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A classification result for simple real approximate
interval algebras

P. J. Stacey

Abstract. A classification in terms of K-theory and tracial states is obtained
for those real structures which are compatible with the inductive limit structure
of a simple C∗-inductive limit of direct sums of algebras of continous matrix
valued functions on an interval.
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1. Introduction

There has been remarkable progress in recent years in the classification of simple
amenable C∗-algebras, following the program set down by George Elliott. See, for
example, the surveys [7], [13], [16].

By contrast there has been little attention paid to real C∗-algebras other than
the real AF-algebras considered in [9], [12], [19]. The purpose of the present paper
is to show, by concentrating on the very basic example of real AI-algebras, that it
can be expected that there will be appropriate real counterparts to all the complex
results.

Many of the classification results for simple C∗-algebras have exploited an as-
sumed inductive limit structure in the algebra. It is not clear that, if the complex-
ification of a real C∗-algebra possesses such an inductive limit structure, then so
does the algebra itself: this is open even for the CAR (or 2∞ UHF) algebra. There-
fore the present paper will restrict attention to the situation where the real algebra
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does have such an inductive limit structure, giving an AI-structure in its complex-
ification. More precisely the real algebras will be assumed to be inductive limits,
under real ∗-homomorphisms, of algebras An, where the complexification An ⊗R C

of An is a direct sum of algebras C([0, 1],Mq(C)) of continuous q× q matrix valued
functions on [0, 1], for varying q ≥ 1. Equivalently, An = {a ∈ B : Φ(a) = a∗}
where Φ is an involutory ∗-antiautomorphism of a direct sum B of algebras of
the form C([0, 1],Mq(C)). If e is a minimal central projection in B then either
Φ(e) = e, in which case Φ restricts to an antiautomorphism of eB ∼= C([0, 1],Mq(C))
for some q, or Φ(e) �= e, in which case Φ interchanges the two summands of
(e+Φ(e))B ∼= C([0, 1],Mq(C))⊕C([0, 1],Mq(C)). In the latter case, the associated
real algebra {(eb,Φ(eb)∗) : b ∈ B} is (real linearly) isomorphic to C([0, 1],Mq(C)).
In the former, the restriction of Φ to the centre C([0, 1],C) gives rise to a period
2 homeomorphism of [0, 1], which is conjugate either to the identity map id or the
reflection 1 − id. It follows that Φ is conjugate to an antiautomorphism for which
the restriction to the centre is either the identity or satisfies (Φf)(t) = f(1− t) for
each f ∈ C([0, 1],C) and each t ∈ [0, 1].

When Φ restricts to the identity on C([0, 1],C), the proof of Theorem 3.3 of [17],
together with the remarks before that theorem, show that the real algebra associ-
ated with Φ is the cross-section algebra of a locally trivial bundle over [0, 1] with
fibres either all isomorphic to Mq(R) or all isomorphic to Mq/2(H). All such bun-
dles over [0, 1] are trivial and hence the associated real algebra is isomorphic either
to C([0, 1],Mq(R) or C([0, 1],Mq/2(H)). Here H denotes the algebra of quater-
nions, which can be identified with the real subalgebra of M2(C) generated by
( 1 0

0 1 ) ,
(
i 0
0 −i

)
and

(
0 1−1 0

)
.

When the restriction of Φ to C([0, 1]) satisfies (Φf)(t) = f(1−t) then for each t ∈
[0, 1] there exists an antiautomorphism Φt ofMq(C) such that (Φf)(t) = Φt(f(1−t))
for each f ∈ C([0, 1],Mq(C)) and ΦtΦ1−t = id for each t ∈ [0, 1]. (One way of
seeing this is to note that if (Ψf)(t) = f(1 − t)tr, where tr denotes the transpose,
then ΦΨ restricts to the identity on C([0, 1],C) and hence is inner, by 1.6 of [15].)
It follows that the restriction map onto [0, 1

2 ] is an isomorphism on eBe, with
image {f ∈ C([0, 1

2 ],Mq(C)) : Φ 1
2
(f( 1

2 )) = f( 1
2 )∗}. Furthermore, there exists an

automorphism Adu of Mq(C) such that Adu({A : Φ 1
2
(A) = A∗}) is either Mq(R)

or Mq/2(H). Regarding u as a constant function on [0, 1
2 ],Ad(u) then gives an

isomorphism from {f ∈ C([0, 1
2 ],Mq(C)) : Φ 1

2
(f( 1

2 )) = f( 1
2 )∗} onto either {f ∈

C([0, 1
2 ],Mq(C)) : f( 1

2 ) ∈Mq(R)} or {f ∈ C([0, 1
2 ],Mq(C)) : f( 1

2 ) ∈Mq/2(H)}.
So the basic building blocks to consider are C([0, 1],Mq(C)), C([0, 1],Mq(R)),

C([0, 1],Mq/2(H)) for q even,

A(q,R) = {f ∈ C([0, 1],Mq(C)) : f(t) = f(1 − t) for 0 ≤ t ≤ 1}
∼=

{
f ∈ C

([
0,

1
2

]
,Mq(C)

)
: f

(
1
2

)
∈Mq(R)

}

and

A(q/2,H) = {f ∈ C([0, 1],Mq(C)) : f(t) = ΦH(f(1 − t))∗ for 0 ≤ t ≤ 1}
∼=

{
f ∈ C

([
0,

1
2

]
,Mq(C)

)
: f

(
1
2

)
∈Mq/2(H)

}
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for q even, where ΦH

(
a b
c d

)
=

(
d −b
−c a

)
. Note that, arising from the usual identifi-

cation C([0, 1],Mq(R)) = C([0, 1],R) ⊗R Mq(R), A(q,R) = A(1,R) ⊗R Mq(R) and
A(q/2,H) = A(1,R)⊗RMq/2(H) and that A(1,R) is generated as a real C∗-algebra
by the constant 1 and the skew-adjoint map g : t 	→ i( 1

2 − t). To see the latter
claim, note that 1 and g generate C([0, 1],C) as a complex algebra and the real
algebra they generate is contained in (and hence is equal to)

{f ∈ C([0, 1],C) : f(t) = f(1 − t) for all t}.
As with the complex case, considered in [6], the classification of simple real AI

algebras uses tracial states and the pairing of traces with K0. It is thus appropriate
to recall that, as described in Chapter 14 of [11], a state k on a unital real C∗-
algebra A is a positive linear map k : A→ R which, by definition, satisfies k(1) = 1
and k(a) = k(a∗) for each a ∈ A. Each such positive map extends uniquely to a
complex linear state k : AC → C, where AC = A ⊗R C is the complexification of
A. Furthermore Φ∗

Ak = k, where Φ∗
Ak = k ◦ ΦA and where ΦA(a + ib) = a∗ + ib∗

for a, b ∈ A, so A = {a ∈ AC : ΦA(a) = a∗}. Conversely, each complex state
k of AC satisfying Φ∗

Ak = k restricts to a real state of A (but unless Φ∗
Ak = k

the restriction may not satisfy k(a) = k(a∗)). This correspondence produces a
bijection between the real tracial states of A and the tracial states τ of AC satisfying
Φ∗
Aτ = τ . The unique extension map from the real tracial state space T (A) of A

to the tracial state space T (AC) of AC produces a map Aff(T (AC)) → Aff(T (A))
between the associated spaces of continuous real affine functions and the affine
automorphism Φ∗

A of T (AC) produces an involution Φ̂A on Aff(T (AC)) by Φ̂Aa =
a ◦ Φ∗

A. Furthermore the natural map θ : K0(AC) → Aff(T (AC)) automatically
gives rise to θ : K0(A) → Aff(T (A)) by means of the following diagram:

K0(A) −−−−→ Aff(T (A))
 �
K0(AC) −−−−→ Aff(T (AC)).

If a positive unital map M from Aff(T (AC)) to Aff(T (BC)) obeys Φ̂BM = M Φ̂A
then it gives rise to a map from Aff(T (A)) to Aff(T (B)) and if a map φ from T (AC)
to T (BC) satisfies φΦ∗

A = Φ∗
Bφ then it gives rise to a map from T (A) to T (B).

However an isomorphism from T (A) to T (B) does not necessarily extend to an
isomorphism from T (AC) to T (BC), for example if A = R and B = C, and in the
classification result 5.3 the tracial state space of the complexification is part of the
invariant.

When A = C([0, 1],R),Φ∗ is the identity on the set M+
1 [0, 1] of Borel probability

measures on [0, 1], so that T (A) is identified with T (AC). Aff(T (AC)) can be iden-
tified with C([0, 1],R) and Φ̂A = id. When A = A(1,R) = {f ∈ C([0, 1],C) : f(t) =
f(1 − t)} then (Φ∗µ)(E) = µ(1−E) for each µ ∈M+

1 [0, 1] and for each Borel set E
in [0, 1], so that T (A) is identified with {µ : µ(E) = µ(1−E) for all E} ∼= M+

1 [0, 1
2 ].

Aff(T (AC)) can be identified with C([0, 1],R) and (Φ̂Af)(t) = f(1 − t) for each
f ∈ T (AC) and each 0 ≤ t ≤ 1. When A = C([0, 1],C) then Φ∗(µ, ν) = (ν, µ)
for (µ, ν) ∈ M+

1 [0, 1] ⊕M+
1 [0, 1], so that T (A) can be identified with {(µ, µ) : µ ∈

M+
1 [0, 1]} ∼= M+

1 [0, 1]. Aff(T (AC)) can be identified with C([0, 1],R) ⊕ C([0, 1],R)
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and Φ̂A(f, g) = (g, f) for each f, g ∈ C([0, 1],R). In each case, taking the tensor
product with Mq(R) or Mq/2(H) does not change the tracial state space.

