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Subalgebras of graph C∗-algebras
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Abstract. We prove a spectral theorem for bimodules in the context of graph
C∗-algebras. A bimodule over a suitable abelian algebra is determined by its
spectrum (i.e., its groupoid partial order) iff it is generated by the Cuntz–
Krieger partial isometries which it contains iff it is invariant under the gauge
automorphisms. We study 1-cocycles on the Cuntz–Krieger groupoid asso-
ciated with a graph C∗-algebra, obtaining results on when integer valued or
bounded cocycles on the natural AF subgroupoid extend. To a finite graph
with a total order, we associate a nest subalgebra of the graph C∗-algebra and
then determine its spectrum. This is used to investigate properties of the nest
subalgebra. We give a characterization of the partial isometries in a graph C∗-
algebra which normalize a natural diagonal subalgebra and use this to show
that gauge invariant generating triangular subalgebras are classified by their
spectra.
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1. Introduction

Groupoid techniques (“coordinatization”) play a major role in the study of non-
selfadjoint subalgebras of C∗-algebras. The primary focus of this approach has been
on subalgebras of AF C∗-algebras. In this paper we apply groupoid techniques to
the study of subalgebras of another extremely important class of C∗-algebras: the
graph C∗-algebras. We develop a spectral theorem for bimodules which differs
somewhat from the similar theorem for AF C∗-algebras. Cocycles are a vital tool
in the study of analytic subalgebras of AF C∗-algebras; accordingly, we investigate
cocycles in the Cuntz–Krieger groupoid context. We also apply our spectral theo-
rem for bimodules to study nest subalgebras of graph C∗-algebras. Classification
of triangular subalgebras by their spectra is a central result in the AF context.
We extend this result to the graph C∗-algebra context via a characterization of
normalizing partial isometries which is similar to, and depends on, the AF analog.

Graph C∗-algebras are constructed from directed graphs. We shall make one
minor modification in the usual notation for this process: when concatenating
edges to form paths we will read right to left. We do this because edges (and
paths) correspond to partial isometries in the graph C∗-algebra and composition
of partial isometries is always read from right to left. This forces some changes
in terminology from what appears elsewhere in the graph C∗-algebra literature
(relevant changes are mentioned in Section 2), but we believe that it is worth
paying this small price to make some of the proofs more natural. Furthermore, our
conventions are in conformity with the ones now in use in the study of higher rank
graph C∗-algebras and in the study of quiver algebras. Section 2 also provides some
background material needed for the proof of the spectral theorem for bimodules.

Graph C∗-algebras are groupoid C∗-algebras, as shown in [7]. Since we make
substantial use of the groupoid, and in order to establish terminology, we sketch this
construction in Section 4. The bimodules which appear in the spectral theorem for
bimodules are bimodules over a natural abelian subalgebra of the graph–groupoid
C∗-algebra. From the graph point of view, this is the C∗-subalgebra generated by all
the initial and final projections of the partial isometries associated with paths (the
Cuntz–Krieger partial isometries). From the groupoid point of view, this abelian
algebra is the algebra of continuous functions (vanishing at infinity) on the space
of units. This abelian algebra need not be maximal; in Section 5 we show that it is
maximal abelian if, and only if, every loop in the graph has an entrance.

In order to define the spectrum of a bimodule, we need to be able to view all
elements of the groupoid C∗-algebra as functions on the groupoid. This is possible
for r-discrete groupoids (and all the groupoids in this paper are r-discrete) when
they are amenable. It is proven in [7] and [10] that path space groupoids are always
amenable, so spectral techniques are readily available to us.

The spectral theorem for bimodules was first proven by Muhly and Solel [9] for
groupoids which are r-discrete and principal. The groupoids which arise from graph
C∗-algebras are r-discrete but, in general, not principal. In the r-discrete principal
groupoid context, every bimodule is determined by its spectrum. This is false for
graph C∗-algebras. (It is false even for the Cuntz algebra On.) In Sections 3 and 6
we provide two conditions, each of which is necessasry and sufficient for a bimodule
B to be determined by its spectrum. One condition is that B is determined by the
Cuntz–Krieger partial isometries which it contains; the other is that B is invariant
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under the gauge automorphisms. As it happens, the fact that these two conditions
are equivalent to each other can be proven without use of the groupoid model. We
prove the equivalence of these two conditions in Section 3, which appears before
the description of the groupoid model, and we give the full spectral theorem for
bimodules in Section 6. The argument in Section 3 appeals only to the spectral
bimodule theorem in the AF C∗-algebra case. (See [15], for example.) In Section 8
we extend the spectral theorem for bimodules by showing that we can replace
the gauge automorphisms by the one-parameter automorphism group naturally
associated with any locally constant real valued cocycle satisfying a mild technical
constraint.

Analytic subalgebras play a major role in the study of subalgebras of AF C∗-
algebras. Analytic subalgebras are most conveniently described in terms of cocycles
on the AF groupoid. Two special classes of cocycles of particular importance are the
integer valued cocycles and the bounded cocycles. The Cuntz–Krieger groupoids
which arise from range finite graphs share some, but not all, of the properties of AF
groupoids. This results in interesting differences between the cocycle theories in
the two contexts. In Section 7 we introduce techniques for studying cocycles on the
Cuntz–Krieger groupoid and apply these techniques to investigate both bounded
and integer valued cocycles. Every Cuntz–Krieger groupoid contains a natural AF
subgroupoid; Section 7 is particularly concerned with the question of when a cocycle
on the AF subgroupoid extends to a cocycle on the whole groupoid.

The third author (Power) initiated the study of nest subalgebras of Cuntz C∗-
algebras in [12] in 1985. This topic then lay dormant until the first two authors
(Hopenwasser and Peters) revisited the topic using groupoid techniques in [2]. It
turns out that everything which was done for nest subalgebras of Cuntz C∗-algebras
can be extended to the graph C∗-algebra context (for a finite graph), provided that a
suitable order is imposed on the edges of the graph. Definitions of an ordered graph
and of an associated nest and nest algebra are given in Section 9. We characterize
the Cuntz–Krieger partial isometries in the nest algebra and, in turn, the spectrum
of the nest algebra. This enables us to deduce several results about these nest
subalgebras of graph C∗-algebras; for example, the radical is equal to the closed
commutator ideal.

In [13], it was shown that the triangular subalgebras A of AF C*-algebras B for
which A ∩ A∗ is a standard AF masa are classified up to isometric isomorphism
by their associated topological binary relation, or spectrum. This reduction of the
issue of isomorphism for TAF algebras to that of classifying their groupoid partial
orders has proven to be a standard tool for the classification of many families. We
shall obtain an analogous reduction for triangular subalgebras A of a wide class of
graph C*-algebras where A∩A∗ is the standard masa determined by the generators
of C∗(G). As in [13] the key step for the proof is the identification of the partial
isometries in C∗(G) which normalise D as the elements v for which

‖pvq‖ = 0 or 1, for all projections p, q ∈ D.

We obtain this characterisation in Section 10 and apply it to gauge invariant tri-
angular subalgebras in Section 11.

Recall that the tensor (or quiver) algebras of directed graphs correspond to
the norm closed nonselfadjoint subalgebras of graph C∗-algebras generated by the
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Cuntz–Krieger generators and that for various forms of isomorphism these alge-
bras are known to be in bijective correspondence with their underlying graphs.
(See [4, 17, 3].) We remark that the algebras studied here, being bimodules over
the canonical masa, are quite distinct from these algebras and present more subtle
problems of isomorphism type.

2. Preliminaries

Let G = (V, E, r, s) be a directed graph. As usual, V denotes the set of vertices
and E the set of edges. The range and source maps are r and s. In this paper, we
shall modify slightly the usual procedure (as it appears in most of the literature) for
associating a graph C∗-algebra C∗(G) to G. (As a consequence, the description of
the groupoid underlying C∗(G) will also be slightly modified). This minor change is
just notational: a finite path α = α1 . . . αn is a finite sequence of edges, or a word,
which satisfies r(αi+1) = s(αi) for i = 1, . . . , n − 1. Infinite paths will be infinite
sequences with the same condition for all i. Edges and finite paths in G correspond
to partial isometries in the graph C∗-algebra; with this notational change the path
α1α2, for example, corrresponds to Sα1Sα2 . This notational change will result in
modification of some of the usual conditions concerning graphs which appear in the
literature; for example, the condition that every loop has an exit will be replaced
by the condition that every loop has an entrance; no sinks will be replaced by no
sources, etc. Although we are deviating from the usual terminology used in most
of the literature on graph C∗-algebras, we are in conformity with the conventions
used for higher rank graph C∗-algebras (e.g., in [5]) and also for free semigroup(oid)
algebras and quiver algebras.

Throughout this paper we denote the set of finite paths from G by F and the
set of infinite paths by P . Range and source maps are defined on F as follows: if
α = α1 . . . αn then r(α) = r(α1) and s(α) = s(αn). Due to our choice of notation
for paths, only the range map can be defined on P ; this we do in the obvious way.
Also, if α = α1 . . . αn ∈ F then the length of α (which is n) is denoted by |α|.

We assume that the graph G satisfies the property that r−1(v) is a finite set,
for each vertex v. When this property is satisfied, we say that G is range finite.
(This corresponds to ‘row finite’ in the literature on graph C∗-algebras.) The graph
C∗-algebra C∗(G) associated with G is the universal C∗-algebra generated by a set
of partial isometries {Se}e∈E which satisfy the Cuntz–Krieger relations:

S∗
eSe =

∑
{f |r(f)=s(e)}

SfS∗
f .

(This minor variation on the usual Cuntz–Krieger relations is made to conform to
our notation for paths.) Since we assume throughout this paper that the graph has
no sources, we do not need to explicitly include a projection for each vertex. (If v
is a vertex, there is an edge e with s(e) = v and Pv = S∗

eSe.)
For any finite path α, let Sα = Sα1 . . . Sαk

. The Cuntz–Krieger relations imply
that any product of the generators and their adjoints can be written in the form
SαS∗

β . These are the Cuntz–Krieger partial isometries in A
If {Se} are Cuntz–Krieger generators for A and if z is a complex number of

absolute value one, then {zSe} is another Cuntz–Krieger family which generates A.
By the universality of A, there is an automorphism γz such that γz(Se) = zSe, for
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all edges e. These are the gauge automorphisms of A. Note that for any Cuntz–
Krieger partial isometry SαS∗

β , we have γz(SαS∗
β) = z|α|−|β|SαS∗

β .
The gauge automorphisms are used in [1] to determine when the C∗-algebra

generated by a representation of the graph G is isomorphic to the graph C∗-algebra.
As part of that analysis the authors identify the fixed point algebra of the gauge
automorphisms as the natural AF subalgebra of A and describe a faithful projection
ofA onto the fixed point algebra. It is clear that any Cuntz–Krieger partial isometry
SαS∗

β with |α| = |β| is in the fixed point algebra of the gauge automorphisms. In
fact, these partial isometries generate the fixed point algebra, which we shall denote
by F . It is proven in [1] than F is an AF C∗-algebra.

The projection from A onto F described in [1] is the usual expectation:

Φ0(f) =
∫

T

γz(f) dz.

This is positive, has norm 1, and is faithful in the sense that Φ0(f∗f) = 0 implies
that f = 0.

Let B∗(G) denote the ∗-algebra generated by {Se | e ∈ E}, the Cuntz–Krieger
generators of A. So, B∗(G) is just the linear span of the Cuntz–Krieger partial
isometries. If a ∈ B∗(G), then a has an expansion as a finite sum

a =
∑
m

∑
|λ|−|µ|=m

aλµSλS∗
µ.

