ < ∞.
2. For any i.i.d. sequence of random variables (ξk) such that E(|ξ1|) < ∞, defin-

ing a new sequence (Ξn) of random variables by

Ξn(ω) =
n∑

k=1

akξk(ω)/
n∑

k=1

ak,

the sequence (Ξn) converges pointwise almost surely.

Motivated by this criterion, Assani [1] introduced the following maximal function:
given f ∈ L1(X), consider

N∗f(x) = sup
n

1
n

#
{

1 ≤ i :
f(T ix)

i
≥ 1

n

}
.

He proved in [2] for f ∈ L log L(X), N∗f ∈ L1 and in particular N∗f(x) < ∞ for
a.e. x. Based on this and Theorem 2, the following “duality-breaking” version of
Theorem 1 follows almost immediately:

Corollary 3 (Assani). Let (X, Σ, m, T ) be a measure-preserving transformation
and let the function f satisfy

∫
|f | log+ |f | dm < ∞, that is f ∈ L log L(X). Then

there is a set X0 ⊂ X of full measure, such that for any sequence (ξk) of i.i.d. ran-
dom variables on the probability space (Ω,F , µ) with ξ1 ∈ L1(Ω) and any x ∈ X0

lim
n→∞

1
n

n∑
k=1

f(T kx)ξk(ω)

exists for µ a.e. ω.

Moreover in [1] it is proved that if Theorem 1 is true for p = q = 1, then N∗f(x)
must be finite almost everywhere for all f ∈ L1(X). This connection sheds more
light on the importance of the operator N∗ and motivates its further study.

In the next section we will prove the finiteness of N∗ for functions in the
larger class L log log L. Note that while Assani shows that N∗f ∈ L1 for f ∈
L log L, our result establishes that N∗f ∈ L1,∞ for f ∈ L log log L (i.e., that
supt tm{x : N∗f(x) > t} < ∞) so that while our hypothesis is weaker, so is our
conclusion. Note however that since our conclusion implies that N∗f(x) < ∞ for
almost every x, it is sufficient to imply a corollary like Corollary 3 in the case where
f ∈ L log log L.

In a preprint that appeared at around the time this paper was submitted, Assani,
Buczolich, and Mauldin [3] show that there exists an f ∈ L1(X) such that N∗f(x) =
∞ almost everywhere.
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2. Main results

Throughout this section we will denote the natural logarithm of x by log x and
the weak-L1 norm of f by

‖f‖1,∞ = sup
λ>0

λm{x : |f(x)| > λ}.

We will also need to refer to the entropy of a sequence of positive real numbers.
Specifically, for a sequence (an) of nonnegative real numbers (not all 0), define the
entropy by

H((an)) =
∑

n

− an∑
j aj

log

(
an∑
j aj

)
,

under the convention 0 log 0 = 0.
We define f∗ to be the ergodic maximal function, f∗(x) = supn

∣∣ 1
n

∑n
k=1 f(T kx)

∣∣.
The maximal ergodic theorem asserts that ‖f∗‖1,∞ ≤ ‖f‖1 for all f ∈ L1(X). The
following inequality from [7] turns out to be extremely useful to our investigation:

Lemma 4. Suppose that for i = 1, 2, . . . , gi(x) is an L1,∞ function on a measure
space such that

∑
‖gi‖1,∞ < ∞. Then∥∥∥∥∥

∞∑
i=1

gi

∥∥∥∥∥
1,∞

≤ 2(K + 2)
∞∑

i=1

‖gi‖1,∞,

where K is the entropy of the sequence (‖gn‖1,∞).

We can now prove our main result.

Theorem 5. For each dynamical system (X, Σ, m, T ) and each f ∈ L log log L(X)
(that is f satisfying

∫
|f | log+ log+ |f | dm < ∞), N∗f(x) < ∞ for a.e. x.

Proof. It is enough to consider f positive. Making use of the fact that f(x) ≤∑∞
i=1 2iχAi(x), where Ai = {x : 2i−1 < f(x) ≤ 2i} for i ≥ 2 and A1 = {x : f(x) ≤

2}, it easily follows that for each n,

1
n

#
{

k ≥ 1 :
f(T kx)

k
≥ 1/n

}
≤ 1

n

∞∑
i=1

n2i∑
k=1

χAi(T
kx) ≤

∞∑
i=1

2i(χAi)
∗(x).