2. A uniqueness theorem

Let A, B be finite direct sums of basic building blocks and let φ, ψ be uni-
tal homomorphisms from A to B with complexifications φC, ψC from AC to BC.
Theorem 6 of [6] gives sufficient conditions for there to exist a unitary u ∈ BC

such that φC and (Adu)ψC agree to within 3
n on the canonical generators of AC.

In the present section a minor variation of this result is obtained, with slightly
strengthened conditions, which enable the unitary u to be chosen to belong to B.
The first three lemmas enable reduction to the cases where A = C([0, 1],R) or
A = A(1,R) = {f ∈ C([0, 1],C) : f(t) = f(1 − t)}. The first lemma reduces to the
case of a single block.

Lemma 2.1. Let A and B be finite direct sums of basic building blocks and let φ, ψ
be unital homomorphisms from A to B giving rise to the same map from K0(A)
to K0(B). Then there exists a unitary u ∈ B such that φ(e) = uψ(e)u∗ for each
minimal central projection e ∈ A.

Proof. From the K0 equalities [φ(e)] = [ψ(e)] and [1−φ(e)] = [1−ψ(e)] it follows
by Propositions 4.2.5 and 4.6.5 of [1], which also apply to real algebras, that there
exists ue ∈ B with φ(e) = ueψ(e)u∗e. Then u =

∑
e φ(e)ueψ(e) is a unitary with

φ(e) = uψ(e)u∗ for each minimal central projection e ∈ A. �

The next lemma reduces to the case A = C([0, 1],R) or A = A(1,R), except
when the centre of A is isomorphic to C([0, 1],C).

Lemma 2.2. Let A be a basic building block with a unital subalgebra C isomorphic
to Mq(R) or Mq/2(H) for some q. If φ, ψ are homomorphisms from A to a finite
direct sum B of basic building blocks with φ(1) = ψ(1) = e then there exists a
unitary v ∈ eBe with φ(c) = vψ(c)v∗ for each c ∈ C.

Proof. It suffices to consider the case where eBe has a single summand, which
will be of the form Z ⊗R Mq(R) or Z ⊗R Mq/2(H) where Z, the centre of eBe,
is either isomorphic to C([0, 1],R), C([0, 1],C) or A(1,R). In each case ψ(C) and
φ(C) induce tensor product decompositions of eBe of the form ψ(C) ⊗R Cψ ⊗R Z
and φ(C) ⊗R Cφ ⊗R Z where Cψ and Cφ are subalgebras of eBe isomorphic to the
same full real or quaternionic matrix algebra. Thus there is an automorphism γ of
eBe, equal to the identity on Z, with γψ(c) = φ(c) for each c ∈ C. By Lemma 1.6
of [15] the complexification of γ on eBCe, which is isomorphic to C([0, 1],Mq(C)) or
C([0, 1],Mq(C)2), is inner. If γ = Adu and Φ is the involutory antiautomorphism
of eBCe corresponding to eBe, then γΦ = Φγ so w = u∗Φ(u∗) ∈ ZC and Φ(w) = w.
The centre ZC of eBCe is isomorphic either to C([0, 1],C) or C([0, 1],C2). When
ZC is isomorphic to C([0, 1],C) then Φ either satisfies Φf = f or (Φf)(t) = f(1− t)
for all f ∈ C([0, 1],C), so there exists a unitary square root w1/2 of w in ZC with
Φ(w1/2) = w1/2. When ZC is isomorphic to C([0, 1],C2) then Φ(f, g) = (g, f)
for each f, g ∈ C([0, 1],C). Therefore, in this case as well, there exists a unitary
square root w1/2 of w in ZC with Φ(w1/2) = w1/2. Then Φ(w1/2u) = Φ(u)w1/2 =
u∗w∗w1/2 = u∗w1/2∗ = (w1/2u)∗ and γ = Ad(w1/2u), as required. �
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The remaining case is when the centre of A is isomorphic to C([0, 1],C).

Lemma 2.3. Let A be a basic building block C([0, 1],Mq(C)) and let φ, ψ be real-
linear homomorphisms from A to a finite direct sum B of basic building blocks,
with φ(1) = ψ(1) = e, giving rise to the same map from K0(AC) to K0(BC). Then
there exists a unitary v ∈ eBe with φ(c) = vψ(c)v∗ for each c ∈ C, the algebra of
constant functions in A.

Proof. It suffices to consider the case where eBe has a single summand. If D is a
subalgebra of C isomorphic toMq(R) then, by Lemma 2.2, there exists u ∈ eBe with
φ(d) = uψ(d)u∗ for d ∈ D. Replacing ψ by Ad(u)◦ψ and eBe by the commutant of
φ(D) in eBe, it therefore further suffices to consider the case where A = C([0, 1],C)
so C = C1. Then CC will be isomorphic to C

2, with C embedded as {(z, z) : z ∈ C}.
From the K0 equalities [φC(1, 0)] = [ψC(1, 0)] and [φC(0, 1)] = [ψC(0, 1)] it follows
that there is a unitary u in eBCe with

uφ(i)u∗ = uφC(i,−i)u∗ = iuφC(1, 0)u∗ − iuφC(0, 1)u∗ = iψC(1, 0) − iψC(0, 1)

= ψC(i,−i) = ψ(i).

Let P = φC(1, 0), so φ(i) = iP − i(e − P ), and let Φ be the involutory antiauto-
morphism of eBCe corresponding to eBe.

From Φ(φ(i)) = φ(i)∗ = −φ(i) it follows that Φ(P ) = e− P ; from Φ(uφ(i)u∗) =
Φ(ψ(i)) = −ψ(i) = −uφ(i)u∗ it follows that Φ(u∗)φ(i)Φ(u) = uφ(i)u∗ and hence
Φ(u∗)PΦ(u) = uPu∗. Let v = uP+Φ(u∗)(e−P ). Then Φ(v) = (e−P )Φ(u)+Pu∗ =
v∗, vv∗ = uPu∗ + Φ(u∗)(e− P )Φ(u) = uPu∗ + u(e− P )u∗ = e and

vφ(i)v∗ = [uP + Φ(u∗)(e− P )][iP − i(e− P )][Pu∗ + (e− P )Φ(u)]

= iuPu∗ − iΦ(u∗)(e− P )Φ(u)

= iuPu∗ − iu(e− P )u∗

= uφ(i)u∗ = ψ(i).

Since B is finite, v∗v = e, so v is the required unitary. �

The proof of the appropriate version of Theorem 6 of [6] is thus reduced to the
cases A = C([0, 1],R) or A = A(1,R), both of which have AC = C([0, 1],C), with
B a single building block. It is then required to find u ∈ B such that φC and
(Adu)ψC agree to within 3

n on the generator h(t) = t of C([0, 1],C). This will be
achieved by obtaining a diagonal (or other canonical) form for the images of φ(h)
and ψ(h) in the case A = C([0, 1],R) and for the images of φ(g) and ψ(g) in the
case A = A(1,R), where g(t) = i( 1

2 − t) is a skew-adjoint generator for A(1,R).

Lemma 2.4. Let ε > 0, let B be a basic building block with BC = C([0, 1],Mq(C))
or B = C([0, 1],Mq(C)) and let f ∈ B satisfy f = kf∗ where k = ±1.

(a) Unless k = 1 and either B = C([0, 1],Mq/2(H)) or B = A(q/2,H) then there
exists g ∈ B with g = kg∗ and ‖g− f‖ < ε such that, for each 0 ≤ t ≤ 1, g(t)
has q distinct complex eigenvalues.

(b) When f = f∗ and B = A(q/2,H) there exists g ∈ B with g = g∗ and
‖g− f‖ < ε such that, for each t �= 1

2 , g(t) has q distinct complex eigenvalues
and g( 1

2 ) has q/2 distinct eigenvalues each of multiplicity 2. Furthermore, g
can be chosen to have continuous eigenprojections.



214 P. J. Stacey

(c) When f = f∗ and B = C([0, 1],Mq/2(H)) there exists g ∈ B with g = g∗

and ‖g − f‖ < ε such that, for each 0 ≤ t ≤ 1, g(t) =
∑q/2
j=1 λj(t)Pj(t) where

t 	→ Pj(t) is a continuous family of two-dimensional projections and t 	→ λj(t)
is a continuous real-valued function for each 1 ≤ j ≤ q/2.

Proof. The proof is identical to the relevant part of the proof of Theorem 4 of
[3] except for the choices needed to ensure that g belongs to B. Firstly note that
any skew-adjoint element of Mq(R),Mq(C) or Mq/2(H) or any self-adjoint element
of Mq(R) or Mq(C) can be given an arbitrarily small perturbation to produce a
skew-adjoint or self-adjoint element with q distinct complex eigenvalues. Any self-
adjoint element of Mq/2(H) (regarded as an element of Mq(C)) necessarily has each
eigenvalue of even multiplicity, but it can be given an arbitrarily small perturbation
to produce a self-adjoint element with q/2 distinct eigenvalues, each of multiplicity
2.