While this expansion is not unique, each term of the form
∑

|λ|−|µ|=m

aλµSλS∗
µ is

completely determined by a. Given a represented as above, let

Φm(a) =
∑

|λ|−|µ|=m

aλµSλS∗
µ.

Since for any α and β, γz(SαS∗
β) = z|α|−|β|SαS∗

β , we have∫
T

z−mγz(SαS∗
β) dz =

{
SαS∗

β , if |α| − |β| = m,

0, if |α| − |β| �= m.

It follows that

Φm(a) =
∫

T

z−mγz(a) dz

for all a ∈ B∗(G). Since Φm is well-defined, linear, and norm decreasing on B∗(G);
it extends to all of A.

Now fix a ∈ A and consider the function f : T→ A given by f(z) = γz(a). The
Fourier coefficients for f are just the elements Φm(a) of A and we have the Fourier
series f ∼

∑
m∈Z

Φm(a)zm. While the infinite sum need not be convergent, the
Cesaro means converge uniformly to f . Since f(1) = a, we obtain the fact that a
is in the closed linear span of the elements Φm(a). Thus we have the formal series

a ∼
∑
m∈Z

Φm(a)

with a Cesaro convergence of the series. We reiterate that Φ0 maps A onto the core
AF subalgebra F .
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3. The spectral theorem for bimodules. Part I

A portion of the spectral theorem for bimodules can be proven without reference
to the groupoid model. The full theorem will appear in Section 6 and a further
extension is given in Section 8.

Let D be the abelian subalgebra of A generated by all projections of the form
SαS∗

α and S∗
αSα. This is clearly a subalgebra of the core AF algebra F . In general,

D need not be maximal abelian in A (though it will be maximal abelian in F). We
discuss when D will be maximal abelian in A in Section 5.

Theorem 3.1. Let G be a range finite graph with no sources. Let B ⊆ A be a
bimodule over D. Then B is generated by the Cuntz–Krieger partial isometries
which it contains if, and only if, it is invariant under the gauge automorphisms.

Proof. It is trivial that a bimodule generated by its Cuntz–Krieger partial isome-
tries is invariant under the gauge automorphisms, so we need only prove the con-
verse.

Let B be a gauge invariant bimodule over D. First note that for each m, Φm(B) ⊆
B. For each path ν ∈ F , let

Bν = {b ∈ F | Sνb ∈ B}.
We claim that Bν is a closed bimodule over D. It is trivial to see that Bν is closed
and a right module. Since D is generated by projections of the form SαS∗

α, we can
show that Bν is a left module by showing that for each b ∈ B and each finite path
α, the element Sν(SαS∗

α)b ∈ B. Such an element is nonzero when SαS∗
α ≤ S∗

νSν ,
and in this case

Sν(SαS∗
α)b = SνSαS∗

αS∗
νSνb = (SνSαS∗

αS∗
ν)Sνb.

This is in B, since SνSαS∗
αS∗

ν ∈ D. Similarly, the spaces

Bν = {b ∈ F | bS∗
ν ∈ B}

are also closed D-bimodules. Since D is a canonical masa in the AF algebra F and
the Bν and Bν are D-bimodules in F , the spectral theorem for bimodules in the AF
case implies that each of Bν and Bν is spanned by the matrix unit elements SαS∗

β

in Bν or Bν (as appropriate) with |α| = |β|. Thus, the spaces SνBν and BνS∗
ν are

generated by their Cuntz–Krieger partial isometries.
We claim that it follows that the spaces Φm(B) are also generated by their

Cuntz–Krieger partial isometries. In view of Cesaro convergence and the fact that
the Φm(B) spaces are subspaces of B, this implies that B is generated by its Cuntz–
Krieger partial isometries.

The claim is elementary to confirm in the case of a finite graph, since Φm(B) is
then the finite linear span of the spaces SνBν or BνS∗

ν with |ν| = m or |ν| = −m,
as appropriate, and the isometries Sν have orthogonal ranges. In general the claim
will follow if we show that Φm(B) is the closed linear span of these subspaces.

The case when the graph is infinite can be reduced to the finite graph case as
follows: recall that the Cuntz–Krieger partial isometries in Φm(A) are precisely the
SαS∗

β with |α| − |β| = m. Let Fn be a sequence of finite subsets of the Cuntz–
Krieger partial isometries in Φm(A) such that

⋃
Fn is the set of all Cuntz–Krieger

partial isometries in Φm(A). Also, let Pn denote the projection onto the closed
linear span of the ranges of the partial isometries in Fn.
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Any element b in A can be approximated by a linear combination of Cuntz–
Krieger partial isometries. But Φm is contractive, acts as the identity on Cuntz–
Krieger partial isometries in Φm(A) and maps all other Cuntz–Krieger partial
isometries to 0; consequently, when b ∈ Φm(A) it can be approximated by lin-
ear combinations of Cuntz–Krieger partial isometies in Φm(A). In particular, there
is a sequence an ∈ Φm(A) such that Pnan = an and an → b. Now, suppose further
that b ∈ Φm(B). Since Pnb − b = Pn(b − an) + an − b, we have Pnb → b. Also
Pnb ∈ PnΦm(B) = Φm(PnB). By the result for finite graphs, each Pnb can be ap-
proximated by linear combinations of Cuntz–Krieger partial isometries in Φm(PnB).
It follows that b can be approximated by linear combinations of Cuntz–Krieger par-
tial isometries in Φm(B). �

4. The groupoid model

In [7], Kumjian, Pask, Raeburn and Renault construct a locally compact r-
discrete groupoid G such that the groupoid C∗-algebra C∗(G) is the graph C∗-
algebra for G. We sketch below a slightly modified version of this construction.

We shall assume that every vertex is the range of at least one edge. (The graph
has no sources.) It follows that every edge is part of an infinite path (notationally,
infinite to the right). Infinite path space P is topologized by taking as a basis of
open sets the following cylinder sets: for each finite path α of length k,

Z(α) = {x ∈ P | x1 = α1, . . . , xk = αk}
= {αy | y ∈ P and r(y) = s(α)}.

Any two cylinder sets Z(α) and Z(β) are either disjoint or one is a subset of
the other. For example, Z(α) ⊆ Z(β) precisely when α = βα′ for some α′ ∈
F with r(α′) = s(β). The assumption that G is range finite implies that each
Z(α) is a compact set. The topology on P is then locally compact, σ-compact,
totally disconnected and Hausdorff. It coincides with the relative product topology
obtained by viewing P as a subset of the infinite product of E with itself. Path
space P will, in due course, be identified with the space of units for the groupoid
G.

The next step is to define an equivalence relation (shift equivalence) on P . Shift
equivalence is the union of a sequence of relations, indexed by the integers. Let
x, y ∈ P and k ∈ Z. If there is a positive integer N such that xi+k = yi for all
i ≥ N , then we write x ∼k y. We then say that x and y in P are shift equivalent if
x ∼k y for some k ∈ Z.

The groupoid is defined to be the set:

G = {(x, k, y) | x, y ∈ P, k ∈ Z, x ∼k y}.

Elements (x, k, y) and (w, j, z) are composable if, and only if, y = w; when this is
the case (x, k, y)·(y, j, z) = (x, k+j, z). Inversion is given by (x, k, y)−1 = (y,−k, x).
With these operations G is a groupoid. The units of G all have the form (x, 0, x)
for x ∈ P , allowing the identification of P with the space of units (which is also
denoted by G0, as usual).

There is a natural topology which renders G a topological groupoid. A basis for
this topology can be parameterized by pairs of finite paths α and β which satisfy
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s(α) = s(β). For such α and β, let

Z(α, β) = {(x, k, y) | x ∈ Z(α), y ∈ Z(β), k = |α| − |β|, and xi+k = yi for i > |β|}
= {(αz, |α| − |β|, βz) | z ∈ P, r(z) = s(α) = s(β)}.

We allow either α or β (or both) to be the empty paths. For example,

Z(α, ∅) = {(αz, |α|, z) | z ∈ P, r(z) = s(α)}.

Two basic open sets, Z(α, β) and Z(γ, δ) are either disjoint or one contains the
other. For example, Z(α, β) ⊆ Z(γ, δ) precisely when there is ε ∈ F such that
α = γε and β = δε. The following proposition is essentially quoted from [7].

Proposition 4.1. The sets

{Z(α, β) | α, β ∈ F, s(α) = s(β)}

form a basis for a locally compact Hausdorff topology on G. With this topology,
G is a second countable, r-discrete locally compact groupoid in which each Z(α, β)
(except possibly Z(∅, ∅)) is a compact open G-set. The product topology on the
unit space P agrees with the topology it inherits by viewing it as the subset G0 =
{(x, 0, x) | x ∈ P} of G. The counting measures form a left Haar system for G.

Kumjian, Pask, Raeburn, and Renault prove that the groupoid C∗-algebra for
G is isomorphic to the graph C∗-algebra C∗(G); this is done by identifying natu-
ral Cuntz–Krieger generators in C∗(G) and proving universality. Recall that the
groupoid C∗-algebra is constructed by providing Cc(G), the compactly supported
continuous functions on G, with a suitable (convolution style) multiplication, an
involution, and a (universal) C∗-norm and then completing the ∗-algebra. In par-
ticular, for each edge e, the set Z(e, ∅) = {(ez, 1, z) | z ∈ P, r(z) = s(e)} is compact
and open; therefore its characteristic function χZ(e,∅) may be viewed as an ele-
ment of C∗(G). Denote this element by Se. A routine calculation shows that the
initial space S∗

eSe is the characteristic function of {(x, 0, x) | r(x) = s(e)}. An-
other routine calculation shows that for an edge f , SfS∗

f = χZ(f,f). Now Z(f, f)
is a subset of {(x, 0, x) | r(x) = s(e)} exactly when r(f) = s(e) and, in fact,
{(x, 0, x) | r(x) = s(e)} is the union of all Z(f, f) with r(f) = s(e). Thus, the
Cuntz–Krieger relations

S∗
eSe =

∑
r(f)=s(e)

SfS∗
f

hold. Routine but tedious calculations show that SαS∗
β = χZ(α,β). The following

theorem consists of a combination of parts of Proposition 4.1 and Theorem 4.2
in [7]):

Theorem 4.2. Let G be a range finite directed graph with no sources. With the
notation above, C∗(G) is generated by {Se | e ∈ G} and C∗(G) is isomorphic to
C∗(G).

Throughout the rest of this paper the graph C∗-algebra–groupoid C∗-algebra
determined by the graph G will be denoted by A.
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5. The masa theorem

In the groupoid model there is a natural abelian subalgebra of A: the functions
supported on the space of units of G. We shall denote this abelian algebra by D.
This is, of course, exactly the same abelian algebra as the one that appears in
Section 3. Based on what happens for r-discrete principal groupoids and for the
Cuntz groupoids which model the Cuntz algebras On, it might be suspected that
D is always a masa in A; however, this is not the case. Consider, for example,
the graph which consists of a single vertex and a single edge e. Then there is
only one infinite path, say x = eee . . . and the unit space consists of the singleton
(x, 0, x). The whole groupoid may be identified with Z: G = {(x, k, x) | k ∈ Z} and
A ∼= C(T) while D ∼= C.

For a more interesting example, let G consist of a single loop with n edges. So
E = {e1, e2, . . . , en} with r(ej) = s(ej−1) for j = 2, . . . , n and r(e1) = s(en). In
this case the graph C∗-algebra is Mn(C(T)). The algebra D corresponds to the
diagonal matrices with scalar entries, which is not a masa.

We will prove that D is a masa in A if, and only if every loop has an entrance.
This condition says that if the finite path α1 . . . αn satisfies r(α1) = s(αn), then
there is an index j and an edge β such that β �= αj and r(β) = r(αj). This
condition was used earlier in the literature (expressed as “every loop has an exit”,
of course). In [6] and in [1], for example, it is shown that when this condition
holds the C∗-algebra generated by any system of Cuntz–Krieger partial isometries
is isomorphic to the universal graph C∗-algebra.

