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Nonergodic actions, cocycles and superrigidity

David Fisher, Dave Witte Morris and Kevin Whyte

Abstract. This paper proves various results concerning nonergodic actions
of locally compact groups and particularly Borel cocycles defined over such
actions. The general philosophy is to reduce the study of the cocycle to the
study of its restriction to each ergodic component of the action, while being
careful to show that all objects arising in the analysis depend measurably on
the ergodic component. This allows us to prove a version of the superrigidity
theorems for cocycles defined over nonergodic actions.
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1. Introduction

It is often the case that one has extensive information about each ergodic com-
ponent of an action, and would like to piece this local information together (mea-
surably) in order to obtain a global conclusion about the entire action. This note
addresses a number of problems of this type, mostly dealing with cocycles. For
example:
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1. If α and β are Borel cocycles, and the restriction of α to almost every ergodic
component is cohomologous to the restriction of β, then α is cohomologous
to β (see 3.6).

2. If α is a Borel cocycle, and the restriction of α to almost every ergodic com-
ponent is cohomologous to a homomorphism cocycle, then α is cohomologous
to a homomorphism cocycle (see 3.11).

3. If almost every ergodic component of a G-action has a certain standard Borel
G-space X as a measurable quotient, then X is a measurable quotient of the
entire action (see 5.4).

(We consider only Borel actions of second countable, locally compact groups on
standard Borel spaces with a quasiinvariant probability measure.)

We also prove a superrigidity theorem for cocycles that applies to nonergodic
actions (see 4.4). In fact our work was motivated by the discovery, during the
writing of [FM], that no proof of any version of superrigidity for cocycles concerning
cocycles over nonergodic actions, exists in the literature. For many applications to
nonergodic actions, including those in [FM], other information concerning the action
and cocycle allows one to, with some additional work make do with superrigidity
theorems for cocycles which are defined over ergodic actions. However, the results
in Section 4 allow some simplification of the arguments in Section 5 of [FM], and
should have other applications as well.
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nology (ETH) in Zurich. We are pleased to thank FIM for its hospitality, and for
the financial support that made the visit possible. We would also like to thank Scot
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2. Some lemmas on measurability

This section records basic definitions and notation, and also proves that various
natural constructions of sets, functions, and actions yield results that are measur-
able. Some of the conclusions are known (or even well-known), but others may be
of independent interest.

2A. Properties of standard Borel spaces. We assume the basic theory of Pol-
ish spaces, standard Borel spaces and analytic Borel spaces, which can be found in
a number of textbooks, such as [Ar, Chap. 3]. We recall the definition of a standard
space and an analytic set.

Definition 2.1.

• A topological space is Polish if it is homeomorphic to a complete, separable
metric space.

• A Borel space is standard if it is Borel isomorphic to a Polish topological
space.

• The pair (S, µ) is a standard Borel probability space if S is a standard Borel
space and µ is a probability measure on S.
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• A subset A of a standard Borel space S is analytic if there exist:
◦ a standard Borel space X,
◦ a Borel map ψ : X → S,

such that A = ψ(X) is the image of ψ.

Remark 2.2 ([Ar, Thm. 3.2.4, p. 67]). An analytic subset A of a standard Borel
space S is absolutely measurable; that is, for any probability measure µ on S, there
exist Borel subsets B1 and B2 of S with B1 ⊂ A ⊂ B2 and µ(B2 �B1) = 0.

Theorem 2.3 (von Neumann Selection Theorem, cf. [Ar, Thm. 3.4.3, p. 77]). Let:
• (Ω, ν) be a standard Borel probability space,
• L be a standard Borel space,
• F be an analytic subset of Ω × L, and
• ΩF be the projection of F to Ω.

Then there are:
• a conull, Borel subset Ω0 of ΩF , and
• a Borel function Φ: Ω0 → L,

such that
(
ω,Φ(ω)

) ∈ F , for all ω ∈ Ω0.

Notation 2.4. Suppose (S, µ) is a standard Borel probability space, and (X, d) is
a separable metric space.

1. We use F(S,X) to denote the space of measurable functions f : S → X,
where two functions are identified if they are equal almost everywhere. If X is
complete, then F(S,X) is a Polish space, under the topology of convergence
in measure (cf. [WZ, §4.4]). A metric can be given by

dF(f, g) = min
{
ε ≥ 0

∣∣∣ µ{s ∈ S | d(f(s), g(s)
)
> ε
} ≤ ε

}
.

2. We use B(S) to denote the Boolean algebra of measurable subsets of S, where
two subsets are identified if their symmetric difference has measure 0. It is
well-known that this is a complete separable metric space, with metric

dB(A,B) = µ(A∆B).

Remark 2.5. The σ-algebra of Borel subsets of F(S,X) is generated by the sets
of the form

∆S0,X0,ε =
{
f
∣∣ µ(S0 ∩ f−1(X0)

)
< ε
}
,

where S0 and X0 are Borel subsets of S and X, respectively, and ε > 0. This implies
that if (X ′, d′) is Borel isomorphic to (X, d), then F(S,X ′) is Borel isomorphic to
F(S,X).

The following is well-known:

Lemma 2.6 (cf. [Mr, Lem. 7.1.3, p. 215]). Let:
• L and S be standard Borel spaces,
• µ be a probability measure on S,
• X be a separable metric space, and
• f : L× S → X be Borel.

Then:
1. For each � ∈ L, the function f� : S → X, defined by f�(s) = f(�, s), is Borel.
2. The induced function f̌ : L→ F(S,X), defined by f̌(�) = f�, is Borel.
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In short, any Borel function from L× S to X yields a Borel function from L to
F(S,X). The converse is true:

Lemma 2.7. Let:
• L and S be standard Borel spaces,
• µ be a probability measure on S,
• (X, d) be a separable metric space, and
• φ : L→ F(S,X) be a Borel function.

Then there is a Borel function φ̂ : L× S → X, such that, for each � ∈ L, we have

φ̂(�, s) = φ(�)(s) for a.e. s ∈ S.(2.8)

Proof. For each n ∈ N, let {Di
n}∞i=1 be a partition of F(S,X) into countably many

(nonempty) Borel sets of diameter less than 2−n, and choose φi
n ∈ Di

n. Define
φn : L× S → X by

φn(�, s) = φi
n(s) if φ(�) ∈ Di

n.
Then each φn is Borel.

By replacing each {Di
n}∞i=1 by the join of {Di

1}∞i=1, . . . , {Di
n}∞i=1 we may assume

that {Di
n+1}∞i=1 is a refinement of {Di

n}∞i=1. For each m,n ∈ N and each � ∈ L

µ
{
s ∈ S | d(φm(�, s), φn(�, s)

)
> 2−min(m,n)

}
< 2−min(m,n).

Thus, on each fiber {�}×S, the sequence {φn} not only converges in measure, but
converges quickly. There is no harm in assuming that X is complete; then {φn}
converges pointwise a.e. Let φ̂ be the pointwise limit of {φn}. (Define φ̂ to be
constant on the set where {φn} does not converge.) Then φ̂ is Borel, and satisfies
(2.8). �

Corollary 2.9. Let:
• L and S be standard Borel probability spaces, and
• (X, d) be a separable metric space.

