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Improving tameness for metabelian groups

W. A. Bogley and J. Harlander

Abstract. We show that any finitely generated metabelian group can be
embedded in a metabelian group of type F3. More generally, we prove that if
n is a positive integer and Q is a finitely generated abelian group, then any
finitely generated ZQ-module can be embedded in a module that is n-tame.
Combining with standard facts, the F3 embedding theorem follows from this
and a recent theorem of R. Bieri and J. Harlander.
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1. Metabelian groups

This paper is about finiteness and geometric properties of metabelian groups.
The story begins in the 1970s with a series of papers by G. Baumslag and V. R.
Remeslennikov, who independently investigated finitely generated and finitely pre-
sented metabelian groups and showed that the theory of these groups is more
complex than one might expect. For example [2, 9], there is a finitely presented
metabelian group that contains a free abelian subgroup of infinite rank. Never-
theless, they proved [3, 9] that every finitely generated metabelian group can be
embedded in a finitely presented one.

Finite generation and finite presentability are the first two in a hierarchy of
increasingly strong finiteness properties of groups. A group G is of type Fn if there is
a connected aspherical CW complex with fundamental group isomorphic to G (that
is, an Eilenberg–Maclane complex of type K(G, 1)) with finite n-skeleton. Type F1

is equivalent to finite generation, type F2 is equivalent to finite presentability, and
type Fn+1 implies type Fn. The main general result of this paper is the following:
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Theorem 1.1. Every finitely generated metabelian group can be embedded in a
metabelian group of type F3.

Our eventual aim is to improve this result to enable embeddings in metabelian
groups of type Fn for arbitrarily large n and we make steps in that direction in
this paper. This is the best one can hope for within the class of metabelian groups
since a result of R. Bieri and J. R. J. Groves implies that if a metabelian group G
admits a K(G, 1) with finitely many cells in each dimension (so that G is of type
F∞), then there is a uniform bound on the rank of the free abelian subgroups of G.
That this embedding restriction also applies in the more general context of soluble
groups follows from subsequent work of P. H. Kropholler [8].

In order to detect higher finiteness properties, R. Bieri and R. Strebel introduced
the Sigma theory in [6]. The theory continues to evolve and there are many papers
on the subject; see [1, 4, 5, 6, 7, 10] and the references therein. This paper deals
only with the Sigma invariants of a module M over the group ring ZQ of a finitely
generated abelian group Q. We summarize those portions of the theory that we need
in §2, focusing on the concept of n-tameness for ZQ-modules. The Fn-Conjecture
asserts that an extension G of an abelian group Q by a module M is of type Fn

if and only if M is n-tame. The conjecture is true for n = 2 [6], for metabelian
groups G of finite Prüfer rank [1], for torsion modules M of Krull dimension one
[7], and for split extensions G = M � Q when n = 3 [5].

Our progress toward a general Fn-embedding theorem for finitely generated
metabelian groups is best summarized as follows.

Theorem 1.2. Given a positive integer n, any finitely generated metabelian group
can be embedded in a split metabelian group of the form M �Q where Q is a finitely
generated abelian group and M is an n-tame ZQ-module.

One might paraphrase this to say that there are no restrictions, other than being
metabelian, on the finitely generated subgroups of n-tame metabelian groups.

Embeddings are achieved using a localization procedure that played a central role
in [3, 9]. We summarize this procedure and related facts about metabelian groups
in §3. The heart of the paper is in §4 where we show that localization improves
tameness. The concluding §5 introduces the idea of an essential decomposition for
a module and uses this to complete the proofs of Theorems 1.1 and 1.2.

2. Tameness

For a finitely generated abelian group Q, V (Q) denotes the set of real-valued
homomorphisms (or characters) from Q to the additive group of real numbers:
V (Q) = Hom(Q, R). This is a Euclidean space with dimension equal to the torsion-
free rank of Q.