The isotropy group bundle of G is G1 = {(x, k, y) | x = y}. The space of units
of G is G0 = {(x, 0, x) | x ∈ P} The following lemma, combined with groupoid
amenability and some results in [16], will yield the masa theorem.

Lemma 5.1. Let G be a range finite directed graph with no sources. Let G be the
associated groupoid. Then every loop in G has an entrance if, and only if, G0 is the
interior of G1.

Proof. Assume that every loop has an entrance. Let (x, k, x) be an element of G1

which is not in G0; in other words, assume that k �= 0. We shall show that (x, k, x)
can be approximated by elements of the complement of G1. Since G0 is open, this
will show that G0 is the interior of G1.

Since k �= 0, there is an integer N such that for i ≥ N , xi+k = xi. Let β =
x1 . . . xN−1, a finite path of length N − 1 and let α = xN . . . xN+k−1, a finite path
of length k. The condition for shift equivalence assures that xN+k . . . xN+2k−1 =
xN . . . xN+k−1, etc. Thus, x = βααα . . . .

Since α can be concatenated with itself, α is a loop. Write α = α1 . . . αk, where
the αi ∈ E. Since every loop has an entrance, there is an edge yj such that yj �= αj

and r(yj) = r(αj). Now let y = yjyj+1 . . . be an infinite path ending in the edge
yj . The assumption that the graph has no sources guarantees the existence of such
an infinite path.

For each integer p ≥ 1, let zp be the infinite path βα . . . αα1 . . . αj−1y, where
there are exactly p copies of α. If k > 0, then zp+1 ∼k zp and if k < 0 then
zp ∼k zp+1. Now just observe that zp �= zp+1 and that (zp+1, k, zp) or (zp, k, zp+1),
as appropriate, converges to (x, k, x).
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For the converse, assume that G has a loop α with no entrance. Let k be the
length of this loop and let x = ααα . . . . Then (x, k, x) ∈ G1 \ G0 and the singleton
set {(x, k, x)} is open in G. Thus, G0 is not the interior of G1. �
Theorem 5.2. Let G be a range finite directed graph with no sources. Let G be
the associated groupoid. Then D is a masa in A if, and only if, every loop has an
entrance.

Proof. Results in [7] and [10] establish the amenability of G. (This is proven for
locally finite graphs in [7] and extended to range finite graphs — and beyond —
in [10].) It follows that C∗(G) = C∗

red(G). Proposition II.4.7 in [16] says that D is
a masa in C∗

red(G) if, and only if, G0 is the interior of G1, so this, combined with
Lemma 5.1 yields the theorem. �

6. The spectral theorem for bimodules. Part II

One of the most useful tools in the study of nonselfadjoint subalgebras of C∗-
algebras is the spectral theorem for bimodules of Muhly and Solel [9]. (See also [8]
for a generalization due to Muhly, Qiu and Solel.) The theorem as it appears in
these two references is not valid for graph C∗-algebras; this section is devoted to the
proof of a modified version of the spectral theorem for bimodules which is valid for a
broad class of graph C∗-algebras. The theorem as it appears here was proven in the
context of the Cuntz algebras On in [2]; the proof of the general version is similar.
We will give an extension of the spectral theorem for bimodules in Section 8.

Throughout this section, G denotes a range finite directed graph with no sources;
G denotes the groupoid associated with G; andA is the C∗-algebra constructed from
G or G. We shall need to use the convenient fact that elements of A can be identified
with continuous functions on G which vanish at infinity. This is a consequence
of the range finitness of G, which implies that the groupoid G is amenable ([7,
Corollary 5.5] and [10, Theorem 4.2]). Amenability, in turn, implies that C∗(G) =
C∗

red(G) [16, p. 92]. Finally, Proposition II.4.2 in [16] allows us to identify the
elements of C∗(G) with (some of the) elements in C0(G), the continuous functions
on G vanishing at infinity.

Definition 6.1. Let B ⊆ A be a bimodule over D. Define the spectrum of B to be

σ(B) = {(x, k, y) ∈ G | there is f ∈ B such that f(x, k, y) �= 0}.
For any open subset P of G, we let

A(P ) = {f ∈ A | f(x, k, y) = 0 for all (x, k, y) /∈ P}.

It is easy to check that A(P ), which consists of all functions in A which are
supported on P , is a bimodule over D and that σ(A(P )) = P . It is also trivial to see
that B ⊆ A(σ(B)). But it is not always true that B = A(σ(B)); a counterexample
is given in [2]. Thus, the spectral theorem for bimodules for graph C∗-algebras
differs from the theorem for groupoid C∗-algebras where the groupoid is r-discrete,
amenable and principal [9].

In fact, the existence of a counterexample depends exactly on the presence of a
loop in the graph.

Proposition 6.2. Let G be a range finite directed graph with no sources. There is
in A a bimodule B over D such that B �= A(σ(B)) if, and only if, G has a loop.
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Proof. Suppose G has a loop α = α1α2 . . . αk with s(αk) = s(α) = r(α) = r(α1).
Let x = ααα . . . in P (G). Write Sα = Sα1 . . . Sαk

, v = r(α), and Φ = Pv + Sα.
Let B denote the bimodule generated by Φ; this bimodule is the norm closure of
all finite sums

∑
fiΦgi, with fi, gi ∈ D.

Now σ(Φ) = σ(Pv) ∪ σ(Sα) and

σ(Pv) = {(z, 0, z) | z ∈ P (G), r(z) = v},
σ(Sα) = {(αz, k, z) | z ∈ P (G), r(z) = s(α) = s(αk)}.

Since (x, 0, x) ∈ σ(Pv) and (x, k, x) ∈ σ(Sα), (x, 0, x) and (x, k, x) both lie in σ(Φ).
Viewing elements of D as functions on the groupoid supported on the unit space

and using Φ = χσ(Pv) + χσ(Sα) = χσ(Pv)∪σ(Sα), we have

fΦ(x, 0, x) = f(x, 0, x)Φ(x, 0, x) = f(x, 0, x),

fΦ(x, k, x) = f(x, 0, x)Φ(x, k, x) = f(x, 0, x).

Similarly, Φf(x, 0, x) = f(x, 0, x) = Φf(x, k, x).
So, for any f, g ∈ D, we have fΦg(x, 0, x) = fΦg(x, k, x). The same equality is

valid for sums and extends to the norm closure: if h ∈ B, then h(x, 0, x) = h(x, k, x).
Since there are elements h′ ∈ A(σ(B)) with h′(x, 0, x) �= h′(x, k, x), this shows that
B �= A(σ(B)).

On the other hand, if G has no loops, C∗(G) is AF and G is a principal grooupoid,
so all bimodules satisfy B = A(σ(B)) by the Muhly-Solel spectral theorem for
bimodules [9]. �

The spectral theorem for bimodules below provides two necessary and sufficient
conditions for a bimodule to be determined by its spectrum. These are, in fact,
the two equivalent conditions in Theorem 3.1. A third equivalent condition will be
given in Section 8.

Theorem 6.3 (Spectral Theorem for Bimodules). Let G be a range finite directed
graph with no sources. Let B ⊆ A be a bimodule over D. Then the following
statements are equivalent :

(1) B = A(σ(B)).
(2) B is generated by the Cuntz–Krieger partial isometries which it contains.
(3) B is invariant under the gauge automorphisms.

Proof. Since the equivalence of (2) and (3) has already been established in Theo-
rem 3.1, it suffices to prove the equivalence of (1) and (2).

To show that (1) ⇒ (2) we need to show that whenever P is an open subset
of G, A(P ) is generated by the Cuntz–Krieger partial isometries which it contains.
Let B be the bimodule which is generated by the Cuntz–Krieger partial isometries
which are in A(P ). Clearly, B ⊆ A(P ); we must show the reverse containment.

Assume that SαS∗
β ∈ A(P ). So Z(α, β) ⊆ P . Let f be a continuous function

with support in Z(α, β). Define g : Z(α, α)→ C by

g(αγ, 0, αγ) = f(αγ, |α| − |β|, βγ).
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Then,

g · SαS∗
β(x, k, y) = g(x, 0, x)SαS∗

β(x, k, y)

=

{
g(x, o, x), if x = αγ, k = |β| − |α|, y = βγ

0, otherwise

=

{
f(x, k, y), if x = αγ, k = |β| − |α|, y = βγ

0, otherwise

= f(x, k, y).

Since g ∈ D and SαS∗
β ∈ B, we have f ∈ B.

Thus, B contains any continuous function supported on a subset of the form
Z(α, β) ⊆ P . Any compact open subset of P can be written as a finite union of
sets of the form Z(α, β), so B contains any f ∈ A which is supported on a compact
open subset of P . But any compact subset of P is contained in a compact open
subset of P , so B contains all f which are supported on a compact subset of P .
These functions are dense in A(P ) in the C∗-norm, so A(P ) ⊆ B.

To prove that (2)⇒ (1), assume that B is a bimodule over D which is generated
by the Cuntz–Krieger partial isometries which it contains. We first show that
σ(B) = ∪Z(α, β), where the union is taken over all α, β such that SαS∗

β ∈ B.
Indeed, if p is in this union, then there is SαS∗

β ∈ B such that SαS∗
β(p) = 1, so

p ∈ σ(B). On the other hand, if p is not in the union, then SαS∗
β(p) = 0 for all

SαS∗
β ∈ B. Write p = (x, k, y) and let f and g be in D. Then

f · SαS∗
β · g(p) = f(x, 0, x)SαS∗

β(x, k, y)g(y, 0, y) = 0.

It follows that all elements of the bimodule generated by the Cuntz–Krieger partial
isometries in B vanish at p. But the Cuntz–Krieger partial isometries generate B
itself, so p /∈ σ(B).

We already know that B ⊆ A(σ(B)); to show the reverse containment it is
sufficient (since any A(P ) is generated by the Cuntz–Krieger partial isometries
which it contains) to show that if SαS∗

β ∈ A(σ(B)) then SαS∗
β ∈ B.

Let SαS∗
β ∈ A(σ(B)), so that Z(α, β) ⊆ σ(B). Let p ∈ Z(α, β). Then there is

SνS∗
µ ∈ B such that p ∈ Z(ν, µ) ⊆ σ(B). Since Z(α, β)∩Z(ν, µ) �= ∅, we have either

Z(α, β) ⊆ Z(ν, µ) or Z((ν, µ) ⊆ Z(α, β).
If Z(α, β) ⊆ Z(ν, µ), then there is a finite path ε such that α = νε and β = µε.

A routine calculation shows that SαS∗
β = SαS∗

αSνS∗
µSβS∗

β . But SαS∗
α and SβS∗

β

are in D and SνS∗
µ ∈ B, so SαS∗

β ∈ B, as desired.
Suppose, on the other hand, that for any point p ∈ Z(α, β), the set Z(ν, µ)

obtained as above is a subset of Z(α, β). Then these sets form an open cover
for Z(α, β). Since Z(α, β) is compact, we can find a finite subcover. It is rou-
tine to arrange that this subcover is disjoint (without losing the property that
the associated Cuntz–Krieger partial isometries are in B). Thus, we can write
Z(α, β) = ∪n

i=1Z(νi, µi), a finite disjoint union with all Sνi
S∗

µi
∈ B. But then

SαS∗
β =

n∑
i=1

Sνi
S∗

µi

and so SαS∗
β ∈ B. �
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7. Cocycles

As usual G is a range finite directed graph with no sources. Most of our attention
will be focused on cocycles defined on the associated Cuntz–Krieger groupoid G.