Thus when f is approximated arbitrarily closely by a piecewise linear element
of B then, except in case (c), the approximation can be taken to have q distinct
complex eigenvalues at one point and hence at all but finitely many points. In case
(c) it can be arranged that there are q/2 distinct eigenvalues, each of multiplicity
two, except at finitely many points. As in [3] by passing to subintervals there
can be assumed to be only one such point. In the self-adjoint case, for which
the eigenvalues are real, small constant perturbations give a reduction to the case
where just two eigenvalues coincide at each of the degenerate points. In the skew
adjoint case, for which the eigenvalues are purely imaginary, at a point t for which
Φ(f(t)) = f(t)∗ for an antiautomorphism Φ of Mq(C) the eigenvalues occur in
complex conjugate pairs with orthogonal eigenprojections P (t) and Φ(P (t)). When
B = C([0, 1],Mq(R)) or B = C([0, 1],Mq/2(H)) this holds for all t and suitable
perturbations are obtained by adding small imaginary constants iεj ,−iεj to each
pair λj(t), λj(t) of corresponding eigenvalues. The perturbation εj(t) = iεjPj(t) −
iεjΦ(Pj(t)) of f(t) satisfies Φ(εj(t)) = εj(t)∗ for each t, so belongs to B. When
B = A(q,R) or A(q/2,H) the small imaginary constants iεj ,−iεj are added to pairs
of eigenvalues λj(t), λ′j(t) for which λj( 1

2 ) = λ′j(
1
2 ).

If at the remaining single point t0 of pairwise degeneracy the corresponding eigen-
value functions λj(t), λk(t) touch but do not cross at t0, then in the skew adjoint
case the corresponding complex conjugate functions also touch and the degeneracy
(other than the forced double degeneracy when f = f∗ and B = C([0, 1],Mq/2(H))
or B = A(q/2,H)), can be entirely removed by either a small real perturbation to
λj(t) in the self-adjoint case or a pair of conjugate purely imaginary perturbations
to λj(t), λj(t) in the skew-adjoint case.

If the eigenvalue functions λj and λk cross at t0 and have eigenprojections Pj
and Pk then, in the self-adjoint case, consider λjPj + λkPk which belongs to B.
Firstly pick an interval [a, b] containing t0 on which λjPj+λkPk is sufficiently close
to λj(t0)Pj(t0) + λk(t0)Pk(t0), with λj(a) < λk(a) and λj(b) > λk(b). Then let
{Q(t) : a ≤ t ≤ b} be a path of projections with Q(t) ≤ Pj(t)+Pk(t), Q(a) = Pj(a)
and Q(b) = Pk(b). The combination min(λj , λk)Q + max(λj , λk)(Pj + Pk − Q)
agrees with λjPj + λkPk at a and b, is close to λjPj + λkPk on [a, b] and has
touching rather than crossing eigenvalue functions at t0, which can be removed as
before. In the skew adjoint case a slight modification of this approach is needed



Simple real AI algebras 215

when B = C([0, 1],Mq(R)) or B = C([0, 1],Mq/2(H)). If Φ is the corresponding
antiautomorphism of Mq(C) then consider λj(Pj − ΦPj) + λk(Pk − ΦPk). The
simultaneous crossings of λj with λk and λj = −λj with λk = −λk can be removed
simultaneously using a path Q+Φ(Q) of projections with Q(t) ≤ Pj(t)+Pk(t) and
an appropriate combination of Q+Φ(Q) and Pj +Pk +Φ(Pj)+Φ(Pk)−Q−Φ(Q).

The resulting perturbation has q distinct eigenvalues at each point except when
f = f∗ and B = C([0, 1],Mq/2(H)) or B = A(q/2,H), when it has only the forced
double degeneracies. The construction produces continuous eigenvalues and con-
tinuous eigenprojections, which are of rank 2 when B = C([0, 1],Mq/2(H)). �

Lemma 2.5. (a) Let B be a basic building block with BC = C([0, 1],Mq(C)) or
B = C([0, 1],Mq(C)), let f = f∗ ∈ B and let f(t) have q distinct eigenvalues
for t �= 1

2 . Then there exists u ∈ B such that (ufu∗)(t) is real and diagonal
for each 0 ≤ t ≤ 1.

(b) Let B = C([0, 1],Mq/2(H)) and let f = f∗ =
∑
λjPj ∈ A where for each

1 ≤ j ≤ q/2, λj ∈ C([0, 1],R), Pj ∈ B and, for each 0 ≤ t ≤ 1, Pj(t) is a
two-dimensional projection. Then there exists u ∈ B such that (ufu∗)(t) is
real and diagonal for each 0 ≤ t ≤ 1.

(c) Let B = C([0, 1],Mq(C)), B = C([0, 1],Mq/2(H)) or B = A(q/2,H), let f =
−f∗ ∈ B and let f(t) have q distinct eigenvalues for 0 ≤ t ≤ 1. Then there
exists u ∈ B such that (ufu∗)(t) is purely imaginary and diagonal for each
0 ≤ t ≤ 1.

(d) Let B = C([0, 1],Mq(R)) or B = A(q,R), let f = −f∗ ∈ B and let f(t) have
q distinct eigenvalues for 0 ≤ t ≤ 1. Then there exists u ∈ B such that, for
each 0 ≤ t ≤ 1, (wufu∗w∗)(t) is purely imaginary and diagonal, where w
consists of 2× 2 diagonal blocks 1√

2

(
1 −i
1 i

)
, together with a 1× 1 block if f(t)

has a zero eigenvalue for all t.

Proof. Case (a) is standard linear algebra. In case (b) let K be the antilinear
unitary map on C

q with K(x1, x2, x3, x4, . . . ) = (−x2, x1,−x4, x3, . . . ) and let
Φ(a) = Ka∗K∗ for each a ∈ Mq(C). For each 1 ≤ j ≤ q/2 let t 	→ ej(t) be a
continuous choice of elements from t 	→ Pj(t)Cq. Then the transition map from the
standard basis to {ej ,Kej : 1 ≤ j ≤ q/2} belongs to C([0, 1],Mq/2(H)), giving the
required result.

In case (c) the result is immediate when B = C([0, 1],Mq(C)). When B =
C([0, 1],Mq/2(H)), first pick a continuous choice of eigenvectors t 	→ ej(t) associated
with λj(t), then choose t 	→ Kej(t) for the eigenvectors associated with −λj(t).
When B = A(q/2,H), first pick a choice of eigenvectors t 	→ ej(t) associated with
λj(t) and then, if λj( 1

2 ) = −λi( 1
2 ), let ei(t) = Kej(1 − t), so the corresponding

eigenvalues and eigenprojections satisfy λi(t) = −λj(1− t) and Pi(t) = ΦPj(1− t).
The result then follows as in case (b).

In case (d) when B = C([0, 1],Mq(R)), a continuous choice of eigenvectors t 	→
ej(t) is first made for λj(t) and then the choice t 	→ ej(t) is made for the eigenvalue
associated with λj(t). When B = A(q,R) the choice t 	→ ek(t), where ek(t) =
ej(1 − t), is made for the eigenvector associated with λk where λk( 1

2 ) = λj( 1
2 ).

After reordering so that k = j + 1, the transition matrix from the standard basis
to the basis of eigenvectors has adjacent columns of the form (x1(t), . . . , xq(t)) and
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(x1(t), . . . , xq(t)) or (x1(t), . . . , xq(t)) and (x1(1 − t), . . . , xq(1 − t)). Multiplying on
the right by w then produces a matrix u∗ ∈ B. �

Following Theorem 6 of [6] let the n real functions h1, . . . , hn in C([0, 1],R) be
defined by

hr(t) =




0 0 ≤ t ≤ r−1
n

n(t− r−1
n ) r−1

n ≤ t ≤ r
n

1 r
n ≤ t ≤ 1

and let kr be the characteristic function of the interval [ rn , 1] for 1 ≤ r ≤ n− 1, so
that hrkr = kr and krhr+1 = hr+1 for each 1 ≤ r ≤ n − 1. The following minor
variation of Theorem 6 of [6] can now be proved.

Proposition 2.6. Let A,B be direct sums of basic building blocks and let φ and
ψ be unital homomorphisms from A to B giving rise to the same map from the
pair K0(A) → K0(A ⊗R C) to the pair K0(B) → K0(B ⊗R C). Let n > 0 be an
integer and suppose that for some δ > 0 each primitve quotient in BC of the image
under each of φC and ψC of the canonical self adjoint generator of the centre of each
minimal direct summand of AC has at least the fraction δ of its eigenvalues in each
of the n consecutive subintervals of (0, 1] of length 1

n . Suppose that the maps from
TBC to TAC arising from φC and ψC agree to strictly within δ on the n central
functions h1, . . . , hn of each minimal direct summand of AC.

It follows that there exists a unitary u ∈ B such that φC and (Adu)ψC agree to
within 3

n on the canonical generators of AC.

Proof. By Lemmas 2.1, 2.2 and 2.3 the proof is reduced to the case where A is
either C([0, 1],R) or A(1,R) = {f ∈ C([0, 1],C) : f(t) = f(1 − t)} and B is a
single building block. Let h(t) = t be the self-adjoint generator of C([0, 1],R) and
g(t) = i( 1

2 − t) be the skew-adjoint generator of A(1,R). In the latter case, the
canonical self-adjoint generator of C([0, 1],C) = AC is given by h(t) = 1

2 + ig(t).
By Lemmas 2.4 and 2.5, when A = C([0, 1],R), φC(h) and ψC(h) can be given

arbitrarily small perturbations so that there exist uφ, uψ ∈ B with (Aduφ)φC(h) and
(Aduψ)ψC(h) diagonal with elements in increasing order. The proof of Theorem 6
of [6] then applies directly to give the required result.

When A = A(1,R) then, by Lemma 2.4, φ(g) and ψ(g) can be given an arbitrary
small perturbation to have q distinct eigenvalues. When B = C([0, 1],Mq(C)), B =
C([0, 1],Mq/2(H)) or B = A(q/2,H) there therefore exist uφ, uψ ∈ B such that
(Aduφ)φ(g) and (Aduψ)ψ(g) are diagonal, with purely imaginary eigenvalues. In
the last two cases (Aduφ)φC(h) and (Aduψ)ψC(h) are also diagonal, with real values
which can be taken to be in increasing order. In the first case Ad(uφ, uφ)φC(h) and
Ad(uψ, uψ)ψC(h) are of the form (α, α) where α is real and diagonal, where the
elements can again be taken to be in increasing order. In all three cases the proof
of Theorem 6 of [6] can therefore be applied directly to give the required result.