Then F(L× S,X) is naturally homeomorphic to F
(
L,F(S,X)

)
.

Proof. From the preceding two lemmas, we know that there is a natural bijection
between the two spaces. Fubini’s Theorem implies that a sequence converges in
one of the spaces if and only if the corresponding sequence converges in the other
space. �

Definition 2.10. Suppose (S, µ) is a standard Borel probability space.
• Let Aut[µ](S) be the group of all equivalence classes of measure-class-preserv-

ing Borel automorphisms of (S, µ), where two automorphisms are equivalent
if they are equal almost everywhere.

• Let U
(
L2(S)

)
be the group of unitary operators on the Hilbert space L2(S),

with the strong operator topology (that is, Tn → T if ‖Tn(f) − T (f)‖ → 0,
for every f ∈ L2(S), equivalently, the topology on U

(
L2(S)

)
has a subbasis

of open sets U(f, g, ε) = {T : ‖Tf − g‖ < ε}). Note that U
(
L2(S)

)
is a Polish

space.
• There is a well-known embedding of Aut[µ](S) in U

(
L2(S)

)
, given by

Tφ(f)(s) = Dφ(s)1/2 f
(
φ−1(s)

)
,
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for φ ∈ Aut[µ](S) and f ∈ L2(S), where Dφ is the Radon-Nikodym derivative
of φ. This provides Aut[µ](S) with the topology of a separable metric space,
and thereby makes Aut[µ](S) into a topological group.

Remark 2.11. Note that Aut[µ](S) is not locally compact. On the other hand,
Aut[µ](S) is a closed subset of U

(
L2(S)

)
(because it consists of the operators that

map nonnegative functions to nonnegative functions [GGM, §3]), so it is a Polish
space.

Proposition 2.12 (Ramsay, cf. [Ra, Cor. 3.4]). If (S, µ) is a standard Borel prob-
ability space, then Aut[µ](S) acts continuously on the Borel algebra B(S).

Proof. We wish to show that if φ is close to φ0 in Aut[µ](S), and A is close to A0

in B(S), then µ
(
φ(A)�φ0(A0)

)
and µ

(
φ0(A0)�φ(A)

)
are close to 0. Thus, letting

ψ be χA and χA0 , it suffices to show that if ψ ∈ L2(S), with ‖ψ‖ ≤ 1, then∣∣∫
φ(A)

ψ2 dµ − ∫
φ0(A0)

ψ2 dµ
∣∣ is close to 0. To simplify the notation, we replace φ

and φ0 by their inverses in the following calculation:
We have∣∣∣∣∣
∫

φ−1(A)

ψ2 dµ−
∫

φ−1
0 (A0)

ψ2 dµ

∣∣∣∣∣
=
∣∣∣∣∫

A

Tφ(ψ)2 dµ−
∫

A0

Tφ0(ψ)2 dµ
∣∣∣∣

≤
∣∣∣∣∫

A

Tφ(ψ)2 dµ−
∫

A

Tφ0(ψ)2 dµ
∣∣∣∣+ ∣∣∣∣∫

A

Tφ0(ψ)2 dµ−
∫

A0

Tφ0(ψ)2 dµ
∣∣∣∣

=
∣∣∣∣∫

A

(
Tφ(ψ) + Tφ0(ψ)

)(
Tφ(ψ) − Tφ0(ψ)

)
dµ

∣∣∣∣
+
∣∣∣∣∫

A

Tφ0(ψ)2 dµ−
∫

A0

Tφ0(ψ)2 dµ
∣∣∣∣

≤ 2

√∫
A

(
Tφ(ψ) − Tφ0(ψ)

)2
dµ (Hölder’s Inequality and ‖ψ‖ ≤ 1)

+
∫

A∆A0

Tφ0(ψ)2 dµ (integrand is 0 on A ∩A0).

By definition of the topology on U
(
L2(S)

)
, the first term in the final expression

is small whenever φ is close to φ0 (since ψ is fixed). Because Tφ0(ψ)2 is a fixed
L1 function, the second term is small whenever A∆A0 has sufficiently small measure
[Ru, Exer. 6.10(a)]; that is, whenever A is sufficiently close to A0 in B(S). Thus,∣∣∣∫φ−1(A)

ψ2 dµ− ∫
φ−1

0 (A0)
ψ2 dµ

∣∣∣ is close to 0, as desired. �

The fact that the action on B(S) is continuous at the empty set ∅ can be restated
as follows:

Corollary 2.13. If φn → φ in Aut[µ](S), and An is a sequence of Borel subsets
of S, such that µ(An) → 0, then µ

(
φn(An)

)→ 0.

In the following result, we assume that S is a separable metric space, so that we
can speak of convergence in measure. This is a very mild assumption, because any
standard Borel space is, by definition, Borel isomorphic to such a space.
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Corollary 2.14. Let φn → φ in Aut[µ](S), with S a separable metric space. Then
φn → φ in measure.

Proof. By considering φn ◦ φ−1 (and using the fact that the action of φ on B(S)
is continuous at ∅), we may assume that φ = Id. Let {Ai}∞i=1 be a partition of S
into countably many Borel sets, such that diam(Ai) < ε for each i. Let

Σi
n = {s ∈ Ai | d(φn(s), s

)
> ε}.

Then, for each fixed i, we have

µ
(
φn(Σn

i )
) ≤ µ

(
φn(Ai) �Ai

) ≤ d
(
φn(Ai), Ai

)→ 0 as n→ ∞.

Thus, φn(Σi
n) → ∅ in B(S). Because Aut[µ](S) acts continuously on B(S), this

implies that
µ(Σi

n) → 0 as n→ ∞.

Therefore

lim
n→∞µ{s ∈ S | d(φn(s), s

)
> ε} = lim

n→∞µ

( ∞⋃
i=1

Σi
n

)

≤ inf
k∈N

lim
n→∞µ

((
k⋃

i=1

Σi
n

)
∪ (S � (A1 ∪ · · · ∪Ak)

))
= lim

k→∞
µ
(
S � (A1 ∪ · · · ∪Ak)

)
= 0.

So φn → Id in measure. �

Definition 2.15. There is a natural action of Aut[µ](S) on F(S,X), defined by
φ(f) = f ◦ φ−1, for φ ∈ Aut[µ](S) and f ∈ F(S,X).

Proposition 2.16. If (S, µ) is a standard Borel probability space, and (X, d) is a
separable metric space, then the natural action of Aut[µ](S) on F(S,X) is contin-
uous.

Proof. Suppose φn → φ in Aut[µ](S), and fn → f in F(S,X). Note that

d(fnφn, fφ) ≤ d(fnφn, fφn) + d(fφn, fφ).