A real valued 1-cocycle on G is a continuous function c : G → R which satisfies
the cocycle condition

c(x, k, y) + c(y, l, z) = c(x, k + l, z),

for all composable pairs. It follows that c(x, 0, x) = 0, for x in path space P , and
that

c((x, k, y)−1) = c(y,−k, x) = −c(x, k, y),

for all (x, k, y) ∈ G. The set of all 1-cocylces forms a group under addition, denoted
by Z1(G, R).

A simple example of a cocycle is the one given by the formula c(x, k, y) = k.
This cocycle is intimately related to the gauge automorphisms: for any f ∈ Cc(G),
γz(f)(x, k, y) = zkf(x, k, y). More generally, any cocycle c gives rise to the one-
paramenter automorphism group

ηz(f)(x, k, y) = zc(x,k,y)f(x, k, y).

Each ηz is a ∗-automorphism of Cc(G) onto itself; it is not hard to show that this
automorphism preserves the C∗-norm and so extends to an automorphism of A
with the formula above.

Remark 7.1. For each point (x, k, y) ∈ G, the map f �→ f(x, k, y) on Cc(G) is
decreasing with respect to the || · ||∞ norm, and hence also decreasing with respect
to the C∗-norm ([16, Prop. II.4.1]). So these maps extend to continuous linear
functionals on A. If f ∈ A, we consider all functions of the form t → ρ(ηt(f)),
where ρ is a linear functional of the type above. Given f ∈ A, it is easy to check
that t→ ρ(ηt(f)) is an H∞-function on R for all linear functionals of this form if,
and only if, f is supported on {(x, k, y) ∈ G | c(x, k, y) ≥ 0}. (Note: when we write
ηt it refers, of course, to ηz for z = eit; use of the real variable is more appropriate
when discussing H∞.)

To emphasize the connection with analyticity, consider the simplest possible
graph: the graph G consisting of a single vertex and a single loop. The associated
groupoid for G is the group of integers, Z. The groupoid C∗-algebra (well, really,
the group C∗-algebra) is isomorphic to C(T). Briefly, Cc(Z) is a ∗-algebra in which
the multiplication is convolution and the C∗-norm of a function f ∈ Cc(Z) is the
‖ ‖∞ norm of the funtion θ �→

∑
n f(n)einθ, θ ∈ T. Therefore, C∗(Z) is identified

with the C0 functions on Z which are the Fourier coefficients of functions in C(T).
A cocycle on Z is determined by its value at 1; so the only one of interest is

c(n) = n. Let αt be the associated one-parameter family of automorphisms acting
on C∗(Z). Since αt(f)(n) = eintf(n), when transferred via the inverse Fourier
transform to C(T), the automorphism group acts by translation:

αt(φ)(θ) = φ(θ + t).

For each n ∈ Z, let ρn be the linear functional on C∗(Z) given by f �→ f(n).
Transferred to C(T), this is φ �→

∫
φ(θ)einθ dθ, where dθ is normalized Lebesgue

measure on T. The closed linear span of the functionals of this type can be identi-
fied with the complex valued measures on T which are absolutely continuous with
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respect to Lebesgue measure; i.e., with L1(T, dθ). Thus, “evaluation functionals”
do not span the dual space of C(T).

All the same, if φ ∈ C(T) and t �→ ρn(αt(φ)) is in H∞(R) for all n, then
t �→ ρ(αt(φ)) is in H∞(R) for all ρ ∈ C(T)∗. This happens exactly when the
Fourier transform φ̂ is supported on Z

+ = c−1[0,∞). Thus the analytic algebra
associated with the cocycle c is just the disk algebra, A(D).

Definition 7.2. Let S : P → P be the shift map; thus if x = x1x2 . . . is a path
with terminal edge x1, S(x) = x2x3 . . . .

Note that S is a continuous map, in fact it is a local homeomorphism.
Let G(k) denote {(x, l, y) ∈ G | l = k} and C(P ) denote the space of continuous

functions on P . We now give an example of a class of cocycles.

Example 7.3. Let f ∈ C(P ) and define c on G(k) (k > 0) by

c(x, k, y) =
k−1∑
j=0

f(Sjx) +
∞∑

j=k

[f(Sjx)− f(Sj−ky)]

for (x, k, y) ∈ G(k). Observe that the infinite sum has only finitely many nonzero
terms. For k = 0, set c(x, 0, y) =

∑∞
j=0[f(Sjx) − f(Sjy)], and for k negative set

c(x, k, y) = −c(y,−k, x).
To verify the cocycle condition, let (x, k, y), (y, l, z) ∈ G with k, l ≥ 0. Then

c(x, k, y) + c(y, l, z) =
k−1∑
j=0

f(Sjx) +
∞∑

j=k

[f(Sjx)− f(Sj−ky)]

+
l−1∑
i=0

f(Siy) +
∞∑
i=l

[f(Siy)− f(Si−lz)]

=
k+l−1∑

j=0

f(Sjx) +
∞∑

j=k+l

[f(Sjx)− f(Sj−k−lz)]

= c(x, k + l, z).

The other cases are similar. Finally, observe that if f is continuous on P , then the
cocycle c is continuous in the topology on G.

Note that the cocycle c(x, k, z) = k, which generates the gauge automorphisms,
is produced by the constant function f(x) = 1.

Theorem 7.4. Let G be a range finite directed graph with no sources. Let G be
the associated Cuntz–Krieger groupoid and P the path space of G, identified with
the unit space G0. Then there is a bijection C(P ) ←→ Z1(G, R) given as follows:
for f ∈ C(P ), let cf denote the cocycle constructed in Example 7.3. For c ∈ Z1,
let fc(x) = c(x, 1,Sx). Then the two maps are inverses of each other : f = fcf

and
c = cfc .

Proof. Let c ∈ Z1(G, R) be given, and (x, 0, y) ∈ G(0). Note that (Sx, 0,Sy) also
belongs to G(0). From the cocycle condition we have

c(x, 1,Sy) = c(x, 1,Sx) + c(Sx, 0,Sy) = c(x, 0, y) + c(y, 1,Sy).(7.1)
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With f(x) = fc(x) = c(x, 1,Sx), f ∈ C(P ), and we can rewrite Equation (7.1) as

f(x)− f(y) = c(x, 0, y)− c(Sx, 0,Sy).(7.2)

Replacing x, y with Sjx,Sjy and summing over j = 0, 1, . . . we obtain

c(x, 0, y) =
∞∑

j=0

[f(Sjx)− f(Sjy)].

Since for sufficiently large j, Sjx = Sjy, the sum above is actually finite.
Now let (x, k, y) ∈ G(k) with k > 0. Then (Skx, 0, y) ∈ G(0), and we have

c(x, k, y) =
k−1∑
j=0

c(Sjx, 1,Sj+1x) + c(Skx, 0, y)

=
k−1∑
j=0

f(Sjx) +
∞∑

j=k

[f(Sjx)− f(Sj−ky)]

= cf (x, k, y).

The case k < 0 is similar.
Conversely, given f ∈ C(P ), define the cocycle c as in Example 7.3. But then

c(x, 1,Sx) = f(x), so f = fcf
. �

Remark 7.5. If G is a finite directed graph, then G(0) is the AF-groupoid associ-
ated with the stationary Bratteli diagram which at level n has a copy of the vertices
V , and admits an edge from vertex v at level n to vertex w at level n + 1 if, and
only if, G has an edge from v to w. The restriction of a cocycle c on the groupoid
G to the subgroupoid G(0) gives a cocycle on the AF groupoid G(0). This class of
cocycles has not been systematically studied. It is, however, a proper subclass of
Z1(G(0), R), as we shall see in the subsection on integer-valued cocycles.

Proposition 7.6. Let f and fn (n ∈ N) be continuous functions on P . Then
fn → f uniformly on compact subsets of P if, and only if, cfn

→ cf uniformly on
compact subsets of G.

Proof. Suppose fn → f uniformly on each of the sets Z(α), α ∈ F . Given α, β ∈ F
and the basic compact open set Z(α, β) ⊂ G(k) where k = |α| − |β| ≥ 0, we have,
for (x, k, y) ∈ Z(α, β),

cfn(x, k, y)− cf (x, k, y) =
k−1∑
j=0

[fn(Sjx)− f(Sjx)] +
|α|∑
j=k

([fn(Sjx)− f(Sjx)]− [fn(Sj−ky)− f(Sj−ky)])

and this converges uniformly to zero on Z(α, β). A similar argument applies when
|α| − |β| < 0.

For the converse, suppose that Z(α) ⊂ P . Write α = x1x2 . . . xn, and let β be
the empty string if |α| = 1 and β = x2x3 . . . xn otherwise. Note that x ∈ Z(α)
if, and only if, (x, 1,Sx) ∈ Z(α, β). Since f(x) = cf (x, 1,Sx) and cfn converges
uniformly to cf on Z(α, β), it follows that fn converges uniformly to f on Z(α). �
Proposition 7.7. Let f ∈ C(P ) and let cf be the corresponding cocycle on G.
Then f is locally constant on P if, and only if, cf is locally constant on G.
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Proof. Assume cf is locally constant. Given x ∈ P , let Z(α, β) be a neighborhood
of (x, 1,Sx) on which cf is constant. Since f(u) = cf (u, 1,Su) for all u ∈ P , it
follows that f is constant on Z(α).

Suppose now that f is locally constant, and let (x, k, y) ∈ G be given. We suppose
that k ≥ 0 (the case k < 0 is analogous). There is n ≥ k such that Sjx = Sj−ky
for all j ≥ n. Therefore we can write

cf (x, k, y) =
k−1∑
j=0

f(Sjx) +
n∑

j=k

[f(Sjx)− f(Sj−ky)].

For p chosen sufficiently large, if we let α = x1 . . . xp and β = y1 . . . yp−k, then
xi = yi−k, for all i ≥ p + 1; Z(Sj(α)) is a clopen neighborhood of Sj(x) on which
f is constant, for j = 1, . . . , n; and Z(Sj(β)) is a clopen neighborhood of Sj(y)
on which f is constant, for j = 1, . . . , n − k. Then (x, k, y) ∈ Z(α, β) and cf is
constant on Z(α, β). �

Remark 7.8. Proposition 7.7 applies, in particular, whenever f has finite range.

Definition 7.9. Let Z1
0 (G, R) denote the subset of Z1(G, R) consisting of those

cocycles c which vanish precisely on the unit space G0.

Remark 7.10. Every cocycle in Z1(G, R) necessarily vanishes on G0. Also, note
that Z1

0 is not a subgroup of Z1; indeed, 0 /∈ Z1
0 .

7.1. Bounded cocycles. In the context of AF algebras and their groupoids,
bounded cocycles are of special interest due to the connection between bounded
cocycles and reflexive subalgebras of AF algebras (cf. [11]). Thus, it is natural to
investigate the role of bounded cocycles on Cuntz–Krieger groupoids.

A point x ∈ P is periodic if Skx = x for some k > 0. Note that the existence of
a periodic point in P is equivalent to the existence of a loop in the graph G. Recall
from [6] that G has no loops if, and only if, C∗(G) is an AF-algebra.

Proposition 7.11. Let G be a range finite directed graph with no sources. Then
Z1

0 (G, R) contains no bounded cocycle if, and only if, G contains a loop.1

Proof. First, assume that G contains a loop. Then there is a periodic point, say
x = x1 . . . xpx1 . . . xpx1 . . . , in P . Let c ∈ Z1

0 (G, R) and let f(y) = c(y, 1,Sy), y ∈
P . For k ≥ 1, we have

c(x, kp,Skpx) = f(x) + f(Sx) + · · ·+ f(Sp−1x)

+ f(Spx) + f(S(Spx)) + · · ·+ f(Sp−1(Spx))
+ · · ·
+ f(S(k−1)px) + f(S(k−1)p(Sx)) + · · ·+ f(S(k−1)p(Sp−1x)).

