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Equivariant rigidity theorems

Gábor Moussong and Stratos Prassidis

Abstract. Let Γ be a discrete group which is a split extension of a group ∆
by a Coxeter group W , with ∆ acting on W by Coxeter graph automorphisms
with kernel ∆0. Let Mi, i = 1, 2, be two Γ-manifolds (possibly with boundary)
such that the isotropy groups are finite and the fixed point sets are contractible
and W acts by reflections. Let f be a Γ-homotopy equivalence between them
that it is a homeomorphism outside the orbit of a compact subset. Then f is
Γ-homotopic to a Γ-homeomorphism, provided that certain finite extensions
of ∆0 that fix the faces of the fundamental domains are topologically rigid
groups.
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1. Introduction

Let Γ be a discrete group. A manifold of type EΓ is a manifold, without boundary,
on which Γ acts properly discontinuously, and so that the fixed point sets of finite
subgroups are contractible ([10]). If the manifold has boundary, then we call it a
manifold with boundary of type EΓ. Such manifolds are unique, up to Γ-homotopy
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([10], [16, Appendix]). We call a group Γ topologically rigid if any two manifolds, of
type EΓ that are Γ-homotopy equivalent, with a map that it is the identity outside
the orbit of a compact subset, are Γ-homeomorphic. This definition is the analogue
of the assumptions given in [17]. In our case, Γ is not necessarily torsion-free. The
purpose of this paper is to show that a class of geometrically interesting groups is
topologically rigid.

The rigidity problem of group actions has already appeared in topology in dif-
ferent forms. For Γ a torsion-free group, this is a classical problem in geometric
topology. It is associated with two conjectures. The first, Wall’s Conjecture, states
that every Poincaré Duality group is the fundamental group of a closed aspherical
manifold. The second, Borel’s Conjecture, asserts that the fundamental groups of
closed aspherical manifolds are topologically rigid. The status of these conjectures
is reported in the papers of Farrell–Jones ([15], [16], [17]).

When Γ has torsion then the characterization of topologically rigid groups (at
least for manifolds without boundaries) becomes a question in equivariant topol-
ogy. As such, it is known as the Borel–Quinn Conjecture, stated explicitly in [11].
There are examples of discrete groups (which are crystallographic) that are not
topologically rigid ([12], [28]).

In [23], it was shown that Coxeter groups are topologically rigid, if certain low
dimensional conditions are satisfied, which are not needed if the three-dimensional
Poincaré Conjecture is true ([22]). We will extend the rigidity result to certain
group extensions of Coxeter groups. Let (W, S) be a Coxeter group such that the
simplicial complex of the poset of its finite parabolic subgroups is an orientable
pseudomanifold ([9]). Let Γ = W � ∆ where W is a Coxeter group as before,
C(W, S) the Coxeter graph, and ∆ acts on W by automorphisms of C(W, S). Thus
there is an exact sequence

1 → ∆0 → ∆ α−→ Aut(C(W, S)).

We assume that:
• There is a manifold X of type EΓ on which W acts by reflections.
• For each subgroup H of Aut(C(W, S)), the group α−1(H) is topologically

rigid.

Theorem (Main Theorem). Let Γ be a virtually torsion-free group as above. Then
any two manifolds, possibly with boundary, properly Γ-homotopy equivalent to X are
Γ-homeomorphic (provided the homotopy equivalence may be taken to be a homeo-
morphism on the boundary).

Groups that satisfy the conditions (except the rigidity) of the Main Theorem
appear as subgroups of Coxeter groups. Let (V, T ) be a Coxeter system such that
V admits a manifold of type EV . Let VJ be a finite parabolic subgroup, i.e., a
finite subgroup generated by a subset J ⊂ T . Then the Weyl group NV (VJ)/VJ

is isomorphic to subgroup of V that satisfies the conditions of the theorem ([3],
[7]). In this case, ∆0 is topologically rigid because it is a torsion-free ([3]) subgroup
of GL(n, R) ([17]). It should be noticed that the Weyl groups NV (VJ)/VJ are
nonpositively curved groups. That follows from the fact that Coxeter groups are
nonpositively curved ([21]).

The result of the Main Theorem generalizes the result in [23], where it was
shown that Coxeter groups are topologically rigid, under certain low dimensional
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assumptions. The methods used for the proof of the main result are equivariant
analogues of the methods used in [23]. Let Mi, i = 1, 2, be manifolds of type EΓ,
possibly with boundary. The model X guarantees that W acts by reflections on
Mi. Thus there are fundamental domains (Qi, (Qis)s∈S), i = 1, 2, which are panel
spaces and ∆ acts on them by homeomorphisms that preserve the panel structure.
Here we use the assumption on W to get that they are both S-panel spaces ([23],
[9]). As in [23], we construct an S-panel ∆-homotopy equivalence φ between Q1

and Q2. The topological rigidity assumption on extensions of ∆0 implies that φ is
∆-homotopic to a ∆-homeomorphism χ which preserves panels. The construction
of the homeomorphism is done inductively on the panels as in [23]. Then the map
induced by χ on M1 is a Γ-homeomorphism. The general rigidity assumption is
necessary because of the counterexamples in [12] and [28]. The main result is stated
as Theorem 5.6.

The second author would like to express his gratitude to the Department of
Geometry of the Eötvös Loránd University at Budapest, Hungary, for its hospitality
in November 2000, when the original ideas for this paper took place. We would
like to thank Tom Farrell for his comments on an earlier version of this paper and
Matt Brin for bringing to our attention the results in [6]. Both authors would like
to thank the referee for his very useful and important suggestions.