Let M be a ZQ-module. Given a character χ ∈ V (Q), there is the submonoid
Qχ of Q consisting of those q ∈ Q for which χ(q) ≥ 0, and there is the subring ZQχ

of ZQ. The Sigma set of the ZQ-module M is

Σ(M, Q) = {χ ∈ V (Q) : M is finitely generated as a ZQχ-module}
and the Sigma complement is

Σ(M, Q)c = V (Q) − Σ(M, Q).
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A great deal is known about the Sigma set and the geometry of its complement
(see e.g., [5]), but we will require only the following fact:

Lemma 2.1 ([6, Proposition 2.1]). Let Q be a finitely generated abelian group and
let M be a finitely generated ZQ-module. A nonzero character 0 �= χ ∈ V (Q) lies
in Σ(M, Q) if and only if there is a centralizing element c ∈ Cent ZQ(M) such that
χ(q) > 0 for all q in the support of c.

Tameness is formulated in terms of the geometry of the Sigma complement. The
complement of every hyperplane in the Euclidean space V (Q) consists of two convex
open subspaces, called open half-spaces. For a positive integer n, the ZQ-module
is said to be n-tame if each n-element subset of the Sigma complement Σ(M, Q)c

is contained in some open half-space of V (Q). To be explicit, the module M is
n-tame if whenever χ1, . . . , χn ∈ Σ(M, Q)c, then the only nonnegative solution to∑n

i=1 tiχi = 0 is t1 = · · · = tn = 0.
Thus, M is 1-tame if and only if 0 ∈ Σ(M, Q), which amounts to saying that M is

finitely generated as a ZQ-module. Higher tameness properties are unaffected if we
view the Sigma complement in the sphere S(Q) consisting of positive rays of nonzero
characters in V (Q) and formulate the property in terms of open hemispheres. For
example, 2-tameness amounts to saying that Σ(M, Q)c contains no antipodal points
in the sphere S(Q). Note that (n + 1)-tame implies n-tame.

3. Localization

In order to embed a finitely generated metabelian group in one with better
finiteness properties, one can first reduce to the split case.

Lemma 3.1 ([3, Lemma 3]). Every finitely generated metabelian group G can be
embedded in a finitely generated split metabelian group of the form M � Q where
Q = Gab is a finitely generated abelian group and M is a finitely generated ZQ-
module.

This reduces the problem to one involving embeddings of modules.
In showing how to embed finitely generated split metabelian groups in finitely

presented ones, Baumslag [3] made essential use of a localization construction from
commutative ring theory. We briefly recall the details. Let Q be a finitely generated
abelian group and let M be a ZQ-module. Consider a subset S of the group ring
ZQ with the following properties:

• S is unital, in that 1 ∈ S;
• S is multiplicatively closed, in that S · S ⊆ S;
• S acts freely on M , in that if s ∈ S and m ∈ M are such that sm = 0, then

m = 0;

Suppose that y generates S as a multiplicative submonoid of ZQ, and let Q
be the direct product of Q with the free abelian group with basis consisting of
elements zy, y ∈ y. Localization produces a ZQ-module M that arises as the set of
equivalence classes of the relation on S × M given by

(s, m) ∼ (s′, m′) ⇔ sm′ = s′m.
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(The fact that sm = 0 only if m = 0 is required to verify that this relation is
transitive.) The algebraic structure of M is determined as follows:

(s, m) + (s′, m′) = (ss′, sm′ + s′m)

λ(s, m) = (s, λm) (λ ∈ ZQ)

zy(s, m) = (s, ym)

z−1
y (s, m) = (sy, m)

It is straightforward to verify the following standard properties of the localized
module M :

• M embeds in M as a ZQ-submodule.
• Any ZQ-generating set for M determines a ZQ-generating set for M .
• The annihilator Ann

ZQ(M) is the smallest ideal in ZQ containing Ann ZQ(M)
and all elements of the form zy − y, y ∈ y.

The localized module is usually denoted by M = S−1M in the literature, and
is viewed as a module over a localized version S−1

ZQ of the group ring ZQ. It is
more convenient for our purposes to focus on the status of M as a module over the
expanded group ring ZQ.

A nonconstant polynomial with integer coefficients is called special if its leading
and constant coefficients are both 1. When q is an element of infinite order in a
finitely generated abelian group Q, a special polynomial p(X) uniquely determines
an element p(q) ∈ ZQ that is neither a unit nor a zero divisor in the group ring.
Baumslag used the fact that the group ring ZQ is noetherian to show that for any
element q of infinite order in Q and any finitely generated ZQ-module M , there is
a special polynomial p(X) such that p(q) acts freely on M :

Lemma 3.2 ([3, Lemma 7]). Suppose that we are given an element q of infinite
order in a finitely generated abelian group Q. If M is a finitely generated ZQ-
module, then there is a special polynomial p(X) such that if m ∈ M and p(q)m = 0,
then m = 0.