We have d(fnφn, fφn) → 0, because

µ
{
s
∣∣ d(fnφn(s), fφn(s)

))
> ε
}

= µ
(
φ−1

n

{
s | d(fn(s), f(s)

)
> ε

})
→ 0,

using (2.13) and the fact that fn → f in measure to get the final limit.
Because (S, µ) is standard, there is no harm in assuming that S is a complete,

separable metric space. Then, by Lusin’s Theorem, there is a (large) subset K of S,
such that f is uniformly continuous on K. Let

An = φ−1(S �K) ∪ φ−1
n (S �K).

From (2.13), we see that, by requiring µ(K) to be sufficiently large, we may ensure
that

µ(An) < ε.



Nonergodic actions, cocycles and superrigidity 255

Choose δ > 0, such that d
(
f(s), f(t)

)
< ε, for all s, t ∈ K with dS(s, t) < δ. We

have

lim sup d(fφn, fφ) = lim supµ
{
s | d(fφn(s), fφ(s)

)
> ε

}
≤ lim supµ(An) + limµ

{
s | d(φn(s), φ(s)

)
> δ

}
≤ ε+ 0,

using (2.14) to obtain the term “0” in the final expression.
Since ε > 0 is arbitrary, we conclude that d(fnφn, fφ) → 0. �

We will use the following easy observation:

Lemma 2.17. If A is any Borel subset of any standard Borel probability space
(S, µ), then the integration functional I : F(S,R≥0) → R ∪ {∞}, defined by I(f) =∫

A
f dµ, is Borel.

Proof. Let χA be the characteristic function of A. It is easy to see that the map
f �→ χAf is a continuous function on F (S,R≥0), so we may (and will) assume
A = S.

For each n ∈ N, choose a continuous function ξn : R≥0 → [0, n], such that

ξn(x) =

{
x if x ≤ n,

0 if x ≥ n+ 1.

Note, for each f ∈ F(S,R≥0), that the composition ξn ◦ f is bounded by n, and
ξn ◦ f ↑ f pointwise.

Because ξn is uniformly continuous (being a continuous function with compact
support), it is easy to see that the map F(S,R≥0) → F(S, [0, n]), defined by f �→
ξn ◦ f , is continuous. Furthermore, the restriction of I to F(S, [0, n]) is continuous.
Thus, the function

In : F(S,R≥0) → R≥0, defined by In(f) = I(ξn ◦ f),

is continuous. The Monotone Convergence Theorem implies that

I(f) = lim
n→∞ In(f),

so I is a pointwise limit of continuous functions. Therefore, I is Borel. �

2B. Ergodic decomposition and near actions. A proof of the following folk-
lore theorem has been provided by G. Greschonig and K. Scmidt [GS]. The state-
ment here is slightly stronger than [GS, Thm. 1.1] (because Theorem 2.19(1) is more
precise than [GS, Thm. 1.1(3)]), but it follows immediately from [GS, Thm. 5.2],
by letting Ω be a p∗µ-conull Borel subset of Prob(X), X ′ = p−1(Ω), ψ(x) = p(x),
and ξ(ω) = ω.

Notation 2.18. For any standard Borel space X, we use Prob(X) to denote the
space of all probability measures on X. It is well-known that Prob(X) is a standard
Borel space, under an appropriate weak∗ topology.

Theorem 2.19 (Ergodic Decomposition [GS]). Let:
• G be a locally compact second countable group,
• (X,µ) be a standard Borel probability space, and
• ρ : G×X → X be a Borel action, such that µ is quasiinvariant.
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Then there exist:
• a standard Borel probability space (Ω, ν),
• a conull G-invariant Borel subset X ′ of X,
• a G-invariant Borel map ψ : X ′ → Ω, and
• a Borel map ξ : Ω → Prob(X ′),

such that:
1. ξ(ω)

(
ψ−1(ω)

)
= 1 for each ω ∈ Ω.

2. µ =
∫
Ω
ξ(ω) dν(ω).

3. For each ω ∈ Ω, ξ(ω) is quasiinvariant and ergodic.

Remark 2.20. To simplify the notation in the conclusion of Theorem 2.19, we will
often assume that the space X can be written as a Cartesian product X = Ω × S,
such that:

• µ is the product measure on X = Ω × S.
• ψ(ω, s) = ω, for a.e. (ω, s) ∈ X.

(For example, we make this assumption in the statement of Proposition 2.22.)
The following decomposition theorem of V. A. Rohlin [Ro] asserts that (up to
isomorphism) the general case is a countable union of examples of this type.

Proposition 2.21 (Rohlin). Assume the notation of Theorem 2.19. There is a
partition of Ω into countably many Borel sets Ω1,Ω2, . . . (some of these sets may
be empty), such that, for each k, there exist:

1. a conull subset X ′
k of ψ−1(Ωk),

2. a standard Borel probability space (Sk, µk),
3. a (ψ∗µ× µk)-conull subset (Ωk × Sk)′ of Ωk × Sk, and
4. a measure-class-preserving Borel isomorphism θ : X ′

k → (Ωk × Sk)′,
such that ψ(x) = π1

(
θ(x)

)
for each x ∈ X ′

k, where π1(ω, s) = ω.

Proof. Say that two standard Borel probability spaces (S1, µ1) and (S2, µ2) are of
the same type if there exists a measure-class-preserving Borel isomorphism from a
conull subset of S1 onto a conull subset of S2 [Ro, pp. 10–11]. This is obviously an
equivalence relation. It has only countably many equivalence classes [Ro, p. 18].
Thus, there is a decomposition Ω = Ω1 ∪ Ω2 ∪ · · · , such that if ω and ω′ belong to
the same Ωk, then the fibers

(
ψ−1(ω), ξ(ω)

)
and

(
ψ−1(ω′), ξ(ω′)

)
are of the same

type [Ro, (I), p. 41]. This implies that, modulo sets of measure 0, ψ−1(Ωk) is Borel
isomorphic to the Cartesian product Ωk × ψ−1(ω), for any ω ∈ Ωk [Ro, p. 42]. �
Proposition 2.22. Let:

• G be a second countable, locally compact group,
• (Ω, ν) and (S, µ) be standard Borel probability spaces,
• Ω′ be a conull Borel subset of Ω, and
• ρ : G × (Ω × S) → Ω × S be a Borel action of G on Ω × S, such that, for

each ω ∈ Ω′, the probability measure µω on {ω} × S (induced by the natural
isomorphism with S) is quasiinvariant.

Then:
1. There are Borel maps ρS : G × Ω′ × S → S and ρAut : G × Ω′ → Aut[µ](S),

defined by

ρ(g, ω, s) =
(
ω, ρS(g, ω, s)

)
=
(
ω, ρAut(g, ω)(s)

)
for a.e. s ∈ S(2.23)
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for each (g, ω) ∈ G× Ω′.
2. There is a Borel function D : G× Ω × S → R≥0, such that∫

S

D(g, ω, s)f(s) dµ(s) =
∫

S

f
(
ρS(g, ω, s)

)
dµ(s)

for every g ∈ G, ω ∈ Ω, and f ∈ F(S,R≥0).

Remark 2.24. The function D in conclusion (2) above is a fiberwise Radon-
Nikodym derivative. In particular, in the case when Ω is a one point set, con-
clusion (2) implies that the Radon-Nikodym derivative is a Borel function on G×S.