In the remaining case, when B = C([0, 1],Mq(R)) or B = A(q,R) then, after
perturbation,there exist uφ, uψ ∈ B such that (Adwuφ)φ(g) and (Adwuφ)ψ(g) are
diagonal with purely imaginary eigenvalues, where w consists of 2 × 2 diagonal
blocks 1√

2

(
1 −i
1 i

)
, so (Adwuψ)ψC(h) and (Adwuφ)φC(h) consist of real diagonal

blocks
( 1

2+α 0

0 1
2−α

)
where the elements α can be taken to be in increasing order.
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Theorem 6 of [6] then shows that Ad(wuφ)φC(h) and Ad(wuψ)ψC(h) agree to within
3
n as therefore do (Aduφ)φC(h) and (Aduψ)ψC(h). �

3. Injective connecting maps and approximate divisibility

As in [14], an inductive limit of basic building blocks can be written as an
inductive limit of these blocks with injective connecting maps. The proof follows
[14] but is easier.

Lemma 3.1. If A is a basic building block, B is a unital real C∗-algebra, φ : A→ B
is a unital ∗-homomorphism, F is a finite subset of φ(A) and ε > 0, there exists
a subalgebra B1 of φ(A), isomorphic to a direct sum of basic building blocks and
finite dimensional real C∗-algebras, such that F is approximately contained in B1

to within ε.

Proof. If A is either C([0, 1],Mq(C)), C([0, 1],Mq(R)) or C([0, 1],Mq/2(H)) then
φ(A) is isomorphic to either C(X,Mq(C)), C(X,Mq(R)) or C(X,Mq/2(H)) for X
a closed subset of [0, 1]. In either of the other two cases φ(A) is isomorphic to
C(X,Mq(C)) or {f ∈ C(X,Mq(C) : f( 1

2 ) ∈ R} where R is isomorphic to Mq(R) or
Mq/2(H) and X ⊆ [0, 1

2 ].
Let F = {f1, . . . , fr} and, regarding these as continuous matrix valued functions

on X, pick δ such that ‖fi(s) − fi(t)‖ < ε/2 for each i whenever |s − t| < δ. By
Lemma 1.3 of [14], there exists a finite union Y of points and closed intervals with
Y ⊆ X and a retraction α from X onto Y such that supt |α(t) − t| < δ for each
t ∈ X. Y can be taken to include the connected component of X containing 1

2
and α to be the identity on this connected component. Let θ : D → C(X,M) be
defined by θ(f) = f ◦ α for M ∈ {Mq(C),Mq(R),Mq/2(H)}, where D = C(Y,M)
unless A = {f ∈ C(X,Mq(C)) : f( 1

2 ) ∈ R} and 1
2 ∈ X, in which case D = {f ∈

C(Y,Mq(C)) : f( 1
2 ) ∈ R}.

Using the identification of φ(A) with either C(X,M) or {f ∈ C(X,M) : f( 1
2 ) ∈

R}, θ is an injective unital ∗-homomorphism from D to φ(A). D is a sum of basic
building blocks and finite-dimensional algebras. Furthermore F is approximately
contained in B1 = θ(D) to within ε: given an element of F ⊆ φ(A) let fi be the
associated element of C(X,M) and note that

‖fi − θ(fi|Y )‖ = sup
t

‖fi(t) − fi(α(t))‖ < ε. �

Lemma 3.2. Let B be a simple unital real infinite-dimensional AF algebra. Then
B contains a self-adjoint element with spectrum [0, 1].

Proof. K0(B) is a simple dimension group other than Z and so, by Lemma A4.1 in
[8], there are positive elements 1 > an,1 > · · · > an,2n−1 > 0 in K0(B) with an,i =
an+1,2i for each 1 ≤ i ≤ 2n − 1. There exist orthogonal projections pn,1, . . . , pn,2n

in B corresponding to 1 − an,1, an,1 − an,2, . . . , an,2n−2 − an,2n−1, an,2n−1 with
pn,i = pn+1,2i−1 + pn+1,2i for each i. Let an =

∑2n

r=1
r
2n pn,r so an − an+1 =∑2n

r=1
2r

2n+1 (pn+1,2r−1 + pn+1,2r) − ∑2n+1

r=1
r

2n+1 pn+1,r =
∑2n

r=1
1

2n+1 pn+1,2r−1 and
therefore ‖an+1 − an‖ = 1

2n+1 . Then an converges in B to a self-adjoint element a,
which has spectrum [0, 1]. �
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Lemma 3.3. Let B be a separable real C∗-algebra such that, for every finite subset
F ⊆ B and every ε > 0 there exists a direct sum of basic building blocks C ⊆ B which
contains F to within ε. Then B is isomorphic to an inductive limit of a sequence
of basic building blocks with injective unital connecting ∗-homomorphisms.

Proof. The proof follows the usual complex argument, outlined in Lemma 1.4 of
[14], using the methods of Theorem 4.3 of [5], Theorem 2.2 of [2] and the earlier work
in [10]. The most difficult extra ingredient in the real case involves the quaternionic
cases, which are handled using the following lemma. �

Lemma 3.4. Let A,B be real C∗-algebras with A ⊆ B and let E, I, J ∈ B with
E2 = E = E∗, I∗ = −I, I2 = −E, J∗ = −J, J2 = −E and IJ = −JI (so that
I, J generate a copy of H). If ε > 0 there exists β > 0 such that whenever there
exist E′, I ′, J ′ ∈ A with ‖E −E′‖ < β, ‖I − I ′‖ < β, ‖J − J ′‖ < β then there exist
E′′, I ′′, J ′′ ∈ A with

E
′′2 = E′′ = E

′′∗, I ′′ = −I ′′∗, J ′′ = −J ′′∗,

I
′′2 = −E′′, J

′′2 = −E′′, J ′′I ′′ = −J ′′I ′′,

‖E − E′′‖ < ε, ‖I − I ′′‖ < ε and ‖J − J ′′‖ < ε.

Proof. In the complexification BC of B let E12 = 1
2 (J−iIJ), E11 = E12E

∗
12, E22 =

E∗
12E12 and E21 = E∗

12. Then (corresponding to M2(C) being the complexification
of H) Eij form a set of 2 × 2 matrix units in BC with Φ(E12) = −E12, and hence
Φ(E11) = E22, where Φ is the antiautomorphism of BC associated with B. I and
J are given by I = iE11 − iE22 and J = E12 − E21.

For α > 0 let γ(α) and δ(α) be the values defined in the statements of Lem-
mas 1.6 and 1.9 of [10]. Let δ1 = min( 1

36 ,
ε
62 ), δ2 = min(δ(δ1), 1) and β =

min( 1
32 ,

1
16γ(

1
40δ2),

1
640δ2). Let x = 1

2 (J ′ − iI ′J ′), where I ′, J ′, E′ are as defined
in the lemma. Then

‖x− E12‖ ≤ 1
2
‖J ′ − J‖ +

1
2
‖I ′J ′ − I ′J‖ +

1
2
‖I ′J − IJ‖

<
1
2
β +

1
2
‖I ′‖β +

1
2
β

< 2β < δ2.

Also

‖xx∗ − E11‖ ≤ ‖xx∗ − E12x
∗‖ + ‖E12x

∗ − E12E
∗
12‖

< 2‖x‖β + 2β

< (1 + 2β)2β + 2β < 8β

and similarly ‖x∗x− E22‖ ≤ 8β so, putting r = 1
2 (xx∗ + x∗x+ Φ(xx∗) + Φ(x∗x)),

r = r∗ = Φ(r) and ‖r−(E11+E22)‖ < 16β < γ( 1
40δ2). By Lemma 1.6 of [10] and its

proof there exists a projection e in AC with ‖e− (E11 +E22)‖ < 1
40δ2 and Φ(e) = e.

Let t = 1
2 (xx∗ − x∗x − Φ(xx∗) + Φ(x∗x)) and s = ete, so that Φ(s) = −s = −s∗
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and

‖s− (E11 − E22)‖
≤ ‖ete− (E11 + E22)te‖ + ‖(E11 + E22)te− (E11 + E22)t(E11 + E22)‖

+ ‖(E11 + E22)t(E11 + E22) − (E11 + E22)(E11 − E22)(E11 + E22)‖
<

1
40

‖t‖δ2 +
1
40

‖t‖δ2 + 16β

<
1
20

(1 + 16β)δ2 + 16β ≤ 3
40
δ2 +

1
40
δ2 =

1
10
δ2.

Then

‖s2 − e‖ ≤ ‖s2 − s(E11 − E22)‖ + ‖s(E11 − E22) − (E11 − E22)2‖
+ ‖E11 + E22 − e‖

<
1
10

‖s‖δ2 +
1
10
δ2 +

1
40
δ2 ≤ 1

10

(
1 +

1
10
δ2

)
δ2 +

5
40
δ2

<
3
10
δ2.

Considering the commutative C∗-algebra generated by s and e (for which e is the
identity), the spectrum of s is contained in [−1− 3

5δ2,−1+ 3
5δ2]∪ [1− 3

5δ2, 1+ 3
5δ2].