Given q ∈ Q, M , and p(X) as above, the multiplicative submonoid S of ZQ
generated by p(q) acts freely on M so we can embed M in the module S−1M = M
over ZQ where Q = Q × 〈z〉. The action of p(q) on M is then invertible in the
larger module M . For future reference, we shall say that the module M is obtained
from M by a special localization in the q direction. More generally, we will consider
simultaneous special localizations in directions qi taken from linearly independent
subsets of Q.

4. Improving tameness

We now show that localization can be used to improve tameness. We first use
Lemma 2.1 to investigate how the Sigma complement behaves under passage to
subgroups.

Lemma 4.1. Let A be a subgroup of a finitely generated abelian group Q. Let M
be a finitely generated ZQ-module and let MA be a finitely generated ZA-module
such that Ann ZA(MA) ⊆ Ann ZQ(M). If χ ∈ Σ(M, Q)c, then either χ|A = 0 or
χ|A ∈ Σ(MA, A)c.
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Proof. Assume that Ann ZA(MA) ⊆ Ann ZQ(M) and 0 �= χ|A ∈ Σ(MA, A). It
suffices to show that χ ∈ Σ(M, Q). By Lemma 2.1, there is a centralizing element
c ∈ Cent ZA(MA) such that χ(a) > 0 for all a in the support of c. But c ∈
Cent ZA(MA) = 1 + Ann ZA(MA) ⊆ 1 + Ann ZQ(M) = Cent ZQ(M) and so χ ∈
Σ(M, Q) by Lemma 2.1. �

It is worth noting that if MA is the ZA-submodule of M spanned by a ZQ-
generating set of M , then Ann ZA(MA) ⊆ Ann ZQ(M).

Our next objective is to see how special localization affects the Sigma comple-
ment.

Lemma 4.2. Suppose that q and z are elements of a finitely generated abelian
group Q and that M is a finitely generated ZQ-module. Let p(X) be a special
polynomial of degree d ≥ 1 such that z − p(q) ∈ Ann ZQ(M). If χ is an element of
the Sigma complement Σ(M, Q)c of M , then exactly one of the following conclusions
applies:

(1) If χ(q) = 0, then χ(z) ≥ 0.
(2) If χ(q) > 0, then χ(z) = 0.
(3) If χ(q) < 0, then χ(z) = dχ(q).

Proof. We have annihilating elements z − p(q), −z−1(z − p(q)), and q−d(z − p(q))
in Ann ZQ(M). These determine centralizing elements c1, c2, and c3 ∈ Cent ZQ(M)
with supports contained in the following lists.

c1 : z, qi, i = 1, . . . , d
c2 : z−1qi, i = 0, . . . , d
c3 : q−dz, q−i, i = 1, . . . , d.

Since the polynomial p(X) is special, the elements z−1 and z−1qd are in the support
of c2. Lemma 2.1 implies that each ck has a support element with nonpositive value
under the character χ.

(1) Here χ(q) = 0. The centralizing element c2 implies that χ(z−1qi) ≤ 0 for
some i, so that χ(z) ≥ 0.

(2) Here χ(q) > 0. The centralizing element c1 implies that χ(z) ≤ 0 and the
centralizing element c2 implies that χ(z−1qi) ≤ 0 for some i = 0, . . . , d, that is,
χ(z) ≥ min{iχ(q) : i = 0, . . . , d} = 0. Thus χ(z) = 0 in this case.

(3) Here χ(q) < 0. The centralizing element c3 implies that χ(q−dz) ≤ 0, or
rather, χ(z) ≤ dχ(q). The centralizing element c2 implies that χ(z−1qi) ≤ 0 for
some i = 0, . . . , d, that is χ(z) ≥ min{iχ(q) : i = 0, . . . , d} = dχ(q). We conclude
that χ(z) = dχ(q) in this case. �

In the setting of Lemma 4.2, the character value χ(z) is precisely specified except
when χ(q) = 0. We say that an element q of infinite order in Q is an essential
direction for M if χ(q) �= 0 for all χ ∈ Σ(M, Q)c. Our main innovation is to note
that localization in an essential direction improves tameness.