Proof of Proposition 2.22. Equation (2.23) determines a well-defined function
ρAut : G× Ω′ → F(S, S). Because G is a group, we know that ρAut(g, ω) is (essen-
tially) a Borel automorphism. Because µω is quasiinvariant, we see that ρAut(g, ω)
is measure-class preserving. Thus, ρAut(g, ω) ∈ Aut[µ](S), so ρAut is actually a map
into Aut[µ](S). Thus, in order to complete the proof of (1), it only remains to show
that ρAut is Borel. For this, we will use the conclusion of (2), so let us establish the
latter.

(2) Let {An} be a countable, dense subset of the Borel algebra B(S), and define

D∆ =
⋂
n∈N

{
(g, ω, f)

∣∣∣∣ µ(ρAut(g, ω)(An)
)

=
∫

An

f dµ

}
⊂ G× Ω′ × F(S,R≥0).

For each g ∈ G and ω ∈ Ω′, the fiber {s ∈ S | (g, ω, s) ∈ D∆} of D∆ con-
sists precisely of the Radon-Nikodym derivative of the transformation ρAut(g, ω).
Therefore, D∆ is the graph of a function Ď : G × Ω′ → F(S,R≥0), and Ď(g, ω) is
the Radon-Nikodym derivative of ρAut(g, ω).

Note:
• Because the Borel map (g, ω, s) �→ (

g, ω, ρS(g, ω, s)
)

is injective, we know that
it maps G×Ω′ ×An (or any other Borel set) to a Borel subset of G×Ω′ ×S.
So Fubini’s Theorem implies that µ

(
ρS

(
(g, ω) × An

))
is a Borel function of

(g, ω).
• Lemma 2.17 implies that

∫
An

f dµ is a Borel function of f .

Therefore D∆ is a Borel set, so the corresponding function Ď is a Borel function.
Then the desired Borel function D : (G × Ω′) × S → R≥0 is obtained by applying
Lemma 2.7.

(1) Given L2 functions f, g : S → R, and any ε > 0, define

Θ: G× Ω′ × S → R
≥0

by

Θ(g, ω, s) =
∣∣TρAut(g,ω)f(s) − g(s)

∣∣2
=
∣∣D(g, ω, s)1/2 f

(
ρAut(g, ω)−1(s)

)− g(s)
∣∣2,

where D(g, ω, s) is given by 2.22(2). Then Θ is a Borel function on G× Ω′ × S, so
Fubini’s Theorem implies that{

(g, ω) ∈ G× Ω′
∣∣∣∣ ∫

S

Θ(g, ω, s) < ε2
}
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is Borel. In other words, if U(f, g, ε) is any basic open set in U
(
L2(S)

)
, then

ρ−1
Aut

(U(f, g, ε)
)

is Borel. So ρAut is Borel. �

Corollary 2.25. Let:
• G, Ω, S, Ω′, and ρ be as in Proposition 2.22, and
• X be a complete, separable metric space.

Then the action ρ induces a Borel map ρF : G × Ω′ × F(S,X) → F(S,X), defined
by

ρF(g, ω, f)(s) = f
(
ρS(g, ω, s)

)
for a.e. s.(2.26)

Proof. The existence of an abstract function ρF satisfying (2.26) is not an issue.
Because ρAut is Borel (see 2.22(1)), and the natural action of Aut[µ](S) on F(S,X)
is continuous (see 2.16), we know that ρF is Borel. �

2C. Borel cocycles. We assume the basic theory of Borel cocycles, as in [Mr,
§7.2] or [Z2, §4.2].

Definition 2.27 ([Z2, Defns. 4.2.1 and 4.2.2]). Suppose H is a topological group,
and ρ : G ×X → X is a Borel action of a locally compact group G on a standard
Borel probability space X with quasiinvariant measure µ.

1. A Borel function α : G ×X → H is a Borel cocycle (for the action ρ) if, for
all g1, g2 ∈ G, we have

α(g1g2, x) = α
(
g1, ρ(g2, x)

)
α(g2, x) for a.e. x ∈ X.(2.28)

2. The cocycle α is strict if the equality in (2.28) holds for all x ∈ X, not merely
almost all.

3. Two Borel cocycles α, β : G × X → H are cohomologous if there is a Borel
function φ : X → H, such that, for each g ∈ G, we have

β(g, x) = φ
(
ρ(g, x)

)
α(g, x)φ(x)−1 for a.e. x ∈ X.

This is an equivalence relation.

Remark 2.29. There is usually no harm in assuming that a Borel cocycle is strict,
because any Borel cocycle is equal a.e. to a strict Borel cocycle [Z2, Thm. B.9,
p. 200]. More precisely, if α is a Borel cocycle, then there is a strict Borel cocycle
α′, such that, for each g ∈ G, α(g, x) = α′(g, x) for a.e. x ∈ X.

Lemma 2.30. Let:
• (S, µ) be a standard Borel probability space,
• X, Y , and Z be complete, separable, locally compact metric spaces,
• τ : X × Y → Z be a continuous function.

Then the induced map τF : F(S,X) × F(S, Y ) → F(S,Z), defined by

τF(φ, ψ)(s) = τ
(
φ(s), ψ(s)

)
,

is continuous.

Proof. Given sequences φn → φ ∈ F(S,X), ψn → ψ ∈ F(S, Y ), and ε > 0, Lusin’s
Theorem gives us a compact subset K of S, such that φ and ψ are continuous on K,
and µ(K) > 1− ε. Because X and Y are locally compact, we may let KX and KY
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be compact neighborhoods of φ(K) and ψ(K) in X and Y , respectively. Because
τ is uniformly continuous on KX ×KY , there is some δ > 0, such that

lim sup
n→∞

µ
{
s ∈ S

∣∣∣ d(τ(φn(s), ψn(s)
)
, τ
(
φ(s), ψ(s)

))
> ε
}

≤ lim sup
n→∞

µ{s ∈ S | φn(s) /∈ KX or ψn(s) /∈ KY }
+ lim sup

n→∞
µ{s ∈ S | d(φn(s), φ(s)

)
> δ}

+ lim sup
n→∞

µ{s ∈ S | d(ψn(s), ψ(s)
)
> δ}

≤ 2ε+ 0 + 0.

Because ε > 0 is arbitrary, we conclude that τF(φn, ψn) → τF(φ, ψ). �

Corollary 2.31 (cf. [Mr, Rmk. after Lem. 7.2.1, p. 217]). Let:
• G, Ω, S, Ω′, and ρ be as in Proposition 2.22,
• H be a locally compact, second countable group,
• X be a complete, separable metric space,
• τ : H ×X → X be a continuous action of H on X, and
• α : G× (Ω × S) → H be a Borel cocycle.

Then the function ρα,τ : G× Ω′ × F(S,X) → F(S,X), defined by

ρα,τ (g, ω, φ)(s) = τ
(
α(g, ω, s)−1, φ

(
ρS(g, ω, s)

))
,

is Borel.