2. Preliminaries

We review the basic properties of Coxeter groups. References are [4], [19], and
[18], [8] for a more geometric approach.

A Coxeter system (W, S) is a pair where W is a group generated by the elements
of the set S and admits a presentation:

W =
〈
s∈S : s2 = (ss′)mss′ = 1, s�=s′, ms,s′∈{2, 3, . . . ,∞}

〉
.

In other words W is generated by a set of reflections and the only relations in
W come from the angle between the hyperplanes corresponding to the reflections.
The group W is called a Coxeter group and the elements of S are called simple
reflections. We will consider finitely generated (and therefore finitely presented)
Coxeter groups.

The Coxeter graph, C(W, S), associated to a Coxeter System is the weighted
graph with vertices elements of S. Two vertices s and s′ are connected if ms,s′ ≥ 3.
The edge {s, s′} is marked by ms,s′ if ms,s′ ≥ 4.

Let J⊂S. Let WJ be the subgroup of W generated by J . The the pair (WJ , J)
is again a Coxeter system ([4], [19]). The subgroups of W of this form are called
parabolic subgroups. We write

F(W, S) = {J⊂S : WJ is finite}
for the poset of the subsets of S that generate finite subgroups. Denote by Fk(W, S)
the subset of F(W, S) consisting of all elements containing k elements (k ≥ 0) and
F>0(W, S) = F(W, S) − {∅}.

Definition 2.1. A panel structure on a topological space Q is a locally finite fam-
ily of closed subspaces (Qs)s∈S , indexed by a set S. The subsets Qs are called
the panels of S. A pair (Q, (Qs)s∈S) consisting of a space together with a panel
structure is called an S-paneled space.
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For each q∈Q, we define S(q) = {s∈S : q∈Qs}. For each nonempty subset J⊂S,
set

QJ = {q∈Q : J⊂S(q)} =
⋂
s∈J

Qs.

By convention, Q∅ = Q. The formal boundary of an S-paneled space is the union
of all panels:

DQ =
⋃
s∈S

Qs.

The subspaces QJ are called faces of Q. We will consider panel spaces with finitely
many panels.

Let (W, S) be a Coxeter system. The S-paneled structure on Q is called W -finite
if S(q) ∈ F(W, S) for each q∈Q. There is a natural W -finite S-paneled complex
associated to it. We write K0(W, S) for the abstract simplicial set with vertex set
S and with simplices J∈F>0(W, S). Denote by K(W, S) the cone of K0(W, S), i.e.,
K(W, S) = K0(W, S) ∪ {∅}. There is a natural S-panel structure on the geometric
realization of K(W, S) ([13]).

Let Q admit a W -finite S-panel structure. Then we define a relation between
the elements of the product W × Q:

(w, q) ∼ (w′, q′), if and only if q = q′, and w−1w′∈WS(q).

The quotient space
U(W, Q) = W ×Q/∼

is called the universal space of (W, Q). We denote the elements of U(W, Q) by [w, q].
There is a natural embedding

i : Q → U(W, Q), q 
→ [e, q].

The group W acts on U(W, Q) by left multiplication on the first coordinate. The
action is by reflections in the sense that the fixed point sets of the generators
separate U(W, Q) into two components interchanged by the action. The isotropy
group of the point [e, q] is WS(q) because only the generators in S(q) fix [e, q].
Therefore the isotropy group of a general element [w, q] is wWS(q)w

−1.
We will also need an equivariant analogue of the above construction.

Definition 2.2. Let ∆ be a discrete group equipped with a homomorphism α :
∆ → Aut(C(W, S)) where C(W, S) be the Coxeter graph of W . Let (Q, (Qs)s∈S)
be an W -finite S-paneled space. Then an action of ∆ on Q by panel maps is called
compatible with α if δ(QJ) = Qδ(J) for all J∈F(W, S), δ ∈ ∆.

Remark 2.3. (i) It is immediate from the definition that the action is compat-
ible with α if and only if δQs = Qδ(s), for s∈S, δ∈∆.

(ii) It follows from the definition that δQS(q) = QS(δq), for all δ∈∆, q∈Q.

Lemma 2.4. Let α : ∆ → Aut(C(W, S)) be a homomorphism. Let ∆ admit a panel
action on an S-paneled space Q compatible with α. Set Γ = W�∆, where ∆ acts
on W through α. Then there is an action of Γ on U(W, Q) extending the natural
action of W .

Proof. Let [w, q] represent an element of U(W, Q) and γ = (w′, δ) be an element
of Γ. Define

γ[w, q] = (w′, δ)[w, q] = [w′δ(w), δq].
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The action is well-defined: Let [w1, q] = [w2, q] in U(W, Q). Then w−1
1 w2∈WS(q).

Also,
(w′, δ)[wi, q] = [w′δ(wi), δq], i = 1, 2.

Then
δ(w−1

1 )(w′)−1w′δ(w2) = δ(w−1
1 w2) ∈ δWS(q) = WS(δq)

by Remark 2.3, Part (ii). The other properties of the action are immediate. �

Proposition 2.5. Let ∆ be an in Lemma 2.4 and Γ = W�∆. Let (Q1, (Q1s)s∈S)
be a panel space that admits a panel action of ∆ compatible with α.

(1) Let M be a Γ-space and f : Q1 → M a ∆-map such that f(q)∈Ms for each
q∈Q1s, s∈S. Then there is a unique Γ-map f̂ : U(W, Q1) → M extending f .