Lemma 4.3. Let Q be a finitely generated abelian group and let M be a finitely
generated ZQ-module with essential direction q ∈ Q. Let p(X) be a special polyno-
mial of degree d ≥ 1. Let Q = Q × 〈z〉 be the direct product of Q with the infinite
cyclic group generated by z and suppose that M is a finitely generated ZQ-module
such that z − p(q) ∈ Ann

ZQ(M) and Ann ZQ(M) ⊆ Ann
ZQ(M). We conclude the

following:
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(1) If M is k-tame, then M is (k + 1)-tame.
(2) M has an essential direction q ∈ Q.

Proof. Assume that M is k-tame. Let χ1, . . . , χk+1 ∈ Σ(M, Q)c and suppose that
we are given nonnegative real scalars t1, . . . , tk+1 such that

∑
i tiχi = 0. We must

show that ti = 0 for all i = 1, . . . , k + 1. For each i, let χi = χi|Q.
Consider the case when χi �= 0 for all i. Then χi ∈ Σ(M, Q)c by Lemma 4.1 so

χi(q) �= 0 for all i since q is essential for M . Let q∗ = qz−2 ∈ Q. For any given i,
if χi(q) > 0, then χi(q∗) = χi(q), while if χi(q) < 0, then χi(q∗) = (1 − 2d)χi(q)
by Lemma 4.2. From this we conclude that χi(q∗) > 0 for all i. Then the fact that
0 =

∑
i tiχi(q∗) implies that ti = 0 for all i.

Now suppose that � ≤ k and that χi �= 0 if and only if i ≤ �. Then 0 =
∑�

i=1 tiχi

where χi ∈ Σ(M, Q)c for i = 1, . . . , � by Lemma 4.1. The fact that M is k-tame
thus implies that ti = 0 for those i. We thus conclude that

∑k+1
i=�+1 tiχi = 0. Given

�+1 ≤ i ≤ k+1, Lemma 4.2 shows that χi(z) ≥ 0. But since M is finitely generated,
that is, 1-tame as a ZQ-module, and Q = Q × 〈z〉, we must have χi(z) �= 0. Thus
χi(z) > 0 for i = � + 1 . . . , k + 1. Then the fact that 0 =

∑k+1
�+1 tiχi(z) implies that

ti = 0 for all i. Thus, M is (k + 1)-tame.
To see that M has an essential direction, set q = qz and let χ ∈ Σ(M, Q)c. If

χ(q) = 0, then Lemma 4.1 implies that χ|Q = 0 since q is essential for M . The fact
that M is finitely generated implies that χ �= 0, so we must have χ(q) = χ(z) �= 0
since Q is generated by Q and z. Next, suppose that χ(q) > 0. Then Lemma 4.2
shows that χ(q) = χ(q) �= 0. Finally, if χ(q) < 0 then Lemma 4.2 shows that
χ(q) = (1 + d)χ(q) �= 0. Thus we find that q ∈ Q is essential for M . �

5. Essential decompositions

Lemma 4.3 shows that if M is a finitely generated ZQ-module with an essential
direction, then special localization in that direction produces a new module with an
essential direction and with improved tameness. Unfortunately, not every module
has an essential direction. For example, the free cyclic module over the free abelian
group of rank two has no essential directions. This follows from the fact that
the group ring ZZ

2 has no zero divisors, so that Σ(ZZ
2, Z2)c = V (Z2) − {0} by

Lemma 2.1.
We circumvent this difficulty with the following more general concept. A k-

essential decomposition for a finitely generated ZQ-module M consists of a direct
product decomposition Q = Q1×· · ·×Qr of Q, together with, for each i = 1, . . . , r,
a ZQi-submodule Mi of M such that:

• Ann ZQi(Mi) ⊆ Ann ZQ(M).
• Mi is k-tame.
• Mi has an essential direction qi ∈ Qi.

Lemma 5.1. Let Q be a finitely generated abelian group. If a finitely generated
ZQ-module M possesses a k-essential decomposition, then M is k-tame.

Proof. Suppose that we are given characters χ1, . . . , χk ∈ Σ(M, Q)c and nonneg-
ative real scalars t1, . . . , tk such that

∑
j tjχj = 0. By Lemma 4.1, those χj that

do not vanish on Qi restrict to characters χj |Qi ∈ Σ(Mi, Qi)c, and so the fact that
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Mi is k-tame implies that

χj |Qi �= 0 ⇒ tj = 0.