Proof. Because the map ρF of Corollary 2.25 is Borel, the action ρ does not affect
the measurability of ρα,τ , so it may be ignored. Furthermore, by replacing Ω with
G × Ω′, we may assume that G is trivial and Ω′ = Ω; in particular, G may be
ignored. Thus:

• α is a Borel map from Ω × S to H, and
• ρα,τ : Ω × F(S,X) → F(S,X) is defined by

ρα,τ (ω, φ)(s) = τ
(
α(ω, s)−1, φ(s)

)
.

Then, because α̌ : Ω → F(S,X) and τF are Borel (see 2.6(2) and 2.30), we conclude
that ρα,τ is a composition of Borel functions. Therefore, it is Borel. �

Although we do not need the following result in this paper, we include the proof
to provide a convenient reference.

Corollary 2.32 ([Mr, Rmk. after Lem. 7.2.1, p. 217]). Let:
• G and H be second countable, locally compact groups,
• (S, µ) be a standard Borel probability space,
• ρ : G× S → S be a Borel action of G on S, such that µ is quasiinvariant,
• α : G× S → H be a strict Borel cocycle, and
• τ : H ×X → X be a continuous action of H on X.

Then:
1. The function α̌ : G→ F(S,H), induced by α (see 2.6), is continuous.
2. The α-twisted action ζρ,τ,α of G on F(S,H) is continuous (see Defn. 5.1(1)).
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Proof. Let 1 : G×S → H be the trivial cocycle, defined by 1(g, s) = e (the identity
element of H). For convenience, let F = F(S,H).

Step 1. The action ρ1,α is continuous. From Proposition 2.22(1) (with Ω consisting
of a single point), we know that ρ induces a Borel function ρAut : G → Aut[µ](S).
This function is a homomorphism, and any measurable homomorphism into a sec-
ond countable topological group is continuous [Z2, Thm. B.3, p. 198], so we con-
clude that ρAut is continuous. Because the action of Aut[µ](S) on F is continuous
(see 2.16), we conclude that ρ1,α is continuous.

Step 2. α̌ is continuous. Note that F is a (second countable) topological group
under pointwise multiplication (cf. 2.30). Furthermore, ρ1,α is a continuous action
of G on F by automorphisms, so we may form the semidirect product G� F. The
cocycle identity implies that the Borel function αG�F : G → G � F, defined by
αG�F(g, f) =

(
g, α̌(g)

)
is a homomorphism. Because (as noted above) measurable

homomorphisms are continuous, we conclude that α̌ is continuous.

Step 3. ρτ,α is continuous. Because ρτ,α(g, f) = τF
(
α̌(g), ρ1,α(g, f)

)
, this conclu-

sion can be obtained by combining Steps 1 and 2 with Lemma 2.30. �

3. Restricting cocycles to ergodic components

This section uses the von Neumann Selection Theorem (2.3) to obtain informa-
tion about a cocycle from its restrictions to ergodic components. The main result
is (3.4); the others are corollaries.

Notation 3.1. Throughout this section we fix the following notations and conven-
tions:

• G, Ω, S, Ω′ and ρ are as in Proposition 2.22 (or, equivalently, as in Theo-
rem 3.4 below).

• H is a locally compact, second countable group.
• α : G× (Ω × S) → H is a strict Borel cocycle.

For ω ∈ Ω′, define ρω : G× S → S and αω : G× S → H by

ρω(g, s) = ρS(g, ω, s) and αω(g, s) = α(g, ω, s),

where πS(∗, s) = s.

Definition 3.2 ([Ra, Lem. 3.1], [Z1, Defn. 3.1]). Suppose G is a locally compact
second countable group, and (S, µ) is a standard Borel probability space. A Borel
map ρ : G× S → S is a near action of G on S if:

• for all g1, g2 ∈ G, we have ρ(g1g2, s) = ρ
(
g1, ρ(g2, s)

)
for a.e. s ∈ S,

• ρ(e, s) = s for a.e. s ∈ S, and
• each g ∈ G preserves the measure class of µ.

Note that the definition of a cocycle (2.27) can be applied to near actions, not only
actions.

Let us record the following elementary observation. Part (1) follows easily from
the assumption that µω is quasiinvariant. The other two parts are consequences of
the first.

Lemma 3.3. Assume the setting of Notation 3.1, and let ω ∈ Ω′. Then:
1. ρ(ω, s) ∈ {ω} × S, for a.e. s ∈ S.
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2. ρω is a near action of G on S.
3. αω is a Borel cocycle for ρω.

Theorem 3.4. Let:
• G and H be second countable, locally compact groups,
• (Ω, ν) and (S, µ) be standard Borel probability spaces,
• Ω′ be a conull subset of Ω,
• ρ : G × (Ω × S) → Ω × S be a Borel action of G on Ω × S, such that, for

each ω′ ∈ Ω, the probability measure µω on {ω} × S (induced by the natural
isomorphism with S) is quasiinvariant,

• α : G× (Ω × S) → H be a strict Borel cocycle,
• F be an analytic subset of Ω × F(G× S,H), and
• ΩF = {ω ∈ Ω′ | αω is cohomologous to a cocycle in Fω}, where

Fω = {f ∈ F(G× S,H) | (ω, f) ∈ F}.
Then:

1. ΩF is analytic.
2. α is cohomologous to a Borel cocyle β : G× (Ω×S) → H, such that βω ∈ Fω,

for a.e. ω ∈ ΩF .

Proof. The cocycle α defines a Borel map α̌ : Ω → F(G×S,H) (see 2.6(2)). Define

δ : Ω′ × F(G× S,H) × F(S,H) → F(G× S,H)

by

δ(ω, φ, f)(g, s) = f
(
ρω(g, s)

)
φ(g, s) f(s)−1.(3.5)

We claim that δ is Borel.
• We know that the map ρF (defined in Corollary 2.25) is Borel. This induces a

Borel map ρ̌F : Ω′ ×F(S,H) → F
(
G,F(S,H)

)
(see 2.6). From Corollary 2.9,

we see that we may think of this as a map into F(G × S,H). Thus, the
first factor on the right-hand side of (3.5) represents a Borel function from
Ω′ × F(S,H) into F(G× S,H).

• The second factor on the right-hand side of (3.5) represents the identity func-
tion on F(G × S,H), and the term f(s) represents the inclusion of F(S,H)
into F(G× S,H). These are obviously Borel maps into F(G× S,H).

Because pointwise multiplication and pointwise inversion are continuous operations
on F(G× S,H) (see 2.30), we conclude that δ is Borel, as claimed.

Therefore, the function

σ : Ω′ × F(S,H) → Ω′ × F(G× S,H),

defined by
σ(ω, f) =

(
ω, δ

(
ω, α̌(ω), f

))
,

is Borel, so σ−1(F) is analytic. Then, because ΩF is the projection of σ−1(F) to Ω′,
we conclude that ΩF is analytic. This establishes (1).