(2) Let (Q2, (Q2s)s∈S) be a second panel space that admits a panel action of ∆
compatible with α. Let φ : (Q1, (Q1s)s∈S) → (Q2, (Q2s)s∈S) be a ∆-map such
that φ(Q1s) ⊂ Q2s. Then there is a unique Γ-map U(W, φ) : U(W, Q1) →
U(W, Q2) extending φ.

Proof. This is a direct generalization of the classical case ([26]). For (1), define

f̂([w, q]) = wf(q), [w, q] ∈ U(W, Q1).

Part (2) follows from (1). �

We summarize the naturality properties of the universal construction. Let (W, S)
be a Coxeter system and ∆ a group equipped with a homomorphism α : ∆ →
Aut(C(W, S)). We define a category, PS∆(W, S), with objects W -finite S-paneled
spaces, (Q, (Qs)s∈S), on which ∆ acts by panel maps compatible with α. Morphisms
are panel maps:

f : (Q, (Qs)s∈S) → (Q′, (Q′
s)s∈S)

such that for each s∈S, f(Qs) ⊂ Q′
s, which are ∆-equivariant. An isomorphism in

the category PS∆(W, S) is called an S-paneled ∆-homeomorphism. Notice that an
S-paneled ∆-homeomorphism induces a Γ-homeomorphism on the universal spaces,
where Γ = W � ∆, with ∆ acting on W through α. An S-paneled ∆-homotopy is
a homotopy in PS∆(W, S), i.e., an S-paneled ∆-map:

F : (Q×I, (Qs×I)s∈S) → (Q′, (Q′
s)s∈S)

An S-paneled homotopy induces a Γ-homotopy on the corresponding universal
spaces.

3. Reflections

A reflection on a manifold M is a locally linear involution with fixed point set
Mr such that M \Mr has two components. A discrete group generated by a set of
reflections on a manifold is a Coxeter group ([13]).

Definition 3.1. A Coxeter group W is called a manifold-reflection group if there
is a cocompact manifold of type EW on which W acts by reflections.

Remark 3.2. The following are well-known about manifold-reflection groups:
(i) Manifold-reflection groups are virtual Poincaré Duality Coxeter groups.
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(ii) A Coxeter group W is a manifold-reflection group if and only if, for some
Coxeter system (W, S), the geometric realization of F>0(W, S) is a homology
manifold that is a homology sphere ([13]).

(iii) For a manifold-reflection group W , the classifying manifold EW is not neces-
sarily homeomorphic to a Euclidean space ([13]).

(iv) Let W be a manifold-reflection Coxeter group. Then for any two Coxeter
systems (W, S) and (W, T ), there is an inner automorphism of W that maps
S to T ([9], [23, Proposition 4.7]).

Actually, there is a complete characterization of virtual Poincaré Duality Coxeter
groups ([14]):

Proposition 3.3. A Coxeter group W is a virtual Poincaré Duality group if and
only if W = W1×W2 where W1 is a manifold-reflection group and W2 is a finite
group.

There is broader class of Coxeter groups that satisfies Property (iv) above. A
Coxeter system (W, S) is type PMn if |F>0(W, S)| is an orientable pseudo-(n− 1)-
manifold whose (n − 1)-homology groups is isomorphic to Z ([9]). The following is
restatement of Theorem 5.10 in [9]:

Proposition 3.4. Let W be a Coxeter group of type PMn. Then any two sets of
Coxeter generators are conjugate.

The next result follows as in Lemma 4.1 in [23]. It shows that the action by
reflections is invariant under proper homotopy equivalences.

Lemma 3.5. Let M and M ′ be locally linear Z/2Z-manifolds. Assume that:
1. The nontrivial element of Z/2Z acts as a reflection on M .
2. f : (M ′, ∂M ′) → (M, ∂M) is a proper Z/2Z-homotopy equivalence such that

f |∂M ′ is a Z/2Z-homeomorphism (we allow ∂M = ∂M ′ = ∅).
Then the nontrivial element of Z/2Z acts on M ′ as a reflection.

Proposition 3.6. Let (W, S) be a Coxeter system and M and M ′ be locally linear
W -manifolds with boundary such that W acts on M ′ by reflections. Let

f : (M ′, ∂M ′) → (M, ∂M)

be a W -homotopy equivalence such that f |∂M ′ is a W -homeomorphism.
1. If f is a proper W -homotopy equivalence, then W acts on M by reflections.
2. If the W -action on M and M ′ is cocompact, then W acts on M by reflections.

Proof. For Part (1), we use Lemma 3.5 to show that every element of S acts on
M as a reflection. For Part (2), notice that the cocompactness assumption implies
that the map f is a proper W -homotopy equivalence, and then use Part (1). �

4. Classifying spaces

We define the universal complexes of discrete group actions that have finite
isotropy groups.

Definition 4.1. Let Γ be a discrete group. A complex of type EΓ is a Γ-CW-
complex on which Γ acts cellularly, with finite isotropy groups such that the fixed
point sets are contractible. If the action is cocompact we call the complex a co-
compact complex of type EΓ.
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The basic properties of the construction are shown in [10], [25] (for cocompact
complexes) and [16, Appendix] (where it is defined as the classifying space for the
class of finite subgroups of Γ). Spaces of type EΓ are universal for actions with finite
isotropy groups. More precisely, any Γ-space with finite isotropy groups admits a
unique (up to Γ-homotopy) map to a space of type EΓ. In particular, spaces of type
EΓ are unique up to Γ-homotopy. If Γ admits a cocompact complex of type EΓ and
it is virtually torsion-free, then Γ has finite virtual cohomological dimension. For
groups of finite virtual dimension cocompact complexes of type EΓ exist ([10], [25]).
If there is a manifold without boundary which is a cocompact space of type EΓ and
Γ is a virtually torsion-free group, then Γ is a virtual Poincaré Duality group, i.e.,
it contains a subgroup of finite index that is Poincaré Duality.