We will show that the last term in the above inequality is finite a.e. by proving that
its L1,∞ norm is finite.

Let ai = 2i‖χAi‖1,∞. By the maximal ergodic theorem, we see that ai ≤
2im(Ai). The fact that f ∈ L log log L implies that

∑
i ai log i < ∞ (and hence

clearly M , which we define to be
∑

i ai, is finite). From the lemma above, we
see that it is sufficient to show that the entropy of the sequence (ai) is finite:∑

i −ai/M log(ai/M) < ∞. One quickly sees that this is equivalent to establishing∑
i −ai log ai < ∞.
Consider now S1 = {i : ai ≤ 1/i2} and S2 = {i : ai > 1/i2}. Now

∑
i∈S1

−ai log ai ≤ 1 +
∞∑

j=2

log(j2)/j2 < ∞
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since ψ(t) = −t log t is increasing on [0, 1/e]. On the other hand∑
i∈S2

−ai log ai < 2
∑
i∈S2

ai log i < ∞.

�

Corollary 6. For each dynamical system (X, Σ, m, T ) and nonnegative function
f ∈ L log log L(X), there is a set X0 ⊂ X of full measure, such that for any sequence
(ξk) of i.i.d. random variables on the probability space (Ω,F , µ) with ξ1 ∈ L1(Ω)
and any x ∈ X0

lim
n→∞

1
n

n∑
k=1

f(T kx)ξk(ω)

exists for µ a.e. ω.

There does not seem to be better way of exploiting Lemma 4 in order to extend
even more the class of functions for which N∗f is almost everywhere finite. More-
over, as we show in the following proposition, the inequality in Lemma 4 is sharp
up to a constant. We note that a more general version of this proposition appears
in work of Kalton [6].

Proposition 7. Given positive numbers a1, . . . , an, there exist functions g1, . . . , gn

with ‖gi‖1,∞ = ai such that ‖g1 + . . . gn‖1,∞ ≥ 1
6 (2+K)

∑
‖gi‖1,∞, where K is the

entropy of the sequence (ai).

Proof. For each i, let ξi be a random variable taking the value 1/n with probability
(1 − ai)n−1ai. Moreover, the ξi’s will be chosen to be independent. One can then
check that P(ξi > λ) ≤ ai/λ while P(ξi ≥ 1 − ε) = ai for ε small enough, so that
‖ξi‖1,∞ = ai.

We see that

E(ξi) =
∞∑

n=1

ai
(1 − ai)n−1

n

= − ai

1 − ai
log ai ≥ −ai log ai.

Similarly, we see that

E(ξ2
i ) = ai

∞∑
n=1

1
n2

(1 − ai)n−1 ≤ ai

∞∑
n=1

1
n2

≤ 2ai.

In particular, setting Ξ = ξ1 + · · · + ξn, we see that E(Ξ) ≥ K but Var(Ξ) ≤ 2.
Using Tchebychev’s inequality, we see that

P(Ξ ≥ K − 2) ≥ P(|Ξ − E(Ξ)| ≤ 2) ≥ 1 − Var(Ξ)
22

≥ 1
2
.

If K > 4, we have P(Ξ ≥ K/2) ≥ 1
2 so that the weak-L1 norm exceeds K/4, which

in turn exceeds (K + 2)/6. If K ≤ 4, take f to be any function of weak L1 norm
1 and let fn = anf , so that ‖fn‖1,∞ = an. Then

∑
fi = f , so that ‖

∑
fi‖1,∞ =

1 ≥ 1
6 (K + 2)

∑
‖fi‖1,∞. This completes the proof of the proposition. �
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Remark 8. Note that although f ∈ L log log L is sufficient to guarantee that
N∗f < ∞ almost everywhere, there are functions f outside L log log L(X), for
which N∗f(x) < ∞ for a.e. x. In particular, it is easy to construct functions out-
side L log log L for which the entropy computed in Theorem 5 is finite, guaranteeing
the finiteness of N∗f .