The von Neumann Selection Theorem (2.3) implies that there is a Borel function
Φ̂ : Ω′ → F(S,H), such that σ

(
ω, Φ̂(ω)

) ∈ F , for a.e. ω ∈ ΩF . Corresponding to Φ̂,
there is a Borel function Φ: Ω′ × S → H (see 2.7). Letting

β(g, ω, s) = δ
(
ω, α̌(ω), Φ̂(ω)

)
(g, s) = Φ

(
ρ(g, ω, s)

)
α(g, ω, s) Φ(ω, s)−1,
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we obtain (2). �

Corollary 3.6. Let:
• G and H be locally compact, second countable groups,
• (X,µ) be a standard Borel probability space,
• ρ : G×X → X be a Borel action, such that µ is quasiinvariant,
• ψ : X ′ → Ω be the corresponding ergodic decomposition (see 2.19), and
• α, β : G×X → H be Borel cocycles.

For each ω ∈ Ω, let αω and βω be the restrictions of α and β to G×ψ−1(ω). Then:
1. There is a conull Borel subset Ω′ of Ω, such that, for each ω ∈ Ω′, the maps
αω and βω are Borel cocycles.

2. {ω ∈ Ω′ | αω is cohomologous to βω} is an analytic subset of Ω.
3. If αω is cohomologous to βω, for a.e. ω ∈ Ω′, then α is cohomologous to β.

Proof. From Proposition 2.21 (and Rem. 2.20), we may assume the notation of
Theorem 3.4. By changing α and β on a null set, we may assume these cocycles
are strict (see 2.29).

Conclusion (1) is immediate from Lemma 3.3(3).
Recall that β induces a Borel function β̌ : Ω′ → F(G× S,H), defined by β̌(ω) =

βω (see 2.6(2)). Let

F = {(ω, β̌(ω) | ω ∈ Ω′} ⊂ Ω′ × F(G× S,H).

Because F is an analytic subset (in fact, it is closed), (2) is immediate from 3.4(1).
Assume, now, that αω is cohomologous to βω, for a.e. ω ∈ Ω′. From 3.4(2) and

Fubini’s Theorem, we conclude that α is cohomologous to a cocycle α̃, such that
for a.e. g ∈ G,

for a.e. x ∈ Ω′ × S, we have α̃(g, x) = β(g, x).(3.7)

From the cocycle identity, one easily concludes that (3.7) must hold for every g ∈ G,
not merely almost every g. Therefore α̃ is (obviously) cohomologous to β. By
transitivity, then α is also cohomologous to β; this establishes (3). �

Definition 3.8. Suppose ρ : G × X → X is a Borel action with quasiinvariant
measure, and H is a locally compact second countable group.

1. The trivial cocycle 1G×X : G×X → H is defined by 1G×X(g, x) = e.
2. A Borel cocycle α : G×X → H is a coboundary if it is cohomologous to the

trivial cocycle.

Corollary 3.9. Let G, H, X, ρ, ψ, Ω, α, αω, and Ω′ be as in Corollary 3.6. Then:
1. {ω ∈ Ω′ | αω is a coboundary} is an analytic subset of Ω.
2. If αω is a coboundary, for a.e. ω ∈ Ω′, then α is a coboundary.

Proof. Let β be the trivial cocycle, and apply Corollary 3.6. �

Definition 3.10. Recall that a Borel cocycle α : G × S → H is a constant (or
homomorphism) cocycle if α(g, s) is essentially independent of s, for each g ∈ G.

Corollary 3.11. Let G, H, X, ρ, ψ, Ω, α, αω, and Ω′ be as in Corollary 3.6. If
αω is cohomologous to a constant cocycle, for a.e. ω ∈ Ω′, then α is cohomologous
to a constant cocycle.
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Proof. Similar to the proof of Corollary 3.6(3), but with F = Ω′ × Const, where

Const = {f : G× S → H | f(g, s) is essentially independent of s}. �

Notation 3.12. We use Cpct(H) to denote the set of compact subgroups of a
locally compact, second countable groupH. It is well-known that this is a complete,
separable metric space, under the Hausdorff metric

d(K1,K2) = max
k1∈K1

dist(k1,K2) + max
k2∈K2

dist(K1, k2),

where dist is any metric on H.

Corollary 3.13. Let G, H, X, ρ, ψ, Ω, α, αω, and Ω′ be as in Corollary 3.6. If,
for a.e. ω ∈ Ω′, the cocycle αω is cohomologous to a cocycle whose essential range
is contained in a compact subgroup of H, then there are:

• a Borel function κ : Ω′ → Cpct(H), and
• a Borel cocycle β that is cohomologous to α,

such that the essential range of βω is contained in κ(ω), for a.e. ω ∈ Ω′.

Proof. As in the proof of Corollary 3.6, we assume the notation of Theorem 3.4,
and we assume the cocycle α is strict. Let

F+ = {(f,K) ∈ F(G× S,H) × Cpct(H) | EssRg(f) ⊂ K},
and let F be the projection of F+ to F(G × S,H). Then F+ is closed, so F is
analytic. Applying Theorem 3.4(2) yields a Borel cocycle β, cohomologous to α,
such that βω ∈ F , for a.e. ω ∈ Ω′. Now the Borel function κ is obtained from the
von Neumann Selection Theorem (2.3). �

Corollary 3.14. Let G, H, X, ρ, ψ, Ω, α, αω, and Ω′ be as in Corollary 3.6. If,
for a.e. ω ∈ Ω′, there are a compact subgroup Kω of H and a Borel cocycle βω,
cohomologous to αω, such that:

a. the essential range of βω is contained in the normalizer NH(Kω), and
b. the induced cocycle βω : G× S → NH(Kω)/Kω is a homomorphism cocycle,

then there are:
1. a Borel cocycle β, cohomologous to α, and
2. a Borel function κ : Ω → Cpct(H),

such that (a) and (b) hold with βω = β̌(ω) and Kω = κ(ω), for a.e. ω ∈ Ω′.

Proof. Let

F+ =
{

(f,K) ∈ F
(
G,F(S,H)

)× Cpct(H)
∣∣∣∣ for a.e. g ∈ G, ∃h ∈ NH(K),

such that EssRg
(
f(g)

) ⊂ hK

}
.

Then F+ is closed, so the proof is similar to that of Corollary 3.13. (Recall that
F
(
G,F(S,H)

)
is naturally homeomorphic to F(G× S,H) (see 2.9).) �

4. Superrigidity for nonergodic actions

One main application of the results in this paper is to prove general versions of
superrigidity for cocycles for nonergodic actions of certain groups. We now define
this class of groups. Let I be a finite index set and for each i∈I, we let ki be a
local field of characteristic zero and Gi be a connected simply connected semisimple
algebraic ki-group. We first define groups Gi, and then let G =

∏
i∈I Gi. If ki is
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non-Archimedean, Gi = Gi(ki) the ki-points of Gi. If ki is Archimedean, then Gi

is either Gi(ki) or its topological universal cover. (This makes sense, since when Gi

is simply connected and ki is Archimedean, Gi(ki) is topologically connected.) We
assume that the ki-rank of any simple factor of any Gi is at least two.

We will need one assumption on the cocycles we consider.