Using Spx = x, this reduces to

c(x, kp,Skpx) = k[f(x) + f(Sx) + · · ·+ f(Sp−1x)], for all k ≥ 1.

But
∑p−1

j=0 f(Sjx) = c(x, p,Spx) �= 0 since (x, p,Spx) = (x, p, x) /∈ G0. As k is
arbitrary, c is unbounded.

1The implication Z1
0 (G, R) contains no bounded cocycle ⇒ G contains a loop is due to Allan

Donsig. The authors thank Donsig for giving permission to use this result here.
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Now assume that G contains no loop. Let a : G → R
+ be a function with the

property that for each edge e, Te = {f ∈ G | a(f) > a(e)} is finite and

a(e) >
∑
f /∈Te

a(f).

(This is easily done after G is arranged as a sequence.)
Now define a continuous, locally constant function f : C(P ) → R by f(x) =

a(x1), for x = x1x2 . . . . In other words, f has the value a(x1) on Z(x1) ⊆ C(P ).
Let c be the cocycle associated with f , as in Example 7.3. Clearly, c is bounded.
Since any cocycle vanishes on the unit space, we just need to show that c is nonzero
off the unit space.

Because G has no loops, there are no points of the form (x, k, x) ∈ G with k �= 0.
Therefore, we just need to show that c(x, k, y) �= 0 whenever x �= y. Thanks to the
cocycle property, we may without loss of generality assume that k ≥ 0. Write

x = x1 . . . xp+kz1z2 . . . ,

y = y1 . . . ypz1z2 . . . .

We then have

c(x, k, y) =
k−1∑
j=0

f(Sjx) +
∞∑

j=k

[f(Sjx)− f(Sj−ky)]

=
p+k∑
j=1

a(xj)−
p∑

j=1

a(yj).

Since G has no loops, a given edge e may appear at most once in each of the
paths x1 . . . xp+k and y1 . . . yp. Some edges may appear in both paths, but then
the terms cancel. Since x �= y, there is an edge e amongst x1, . . . , xp+k, y1, . . . , yp

which appears once only and for which a(e) is maximal; the summation property
for a then guarantees that c(x, k, y) �= 0. �

Recall that a graph is transitive if there is a path from any vertex to any other
vertex. If a directed graph G is finite and transitive, it satisfies Cuntz and Krieger’s
condition for C∗(G) to be simple.

Proposition 7.12. Let G be a finite, transitive, directed graph, and let c be a
bounded cocycle on the AF groupoid G(0). Suppose that C∗(G(0)) is simple. Then
c extends to a cocyle on G. Furthermore, if c vanishes precisely on the unit space
G0, then the extension can be chosen to vanish precisely on G0.

Proof. By [16, p. 112], since C∗(G(0)) is simple and c is bounded, c is a coboundary:
that is, there is a continuous function b on P so that c(x, 0, y) = b(x)− b(y).

Choose a point x0 ∈ P , and let [x0] denote the equivalence class of x0 in G(0):
[x0] = {y ∈ P | (y, 0, x0) ∈ G(0)}. Since C∗(G(0)) is simple, it follows from [16]
that the equivalence class of any point is dense; thus [x0] is dense.

We shall construct f ∈ C(P ) such that cf extends c. Begin by setting f(x0) = 0.
For x ∈ [x0], define

f(x) = c(x, 0, x0)− c(Sx, 0,Sx0).
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The cocycle property for c shows that if x, y ∈ [x0], then

f(x)− f(y) = c(x, 0, y)− c(Sx, 0,Sy).(7.3)

Since P is compact (because G is finite), Hausdorff and first countable, it is metriz-
able. Let ρ be a metric for P . Since a continuous function on a compact metric
space is uniformly continuous, both b and b ◦ S are uniformly continuous. Thus,
given ε > 0 there is a clopen cover {Z(α) | α ∈ A} with A finite and such that for
x, y ∈ Z(α), both |b(x)− b(y)| < ε

2 and |b ◦ S(x)− b ◦ S(y)| < ε
2 .

Now for x, y ∈ [x0] ∩ Z(α) we have

|f(x)− f(y)| = |c(x, 0, y)− c(Sx, 0,Sy)|
= |(b(x)− b(y))− (b ◦ S(x)− b ◦ S(y))|
≤ |b(x)− b(y)|+ |b ◦ S(x)− b ◦ S(y)|

<
ε

2
+

ε

2
= ε.

As f is uniformly continuous on a dense subset, it admits a continuous extension
to P , also denoted by f . Note that since {(x, 0, y) | x, y ∈ [x0]} is dense in G(0), it
follows that Equation (7.3) holds for x, y ∈ P . By the same argument used in the
proof of Theorem 7.4,

c(x, 0, y) =
∞∑

j=0

[f(Sjx)− f(Sjy)].

It is now immediate that the cocycle cf (see Example 7.3) extends c.
Fix k ∈ Z; we claim that cf is bounded on each G(k). Of course if k = 0 this

holds by assumption. If k > 0 and (x, k, y) ∈ G(k) we can write

cf (x, k, y) =
k−1∑
j=0

f(Sjx) +
∞∑

j=k

[f(Sjx)− f(Sj−ky)]

=
k−1∑
j=0

f(Sjx) + c(Skx, 0, y).

Since f is bounded, k is fixed, and c is bounded on G(0), c is bounded on G(k).
From the cocycle property it follows that c is bounded on G(k), for k negative as
well.

Finally, suppose that c vanishes precisely on G0. If L is a constant, g ∈ C(P ),
and g = f + L, the cocycle cg is related to cf by cg(x, k, y) = cf (x, k, y) + kL,
for (x, k, y) ∈ G(k). In particular, cf and cg agree on G(0), and cg(x, 1, y) =
cf (x, 1, y) + L, for (x, 1, y) ∈ G(1). Since cf is bounded on G(1), we can pick L
sufficiently large so that cg is positive on G(1). For k > 1, any element of G(k) is a
product of k elements in G(1), so that cg is positive on G(k). For k < 0, the cocycle
property guarantees that cg is negatve on G(k). Hence, the equation cg = 0 has
exactly the same solutions as c = 0 on G(0), namely cg = 0 precisely on the unit
space G0. �

Remark 7.13. In case G is the directed graph with a single vertex and n edges (i.e.,
loop edges), G is the Cuntz groupoid and G(0) is the UHF(n∞) groupoid. In this
case the hypotheses of Proposition 7.12 are satisfied, and hence any bounded cocycle
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which vanishes precisely on the unit space extends to a cocycle on G vanishing
precisely on G0. In particular, this applies to the refinment cocycle on the UHF(n∞)
groupoid.

7.2. Integer-valued cocycles. Among the most studied classes of cocycles on
AF groupoids are the integer-valued cocycles, due to their connection with dynami-
cal systems. Thus it is natural to examine integer-valued cocycles on Cuntz–Krieger
groupoids.

Lemma 7.14. Let G be a Cuntz–Krieger groupoid, and suppose G(0) has a dense
equivalence class. (In particular, that will be the case when C∗(G(0)) is simple.)
Suppose c is an integer valued cocycle defined on G(0). Then:

(1) c admits an extension to a cocycle on G if, and only if, c admits an extension
to an integer valued cocycle on G.

(2) If c vanishes precisely on the unit space G0, then c admits an extension to G
with this property if, and only if, c admits an integer valued extension to G
vanishing precisely on G0.

Proof. By Theorem 7.4 any extension of c to G is of the form cf , for some f ∈ C(P ).
Furthermore, by Equation (7.2) in Theorem 7.4 we have, for any (x, 0, y) ∈ G,

c(x, 0, y) = f(x)− f(y) + c(Sx, 0,Sy).(7.4)

Let y be chosen to have a dense equivalence class in G(0); i.e., so that {x | (x, 0, y) ∈
G(0)} is dense in P . Replacing f by g = f +L for a constant L, we can assume that
g(y) = 0. The values of cf and cg agree on G(0). But then from Equation (7.4) we
have that

g(x) = c(x, 0, y)− c(Sx, 0,Sy),

so that g is Z-valued on a dense set, hence Z-valued on P . This completes the first
statement.

The proof of the second statement is achieved, mutatis mutandis, as in the last
part of the proof of Proposition 7.12. �

Remark 7.15. Let G be a range finite directed graph with no sources. Any com-
pact, open subset of P is a finite union of cylinder sets Z(α). The sets Z(α) can be
taken disjoint. Suppose further that G is a finite graph, so that P is compact, and
let f ∈ C(P ) be a function which assumes only finitely many values. For each t in
the range of f , f−1(t) is a compact open subset of P , and hence can be written as
a finite, disjoint union of cylinder sets. It follows that there is a positive integer N
such that, for all x ∈ P , the value of f at x depends only on the first N ‘coordinates’
of x.

Theorem 7.16. Let G be a finite, transitive, directed graph containing at least
two distinct simple loops. Suppose that c is a Z-valued cocycle defined on the AF
subgroupoid G(0) ⊂ G, which vanishes precisely on the unit space G0. Then c has
no extension to a Z-valued cocycle on G.

If G(0) has a dense equivalence class, then c admits no extension to G.

Proof. Let the two simple loops be denoted α and β. Each of α and β contains an
edge not in the other. By transitivity, there is a path γ with r(γ) = r(α) = s(α)
and s(γ) = r(β) = s(β), and another path γ′ with r(γ′) = r(β), s(γ′) = r(α).
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Denote the loop γβγ′ by β. β may no longer be simple, but it contains an edge not
in α, and both loops α and β have the same initial and terminal vertex. Suppose
α has k edges, and β has l edges. If k �= l, we can replace α by αl = α . . . α (l
concatenations), and replace β by βk. Changing notation and denoting the new
loops by α and β, neither may be simple, but both now have the same number of
edges, and β contains an edge not in α.

We suppose c is extendible; hence, there is a function f ∈ C(P ) such that the
cocycle c is the restriction of cf to G(0). Thus,

c(x, 0, y) =
∞∑

j=0

[f(Sjx)− f(Sjy)], for all (x, 0, y) ∈ G(0).

Since cf is assumed to be Z-valued, it follows from f(x) = cf (x, 1,Sx) that f is Z-
valued. As P is compact, f takes on only finitely many values, and hence the value
of f at x ∈ P depends only on some initial path of x: ∃N ∈ Z

+ such that if η is a
finite path, |η| ≥ N and z, z′ ∈ P with s(η) = r(z) = r(z′), then f(ηz) = f(ηz′).
(Cf. Remark 7.15.)

Say α = e1 . . . ek, β = f1 . . . fk, ei, fi ∈ E. By increasing N if necessary, we may
assume k|N and that  = N/k > 1. Define points x, y ∈ P by

x = α�αβα�β∞ and y = α�βαα�β∞.

For z ∈ P , let (z)N denote the truncation of z: (z)N = z1 . . . zN . For n ∈ Z
+, let

m, p be determined by the Euclidean algorithm: n = mk + p with 0 ≤ p < k.
Observe that if m = 0 (so n = p), then

(Snx)N = ep+1 . . . ekα�−1e1 . . . ep,

(Sny)N = ep+1 . . . ekα�−1f1 . . . fp.

If m = 1 (so n = k + p),

(Snx)N = ep+1 . . . ekα�−1f1 . . . fp,

(Sny)N = ep+1 . . . ekα�−2βe1 . . . ep.

For any 1 < m ≤ − 1, with α0 understood to be the empty string,

(Snx)N = ep+1 . . . ekα�−m−1αβαm−2e1 . . . ep,

(Sny)N = ep+1 . . . ekα�−m−1βααm−2e1 . . . ep.

For m = ,

(Snx)N = ep+1 . . . ekβα�−2e1 . . . ep,

(Sny)N = fp+1 . . . fkα�−1e1 . . . ep.