Let f be the odd continuous function on [−1 − 3
5δ2, 1 + 3

5δ2] which is linear on
[0, 1 − 3

5δ2] and equal to 1 on [1 − 3
5δ2, 1 + 3

5δ2] and let s′ = f(s). Then s′2 = e,
Φ(s′) = −s′ = −s′∗ and ‖s− s′‖ ≤ 3

5δ2. Let e11 = 1
2 (e+ s′) so

e211 = e11 = e∗11,Φ(e11)e11 = 0

and e11 + Φ(e11) = e. Then

‖e11 − E11‖ ≤ 1
2
‖s′ − s‖ +

1
2
‖s− (E11 − E22)‖ +

1
2
‖e− (E11 + E22)‖

<
3
10
δ2 +

1
20
δ2 +

1
80
δ2 < δ2

and so ‖Φ(e11) − E22‖ < δ2. Thus, by Lemma 1.9 of [10], there exists a partial
isometry w in AC with ww∗ = e11, w

∗w = Φ(e11) and ‖w − E12‖ < δ1.
Next let v = 1

2e11(w − Φ(w))e22 and note that

‖e11 − E11‖ = ‖ww∗ − E12E
∗
12‖ ≤ ‖ww∗ − wE∗

12‖ + ‖wE∗
12 − E12E

∗
12‖ < 2δ1,

‖e22 − E22‖ < 2δ1, ‖ 1
2 (w − Φ(w)) − E12‖ < δ1 and thus that

‖v − E12‖ ≤ ‖v − e11E12e22‖ + ‖e11E12e22 − E11E12e22‖ + ‖E12e22 − E12‖
< δ1 + 2δ1 + 2δ1 = 5δ1

and

‖v∗v − e22‖ ≤ ‖v∗v − v∗E12‖ + ‖v∗E12 + E22‖ + ‖E22 − e22‖
< 5δ1 + 5δ1 + 2δ1 = 12δ1.

Thus v∗v is an invertible element of e22BCe22 and

‖(v∗v)−1/2 − e22‖ <
(

1
1 − 12δ1

)
− 1 < 24δ1.



220 P. J. Stacey

Let u = v(v∗v)−1/2 so that

‖u− E12‖ ≤ ‖v(v∗v)−1/2 − ve22‖ + ‖ve22 − E12e22‖ + ‖E12e22 − E12E22‖
< 24δ1 + 5δ1 + 2δ1 = 31δ1

and
u∗u = (v∗v)−1/2v∗v(v∗v)−1/2 = e22,

from which u is a partial isometry. The initial projection uu∗ = v(v∗v)−1v∗ satisfies
e11uu

∗ = uu∗e11 = uu∗ and

‖uu∗ − e11‖ ≤ ‖v(v∗v)−1v∗ − ve22v
∗‖ + ‖ve22v∗ − e11‖

< 24δ1 + ‖vv∗ − e11‖ < 36δ1 < 1,

so uu∗ = e11. Φ(u) is also a partial isometry with Φ(u)∗Φ(u) = Φ(uu∗) =
Φ(e11) = e22 and Φ(u)Φ(u∗) = Φ(u∗u) = Φ(e22) = e11. From Φ(v) = −v,
Φ(v∗v) = vv∗ and Φ((v∗v)−1/2) = (vv∗)−1/2, where the latter inverse is taken
in e11B

Ce11. Also (u(v∗v)1/2u∗)2 = u(v∗v)1/2u∗u(v∗v)1/2u∗ = uv∗vu∗ = vv∗, so
(vv∗)1/2 = u(v∗v)1/2u∗ and therefore

Φ(u) = Φ((v∗v)−1/2)Φ(v) = −(vv∗)−1/2v

= −u(v∗v)−1/2u∗v = −u(v∗v)−1/2(v∗v)−1/2v∗v
= −u.

Let E′′ = uu∗ + u∗u, I ′′ = iuu∗ − iu∗u and J ′′ = u − u∗. Then Φ(E′′) =
E′′ = E′′∗, Φ(I ′′) = −I ′′ = I ′′∗, Φ(J ′′) = −J ′′ = J ′′∗, I ′′2 = −E′′, J ′′2 = −E′′,
J ′′I ′′ = −I ′′J ′′,

‖E′′ − E‖ = ‖e11 + e22 − E11 − E22‖ < 4δ1 < ε,

‖I ′′ − I‖ = ‖ie11 − ie22 − iE11 + iE22‖ < 4δ1 < ε and

‖J ′′ − J‖ = ‖u− u∗ − E12 + E21‖ ≤ 2‖u− E12‖ < 62δ1 < ε.

�

Theorem 3.5. Let A be a simple unital infinite-dimensional real C∗-algebraic di-
rect limit of direct sums of basic building blocks A1 →

φ1
A2 →

φ2
· · · . Then A is also the

direct limit of a system of direct sums of basic building blocks with unital injective
maps.

Proof. If φn,∞ : An → A is the canonical map then there exists N such that, for
n ≥ N, φn,∞(1) = 1. Omitting A1, . . . , AN−1 and substituting φn(1)An+1φn(1)
for An+1 for n ≥ N it can be assumed that each φn is unital.

Let F be a finite subset of A. There exists N such that F is contained within
φN,∞(AN ) up to ε/2. Let F ′ be a subset of φN,∞(AN ) with each element within
ε/2 of an element of F . By Lemma 3.1 there exists B = B1 ⊕ B2 ⊆ φN,∞(AN )
containing F ′ to within ε/2, where B1 is finite-dimensional with identity p and B2

is a direct sum of basic building blocks. The relative commutant of B1 in pAp is a
direct sum of simple inductive limit algebras, each of which contains a simple real
AF algebra (with the same K0 group) and therefore, applying Lemma 3.2, contains
a self-adjoint element h with spectrum [0, 1]. Then the real C∗-algebra generated
by B and h is a finite direct sum of basic building blocks containing F to within ε.
The result follows by Lemma 3.3. �
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The existence of a sequence with injective connecting maps is used on page 377
of [6] to establish approximate divisibility. It will now be shown that the finite
dimensional unital subalgebra produced in this construction can be chosen to be
invariant under the appropriate involutory antiautomorphism.

Proposition 3.6. Let A be a simple separable unital real C∗-algebra, which is the
direct limit of a unital system A1

φ1→ A2
φ2→ · · · , where each Ai is a direct sum of basic

building blocks and each φi is injective. Then, for each i, each N , each finite set
F ⊆ AC

i and each ε > 0 there exists j ≥ i and a homomorphism ψ : Ai → Aj, such
that ψC agrees with φC

j−1 ◦ · · · ◦φC
i on F to within ε, and a unital finite dimensional

subalgebra H of Aj in the commutant of ψ(Ai) such that each summand of H has
order at least N .

Proof. It suffices to consider Ai to be a single basic building block which, by
the results of Section 1, is of the form C([0, 1],R) ⊗R R or A(1,R) ⊗R R for some
algebra R isomorphic to Mq(R) or Mq/2(H) or Mq(C). It therefore suffices to
consider Ai = C([0, 1],R) or Ai = A(1,R), which are generated by h(t) = t and
g(t) = i( 1

2−t) respectively. As in [6], given δ, j can be chosen so that the eigenvalues
of each primitive quotient of k = φj−1 ◦ · · · ◦ φi(h) or � = φj−1 ◦ · · · ◦ φi(g) are δ

4N

dense in [0,1] or i[− 1
2 ,

1
2 ]. It was shown in Lemma 2.4 that there is an arbitrarily

small perturbation of each summand of k of the form
∑
λrPr ∈ Aj , where each

Pr is a 1 or 2 dimensional projection valued function in Aj and each λr(t) ∈ R.
It was also shown in Lemma 2.4 that there is an arbitrarily small perturbation of
each summand of � of the form

∑
λrPr ∈ Aj , where each λr(t) is purely imaginary

and each Pr(t) is 1-dimensional. In this case either Pr ∈ Aj or there is a partner
Ps with i(Pr − Ps) ∈ Aj and Pr + Ps ∈ Aj .

In each case, by coalescing eigenvalues as on page 377 of [6], a perturbation∑
λrQr of each summand of k or � can be found in Aj such that, for each eigenpro-

jection Qr, the dimension of each Qr(t) is at least 2N . For the perturbation of each
summand of k, each Qr belongs to Aj and there exists a unital finite-dimensional
subalgebra Hr of QrAjQr. For the perturbation of each summand of �, either the
same applies or for given r there exists s such that both i(Qr −Qs) and Qr +Qs
belong to Aj and the element i(Qr−Qs) of (Qr+Qs)Aj(Qr+Qs) commutes with a
unital finite-dimensional subalgebra Hr of order at least N . (The complexification
of Hr has order at least 2N .) The direct sum of the subalgebras Hr, for varying r,
gives the required algebra H. �

4. An existence result

In this section we obtain an appropriate version of Theorem 5 of [6]. To pro-
duce homomorphisms of real C∗-algebras consistent with prescribed K-theoretic
maps the method previously employed for real AF-algebras, using standard ho-
momorphisms, can be used. There is an apparent problem obtaining the other
required condition, approximate consistency with a given Markov map between
affine function spaces on tracial state spaces. For example, the only nonzero homo-
morphism from A(1,R) = {f ∈ C([0, 1],C) : f(t) = f(1 − t)} to B = C([0, 1],R)
maps f to the constant function f( 1

2 ). Thus some Markov maps from A to B,
such as that mapping f to the constant 1

2f(0) + 1
2f(1), cannot be approximated

by convex combinations of homomorphisms. The algebra A(1,R) is similar to the
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dimension drop algebras considered in [20], (noting that A(1,R) is isomorphic to
{f ∈ C([0, 1

2 ],C) : f( 1
2 ) ∈ R}) and, as in [20], the solution will be to seek approxi-

mating convex combinations of homomorphisms from A into a matrix algebra over
B, in this case M2(B). The first lemma establishes the required version of Theorem
2.1 of [21].