Coxeter groups admit finite dimensional linear representations ([26]) and they
have finite virtual cohomological dimension ([2], [13]). Let (W, S) be a Coxeter
system and (Q, (Qs)s∈S) a W -finite S-paneled complex.

Definition 4.2. Let (W, S) be a Coxeter system and (Q, (Qs)s∈S) a W -finite S-
paneled complex. A W -finite S-paneled space is called admissible if QJ is con-
tractible for all J∈F(W, S).

In [23, Proposition 3.6], it was shown that the classifying space U(W, Q) is a
cocompact space of type EW if and only if QJ is contractible for each J∈F(W, S),
i.e., if the S-paneled structure is admissible.

Let (W, S) be a Coxeter system with Coxeter graph C(W, S). Let ∆ be a group
that admits a homomorphism (possibly trivial) to Aut(C(W, S)). More precisely,
there is an exact sequence

1 → ∆0 → ∆ α−→ Aut(C(W, S)).

This action induces an action of ∆ on W , denoted also α. From now on, by an
action of a group on a manifold we will mean a locally linear action. Let Γ = W �∆
where ∆ acts on W by α.

Lemma 4.3. Γ is a virtual Poincaré Duality group if and only if both W and ∆
are.

Proof. Let ∆′ be a subgroup of ∆ of finite index that is a Poincaré Duality group.
Then ∆′′ = ∆0∩∆′ has finite index in ∆ and ∆′ and thus it is a Poincaré Duality
group. Also, ∆′′ acts trivially on W . Let W ′ be a Poincaré Duality subgroup of
finite index of W . Then W ′×∆′′ is a Poincaré subgroup of finite index of Γ.

Let Γ′ be the subgroup of Γ of finite index that is Poincaré Duality. Let W0 be
a torsion-free subgroup of W of finite index. Then Γ′∩(W0×∆0) has finite index
in Γ′ and thus it is a Poincaré Duality group. But Γ′∩(W×∆0) has also finite
index in W0×∆0, which implies that W0×∆0 is also a Poincaré Duality Group. By
assumption both W0 and ∆0 are groups of finite cohomological dimension. Since the
product is a Poincaré Duality group, each factor must be a Poincaré Duality group
[27, Theorem 2.5, (ii)]. Thus W and ∆ are virtual Poincaré Duality groups. �

Proposition 4.4. Let Γ = W�∆ as before, with ∆ a virtually torsion-free group.
Let M be a cocompact manifold, without boundary, of type EΓ. Then:

(i) W = W1×W2 where W1 is a manifold reflection group and W2 is a finite
Coxeter group.
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(ii) The action of ∆ on W restricts to an action on Wi, i = 1, 2.
(iii) There is a manifold, without boundary, of type E∆0.
(iv) W1 acts on EΓ by reflections and W2 acts trivially on M .

Proof. (i) Since M is a cocompact manifold of type EΓ, and Γ is a virtually torsion-
free group (since ∆ and W are) Γ is a virtual Poincaré Duality group. Lemma 4.3
implies that W is a virtual Poincaré Duality group. By [14] (also Remark 3.2),
W ∼= W1×W2 where W1 is a manifold reflection group and W2 is a finite Coxeter
group.

(ii) Manifold reflection groups cannot be decomposed in nontrivial products of
two Coxeter groups with one of them finite ([23, Corollary 4.3]). So W1 cannot
contain other finite Coxeter groups factors. Since ∆ acts on W by Coxeter graph
automorphisms, it must fix W2.

(iii) It is clear that M is a manifold of type E(W×∆0) with the restriction of
the action. Let H be a maximal finite parabolic subgroup of W . Then

NW (H)/H = {e} ⇒ NW×∆0(H)/H ∼= ∆0

(the first equality follows from [3] and [7]). Thus there is a natural action of ∆0 on
the fixed point set MH . It is immediate that this action makes MH a manifold of
type E∆0. Furthermore, the natural map

MH/∆0 → M/Γ

embeds the quotient as a closed subset of M/Γ, which is compact. Thus MH is a
cocompact manifold of type E∆0.

(iv) Since W1 is a manifold reflection group, there is a manifold N of type EW1

on which W1 acts by reflections. By (iii), there is a cocompact manifold N ′ of type
E∆0. Thus N×N ′ is a cocompact manifold of type Γ′ = W1×∆0 on which W1

acts by reflections. Since both spaces M and N×N ′ are of type EΓ′, there is a
Γ′-homotopy equivalence f : M → N×N ′. Since the actions are cocompact, f is a
Γ′-proper homotopy equivalence and thus it is a proper W1-homotopy equivalence.
Proposition 3.6 (also the argument in Lemma 4.1 in [23]) shows that W1 acts by
reflections on M . For the W2 action, notice that the group NΓ(W2)/W2

∼= W1�∆
acts on the contractible manifold MW2 . The action is cocompact since MW2/W2�∆
is homeomorphic to a closed subset of the compact space M/Γ. Thus

dim(MW2) = vcd(W1�∆) = vcd(Γ) = dim(M).