Definition 4.1. Let D be a locally compact group, (S, µ) a standard probability
measure space on which D acts preserving µ and H be a normed topological group.
We call a cocycle α : D×S→H over the D action D-integrable if for any compact
subset M ⊂ D, the function QM,α(x) = supm∈M ln+ ‖α(m,x)‖ is in L1(S) (recall
that ln+ x = max (lnx, 0)).

Any continuous cocycle over a continuous action on a compact topological space
is automatically D-integrable. We remark that a cocycle over a cyclic group action
is D-integrable if and only if ln+ ‖(α(±1, x)‖ is in L1(S).

We first recall the superrigidity theorems from [FM] for ergodic actions.

Theorem 4.2. Let G be as above, let (S, µ) be a standard probability measure space
and let H be the k points of a k-algebraic group where k is a local field of char-
acteristic 0. Assume G acts ergodically on S preserving µ. Let α : G×S→H be a
G-integrable Borel cocycle. Then α is cohomologous to a cocycle β where β(g, x) =
π(g)c(g, x). Here π : G→H is a continuous homomorphism and c : G×S→C is a
cocycle taking values in a compact group centralizing π(G).

Theorem 4.3. Let G,S,H and µ be as Theorem 4.2 and let Γ < G be a lattice.
Assume Γ acts ergodically on S preserving µ. Assume α : Γ×S→H is a Γ-integrable,
Borel cocycle. Then α is cohomologous to a cocycle β where β(γ, x) = π(γ)c(γ, x).
Here π : G→H is a continuous homomorphism of G and c : Γ×X→C is a cocycle
taking values in a compact group centralizing π(G).

To state nonergodic versions of the above theorems, we will need a Borel structure
on the space of homomorphisms for G to H. Given G as above and H as in
Theorem 4.2, it is well-known that there are only finitely many conjugacy classes of
homomorphisms π : G→H. We choose a set Π = {πi} of representatives and endow
it with the discrete topology, so as to be able to consider measurable maps to Π.

Given a group D acting on a standard probability measure space (X,µ), we
denote by Ω the space of ergodic components of the action and let p : S→Ω be the
natural projection. We now state the general versions of the superrigidity theorems
above.

Theorem 4.4. Let G be as above, let (X,µ) be a standard probability measure space
and let H be the k points of a k-algebraic group where k is a local field of character-
istic 0. Assume G acts on S preserving µ. Let α : G×S→H be a G-integrable Borel
cocycle. Then there exist measurable maps π : Ω→Π, κ : Ω→Cpct(H) and φ : S→H
with κ(p(x))⊂ZH(π(p(x)) almost everywhere such that

α(g, x) = φ(gx)−1β(g, x)φ(x)

where β(g, x) = π(p(x))(g)c(g, x). Here c : G×S→H is a measurable cocycle with
c(g, x)∈κ(p(x)) almost everywhere.

Theorem 4.5. Let G,S,H and µ be as Theorem 4.4 and let Γ < G be a lattice.
Assume Γ acts on X preserving µ. Assume α : Γ×S→H is a Γ-integrable, Borel
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cocycle. Then there exist measurable maps π : Ω→Π, κ : Ω→Cpct(H) and φ : S→H
with κ(p(x))⊂ZH(π(p(x))) such that α(γ, x) = φ(γx)−1β(γ, x)φ(x) where β(γ, x) =
π(p(x))(γ)c(γ, x). Here c : Γ×S→H is a measurable cocycle with c(γ, x)∈κ(p(x))
almost everywhere.

Proof of Theorems 4.4 and 4.5. These are an immediate consequence of The-
orems 4.2 and 4.3, Corollary 3.14, and Proposition 2.21. Moreover, one can also
prove these results by using the proof of Theorems 4.2 and 4.3 from [FM], Propo-
sition 2.21 and Corollary 5.6 below. �

There are also versions of Theorems 4.4 and 4.5 which do not require that we
assume the cocycle isG-integrable and versions, in that context, where the class ofG
considered can be somewhat broader, i.e., G of rank at least 2, with some/all simple
factors of rank 1. To remove the G-integrability assumption requires assumptions
on the algebraic hull of the cocycle, while weakening the rank assumption requires
both assumptions on the algebraic hull and the assumption that the G action on
each ergodic component of (X,µ) is weakly irreducible. These assumptions are
less natural in the nonergodic setting, so we leave it to the interested reader to
formulate and prove such results, using Theorems 3.6 and 3.7 of [FM] in place of
Theorems 4.2 and 4.3 above.

5. Equivariant maps on ergodic components

This section uses von Neumann Selection Theorem (2.3) to prove that if almost
every ergodic component of a G-action has a fixed standard Borel G-space X as a
measurable quotient, thenX is a measurable quotient of the entire action. Actually,
the conclusion is proved in a more general setting that includes twisting by cocycles
(see 5.4). This yields a corollary (5.6) that obtains information about a cocycle from
the algebraic hulls of its restrictions to ergodic components.

Definition 5.1 ([Mr, §3.2.0, pp. 216–217]). Suppose:
• G and H are locally compact, second countable groups,
• S and X are Borel spaces,
• ρ : G× S → S and τ : H ×X → X are Borel actions,
• µ is a probability measure on S, and
• α : G× S → H is a Borel cocycle.

Then:
1. We define an action ζρ,τ,α : G× F(S,X) → F(S,X) by

ζρ,τ,α(g, φ)(s) = τ
(
α(g, s), φ

(
ρ(g−1, s)

))
.

We may refer to ζρ,τ,α as the α-twisted action of G on F(S,X). It is Borel
(see 2.31).

2. A function φ : S → X is essentially (ρ, τ, α)-equivariant if, for each g ∈ G, we
have

φ
(
ρ(g, s)

)
= τ

(
α(g, s), φ(s)

)
for a.e. s ∈ S.

In other words, a Borel function φ : S → X is essentially (ρ, τ, α)-equivariant if
and only if it represents a fixed-point of the α-twisted action of G on F(S,X).

Proposition 5.2. Let:
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• G, H, X, ρ, ψ, α, and αω be as in Corollary 3.6,
• ρω be the restriction of ρ to G× ψ−1(ω), for each ω ∈ Ω,
• (Y, d) be a complete, separable metric space,
• τ : H × Y → Y be a continuous action of H on Y ,
• Ω′ be a conull Borel subset of Ω, such that αω is a Borel cocycle, for each
ω ∈ Ω′, and

• ΩX =
{
ω ∈ Ω′

∣∣∣∣ there is a Borel map φω : ψ−1(ω) → Y
that is essentially (ρω, τ, αω)-equivariant

}
.

Then:
1. ΩX is analytic.
2. There is an essentially (ρ, τ, α)-equivariant Borel map φ : X → Y if and only

if ΩX is conull in Ω.

Proof. From Proposition 2.21 (and Rem. 2.20), we may assume the notation of
Theorem 3.4. Recall that ρ, τ , and α induce Borel maps:

• ρF : G× Ω × F(S,X) → F(S,X) (see 2.25),
• τF : F(S,H) × F(S,X) → F(S,X) (see 2.30), and
• α̌ : G× Ω → F(S,H) (see 2.6).