Further, if we are willing to restrict the system, we see that no condition on
the distribution of f ensures the divergence of N∗f(x). Specifically, Lemma 1 of
[1] guarantees that whenever T kf are independent (identically distributed) random
variables with an arbitrary L1 distribution, then N∗f(x) < ∞ for a.e. x.

Another consequence of Theorem 5 is the following weighted version of Corol-
lary 3.

Theorem 9. For each dynamical system (X, Σ, m, T ) and f ∈ L1(X), there is
a set X0 ⊂ X of full measure, such that for any sequence (ξk) of i.i.d. random
variables on the probability space (Ω,F , µ) with ξ1 ∈ L1(Ω) and any x ∈ X0

lim
n→∞

1
n log log n

n∑
k=1

f(T kx)ξk(ω) = 0

for µ a.e. ω.

The proof will be based on the following relative of Theorem 5. Define

L∗f(x) = sup
n

1
n

#
{

1 ≤ i :
f(T ix)

i log log i
≥ 1

n

}
.

Lemma 10. Let (X, Σ, m, T ) be a measure-preserving system. For each f ∈ L1(X),
L∗f(x) < ∞ for a.e. x.

Proof. As usual, we can assume f is positive. Fix an n ∈ N. Using the fact that
f(x) ≤

∑∞
i=1 2iχAi(x) we get that

1
n

#
{

1 ≤ k :
f(T kx)

k log log k
≥ 1/n

}
≤ 1

n

∞∑
i=1

pi∑
k=1

χAi
(T kx) ≤ 1

n

∞∑
i=1

pi(χAi
)∗(x)

where pi is the largest integer such that pi(log log pi) ≤ n2i. Letting φ : (1,∞) → R

be the increasing function φ(x) = x log log x, we see that pi ≤ φ−1(n2i). We
claim that there exists a C > 0 such that pi ≤ C 2in

log(i+1) for all i, n ∈ N. To see

this, we check the existence of a C such that φ−1(2x) ≤ C 2x

log(x+1) or equivalently

2x ≤ φ(C 2x

log(x+1) ) for all x ≥ 0. Hence

sup
n

1
n

#
{

1 ≤ i :
f(T ix)

i log log i
≥ 1

n

}
≤ C

∞∑
i=1

(
2i

log(i + 1)

)
(χAi)

�(x).

Based on Lemma 4 and on the maximal ergodic theorem, it suffices to prove that∑∞
i=1 −

(
2i‖χAi

‖1

log(i+1)

)
log

(
2i‖χAi

‖1

log(i+1)

)
< ∞. By splitting the sum in two parts depend-

ing on whether or not 2i‖χAi
‖1

log(i+1) < 1
i2 and reasoning as in the proof of Theorem 5, it

easily follows that the sum from above is finite. �
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Proof of Theorem 9. It suffices to assume that both f and ξ1 are positive. Ac-
cording to the previous lemma, let X0 the subset of full measure of X containing
all the points x for which L∗f(x) < ∞. For a fixed x ∈ X0 denote wk := f(T kx)
and also Wk := k log log k. The argument of Jamison, Orey and Pruitt from [5] can
be extended with really no essential changes to this case, to conclude that since

sup
n

1
n

#
{

1 ≤ i :
wi

Wi
≥ 1

n

}
< ∞,

lim
n→∞

1
Wn

n∑
k=1

wkξk(ω) = 0

for µ a.e. ω. �
Remark 11. It is not known whether in Theorem 9 the weight n log log n can be
replaced with a smaller one, like n log log log n. Any improvement on this weight
will necessarily have behind it an extension of the result of Theorem 5 to a larger
Orlicz class. On the other hand, a combination of Theorem 2 and the result from
[3], shows that this weight can not be chosen to be n.

Remark 12. It would be interesting to find the largest Orlicz class that would
guarantee that N∗f(x) < ∞ almost everywhere. The above establishes that such
an Orlicz class would contain L log log L.

A careful examination of the proof of [3] demonstrates that in any Orlicz class
with an essentially smaller weight than the class L log log log L, there exists a func-
tion f such that N∗f(x) = ∞ almost everywhere.

In particular, these two results demonstrate that the largest Orlicz class that
would guarantee that N∗f(x) < ∞ almost everywhere lies between L log log L and
L log log log L.
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