Therefore MW2 is a closed submanifold in M of the same dimension. The invariance
of domain implies that MW2 = M . Thus W2 acts trivially on M (for more details,
see Lemma 4.2 in [23]). �
Corollary 4.5. Let M be a cocompact manifold, without boundary, of type EΓ with
Γ virtually torsion-free. Then there is:

(i) a W -finite admissible S-paneled manifold (Q, (Qs)s∈S),
(ii) a panel action of ∆ on Q, compatible with α.

Furthermore, M is Γ-homeomorphic to U(W, Q).

Proof. Proposition 4.4 implies that W acts on M by reflections. Thus there is
a W -finite admissible S-paneled manifold (Q, (Qs)s∈S) such that M∼=WU(W, Q).
Since M/W can be also identified with Q, there is an action of ∆ on Q. To show that
the action is compatible with α, it is enough to show that δQs = Qδ(s), for δ ∈ ∆,
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s∈S (Remark 2.3). If x∈Qs, then x∈Q∩Ms and it is fixed by s. Therefore δx is
fixed by (1, δ)(s, 1)(1, δ−1) which is equal to (δ(s), 1). Thus δx∈M δ(s)∩Q = Qδ(s).
Therefore, δQs ⊂ Qδ(s). A similar argument shows the other inclusion.

Lemma 2.4 implies that there is a Γ action on U(W, Q). In [13] (also [26]), it
was shown that the map

U(W, Q) → M, [w, q] 
→ wq

is a W -homeomorphism. We will show that it is actually a Γ-map and thus a
Γ-homeomorphism:

f((w′, δ)[w, q]) = f([w′δ(w), δq])

= (w′δ(w))δq

= (w′, δ)(w, 1)q

= (w′, δ)wq

= (w′, δ)f([w, q])

�

Corollary 4.6. With the assumption of Corollary 4.5, set m = dim(M). Then for
each J∈F(W, S), QJ is a manifold of dimension m − |J | (with boundary unless J
generates a maximal finite parabolic subgroup).

Proof. Let J∈Fk(W, S). Then, by construction, QJ = Q∩MWJ and QJ has the
same dimension of MWJ . The dimension of MWJ is equal to the dimension of the
intersection

dim(MWJ ) = dim

(⋂
s∈J

Ms

)

which has codimension k, by transversality. The result follows.
If J is a maximal subset in F(W, S) then QJ is a manifold, without boundary,

of dimension m − n, where n = |J |. In this case, QJ = MWJ , which is a manifold
of type E∆0. �

5. Topological rigidity

We start by stating the rigidity assumption for certain subgroups of Γ: Let G
be a discrete group.

Assumption (R) for G: Let N and N ′ be two G-manifolds without boundary
that are spaces of type EG. Let f : N ′ → N be a G-homotopy equivalence which
is a homeomorphism outside the G-orbit of a compact subset of N ′. Then f is
G-homotopic to a G-homeomorphism, which agrees with f outside the orbit of a
compact set.

Remark 5.1. Groups that satisfy Assumption (R) above are groups given in the
work of Farrell–Jones. They proved that if G is torsion-free subgroup of GL(n, R)
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and of cohomological dimension greater than or equal to 5 then G satisfies Assump-
tion (R). Also, all the subgroups of G of cohomological dimension greater than or
equal to 5 satisfy Assumption (R). ([17]).

The following is immediate from the rigidity assumption:

Lemma 5.2. Let G satisfy Assumption (R) and N , N ′ two manifolds with bound-
ary, of type EG, and of the same dimension. Let f : (N ′, ∂N ′) → (N, ∂N) be a
∆H-homotopy equivalence such that:

1. f is homeomorphism outside the G-orbit of a compact subset of N ′.
2. f |∂N ′ is a G-homeomorphism.

Then f is G-homotopic to a G-homeomorphism which agrees with f on the bound-
ary.

Proof. By attaching a collar if necessary, we assume that f is a G-homeomorphism
on a collar of ∂N ′. Actually we arrange that f ′ = f |N ′−∂N ′ is a G-homeomorphism
on the complement of a closed subcollar C. Since f ′ is a G-homeomorphism outside
the orbit of a compact subset, Assumption (R) implies that f ′
Gg′ where g′ is a
G-homeomorphism that agrees with f ′ on a complement of a larger subcollar. Thus
g′ extends to a G-homeomorphism g : N ′ → N such that g|∂N ′ = f |∂N ′. �

If the action in cocompact we get a stronger result:

Lemma 5.3. Let G satisfy Assumption (R) and N , N ′ two manifolds with bound-
ary, of the same dimension, that are cocompact manifolds of type EG. Let

f : (N ′, ∂N ′) → (N, ∂N)

be a G-homotopy equivalence such that f |∂N ′ is a G-homeomorphism. Then f is
G-homotopic to a G-homeomorphism which agrees with f on the boundary.

Proof. As before, we define f ′ : N ′ − ∂N ′ → N − ∂N to be a G-homeomorphism
on the complement of a closed collar C of ∂N ′. Since N ′/G is compact, there is a
compact subset K of N ′ such that the complement of the orbit of K is contained
in C. Thus f ′ is a G-homeomorphism outside the orbit of a compact subset. The
rest of the proof follows as in Lemma 5.2. �

Let Γ = W � ∆, with (W, S) a Coxeter system, of type PM, with S finite and ∆
acting on W through a map to the automorphisms of the Coxeter graph C(W, S):

1 → ∆0 → ∆ α−→ Aut(C(W, S)).

For J ⊂ S, let HJ be the subgroup of Aut(C(W, S)) that fixes J . We write ∆J =
α−1(HJ).

We start with setting up the assumptions.