Lemma 4.1. Let A = C([0, 1],R), let θ1, θ2 ∈ {id, 1 − id} be homeomorphisms
of [0, 1], let Φ̂1, Φ̂2 be the associated involutions of A (with Φ̂if = f ◦ θi) and
let M : A → A be a unital positive operator with M Φ̂1 = Φ̂2M . Given δ > 0
and a finite subset F of C([0, 1],R) there exist N > 0 and continuous functions
µ1, . . . , µ2N from [0, 1] to [0, 1] with µiθ2 = θ1µ2N+1−i for each i such that∥∥∥∥∥M(f) − 1

2N

2N∑
i=1

f ◦ µi
∥∥∥∥∥ < δ

for all f ∈ F .

Proof. When θ1 = θ2 = id use Theorem 2.1 of [21] and its proof to approximate
M(f) by 1

N

∑N
i=1 f ◦ µi and then define µ2N+1−i = µi for 1 ≤ i ≤ N . When

θ1 = id and θ2 = 1 − id, (Mf)(t) = (Mf)(1 − t) for each 0 ≤ t ≤ 1 so Mf can
be regarded as an element of C([0, 1

2 ]). Use Theorem 2.1 of [21] and its proof to
approximate M(f) by 1

N

∑N
i=1 f ◦ µi where µi : [0, 1

2 ] → [0, 1]. Extend each µi to
[0, 1] by µi(t) = µi(1 − t) and, as before, define µ2N+1−i = µi for 1 ≤ i ≤ N .

When θ1 = 1 − id and θ2 = id then Mf = M Φ̂1f = M( 1
2f + 1

2 Φ̂1f) and
( 1
2f + 1

2 Φ̂1f)(t) = ( 1
2f + 1

2 Φ̂1f)(1− t) for each 0 ≤ t ≤ 1. Thus M can be regarded
as a map from C([0, 1

2 ]) to C([0, 1]) and therefore M(f) can be approximated by
1
N

∑N
i=1(

1
2f + 1

2 Φ̂1f)◦µi where µi : [0, 1] → [0, 1
2 ]. For 1 ≤ i ≤ N define µ2N+1−i =

θ1µi, to obtain the required approximation.
When θ1 = θ2 = θ = 1− id, the required result is obtained by a minor refinement

of the proof of Theorem 2.1 of [21]. Firstly note that if a ∈ C([0, 1],R) and y ∈
[0, 1

2 ] then both (Ma)(y) is approximated by a convex combination
∑
λia(xi) and

(Ma)(1−y) is approximated by
∑
λia(1−xi); in particular if y = 1

2 then (Ma)( 1
2 )

is approximated both by
∑
λia(xi) and

∑
λia(1 − xi) and thus by

1
2

∑
λi(a(xi) + a(1 − xi)).

As in Theorem 2.1 of [21] choose an open covering {Uj : j = 1, . . . , N} of [0, 1
2 ]

on which the approximation by convex combinations persists, but choose 1
2 ∈ UN

and 1
2 /∈ Uj for 1 ≤ j < N . Then define an open cover {V1, . . . , V2N−1} of [0, 1] by

Vi = Ui for 1 ≤ i ≤ N−1, Vi = θU2N−i for N+1 ≤ i ≤ 2N−1 and VN = UN∪θUN .
A partition of unity {h1, . . . , h2N−1} subordinate to {V1, . . . , V2N−1} can then be
found with hi = θh2N−i for 1 ≤ i ≤ N − 1 and hN = θhN (with hN ( 1

2 ) = 1).
The corresponding Markov operator V a =

∑2n
i=1 gia(xi) obtained in [21] can be

chosen to have g2n+1−i = θgi and xi = 1 − x2n+1−i. Then let Gj =
∑j
i=1 gi so

that Gj−1(y) < t < Gj(y) if and only if G2n−j(1 − y) < 1 − t < G2n−j+1(1 − y).
Thus, using the notation Uj = {(y, t) ∈ [0, 1] × [0, 1] : Gj−1(y) < t < Gj(y)}
introduced in the proof of Theorem 2.1 of [21], (y, t) belongs to Uj if and only if
(1 − y, 1 − t) belongs to U2n+1−j . The maps φ1, . . . , φ2n supported on U1, . . . , Un
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can then be chosen to satisfy φj(y, t) = φ2n+1−j(1− y, 1− t) and, with x0 = 1
2 , the

continuous maps ψj can be chosen to have ψj(t) = 1−ψ2n+1−j(t). The continuous
map h : [0, 1] × [0, 1] → [0, 1] defined by h(y, t) = ψj(φj(y, t)) satisfies

h(y, t) = 1 − h(1 − y, 1 − t)

for each (y, t) and thus, with µi(y) = h(y, 2i−1
4N ) for 1 ≤ i ≤ 2N ,

µi(1 − y) = 1 − h

(
y,

2(2N + 1 − i) − 1
4N

)
= 1 − µ2N+1−i(y).

The proof of Theorem 2.1 of [21] shows that µ1, . . . , µ2N have the required proper-
ties. �

The continuous maps µi found in the previous lemma do not give rise to homo-
morphisms between the real algebras associated with θ1, θ2. The next lemma shows
however that they can be combined in pairs to give appropriate homomorphisms
into matrix algebras.

Lemma 4.2. Let µ1, µ2 : [0, 1] → [0.1] be continuous, let θ1, θ2 ∈ {id, 1 − id}
and let µ1θ2 = θ1µ2. For f ∈ C([0, 1],C) and i ∈ {1, 2} let Φif = f ◦ θi and
M(f) = 1

2f ◦ µ1 + 1
2f ◦ µ2. Then there exists a homomorphism

ψ : C([0, 1],C) → C([0, 1],C) ⊗M2(C) with (Φ2 ⊗ Tr)ψ = ψΦ1.

where Tr is the transpose map on M2(C). Furthermore, when the tracial state spaces
of C([0, 1],C) and C([0, 1],M2(C)) are identified, M(f) = ψ(f) as affine functions
on the tracial state space.

Proof. Let W = 1 ⊗ 1√
2

(
i −i
1 1

)
and let

ψ(f) = Wdiag(f ◦ µ1, f ◦ µ2)W ∗

= 1
2

(
f ◦ µ1 + f ◦ µ2 i(f ◦ µ1 − f ◦ µ2)
i(f ◦ µ2 − f ◦ µ1) f ◦ µ1 + f ◦ µ2

)
.

From µ1θ2 = θ1µ2 it also follows that θ1µ1 = µ2θ2 and so

(Φ2 ⊗ Tr)(ψ(f)) = 1
2

(
f ◦ µ1 ◦ θ2 + f ◦ µ2 ◦ θ2 i(f ◦ µ1 ◦ θ2 − f ◦ µ2 ◦ θ2)
i(f ◦ µ2 ◦ θ2 − f ◦ µ1 ◦ θ2) f ◦ µ1 ◦ θ2 + f ◦ µ2 ◦ θ2

)

= 1
2

(
f ◦ θ1 ◦ µ1 + f ◦ θ1 ◦ µ2 i(f ◦ θ1 ◦ µ1 − f ◦ θ1 ◦ µ2)
i(f ◦ θ1 ◦ µ2 − f ◦ θ1 ◦ µ1) f ◦ θ1 ◦ µ1 + f ◦ θ1 ◦ µ2

)
= ψ(Φ1(f)).

Furthermore, if τ̃ is a trace on C([0, 1],M2(C)) corresponding to τ on C([0, 1],C)
then

τ̃(ψ(f)) = τ̃diag(f ◦ µ1, f ◦ µ2) = τ̃diag(M(f),M(f)) = τ(M(f)). �

The next lemma is just the appropriate version of Lemma 4.2 of [14]. It uses cer-
tain standard homomorphisms betweeen finite-dimensional real C∗-algebras which
were defined in [18] and [9].

Lemma 4.3. Let A = ⊕ri=1Ai and B = ⊕sj=1Bj where each Ai and Bj is a basic
building block. Let T (AC), T (BC) be the tracial state spaces of AC, BC, and let
Φ∗
A,Φ

∗
B be the affine homeomorphisms of T (AC), T (BC) arising from the involutory

antiautomorphisms ΦA,ΦB of AC, BC associated with the real algebras A,B. Let F
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be a finite subset of Aff(T (AC)), the continuous affine functions on T (AC), let δ > 0,
let M : Aff(T (AC)) → Aff(T (BC)) be unital and positive, with M Φ̂A = Φ̂BM , and
let h : K0(A) → K0(B), hC : K0(A ⊗R C) → K0(B ⊗R C), hH : K0(A ⊗R H) →
K0(B ⊗R H) be such that the following two diagrams commute, where ρA is the
natural map from K0(AC) into Aff(T (AC)):

K0(AC)
ρA−−−−→ Aff(T (AC))

hC


 M



K0(BC) −−−−→

ρB

Aff(T (BC))

K0(A) −−−−→ K0(A⊗R C) −−−−→ K0(A⊗R H)

h


 
hC


hH

K0(B) −−−−→ K0(B ⊗R C) −−−−→ K0(B ⊗R H).
Then there exist k ∈ N and ∗-homomorphisms λi : A→ B⊗RM2(R), i = 1, . . . , k

such that λi∗ = d∗ ◦ h on K0(A), λC
i∗ = d∗ ◦ hC on K0(A ⊗R C), λH

i∗ = d∗ ◦ hH on
K0(A ⊗R H) and ‖ 1

k

∑
λ̂C
i (f) −M(f)‖ < δ for all f ∈ F where, for τ ∈ T (AC) =

T (AC ⊗M2(C)), λ̂C
i (f)(τ) = f(τ ◦ λC

i ) and d∗ arises from the diagonal embedding
B → B ⊗R M2(R).