For m =  + 1,

(Snx)N = fp+1 . . . fkα�−1e1 . . . ep,

(Sny)N = ep+1 . . . ekα�−1e1 . . . ep.

Note that for m ≥  + 2, Snx = Sny. Also, viewing n as a function of m with
p constant, observe that (Sn(m)y)N = (Sn(m+1)x)N for 0 ≤ m ≤  and that
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(Sn(0)x)N = (Sn(�+1)y)N . It follows that
∞∑

n=0

[f(Snx)− f(Sny)] = 0.

In other words, cf (x, 0, y) = 0; this is impossible since, with x �= y, (x, 0, y) is not
a unit and cf (x, 0, y) = c(x, 0, y) was assumed to vanish only on the unit space.

If now G(0) contains a dense orbit, then the second statement of the theorem
follows immediately from the second statement of Lemma 7.14. �

Remark 7.17. Lemma 7.14 and Theorem 7.16 together show that the standard
cocycle on UHF(n∞) (viewed as the core AF-subalgebra of the Cuntz algebra On)
has no extension to a cocycle on On.

7.3. The ‘analytic’ subalgebra associated with a cocycle. Let c ∈ Z1(G, R),
and set

A(c) = {f ∈ C∗(G) | f is supported on the set c−1([0,∞))}.
From Remark 7.1, f ∈ A(c) if, and only if, the maps t→ ρ(ηt(f)) is an H∞ function
(for ρ, η as in Remark 7.1). Thus A(c) is also written as H∞(c).

Clearly, any point in the interior of c−1([0,∞)) lies in the spectrum of A(c). On
the other hand, since the spectrum of any bimodule is open, it follows that σ(A(c))
is the interior of c−1([0,∞)).

Of particular interest are the cocycles c ∈ Z1
0 , that is, those which vanish pre-

cisely on the unit space, for in that case we have σ(A(c)) = c−1([0,∞)). If, further-
more, the directed graph G satisfies the condition that every loop has an entrance,
then C∗(G0) is a masa in C∗(G) and A(c) is triangular (since A(c)∩A(c)∗ = C∗(G0)).
Furthermore, c−1([0,∞)) clopen also implies that A(c) + A(c)∗ is dense in C∗(G).
Indeed, if χ1 is the characteristic function of c−1([0,∞)) and χ2 is the characteristic
function of c−1((−∞, 0)) then any f ∈ Cc(G) can be written as f = fχ1 + fχ2.

8. The spectral theorem for bimodules. Part III

In this section we extend the spectral theorem for bimodules to show that the
condition of invariance under the gauge automorphisms can be replaced by invari-
ance under the automorphism group associated with an ‘arbitrary’ locally constant
cocycle (satisfying a mild constraint). As usual, we assume that the graph G is
range finite and has no sources.

Remark 8.1. If K is any compact subset of the groupoid G, then as Banach spaces
C(K) ⊂ A. Since C(K) is complete in both the C∗-and supremum norms, these
norms are equivalent on C(K).

Let Z(α, β) be a basic open set in G. We define a partial homeomorphism τ on
P with dom(τ) = {αz ∈ P | r(z) = s(α) = s(β)} by τ(αz) = βz. By definition,
Z(α, β) ⊂ G(k), where k = |α| − |β|.

Notation. With τ as above, denote

G(τ) = {(x, , y) ∈ G : y = τ(x)}.
We refer to G(τ) as the G-graph of τ .
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Note that the graph of τ could contain points (x, , y) with  �= k. For example,
if α is a loop and  = |α2| − |β|, then (α∞, , βα∞) also lies in G(τ).

Notation. For f ∈ C∗(G), we let fτ denote the restriction of f to the G-graph
of the partial homeomorphism τ . Viewing f as a function on the groupoid G, the
restriction is well-defined as a function on G.

Given f ∈ A, it is not clear that the restriction fτ also belongs to A, much less
that if f belongs to a norm-closed D-bimodule B, then fτ also belongs to B. Our
first goal is to verify these statements.

By [7, Cor. 5.5], path space P is metrizable. Fix a metric on P . With τ as
above, the domain of τ is the open compact neighborhood Z(α) ⊂ P . For each
x ∈ dom(τ), let Un(x) be a clopen neighborhood centered at x with radius at most
1/n. By compactness, there is a finite subcover, Un(x1), . . . , Un(xrn) of dom(τ).
Let Un,1 = Un(x1) and Un,j = Un(xj) \ ∪j−1

i=1Un(xi) for j = 2, . . . , rn. Thus the
sets Un,j form a disjoint clopen cover of Z(α) = dom(τ). Let χn,j denote the
characteristic function of Un,j . Define Ψn : A → A by

Ψn(f) =
rn∑

j=1

χn,j · f · (χn,j ◦ τ−1).

(We identify any function g ∈ C0(P ) with a function, also denoted by g, on G
by using the natural identification of P with the unit space of G. The extended
function g vanishes at any point (x, k, y) for which k �= 0 or x �= y. This function
is in A; in fact, it is in D.)

We will show that the sequence {Ψn(f)}∞n=1 converges to fτ , for any f ∈ A. If
f happens to be supported on some compact subset K ⊂ G, then Ψn(f) is also
supported on K. Furthermore, if (x, k, τ(x)) ∈ K ∩G(τ)), then Ψn(f)(x, k, τ(x)) =
f(x, k, τ(x)) while for (x, k, y) /∈ G(τ) we have Ψn(f)(x, k, y)→ 0. The convergence
is uniform on compact subsets and hence uniform on G. By Remark 8.1, Ψn(f)→ fτ

in the C∗-norm. This, of course, shows tht fτ ∈ A, at least when f is compactly
supported.

To handle the general case, we need to observe that each Ψn is norm decreasing.
Indeed, Ψn has the form f �→

∑
pnfqn where the sum is finite and each of {pn}

and {qn} is a family of mutually orthogonal projections. Maps of this form on a
C∗-algebra are always contractive.

Lemma 8.2. For f ∈ A, Ψn(f) converges to fτ . In particular, fτ ∈ A and
||fτ || ≤ ||f ||. If f belongs to a norm closed D-bimodule B, then so does fτ .

Proof. We already know that Ψn(f) converges pointwise to fτ on G. Given ε >
0, let g ∈ A have compact support, with ||f − g|| < ε. Since g is compactly
supported, Ψn(g)→ gτ in C∗-norm. Hence, there is a positive integer N such that
||Ψn(g)− gτ || < ε for all n ≥ N . Then, since Ψn is contractive,

||Ψn(f)−Ψm(f)|| ≤ ||Ψn(f − g)||+ ||Ψn(g)−Ψm(g)||+ ||Ψm(g − f)|| < 4ε

for n, m ≥ N . Thus {Ψn(f)}∞n=1 has a limit, which must agree with its pointwise
limit, fτ . Hence fτ ∈ A and

||fτ || ≤ lim
n→∞ ||Ψn(f)|| ≤ ||f ||.
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Finally, it is clear that if f belongs to a norm closed D-bimodule B, then so does
each Ψn(f); therefore fτ ∈ B. �

In Theorems 3.1 and 6.3 we proved that a closed D-bimodule is determined
by its spectrum if, and only if, it is invariant under the gauge automorphisms.
As noted in Section 7, the gauge automorphisms arise in a natural way from the
cocycle c(x, k, y) = k on G. In Theorem 8.3 below we show that a closed D-
bimodule is determined by its spectrum if, and only if, it is invariant under that
one-parameter automorphism group associated with a locally constant cocycle c for
which c−1(0) ⊆ G(0). For a locally constant cocycle c, c−1(0) ⊆ G(0) if, and only
if, the fixed point algebra for this one-parameter automorphism group is contained
in the core AF algebra.

As we saw in Theorem 7.4, continuous cocycles are in one-to-one correspondence
with continuous functions on path space. Proposition 7.7 showed that locally con-
stant cocycles arise from locally constant functions on path space.

Suppose that B is a norm closed D-bimodule. It is automatic that B ⊆ A(σ(B));
if every Cuntz–Krieger partial isometry SαS∗

β in A(σ(B)) lies in B, then A(σ(B)) ⊆
B and B is determined by its spectrum. Since we are using the groupoid model,
SαS∗

β is the characteristic function of the basic open subset Z(α, β) of G.
A simple observation is useful in the proof of Theorem 8.3 below. Suppose that

for each (x, k, y) ∈ σ(B) there is a basic neighborhood Z(α, β) of (x, k, y) such that
SαS∗

β ∈ B. Then it follows that every Cuntz–Krieger partial isometry in A(σ(B)) is
in B. Indeed, if SαS∗

β ∈ B and Z(γ, δ) ⊆ Z(α, β), then SγS∗
δ can be obtained from

SαS∗
β by left and right multiplication by projections in D (use the range projections

for Sγ and Sδ); therefore SγS∗
δ ∈ B also. If Z(ν, µ) is an arbitrary basic open subset

of σ(B), then by hypothesis, it can be covered by sets Z(α, β) for which SαS∗
β ∈ B.

Since Z(ν, µ) is compact, there is a finite subcover. The observation about subsets
allows us to find a finite subcover of disjoint sets of the form Z(γ, δ) with SγS∗

δ ∈ B.
It now follows that SνS∗

µ is a finite sum of elements of B and so is in B itself.
Let c be a real valued cocycle on G. Recall that the associated one-parameter

automorphism group on A is defined by

ηz(f)(x, k, y) = zc(x,k,y)f(x, k, y), all z ∈ T.

(To avoid ambiguity, when z = eit with 0 ≤ t < 2π and a is a real number, we take
za = eita.)

Theorem 8.3. Let B ⊆ A be a norm closed D-bimodule and let c be a locally con-
stant cocycle on G such that the fixed point algebra of the associated one-parameter
automorphism group η is contained in the core AF algebra. Then B = A(σ(B)) if,
and only if, B is invariant under η.

Proof. If f ∈ A(σ(B)) then f is supported on σ(B); clearly each ηz(f) is also
supported on σ(B). Thus, B = A(σ(B)) trivially implies that B is invariant under
the ηz.

Now assume that B is invariant under the ηz. By the observations preceding the
theorem, it suffices to prove that for each point (x, k, y) ∈ σ(B), there is a basic
open neighborhood Z(α, β) of (x, k, y) for which SαS∗

β ∈ B.
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Given (x0, k0, y0) ∈ σ(B) there is an element f ∈ B and a basic neighborhood
Z(α, β) such that c is constant on Z(α, β) and f(x, k, y) �= 0 for all (x, k, y) ∈
Z(α, β). We will show that SαS∗

β ∈ B.
Let τ be the partial homeomorphism on P with dom(τ) = Z(α), ran(τ) = Z(β)

given by τ(αz) = βz, for all αz ∈ Z(α). By Lemma 8.2, fτ ∈ B.
Let a = c(x0, k0, y0). Define E : A → A by

E(g)(x, k, y) =
∫

T

z−aηz(g)(x, k, y) dz.

The integration is with respect to normalized Lebesgue measure on T. Each ηz is
isometric, so E is contractive.

Since fτ ∈ B, E(fτ ) ∈ B also. When (x, k0, y) ∈ Z(α, β), we have

z−aηz(fτ )(x, k0, y) = fτ (x, k0, y).

If (x, k0, y) /∈ Z(α, β), then z−aηz(fτ )(x, k0, y) = fτ (x, k0, y) again holds, since
both sides of the equation equal 0. Thus, E(fτ )(x, k0, y) = fτ (x, k0, y), for all
(x, k0, y) ∈ G. When k �= k0, then

c(x, k, y)− a = c(x, k, y)− c(x, k0, y)

= c(x, k, y) + c(y,−k0, x)

= c(x, k − k0, y) �= 0.