Assumptions: Let (Mi, ∂Mi), i = 1, 2, be two manifolds that are spaces of type
EΓ and

f : (M1, ∂M1) → (M2, ∂M2)

a Γ-homotopy equivalence that is a Γ-homeomorphism outside the orbit of a com-
pact subset and when restricted to ∂M1. We also assume that:
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(i) There is a manifold X, with boundary, of type EΓ such that:
1. W acts on X by reflections.
2. X is properly Γ-homotopy equivalent to Mi with a homotopy equivalence

that restricts to a Γ-homeomorphism on the boundary.
(ii) ∆J satisfies Condition (R), for each J ⊂ S.

By Proposition 3.6, because of Assumption (i.1), we derive that W acts by
reflections on M1 and M2. By Proposition 3.4 ([9, Theorem 5.10]), there are ad-
missible S-paneled manifolds (Qi, (Qi,s)s∈S) such that U(W, Qi)∼=ΓMi, i = 1, 2
(Corollary 4.5). We can choose the same S-paneled structure on the two funda-
mental domains because of Proposition 3.4. Each face QiJ , i = 1, 2, is a manifold
with boundary unless J is maximal and ∂Mi = ∅, i = 1, 2 (Corollary 4.6). Each
face is a space of type E∆0. Actually, the face QiJ is a space of type E∆J , for each
J ∈ F(W, S).

Lemma 5.4. With the above notation, for each J ∈ F(W, S), the restriction fJ =
f |Q1J is a ∆J -homotopy equivalence that is a homeomorphism outside the orbit
of a compact subset. The same conclusion follows if fJ is just considered as a
∆0-homotopy equivalence.

Proof. Let K be a compact subset of M1 such that f is a homeomorphism outside
the Γ-orbit of K. Notice that Q1J∩wQ1J ⊂ Q1J , for all w ∈ W . Then

Q1J∩ΓK = Q1J ∩ (W�∆)K ⊂ Q1J ∩ ∆K ⊂ Q1J

⋂
∆J


 n⋃

j=1

δjK




where {δj}n
j=1 is a complete set of right coset representatives in ∆/∆J . So if we set

L = QiJ ∩


 n⋃

j=1

δjK




then fJ is a homeomorphism outside the ∆J -orbit of L.
The same method proves the second assertion. �

Lemma 5.5. Let Qi be the W -fundamental domain of Mi that determines the
Coxeter generating set S of W . There exists a compact subset C ⊂ M1 such that

f(Q1J−ΓC) ⊂ Q2J−f(ΓC), f(Q1J−∆C) ⊂ Q2J−f(∆C),

for each J ∈ F(W, S).

Proof. There is a compact subset C of M1 such that f is a Γ-homeomorphism
outside the orbit of C. Thus, outside the orbit of C, f is an isovariant W -
homeomorphism. The first result follows. For the second result, we choose the
compact subset C such that sC ⊂ C for all s ∈ S. To achieve that, any choice of
C can be enlarged by defining:

C∪
( ⋃

s∈S

sC

)
.

Since, for all w ∈ W , wQ1∩Q1 ⊂ sQ1, for some s ∈ S, and ∆ acts on the faces by
permuting them, the second relation follows. �
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Theorem 5.6. With the above notation, f is Γ-homotopic to a Γ-homeomorphism
which agrees with f on ∂M1 and in the complement of the Γ-orbit of a compact
subset of M1.

Proof. The group ∆0 preserves each face of Qi (i = 1, 2) because it acts trivially
on the Coxeter graph. For each face QiJ , J∈F(W, S), we write

∂QiJ =
⋃

T�J

QiT

which is the boundary of QiJ . We fix a complete set of right cosets representatives
of ∆/∆0, {δ1, . . . δr}. In other words,

∆/∆0 = {δ1, . . . δr}.

Claim 1. There is a ∆-paneled homeomorphism φ : Q1 → Q2 that agrees with f
on the complement, in Q1, of the Γ-orbit of a compact subset.

Proof. We construct the map inductively as in [23, Theorem 5.3].

0-th step: Let W has rank m, i.e., |S| = m. The smallest faces of Qi are spaces of
type E∆0 They correspond to the maximal finite parabolic subgroups of W . The
panel structure of Qi with panels “manifolds with corners” forces all the minimal
fixed point sets have the same dimension, say n. They are transverse intersections of
fixed point subsets of the maximal finite parabolic subgroups of W . Transversality
means that all the maximal subgroups have rank m − n (also Corollary 4.6). For
each J ∈ Fm−n(W, S), the face QiJ is a space of type E∆J . The action of ∆
on C(W, S) induces an action on Fm−n(W, S). Let {Jj : j = 1, . . . , sm−n} be a
complete set of orbit representatives of the action. For each j, the map f restricts
to a ∆Jj -homotopy equivalence:

ψJj
: Q1Jj

= M
WJj

1 → M
WJj

2 = Q2Jj
.

Lemma 5.4 implies that ψJj is a homeomorphism outside the ∆Jj -orbit of a compact
subset, that agrees with f on the complement of a Γ-orbit of a compact subset. The
rigidity assumption on ∆Jj implies that there is a ∆Jj -homeomorphism

φJj : Q1Jj → Q2Jj .

that agrees with f in a complement of the Γ-orbit of a compact subset. Let
J∈Fm−n(W, S). Then there is δJj

∈∆ such that J = δJj
(Jj). Define:

φJ : Q1J → Q2J ,

x 
→ δJj φJj (δ
−1
Jj

x).