Proof. By considering each summand separately it suffices to consider B to be
a single building block. Let pd be the identity of the summand Ad of A and let
{qd : 1 ≤ d ≤ r} be a set of orthogonal projections in B such that h([pd]) = [qd]
which exist because K0(B) ∼= Z, with generator given by a minimal projection in
B, and h([1]) = [1].

It will suffice to replace A by Ad, B by qdBqd and, if qd �= 0, M by q̂−1
d M ◦ idd

where idd is the dth coordinate embedding and q̂d is the ratio [qd]/[1] when both
are regarded as elements of Z ∼= K0(B). (If qd = 0, the compatibility between hC

and M forces M to be zero on the dth summand: in this case let k = 1 and λ1 = 0).
Let Z be the centre of A and Z ′ the centre of B. Then A = Mq(R) ⊗R Z

or A = Mq(H) ⊗R Z, for some q, with a similar result for B, so that M can be
regarded as a map from Aff(T (ZC)) to Aff(T (Z ′C)). Exactly as in Lemma 4.2 of
[14] both Aff(T (ZC)) and Aff(T (Z ′C)) can be identified with either C([0, 1],R) or
C([0, 1],R2).

The first step, except when Z = C([0, 1],C) and Z ′ = C([0, 1],C), is to find
unital homomorphisms ψi : ZC → Z ′C ⊗M2(C), mapping Z to Z ′ ⊗R M2(R), such
that 1

k

∑
ψi approximates M on a given finite set. When Z and Z ′ are both equal

to either C([0, 1],R) or A(1,R) such homomorphisms exist by Lemmas 4.1 and 4.2.
When Z is either C([0, 1],R) or A(1,R) and Z ′ = C([0, 1],C) then

M : C([0, 1],R) → C([0, 1],R2)

and, from the compatibility condition M Φ̂A = Φ̂BM , M is of the form M(f) =
(m(f),m(f ◦ θ)), where θ is the homeomorphism of [0, 1] associated with Z and m
is unital and positive. By Lemma 4.2 of [14] there exist continuous maps µ1, . . . , µk
such that m(f) is approximated by 1

k

∑
f ◦ µi for f in F ∪ Φ̂A(F ). Then ψi :

ZC → Z ′C ⊗M2(C) defined by ψi(f) = (f ◦ µi, f ◦ θ ◦ µi) ⊗ I2 have the required
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approximation property and map elements of Z, for which f∗ = f ◦ θ, to elements
of Z ′ ⊗R M2(R).

When Z = C([0, 1],C) and Z ′ is either C([0, 1],R) or A(1,R) then

M : C([0, 1],R2) → C([0, 1],R)

and, from the compatibility of M with hC : Z
2 → Z, M(1, 0) is a constant function.

The compatibility condition M Φ̂A = Φ̂BM then gives M(0, 1) = Φ̂BM(1, 0) =
M(1, 0) ◦ θ = M(1, 0) and, from M(1, 1) = 1, it then follows that M(1, 0) =
M(0, 1) = 1

2 . Thus Lemma 4.2 of [14] can be applied to m : f 	→ 2M(f, 0)
to produce continuous maps µ1, . . . , µk for which 1

k

∑
f ◦ µi approximates m(f)

and 1
k

∑
g ◦ µi approximates m(g) whenever (f, g) ∈ F and therefore for which

1
2k

∑
(f ◦ µi + g ◦ µi ◦ θ) approximates M(f, g). Let p be the projection 1

2

(
1 −i
i 1

) ∈
M2(C) and define ψi to be the homomorphism ψi(f, g) = (f ◦µi)p+(g◦µi◦θ)(1−p).
Then ψi(f, f∗)Tr = (f ◦ µi)(1− p) + (f∗ ◦ µi ◦ θ)p = ψi(f, f∗)∗ ◦ θ, so that ψi maps
Z to Z ′ ⊗M2(R), and 1

k

∑
ψi approximates M on F .

Except when Z = Z ′ = C([0, 1],C), the homomorhisms λi can now be defined
by λi = αi ⊗ ψi : Mq(F) ⊗R Z → Mm(F′) ⊗R Z

′ ⊗R M2(R) where F,F′ are either
R or H and αi is the appropriate standard homomorphism, as used in the real
AF situation in Lemma 2.2 of [19] and either Theorem 3.3 of [18] or Proposition
3.6 of [9]. The effect on K-theory is correct because, as in Lemma 6.6 of [20], the
evaluation of an element of Mq(F)⊗RZ at 1

2 is a split homomorphism and therefore
gives an isomorphism between the K-theory sequences for Mq(F)⊗R Z and Mq(F).

When Z = Z ′ = C([0, 1],C) the K-theory and affine approximation must be
addressed simultaneously. In this case the K-theory data is

Z
(id1,id2)−−−−−→ Z

2 id1 + id2−−−−−→ Z

h


 
hC


hH

Z
(id1,id2)−−−−−→ Z

2 id1 + id2−−−−−→ Z .
If hC(1, 0) = (k, �) let hC(0, 1) = (k′, �′). Then k′ + �′ = hH(1) = k + � and
(k + k′, � + �′) = (h(1), h(1)). So k + k′ = � + �′ and therefore k′ = � and �′ =
k. The positive map M : C([0, 1],R2) → C([0, 1],R2) is of the form M(f, g) =
(m(f, g),m(g, f)) for some positive unital map m and the compatibility with hC

implies that m(1, 0) = k
k+� and m(0, 1) = �

k+� . If k �= 0 and (f, g) ∈ F , the map
f 	→ k+�

k m(f, 0) can be approximated by a sum 1
N

∑
f ◦ µi and if � �= 0, the map

g 	→ k+�
� m(0, g) can be approximated by a sum 1

M

∑
g ◦ νi. Repeating elements

as necessary, we can assume that M = N , so that m(f, g) is approximated by
1

N(k+�)

∑
(kf ◦ µi + �g ◦ νi). This also holds when k = 0 or � = 0. Then let

λi =
((

(f ◦ µi) ⊗ Ik 0
0 (g ◦ νi) ⊗ I�

)
,

(
(g ◦ µi) ⊗ Ik 0

0 (f ◦ νi) ⊗ I�

))
⊗ I2.

The combination 1
N

∑
λ̂i approximates M on F and each λi has the required

K-theoretic properties. �
The existence theorem now follows as in Corollary 4.3 of [14].

Proposition 4.4. Let A =
⊕r

i=1Ai and B =
⊕s

j=1Bj where each Ai and Bj
is a basic building block, let T (AC), T (BC) be the trace state spaces of AC, BC, let
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F ⊆ Aff(T (AC)) be a finite subset and let δ > 0. Further let M : Aff(T (AC)) →
Aff(T (BC)) be unital and positive, with M Φ̂A = Φ̂BM , where Φ̂A, Φ̂B arise from the
involutory antiautomorphisms of AC, BC associated with A,B, and let h : K0(A) →
K0(B), hC : K0(A⊗R C) → K0(B ⊗R C) and hH : K0(A⊗R H) → K0(B ⊗R H) be
such that the following two diagrams commute:

K0(AC)
ρA−−−−→ Aff(T (AC))
hC


M
K0(BC) −−−−→

ρB

Aff(T (BC))

K0(A) −−−−→ K0(A⊗R C) −−−−→ K0(A⊗R H)

h


 
hC


hH

K0(B) −−−−→ K0(B ⊗R C) −−−−→ K0(B ⊗R H).

Then there exists T ∈ N so that for each set {�1, . . . , �R} of integers with �j ≥ T for
each j, there is a unital ∗-homomorphism ψ : A → B ⊗R H, where H = M�1(R) ⊕
· · · ⊕M�R(R), such that ψ∗ = d∗ ◦ h on K0(A), ψC

∗ = dC
∗ ◦ hC on K0(A⊗R C), ψH

∗ =
dH
∗ ◦ hH on K0(A ⊗R H) and ‖ψ̂C(f) − (d̂C ◦ M)(f)‖ < δ for all f ∈ F , where
d : B → B ⊗R H is the ∗-homomorphism d(b) = b⊗ 1H .

Proof. The method of Corollary 4.3 of [14] applies when modified, as in Lemma
6.6 of [20], to combine homomorphisms ψi : A → B ⊗R M2(R) rather than homo-
morphisms ψi : A→ B. �

5. The classification theorem

The combination of the existence and uniqueness theorems to produce a clas-
sification result proceeds exactly as on pages 374-380 of [6], using the notation of
approximately commuting diagrams originally introduced in [5]. The first step es-
tablishes a commutative diagram of K0 maps and an approximately commutative
diagram of tracial state spaces.

Lemma 5.1. Let A,B be direct limits of unital sequences A1 → A2 → · · · , B1 →
B2 → · · · of direct sums of basic building blocks with injective connecting maps, let

K0(A) −−−−→ K0(A⊗R C) −−−−→ K0(A⊗R H)

φ0


 φC

0


 φH

0



K0(B) −−−−→ K0(B ⊗R C) −−−−→ K0(B ⊗R H)

be a system of ordered group isomorphisms φ0, φ
C
0 , φ

H
0 each preserving the class of

the identity and let φT : T (BC) → T (AC) be a continuous affine isomorphism
with φTΦ∗

B = Φ∗
AφT such that 〈φC

0 g, τ〉 = 〈g, φT τ〉 for each g ∈ K0(AC) and each
τ ∈ T (BC).