(The inequality follows from the fact that c−1(0) ⊆ G(0).) Therefore a �= c(x, k, y)
and the integrand in E(fτ )(x, k, y) is a nonzero power of z multiplied by fτ (x, k, y).
It follows that |E(fτ )(x, k, y)| < |fτ (x, k, y)| with the ratio between the two numbers
dependent only on (x, k, y).

If we now let En be the n-fold composition of E with itself, we have

En(fτ )(x, k0, y) = fτ (x, k0, y)

for all (x, k0, y) ∈ Z(α, β) and En(fτ )(x, k, y)→ 0 otherwise.
Let fZ(α,β) denote the restriction of fτ to Z(α, β). If fτ has compact support,

then En(fτ ) → fZ(α,β) uniformly and (by Remark 8.1) in C∗-norm as well. It
follows in this case that fZ(α,β) ∈ B.

For the general case, let ε > 0 and let g ∈ A have compact support and satisfy
‖f−g‖ < ε. Then gτ has compact support and ‖fτ−gτ‖ ≤ ‖f−g‖ < ε (Lemma 8.2).
With gZ(α,β) the restriction of g to Z(α, β), we know that there is N ∈ N such that
‖En(gτ − gZ(α,β))‖ < ε for all n ≥ N . Therefore, when n, m ≥ N ,

‖En(fτ )− Em(fτ )‖ ≤ ‖En(fτ − gτ )‖+ ‖En(gτ )− Em(gτ )‖+ ‖Em(gτ − fτ )‖
< 4ε.

Thus, even when fτ is not compactly supported, En(fτ ) is convergent in C∗-norm;
the limit must agree with the pointwise limit fZ(α,β). Since each En(fτ ) ∈ B, we
obtain fZ(α,β) ∈ B.

Now define a continuous, compactly supported function h on P by

h(x) =

{
1

f(x,k0,y) , x ∈ dom(τ),

0, otherwise.

Extending h to all of G by taking it to have value 0 off P , we view h as an element
of D. But now SαS∗

β = hfZ(α,β) ∈ B. This completes the proof. �
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9. Nest subalgebras of graph C∗-algebras

An additional structure on on G — a total ordering of the edges — leads in a
natural way to nest subalgebras of A. Arbitrary total orders on E appear to be too
general, so we consider orders on E which are compatible with a total ordering on
V . Given a total order on V and, for each v ∈ V , a total order on {e | r(e) = v},
we can then define an order on E in which two edges with the same range are
ordered by the order on {e | r(e) = v} and two edges with different ranges are
ordered by the order on V . We could, of course, use the sources instead of the
ranges, or even combine the two; but it is orders compatible with the ranges which
are most suitable for the algebras which we shall study. There is a way to rephrase
the definition of the orders we study; we use this for the formal definition:

Definition 9.1. An ordered graph is a directed graph G together with a total order
� on E which satisfies the property that, for each v ∈ V , {e | r(e) = v} is an interval
in the order on E.

Throughout this section we assume that G is a finite ordered graph. We use
the order on the graph to define a nest of projections in D; the associated nest
subalgebra of A is the object of study.

For each k, the (left to right) lexicographic order gives a total order on Fk, the
set of paths of length k. (The lexicographic order is based on the order on E.)
We denote this order by �. For each finite path α = α1 . . . αk, let Rα denote the
range of the partial isometry Sα = Sα1 . . . Sαk

. {Rα | |α| = k} is an orthogonal set
of projections which sum to the identity. This set inherits a total order from the
lexicographic order on Fk. We shall use the notation � for the strict variant of
this total order.

Let Nk be the nest whose atoms are the Rα with |α| = k, taken in the order
above. Projections in Nk have the form

∑
Rα, summed over initial segments in

the order �.
Let α = α1 . . . αk ∈ Fk. Write {e ∈ E | r(e) = s(αk)} as {e1, . . . , ep} with

e1 ≺ e2 ≺ · · · ≺ ep. Then {αe1, . . . , αep} forms an order interval in Fk+1. For each
path α, Rα =

∑
Rαe, where the sum is over all edges e such that r(e) = s(α). It

follows that Nk ⊆ Nk+1, for all k. Let N =
⋃
Nk and

AlgN = {A ∈ A | AP = PAP for all P ∈ N}.
Note that, for fixed k and p, N =

⋃
nNp+nk. Consequently, to prove that

an element A of the graph C∗-algebra is in AlgN it suffices to prove that A ∈
AlgNp+nk, for all n.

Definition 9.2. We shall refer to N and AlgN as the nest and the nest algebra
induced by the order � on E.

Remark 9.3. The material in this section was inspired by, and is an extension of,
the work on the Volterra subalgebra of the Cuntz C∗-algebra found in [12] and [2].
The Cuntz algebra On is the graph C∗-algebra for a graph with one vertex and n
loops. By symmetry, the choice of order on the n loops is immaterial . (Indeed, it
is not hard to find a unitary in On which conjugates the generators in one order
into the generators in another order.)

There is a natural representation of On acting on L2[0, 1]. For each k = 1, . . . , n,
let Sk be the isometry on L2[0, 1] associated with the affine, order preserving map
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from [0, 1] onto the interval
[
k − 1

n
,
k

n

]
. If the n loops in the graph for On are

e1, . . . , en in order, then S1, . . . , Sn are the corresponding generating isometries.
The nest N then consists of the projections which correspond to the intervals of

the form
[
0,

j

nk

]
, where j and k are nonnegative integers. This nest is strongly

dense in the Volterra nest (which consists of projections corresponding to intervals
[0, t], 0 ≤ t ≤ 1). In this representation, the nest algebra AlgN is exactly the
intersection of On with the usual Volterra nest algebra acting on L2[0, 1].

Observe that AlgN is invariant under the gauge automorphisms. Indeed, if
z ∈ T, A ∈ AlgN and P ∈ N , then, since P is in the fixed point algebra of the
gauge automorphisms, P⊥ηz(A)P = ηz(P⊥AP ) = 0. Thus, ηz(A) ∈ AlgN , for all
A ∈ AlgN , z ∈ T.

By the spectral theorem for bimodules (Theorem 6.3), AlgN is the closed linear
span of the Cuntz–Krieger partial isometries which it contains. We will now charac-
terize the Cuntz–Krieger partial isometries SαS∗

β in AlgN in terms of the properties
of the finite paths α and β. This, in turn, will enable us to give a description of
the spectrum σ(AlgN ).

Definition 9.4. A path α is s-minimal if α � β whenever β is a path with |β| = |α|
and r(β) = s(α). α is s-maximal if β � α whenever β is a path with |β| = |α| and
r(β) = s(α).

Remark 9.5. In a Cuntz algebra On, finite paths are essentially finite sequences
from the integers {1, . . . , n}. A finite path α is s-minimal if αi = 1 for all i and
s-maximal if αi = n for all i.

Proposition 9.6. Sα ∈ AlgN ⇐⇒ α is s-minimal.

Proof. Suppose that α is not s-minimal. Then there is a path β with |β| = |α|,
r(β) = s(α), and β ≺ α. With k the common degree of α and β, Rα and Rβ are
atoms from Nk and Rβ � Rα. Now, Sα is nonzero on Rβ (since r(β) = s(α)) and
so RαSαRβ �= 0. But then Sα /∈ AlgNk and hence Sα /∈ AlgN .

Now suppose that α is s-minimal. We distinguish two cases. First assume that
r(α) �= s(α); i.e., α is not a loop. Then the initial space Qα is a sum of atoms of
the form Rβ , where |β| = |α| and α ≺ β. If we let P be the smallest projection in
Nk such that Rα ≤ P , then each of the Rβ in the sum for Qα is orthogonal to P .
Therefore, Sα = PSαP⊥ and Sα ∈ N .

Next assume that α is a loop. Then the initial space Qα can be written as a sum
Rα +

∑
Rβ , where the β in the sum run over paths with |β| = |α|, r(β) = s(α),

and α ≺ β. Since SαRβ = RαSαRβ for each such β, each SαRβ ∈ AlgN .
It remains to show that SαRα ∈ AlgN . Let k be the degree of α. As noted

above, it is sufficient to show that SαRα ∈ AlgNnk for each positive integer n. Let
P be a projection in Nnk. If P ⊥ Rα, then SαRαP = 0 and SαRα trivially leaves
P invariant. P is also trivially left invariant if Rα ≤ P . This leaves the case in
which 0 < PRα < Rα. To show that P is invariant under SαRα, it suffices to prove
SαRαP ∈ AlgNnk.

The projection PRα can be written as a sum of atoms Rβ (from Nnk) where
the β run through an interval in the order on Fnk. Let β be one of these paths.
Write β = β1 . . . βn, where each βi has length k. We need to show that SαRβ has
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range contained in atoms whose indices precede or equal β. The range of SαRβ is
Rαβ , which is a subprojection of Rαβ1...βn−1 . The assumption that α is s-minimal
implies that α � β1. If α ≺ β1, then Rαβ1...βn−1 � Rβ1...βn

= Rβ . On the other
hand, if β1 = α, then r(β2) = s(β1) = s(α) = r(α) and α � β2 (again use α is
s-minimal).

Once again, if α ≺ β2 then Rαβ1...βn−1 = Rααβ2...βn−1 � Rαβ2...βn
= Rβ1...βn

.
Continuing in this fashion, we see that if any of the βi are unequal to α, then
SαRβ ∈ AlgNnk. Finally, if all βi = α, then Sα maps Rα...α into itself, so again
SαRβ = SαRα...α ∈ AlgNnk. From this it follows that SαRαP ∈ AlgNnk and the
proposition is proven. �
Proposition 9.7. Let α and β be two paths of equal length with s(α) = s(β) (so
that SαS∗

β �= 0 ). Then SαS∗
β ∈ AlgN if, and only if, α � β.

Proof. If α = β, then SαS∗
β is a projection in the canonical diagonal of the graph

C∗-algebra. Since the nest N is also in this diagonal, SαS∗
β ∈ AlgN . Note that

SαS∗
β = RαSαS∗

βRβ . If α ≺ β, then Rα � Rβ and SαS∗
β ∈ AlgN . If β ≺ α then

Rβ � Rα and SαS∗
β /∈ AlgN . �

Proposition 9.8. Let α and β be two paths with 0 < k = |β| < |α| and s(α) =
s(β). Write α = δγ where |δ| = |β| and |γ| = |α|− |β|. Then SαS∗

β ∈ AlgN if, and
only if, one of the following two conditions holds:

(1) δ ≺ β.
(2) δ = β and γ is s-minimal.

Proof. The initial space for SαS∗
β is the final space for Sβ , namely Rβ . The range

space is Rα = Rδγ , which is a subprojection of Rδ. If δ ≺ β then Rδ � Rβ as atoms
from Nk and SαS∗

β ∈ AlgN . And if β ≺ δ then Rβ � Rδ and SαS∗
β /∈ AlgN .

Assume that δ = β, so that α = βγ. Observe that r(γ) = s(β) and that
s(β) = s(α) = s(γ). Thus, r(γ) = s(γ) and γ is a loop.

Now the initial space for S∗
β is Rβ and the final space is the initial space for

Sα. Therefore, SαS∗
β maps Rβ onto Rα = Rβγ , which is a subprojection of Rβ . So

SαS∗
β trivially leaves invariant any projection which contains Rβ or is orthogonal

to Rβ .
Assume that γ is s-minimal. Let t = |γ|. It is sufficient to prove that, for any

positive integer n, SαS∗
β ∈ AlgNk+nt. By the preceding paragraph, it is enough to

look at the action of SαS∗
β on atoms from Nk+nt which are subprojections of Rβ .