1. The definition of φJ does not depend on the choice of δJj : If δ′Jj
is another

element such that J = δ′Jj
(Jj), then δ−1

Jj
δ′Jj

∈ ∆Jj . Thus, there is δ ∈ ∆J

such that δ′Jj
= δJj δ. Therefore

δ′Jj
φJj

((δ′Jj
)−1x) = δJj

φJj
δ(δ−1δ−1

Jj
x) = δJj

φJj
(δ−1

Jj
x)

where the last equality follows from the fact that φJj is ∆Jj -equivariant.
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2. φJ is a ∆J -homeomorphism: First of all, it is a homeomorphism. Let δ∈∆J

and δJj
(Jj) = J . Then δ−1δJj

(Jj) = J . By (1),

φJ(x) = δ−1δJj φJj (δ
−1
Jj

δx) =⇒ δφJ(x) = δJj φJi(δ
−1
Jj

δx) = φJ(δx).

3. Let J∈Fm−n and δ∈∆. Then, for x∈Q1J ,

φδ(J)(δx) = δφJ(x).

That follows from the definition and (1).
We combine all the maps φJ to get a map

φm−n =
∐

J∈Fm−n(W,S)

φJ :
∐

J∈Fm−n(W,S)

Q1J −→
∐

J∈Fm−n(W,S)

Q2J .

Then φm−n is a homeomorphism that agrees with f outside the Γ-orbit of a compact
subset. By (3), it follows that φm−n is a ∆-map and thus a ∆-homeomorphism.

Inductive step: We assume that φ� has been already defined for all k < � <
m − n. We will construct φk as an extension of the map φk+1, already defined
by the induction hypotheses. The procedure is similar to the previous case. Let
{Kj : j = 1, . . . , sk} be a complete set of orbit representatives of the Γ action
on Fk(W, S). The spaces Q1Kj and Q2Kj are manifolds with boundary of type
E∆Kj . �

Claim 2. There is a panel ∆Kj -homotopy equivalence ψKj : Q1Kj
→ Q2Kj ,

for j = 1, . . . , sk that extends the map on the boundaries and the map f on the
complement of the Γ-orbit of a compact set.

Proof. For j = 1, . . . , sk, let ∂φKj for the ∆Kj -homeomorphism defined on the
boundary of Q1Kj

. Using the equivariant homotopy extension property, we extend
∂φKj

to a ∆Kj
-homotopy equivalence ψKj

: Q1Kj
→ Q2Kj

which agrees with the
restriction of f on a complement of the Γ-orbit of a compact subset (Lemma 5.5).

�

By Lemma 5.2, there is a ∆Kj -homeomorphism φKj
: Q1Kj → Q2Kj , ∆Kj -

homotopic to ψKj , extending ∂φKj and f . As before, for K ∈ FK(W, S), with
K = δ(Kj), define

φK : Q1K → Q2K , x 
→ δφKj
(δ−1x).

Also define
φk :

⋃
K∈Fk(W,S)

Q1K →
⋃

K∈Fk(W,S)

Q2K .

Then φk is a ∆-homeomorphism.
After completing the construction up to F0(W, S), we get a ∆-paneled homeo-

morphism
φ : Q1 → Q2.

Since the ∆-action is compatible with α, it induces, by Proposition 2.5, a Γ-
homeomorphism U(W, φ) : U(W, Q1) → U(W, Q2), which agrees with f in the
complement of the Γ-orbit of a compact subset. That completes the proof of the
Main Theorem. �
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Remark 5.7. 1. There is no rigidity assumption on the Coxeter group W . The
only requirement is that W acts on an appropriate space by reflections and
that all the Coxeter generating sets are conjugate. The Coxeter group serves
as a “blueprint” used for gluing the fixed point subspaces.

2. The condition that W is of type PM can be weakened. The action of W
by reflections on Mi, i = 1, 2, determines two sets of Coxeter generators Si,
i = 1, 2, for W ([13]). Lemma 3.5 shows that an element of W acts as a
reflection on M1 if and only if it acts as a reflection on M2. Thus the two
Coxeter presentations (W, Si), i = 1, 2 have identical sets of reflections. So the
condition that W is of type PM can be weakened to that W is reflection rigid,
i.e., for any two set of Coxeter generators Si, i = 1, 2, that determine the same
set of reflections in W , there is an automorphism ω of W such that ω(S1) = S2.
If ω is an inner automorphism, W is called strongly reflection rigid. Coxeter
groups of type PM are strongly reflection rigid. The automorphism ω induces
an isomorphism of the Coxeter graphs. So the conditions required for the
Coxeter group are:
a) W is reflection rigid.
b) There is a Γ-manifold with boundary X on which W acts by reflections

and it is properly Γ-homotopy equivalent to Mi, i = 1, 2.
Classes of reflection rigid (or simply rigid) Coxeter groups are given in [1],
[5], [20], [24]. Notice though that Condition (b) forces the maximal finite
parabolic subgroups of W to have the same rank and thus making W very
close to being a group of type PM.

3. The rigidity assumptions are not needed for all the subgroups of ∆ but rather
for the subgroups ∆J where J ∈ F(W, S).

4. There are no dimension assumptions in the rigidity theorem. The rigidity
assumption on the subgroups of ∆ is much stronger, in general.

5. Usually, the subgroups of ∆ satisfy the rigidity assumption in higher dimen-
sions (bigger than or equal to 5). In this case, Theorem 5.6 is true if we
assume that f is already an equivariant homeomorphism on the fixed point
sets of lower dimensions. Thus, in this case, a relative version of Theorem 5.6
holds.