Let G0 be a countable, dense subset of G, and define

F =
{
(ω, f) ∈ Ω × F(S,X) | ρF(g, ω, f) = τF

(
α̌(g, ω), f

)
for all g ∈ G0}.

Then F is an analytic set (in fact, it is Borel, because ρF , τF , and α̌ are Borel and
G0 is countable).

(1) ΩX is the projection of the analytic set F to Ω.
(2 ⇒) For a.e. ω ∈ Ω, the map φω, defined by φω(s) = φ(ω, s), is essentially

(ρω, τ, αω)-equivariant.
(2 ⇐) Because F is analytic, we may apply the von Neumann Selection Theorem

(2.3). By assumption, ΩF is conull in Ω, so we conclude that there is a Borel
function φ : Ω → F(S,X), such that

(
ω, φ(ω)

) ∈ F , for a.e. ω ∈ Ω. Lemma 2.7
provides us with a corresponding Borel function φ̂ : Ω × S → X. By applying
Fubini’s Theorem, we see, for each g ∈ G0, that

φ̂
(
ρ(g, ω, s)

)
= τ

(
α(g, ω, s), φ̂(ω, s)

)
for a.e. (ω, s) ∈ Ω × S.(5.3)

Let
H = {g ∈ G | (5.3) holds}.

Then H is the stabilizer of φ̂ under the α-twisted action of G on F(Ω × S,X) (see
Defn. 5.1(1)). Because the action is Borel, we know that H is a closed subgroup
of G. On the other hand, H is dense, because it contains G0. Therefore, H = G,
which means that φ̂ is essentially (ρ, τ, α)-equivariant. �

Any continuous homomorphism π : G → H determines a “constant” cocycle
π× : G × X → H, defined by π×(g, x) = π(g) (cf. 3.10). In the statement of the
following corollary, we ignore the distinction between π and π×.

Corollary 5.4. Let:
• G, H, X, ρ, ψ, ρω, Y , and τ be as in Proposition 5.2, and
• π : G→ H be a continuous homomorphism.
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There exists an essentially (ρ, τ, π)-equivariant Borel map φ : X → Y if and only
if there exists an essentially (ρω, τ, π)-equivariant Borel map φω : ψ−1(ω) → Y for
a.e. ω ∈ Ω.

Definition 5.5 ([Z2, Defn. 9.2.2]). If:
• G acts ergodically on X,
• α : G×X → H is a Borel cocycle,
• F is a local field, and
• H is the F-points of an algebraic group over F,

then there exists a Zariski-closed subgroup L of H, such that:
1. α is cohomologous to a cocycle taking values in L.
2. α is not cohomologous to a cocycle taking values in any proper Zariski-closed

subgroup of H.
The subgroup L is unique up to conjugacy. It is called the algebraic hull of α.

Corollary 5.6. Let:
• (X,µ) be a standard Borel probability space,
• ρ : G×X → X be a Borel action, such that µ is quasiinvariant,
• ψ : X ′ → Ω be the corresponding ergodic decomposition (see 2.19),
• F be a local field,
• H be the F-points of an algebraic group over F, and
• α : G×X → H be a Borel cocycle.

Then α is cohomologous to a Borel cocyle β : G×X → H, such that, for a.e. ω ∈ Ω,
the Zariski closure of the range of βω is equal to the algebraic hull of βω (where βω

is the restriction of β to G× ψ−1(ω)).

Proof. Choose Ω′ as in 3.6(1) (with β = α). Chevalley’s Theorem [Bo, Thm. 5.1,
p. 89] implies there is a countable collection {(τi, Vi)}∞i=0 of rational representations
of H, such that every Zariski-closed subgroup of H is the stabilizer of some point
in some projective space P(Vi). For c, d, i ∈ N, define:

• Ωc,d =
{
ω ∈ Ω′

∣∣∣∣ the algebraic hull of αω is d-dimensional
and has exactly c connected components

}
,

• Y i
c,d =

{
v ∈ P(Vi)

∣∣∣∣ dim StabH(v) = d, and
StabH(v) has exactly c connected components

}
,

• Yc,d =
∐∞

i=0 Y
i
c,d (disjoint union), and

• τ : H × Yc,d → Yc,d by τ(h, x) = τi(h)x if x ∈ P(Vi).
Each Y i

c,d is Borel (see 5.7 below), so Yc,d is a standard Borel space. Therefore,
combining the Cocycle Reduction Lemma [Z2, Lem. 5.2.11, p. 108] with Proposi-
tion 5.2(1) and Rem. 2.2 implies that Ωc,d is absolutely measurable. Thus, we may
let Ω′

c,d be a conull, Borel subset of Ωc,d, for each d.
There is no harm in assuming Ω = Ω′

c,d, for some c and d. Then there is an
essentially (ρω, τ, αω)-equivariant Borel map from ψ−1(ω) to Yc,d, for a.e. ω ∈ Ω,
so Corollary 5.2(2) implies that there is an essentially (ρ, τ, α)-equivariant Borel
map from X to Yc,d. This means that α is cohomologous to a cocycle β, such that
the essential range of βω is contained in an algebraic group whose dimension and
number of connected components are no more than those of the algebraic hull of βω.
By changing β on a set of measure 0, we may assume that the entire range of βω is



268 David Fisher, Dave Witte Morris and Kevin Whyte

contained in this subgroup. So the desired conclusion follows from the minimality
(and uniqueness) of the algebraic hull of βω. �

The following observation, used in the proof of Corollary 5.6 above, must be
well-known, but the authors do not know of a reference.

Lemma 5.7. Suppose:
• G is a real Lie group,
• M is a Polish space, and
• ρ : G×M →M is a continuous action, such that the stabilizer StabG(m) has

only finitely many connected components, for each m ∈M .
Then:

1. dim StabG(m) is a Borel function of m ∈M .
2. For each compact subgroup K of G,

{m ∈M | K is conjugate to a maximal compact subgroup of StabG(m)}
is Borel.

3. The dimension of the maximal compact subgroup of StabG(m) is a Borel func-
tion of m.

4. The number of connected components of StabG(m) is a Borel function of m.
5. For each d and c,{

m ∈M

∣∣∣∣ dim StabG(m) = d, and
StabG(m) has exactly c connected components

}
is Borel.

Proof. (1) It is well-known (and easy to see) that dim StabG(m) is an upper semi-
continuous function of m ∈M .

(2) The fixed-point set MK is closed, and G is σ-compact, so ρ(G,MK) is a
countable union of closed sets. Therefore ρ(G,MK) is Borel. Now

ρ(G,MK) = {m ∈M | StabG(m) contains a conjugate of K},
so{

m ∈M

∣∣∣∣ K is conjugate to a maximal
compact subgroup of StabG(m)

}
= ρ(G,MK) �

⋃
K′⊃K

ρ(G,MK′
).

Any real Lie group has only countably many conjugacy classes of compact subgroups
[Ad, Prop. 10.12], so the union is countable. Therefore, this is a Borel set.

(3, 4) Immediate from (2). (Recall that the number of components of StabG(m)
is the same as the number of components of any of its maximal compact subgroups.)

(5) Combine (1) and (4). �
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