On the other hand, since M is finitely generated, that is, 1-tame as a ZQ-module,
we know that χj �= 0 for all j. This means that for each j = 1, . . . , k, there exists
1 ≤ i ≤ r such that χj |Qi

�= 0, and hence tj = 0. �

Lemma 5.2. If Q is a finitely generated abelian group, then every finitely generated
ZQ-module M admits a 1-essential decomposition.

Proof. Given Q and M , we can decompose Q as a direct product Q = Q1×· · ·×Qr

where each Qi has torsion-free rank one. Choose a finite generating set x for the
ZQ-module M and for each i, let Mi be the ZQi-submodule of M generated by x:
Mi = ZQi · x. Then Ann ZQi(Mi) ⊆ Ann ZQ(M) and Mi is 1-tame. In addition,
any element qi of infinite order in Qi is essential for Mi since 0 �∈ Σ(Mi, Qi)c and
no nonzero character on the virtually infinite cyclic group Qi can vanish on qi. �

Lemma 5.3. Let Q be a finitely generated abelian group and let M be a finitely
generated ZQ-module that admits a k-essential decomposition. There is a finitely
generated abelian overgroup Q of Q and a ZQ-module M that contains M as a
ZQ-submodule and which admits a (k + 1)-essential decomposition.

Proof. Given the essential data Q = Q1×· · ·×Qr, M , Mi, and qi ∈ Qi, Lemma 3.2
allows us to select special polynomials p1(X), . . . , pr(X) such that for i = 1, . . . , r,
pi(qi) acts freely on M . We form the direct product Q = Q× 〈z1〉 × · · · × 〈zr〉 and
the unital multiplicative submonoid S of ZQ generated by the pi(qi). Since S acts
freely on M , the special localization M = S−1M is a ZQ-module that contains M
as a ZQ-submodule and is ZQ-generated by any given finite ZQ-generating set x for
M . In addition, Ann ZQ(M) ⊆ Ann

ZQ(M) and zi − pi(qi) ∈ Ann
ZQ(M) for all i.

For i = 1, . . . , r, we set Qi = Qi ×〈zi〉 and let M i = ZQi ·x be the ZQi-submodule
of M generated by x. We have that zi − pi(qi) ∈ Ann

ZQi
(M i) for all i. Since

Ann ZQi
(Mi) ⊆ Ann ZQ(M), we know that Ann ZQi

(Mi) annihilates x, and hence
Ann ZQi(Mi) ⊆ Ann

ZQi
(M i) ⊆ Ann

ZQ(M) for all i. By Lemma 4.3, each M i is
(k + 1)-tame and has an essential direction qi ∈ Qi. �

We can now indicate the proofs of the main results. Let a positive integer n be
given as in Theorem 1.2. Any given finitely generated metabelian group G can be
embedded in a split one G1 = M1 � Q1 by Lemma 3.1. By Lemmas 5.2 and 5.3,
G1 can be embedded in Gn = Mn � Qn where the ZQn-module Mn admits an
n-essential decomposition, and hence is n-tame by Lemma 5.1. Theorem 1.1 then
follows since the F3-Conjecture is true for split extensions [5]. Indeed, we see that
G would embed in a metabelian group of type Fn if the Fn-Conjecture were known
to be true for split extensions.

To illustrate the foregoing analysis and to suggest what remains to be done,
suppose that Q is a finitely generated abelian group of torsion-free rank one and
that M is a finitely generated ZQ-module. We may view the Sigma complement
in the sphere S(Q), which consists of exactly two points (corresponding to rational
characters). Localizing in an essential direction, we obtain a finitely generated
abelian overgroup Q of Q with torsion-free rank two and a finitely generated 2-tame
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ZQ-module M with an essential direction. Viewed in the sphere S(Q), Lemma 4.2
shows that Σ(M, Q)c consists of at most three (rational) points. Continuing this
process, after n − 1 successive special localizations, we end up with an n-tame
module over a finitely generated abelian group of torsion-free rank n whose Sigma
complement, when viewed in the (n−1)-sphere, is contained in a set of n+1 rational
points.
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