6. Special cases

6.1. Trivial actions. As a special case of Theorem 5.6 and Remark 5.7 (2), when
the action α is trivial, i.e., when Γ = W×∆. Then Theorem 5.6 is true when the
rigidity assumption for ∆ holds:

Theorem 6.1. Let Mi, i = 1, 2, be two Γ-manifolds of type EΓ. Let

f : (M1, ∂M1) → (M2, ∂M2)

be a Γ-homotopy equivalence that is a homeomorphism outside the Γ-orbit of a
compact subset of M1. Assume:

1. W is of type PM.
2. There is a W -manifold with boundary X of type EΓ properly Γ-homotopic to

Mi, with a homotopy equivalence that restricts to a homeomorphism on the
boundary, on which W acts by reflections.

3. ∆ satisfies Assumption (R).
Then f is Γ-homotopic to a Γ-homeomorphism.
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6.2. Virtual Poincaré duality groups. Let Γ = W�∆, as always, and assume
that Γ is virtually torsion-free and there is a cocompact manifold, without boundary,
of type EΓ. Then Γ is a virtual Poincaré Duality group. Suppose also that M1 is
a cocompact manifold, without boundary, of type EΓ. Proposition 4.4 implies
that ∆ and W are also virtual Poincaré Duality Groups. Then [9] implies that
W splits as a product W1×W2 with W1 a manifold-reflection group and W2 finite.
Proposition 4.4, Part (iv), implies that W2 acts trivially on Mi, i = 1, 2. In this
case, we do not need the assumption that W is of type PM (Remark 3.2, Part (iv)).
Also Corollary 4.5 implies that the space X in (i.1) exits. The case ∆ = {e} is
treated in [23] under an assumption on low dimensional fixed point sets that can
be removed if the 3-dimensional Poincaré Conjecture is true ([22]).

Theorem 6.2. Let Γ be a virtual Poincaré Duality Group and

f : (M1, ∂M1) → (M2, ∂M2)

a Γ-homotopy equivalence between cocompact Γ-manifolds of type EΓ, which restricts
to a Γ-homeomorphism on the boundaries. Assume that ∆J satisfies Assumption
(R) for each J ∈ F(W, S). Then f is Γ-homotopic to a Γ-homeomorphism. If
∆ is the trivial group, then f is Γ-homotopic to a Γ-homeomorphism provided the
3-dimensional Poincaré Conjecture is true.

6.3. ∆ is trivial. The question is to what extent the trivial group satisfies As-
sumption (R). If the manifolds have dimension 1 or 2 the result is trivial. If the
dimension is larger than 3 the result follows from the surgery exact sequence and
the Poincaré Conjecture. In dimension 3, Theorem 1 in [6] implies that the rigidity
holds, provided both manifolds are P 2-irreducible 3-manifolds (i.e., they contain
no two-sided embedded projective planes and every embedded 2-sphere bounds a
3-cell).

Theorem 6.3. Let W be a Coxeter group of type PM. Let

f : (M1, ∂M1) → (M2, ∂M2)

is a Γ-homotopy equivalence between cocompact manifolds of type EΓ, which restricts
to a Γ-homeomorphism on the complement of the W -orbit of a compact subset.
Assume that:

1. There is a manifold with boundary of type EW X properly W -homotopy equiv-
alent to Mi, with a homotopy that restricts to a homeomorphism on the bound-
ary such that W acts by reflections on X.

2. Any 3-dimensional fixed point sets are P 2-irreducible manifolds.
Then f is Γ-homotopic to a Γ-homeomorphism.

6.4. W is the infinite dihedral group. Let Γ = D∞�∆. There are two cases:
1. ∆ acts on D∞ trivially. Then, as in 6.1 we only need the rigidity assumption

for ∆.
2. ∆ acts on D∞ nontrivially. Let ∆0 be the kernel of the action. In this case,

we need only the rigidity assumption for ∆0 and ∆.

Theorem 6.4. Let Γ = D∞�∆. Let Mi, i = 1, 2, be two Γ-manifolds of type EΓ.
Let

f : (M1, ∂M1) → (M2, ∂M2)
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be a Γ-homotopy equivalence that is a homeomorphism outside the Γ-orbit of a
compact subset of M1. Assume:

1. There is a W -manifold with boundary X of type EΓ properly Γ-homotopic to
Mi, with a homotopy that restricts to a homeomorphism on the boundary and
on which W acts by reflections.

2. If the action of ∆ on D∞ is trivial assume that ∆ satisfies Assumption (R).
If the action is nontrivial assume that ∆ and ∆0 satisfy Assumption (R).

Then f is Γ-homotopic to a Γ-homeomorphism.
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[5] N. Brady, J. McCammond, B. Mühlherr, and W. Neumann, Rigidity of Coxeter groups and
Artin groups, Geom. Ded. 94 (2002) 91–109, MR 1950875 (2004b:20052).

[6] M. Brin, S. C. Ferry, and T. L. Thickstun, Deforming proper homotopy equivalences to
homeomorphisms in dimension 3, preprint.

[7] B. Brink and R. B. Howlett, Normalizers of parabolic subgroups in Coxeter groups, Invent.
Math. 136 (1999) 323–351, MR 1688445 (2000b:20048), Zbl 0926.20024.

[8] K. S. Brown, Buildings, Springer Monographs in Mathematics, Springer-Verlag, New York,
1998, MR 1644630 (99d:20042), Zbl 0922.20034.

[9] R. Charney and M. Davis, When is a Coxeter system determined by its Coxeter group? J.
London Math. Soc. 61 (2000) 441–461, MR 1760693 (2001i:20078), Zbl 0983.20034.
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