For each i let DA
i be the triple K0(Ai) → K0(Ai⊗RC) → K0(Ai⊗RH) and let DB

i

be the triple K0(Bi) → K0(Bi⊗R C) → K0(Bi⊗R H). After passing to subsequences
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there exists a commutative diagram of positive unital group homomorphisms

DA
1

(h1,h
C

1,h
H

1 )

��

(θ1,θ
C

1 ,θ
H

1 ) �� DA
2

(h2,h
C

2,h
H

2 )

��

�� · · ·

DB
1

(k1,k
C

1 ,k
H

1 )

���������������

(ψ1,ψ
C

1 ,ψ
H

1 )

�� DB
2

�� · · ·

producing the given triple (φ0, φ
C
0 , φ

H
0 ). After further passing to subsequences there

exists an approximately commutative system, in which each map commutes with the
maps resulting from the natural involutory antiautomorphisms,

Aff(T (AC
1 ))

γ1

��

α1 �� Aff(T (AC
2 ))

γ2

��

�� . . .

Aff(T (BC
1 ))

δ1

�������������

β1

�� Aff(T (BC
2 )) �� . . .

giving rise to φ∗T : Aff(T (AC)) → Aff(T (BC)) and satisfying 〈hig, τ〉 = 〈g, γ∗i τ〉
and 〈kig′, τ ′〉 = 〈g′, δ∗i τ ′〉 for each i, for each g ∈ K0(AC

i ), each τ ∈ T (BC
i ), each

g′ ∈ K0(BC
i ) and each τ ′ ∈ T (AC

i+1).

Proof. The argument on pages 374–376 of [6] applies directly to the current situa-
tion: by suitably choosing the finite-dimensional approximants to the affine function
spaces they can be given involutions compatible with all the relevant maps and this
gives rise to the compatibility in the diagram of affine function spaces. �

The next step is to produce a diagram of algebras and unital C∗-homomorphisms
as on pages 376–378 of [6].

Lemma 5.2. Let A,B, φ0, φ
C
0 , φ

H
0 , φT be as in Lemma 5.1. Then, after passing to

subsequences, there exists a diagram of unital C∗-homomorphisms

A1

θ1

��

�� A2

θ2

��

�� . . .

B1

ψ1

����������
�� B2

ψ2

�����������
�� . . .

such that:
(a) The induced diagram of sequences of K0 triples K0(Ai) → K0(Ai ⊗R C) →

K0(Ai ⊗R H) and K0(Bi) → K0(Bi ⊗R C) → K0(Bi ⊗R H) commutes and
gives rise to the triple (φ0, φ

C
0 , φ

H
0 ).

(b) The induced diagram of affine function spaces Aff(T (AC
i )),Aff(T (BC

i )) ap-
proximately commutes and gives rise to φ∗T .

(c) The K0 and trace mappings at each stage are compatible.

Proof. Firstly construct the K0 and affine function map sequences of Lemma 5.1.
Then, given i, a finite subset F of AC

i and ε > 0, apply Proposition 4.4 to obtain
T ∈ N such that, for H = M�1(R) ⊕ · · · ⊕M�R(R) with �j ≥ T for each j, there
exists a unital ∗-homomorphism ψ : Ai → Bi ⊗R H giving rise to the appropriate
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K-theory maps and approximately giving rise to the given affine function space
maps. Finally apply Proposition 3.6 to obtain j ≥ i and ψ′ : Bi → Bj , such that
ψ

′
C agrees to within ε on F with the original map Bi → Bj and such that there is

a subalgebra H as above in ψ′(Bi)′ ∩ Bj . Then ψ : Ai → Bi ⊗R H gives rise to a
∗-homomorphism θi from Ai to Bj . Relabel Bj as Bi. A similar argument produces
ψi : Bi → Ai+1, which have been constructed to have the required properties. �

The classification result can now be obtained as on pages 378–380 of [6].

Theorem 5.3. Let A,B be separable simple unital real C∗-algebras, each of which
is the inductive limit of a sequence of direct sums of the basic building blocks
C([0, 1],Mq(R)), C([0, 1],Mq(C)), C([0, 1],Mq(H)) and A(1,R)⊗RMq(F) for F = R

or H, where A(1,R) = {f ∈ C([0, 1],C) : f(t) = f(1 − t) for all 0 ≤ t ≤ 1}.
Let ΦA,ΦB be the associated involutory antiautomorphisms of AC = A ⊗R C and
BC = B ⊗R C. Suppose that there exists a triple of unital ordered group isomor-
phisms (φ0, φ

C
0 , φ

H
0 ) from the triple K0(A) → K0(A ⊗R C) → K0(A ⊗R H) to the

triple K0(B) → K0(B ⊗R C) → K0(B ⊗R H) and that there exists a continuous
affine isomorphism φT : T (BC) → T (AC) from the tracial state space of BC to
that of AC, with φTΦ∗

B = Φ∗
AφT , and that φT and φC

0 are compatible. Then there
exists a ∗-isomorphism φ : A → B which gives rise to the map φT and the triple
(φ0, φ

C
0 , φ

H
0 ).

Proof. From the diagram of C∗-homomorphisms given by Lemma 5.2 there is a
diagram of complexifications, where each map respects the involutory antiautomor-
phisms given by the real algebras. The argument on pages 378–380 of [6] shows
that by a passage to subsequences the hypotheses of Proposition 2.6 are satisfied.
(The only extra ingredient from Theorem 6 of [6] is the condition on the unitary
which ensures that the corresponding inner automorphism respects the relevant in-
volutions.) As on page 380 of [6] the diagram can be amended by composing with
inner automorphisms to give the required result. �

References

[1] B. Blackadar, K-theory for operator algebras (Mathematical Sciences Research Institute Pub-
lications: 5), Springer-Verlag, New York, 1986, MR 0859867 (88g:46082), Zbl 0597.46072.

[2] O. Bratteli, Inductive limits of finite-dimensional C∗-algebras, Trans. Amer. Math. Soc. 171
(1972), 195–234, MR 0312282 (47 #844), Zbl 0264.46057.

[3] M-D Choi and G.A. Elliott, Density of the self-adjoint elements with finite spectrum in an
irrational rotation C∗-algebra, Math. Scand. 67 (1990), 73–86, MR 1081290 (92a:46062),
Zbl 0743.46070.

[4] G.A. Elliott, On the classification of inductive limits of sequences of semisimple finite-
dimensional algebras, J. Algebra 38 (1976), 29–44, MR 0397420 (53 #1279), Zbl 0323.46063.

[5] G.A. Elliott, On the classification of C∗-algebras of real rank zero, J. Reine Angew. Math.
443 (1993), 179–219, MR 1241132 (94i:46074), Zbl 0809.46067.

[6] G.A. Elliott, A classification of certain simple C∗-algebras, Quantum and Noncommutative
Analysis (editors H. Araki et al.) Kluwer, Dordrecht, 1993, 373–385, MR 1276305 (95h:46089),
Zbl 0843.46045.

[7] G.A. Elliott, The classification problem for amenable C∗-algebras, Proceedings of the In-
ternational Congress of Mathematicians, Vol. 2 (Zurich, 1994), 922–932, Birkhauser, Basel,
1995, MR 1403992 (97g:46072), Zbl 0946.46050.

[8] E.G. Effros, Dimensions and C∗-algebras, CBMS Regional Conference Series in Mathematics,
46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981, MR 0623762
(84k:46042), Zbl 0475.46050.

http://www.emis.de/cgi-bin/MATH-item?0475.46050
http://www.ams.org/mathscinet-getitem?mr=0623762
http://www.emis.de/cgi-bin/MATH-item?0946.46050
http://www.ams.org/mathscinet-getitem?mr=1403992
http://www.emis.de/cgi-bin/MATH-item?0843.46045
http://www.ams.org/mathscinet-getitem?mr=1276305
http://www.emis.de/cgi-bin/MATH-item?0809.46067
http://www.ams.org/mathscinet-getitem?mr=1241132
http://www.emis.de/cgi-bin/MATH-item?0323.46063
http://www.ams.org/mathscinet-getitem?mr=0397420
http://www.emis.de/cgi-bin/MATH-item?0743.46070
http://www.ams.org/mathscinet-getitem?mr=1081290
http://www.emis.de/cgi-bin/MATH-item?0264.46057
http://www.ams.org/mathscinet-getitem?mr=0312282
http://www.emis.de/cgi-bin/MATH-item?0597.46072
http://www.ams.org/mathscinet-getitem?mr=0859867


Simple real AI algebras 229

[9] T. Giordano, A classification of approximately finite real C∗-algebras, J. Reine Angew. Math.
385 (1988), 161–194, MR 0931219 (89h:46078), Zbl 0635.46055.

[10] J.G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960),
318–340, MR 0112057 (22 #2915), Zbl 0094.09701.

[11] K.R. Goodearl, Notes on real and complex C∗-algebras, Shiva, Natwich, Cheshire, 1982,
MR 0677280 (85d:46079), Zbl 0495.46039.

[12] K.R. Goodearl and D. Handelman, Classification of ring and C∗-algebra direct limits of finite-
dimensional semisimple real algebras, Mem. Amer. Math. Soc. 69(372) (1987), MR 0904013
(88k:46067), Zbl 0629.46053.

[13] H. Lin, An introduction to the classification of amenable C∗-algebras, World Scientific, Sin-
gapore, 2001, MR 1884366 (2002k:46141), Zbl 1013.46055.

[14] K.E. Nielsen and K. Thomsen, Limits of circle algebras, Exposition. Math. 14 (1996), 17–56,
MR 1382013 (97e:46097), Zbl 0865.46037.

[15] J. Phillips and I. Raeburn, Automorphisms of C∗-algebras and second Čech cohomology,
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