Each of these atoms has the form Rβη1...ηn , where |ηi| = t, for all i. Now S∗
β maps

Rβη1...ηn onto Rη1...ηn and so SαS∗
β maps Rβη1...ηn onto Rβγη1...ηn . The latter is a

subprojection of Rβγη1...ηn−1 , which is an atom from Nk+nt. So all we have to do
is to prove that Rβγη1...ηn−1 precedes or equals Rβη1...ηn in the ordering for atoms
from Nk+nt.

If every ηi = γ, this is trivial. Otherwise, let ηj be the first η which is unequal
to γ. If j = 1, then r(η1) = s(γ). If j > 1, then r(ηj) = s(ηj−1) = s(γ). Since γ is
s-minimal, γ ≺ ηj . But then Rβγη1...ηn−1 � Rβη1...ηn .

It remains to show that if γ is not s-minimal then SαS∗
β /∈ AlgN . Suppose that

η is a path with |η| = |γ|, r(η) = s(γ) = s(β) and η ≺ γ. Then βη ≺ βγ and
Rβη � Rβγ . Now S∗

β maps Rβη into the initial space for Sβγ = Sα and SαS∗
β maps

Rβη into a subprojection of Rβγ ; thus SαS∗
β /∈ N . �
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Corollary 9.9. Suppose that γ is a path such that Sγ ∈ AlgN . Then, for any β,
SβSγS∗

β ∈ AlgN .

Proof. By Proposition 9.6, γ is s-minimal. If s(γ) �= s(β) then SβSγS∗
β = 0 ∈

AlgN . Otherwise, condition (2) of Proposition 9.8 yields the corollary. �

The next two propositions can be proven with arguments analogous to the ones
used in Proposition 9.6 and Proposition 9.8. However, a shortcut is available. If
we reverse the order on paths of length k and therefore reverse the order on the
corresponding atoms, we obtain the nest N⊥ instead. Since a path is s-minimal
with respect to the reversed order if, and only if, it is s-maximal with respect to the
original order and since AlgN⊥ = (AlgN )∗, Proposition 9.10 and Proposition 9.11
are immediate consequences of Proposition 9.6 and Proposition 9.8.

Proposition 9.10. S∗
β ∈ AlgN ⇐⇒ β is s-maximal.

Proposition 9.11. Let α and β bet two paths with 0 < |α| < |β| and s(α) = s(β).
Write β = δγ where |δ| = |α| and |γ| = |β| − |α|. Then SαS∗

β ∈ AlgN if, and only
if, one of the following two conditions holds:

(1) α ≺ δ.
(2) α = δ and γ is s-maximal.

The following theorem summarizes the sequence of propositions above:

Theorem 9.12. Let G be a finite, ordered graph and let N be the associated nest.
A Cuntz–Krieger partial isometry SαS∗

β lies in AlgN if, and only if, one of the
following conditions holds:

(1) |α| = |β| and α � β.
(2) α = δγ with |δ| = |β| and δ ≺ β.
(3) α = βγ and γ is s-minimal.
(4) β = δγ with |δ| = |α| and α ≺ δ.
(5) β = αγ and γ is s-maximal.

We can now characterize the points (x, k, y) ∈ G that are in the spectrum of
AlgN . Note that path space P is totally ordered by the lexicographic order based
on the total order on E; once again we let � denote this order. (We will, in fact,
need to compare x and y only when x and y are shift equivalent.)

Theorem 9.13. Let G be a finite ordered graph and let N be the associated nest.
A point (x, k, y) ∈ G is in σ(AlgN ) if, and only if, one of the following conditions
holds:

(1) x ≺ y.
(2) x = y and k = 0.
(3) x = y, k > 0 and x = βγγγ . . . where γ is s-minimal and |γ| = k.
(4) x = y, k < 0 and x = αγγγ . . . where γ is s-maximal and |γ| = −k.

Proof. The proof is, of course, based on the fact that σ(AlgN ) is the union of the
sets Z(α, β) with α and β satisfying any of the five conditions in the Theorem 9.12.

First suppose that (x, k, y) ∈ G and x ≺ y in the lexicographic order. We
can then find α and β satisfying one of conditions (1), (2), or (4) (depending on
the value of k) in Theorem 9.12, so that (x, k, y) ∈ Z(α, β) ⊆ σ(AlgN ). Thus
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{(x, k, y) ∈ G | x ≺ y} ⊆ σ(AlgN ). Equally well, if α and β satisfy (1) (with
α �= β), (2), or (4), and (x, k, y) ∈ Z(α, β), then x ≺ y.

By condition (1) in Theorem 9.12, any set of the form Z(α, α) is contained in
σ(AlgN ); thus (x, 0, x) ∈ σ(AlgN ), for all x.

Now suppose that (x, k, y) ∈ Z(α, β) when α = βγ and γ is s-minimal. (So
k > 0.) Then

x = β1 . . . βnγ1 . . . γkz1z2 . . . and
y = β1 . . . βnz1z2 . . . .

Since γ is s-minimal and z1 . . . zk is a finite path whose range is the source of γ, we
have γ � z1 . . . zk. If γ ≺ z1 . . . zk, then x ≺ y. So, suppose that γ = z1 . . . zk. Now
zk+1 . . . z2k is a finite path whose range is the source of γ and so γ � zk+1 . . . z2k.
Again, if ≺ holds, then x ≺ y; otherwise zk+1 . . . z2k = γ. It is now clear that an
induction argument shows that either x ≺ y or x = y has the form βγγγ . . . , where
γ is s-minimal. The points (x, k, y) with x ≺ y have already been covered by the
previous discussion, so the new points in σ(AlgN ) are the ones of the form (x, k, x)
where x = βγγγ . . . , k = |γ|, and γ is s-minimal. Any point of G of this form is in
a suitable Z(α, β) and so is in σ(AlgN ).

We can analyze Z(α, β) when β = αγ and γ is s-maximal in a similar way. If
(x, k, y) ∈ Z(α, β) and x �= y then x ≺ y. If x = y then −k = |β| − |α| = |γ| and
x = αγγγ . . . with γ s-maximal. Any point with this form is in σ(AlgN ).

All that remains is to note that if y ≺ x then (x, k, y) /∈ σ(AlgN ). �

We next determine the spectrum of the (Jacobson) radical of a nest subalgebra
of a graph C∗-algebra. Since the radical is invariant under automorphisms, we
know that it is determined by its spectrum. Analogy with the case of upper tri-
angular matrices and with refinement subalgebras of AF C∗-algebras suggests that
the spectrum of the radical consists of those points (x, k, y) in σ(AlgN ) with x ≺ y
(condition (1) in Theorem 9.13). Indeed:

Proposition 9.14. The set R = {(x, k, y) ∈ σ(AlgN ) | x ≺ y} is the spectrum of
the radical of AlgN . Consequently, A(R) is the radical of AlgN .

Proof. Theorem 6.3 implies that the second statement follows from the first. Tem-
porarily, let R0 denote the spectrum of the radical of AlgN . We need to prove that
R0 = R.

We first show that R ⊆ R0. Let (x, k, y) ∈ R, so that x ≺ y. Choose finite
strings α and β such that s(α) = s(β), α ≺ β and (x, k, y) ∈ σ(SαS∗

β). (α and β
need not have the same length; by α ≺ β we simply mean that there is an index
j such that αi = βi for i < j and αj ≺ βj .) Now, the range projection for SαS∗

β

is contained in the atom Rα1...αj
and the initial projection is contained in Rβ1...βj

.
Since Rα1...αj � Rβ1...βj , it follows that if P is the smallest projection in N which
contains Rα1...αj , then Rβ1...βj is orthogonal to P . Thus, SαS∗

β = PSαS∗
βP⊥ and

SαS∗
β lies in the radical of AlgN . Therefore (x, k, y) ∈ R0 and R ⊆ R0.

To complete the proof, we need to show that any point of σ(AlgN ) which satisfies
conditions (2), (3) or (4) is not in R0. For points of the form (x, 0, x) this is trivial
— they are in the suppport set of a nonzero projection and the radical contains no
nonzero projections. The arguments for points which satisfy conditions (3) and (4)
are very similar, so we just treat the first of these two cases.
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Assume k > 0, x = δγγγ . . . , k = |γ|, and γ is s-minimal. Suppose that
(x, k, x) ∈ R0. Since R0 is open, there is a positive integer n so that if

α = δγ . . . γ (n + 1 copies of γ)

β = δγ . . . γ (n copies of γ)

then Z(α, β) ⊆ R0. Since r(γ) = s(δ) and r(γ) = s(γ), it follows from the Cuntz–
Krieger relations that SγS∗

γ ≤ S∗
δ Sδ and SγS∗

γ ≤ S∗
γSγ . Using this, and the fact

that α has one more copy of γ than β has, we obtain

S∗
βSα = S∗

γ . . . S∗
γS∗

δ SδSγ . . . Sγ = Sγ .

and, hence, (SαS∗
β)2 = SαSγS∗

β . Since s(β) = s(γ) and r(γ) = s(α), (SαS∗
β)2 �= 0.

Note that αγ has the same form as α except that there are now n + 2 γ’s feeding
into δ.

The same considerations as above show that if α(p) = δγ . . . γ with n+p copies of
γ, then S∗

βS
α(p) = Sγ . . . Sγ (p copies of γ) and the square (S

α(p)S
∗
β)2 is a nonzero

partial isometry and so has norm 1. At this point it is now a simple matter to
show that ‖(SαS∗

β)k‖ = 1 for all k and therefore that SαS∗
β is not quasi-nilpotent.

But then SαS∗
β is not in the radical of AlgN , contradicting Z(α, β) ⊆ R0. Thus

any point in the spectrum of AlgN which satisfies condition (3) of Theorem 9.13
is not in R0. As mentioned earlier, points satisfying condition (4) are handled
similarly. �

It was shown in [12] that the radical of the Volterra subalgebra of the Cuntz
algebra is the closed commutator ideal of the Volterra subalgebra. This result
extends to graph C∗-algebras. In the proposition below, we let C denote the closed
ideal generated by the commutators of AlgN . The proof differs from the one in [12],
which does not use groupoid techniques.

Proposition 9.15. The radical of AlgN is equal to the closed commutator ideal
C.

Proof. As usual, we view all elements of A as functions on G. The multiplication
in A is then given by a convolution formula. By Proposition 9.14,

R = {(x, k, y) ∈ σ(AlgN ) | x ≺ y}
is the spectrum of the radical and A(R) is the radical of AlgN .

Let f, g ∈ AlgN . If we show that [f, g](x, k, x) = 0 whenever (x, k, x) ∈
σ(AlgN ) then [f, g] ∈ A(R) and C ⊆ A(R). Now

f · g(x, k, x) =
∑

f(x, i, u)g(u, k − i, x)

where the sum is taken over all i ∈ Z and u ∈ P for which (x, i, u) and (u, k − i, x)
lie in σ(AlgN ). This requires both x � u and u � x, so the only possibility for u
is u = x. If we make the change of variable j = k − i, then

f · g(x, k, x) =
∑

i

f(x, i, x)g(x, k − i, x)

=
∑

j

f(x, k − j, x)g(x, j, x)

= g · f(x, k, x).
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Thus, [f, g] = fg−gf vanishes at all points in σ(AlgN ) of the form (x, k, x) and so
is supported on R. This shows that [f, g] ∈ A(R) and it follows immediately that
C ⊆ A(R).

To show that A(R) ⊆ C, it suffices, by the spectral theorem for bimodules, to
show that each Cuntz–Krieger partial isometry from A(R) is in C. If SαS∗

β ∈ A(R),
then there is j such that αi = βi for i < j and αj ≺ βj . The range projection
for SαS∗

β is a subprojection of Rα1...αj and the initial projection is a subprojection
of Rβ1...βj . Let P be the smallest projection in N which contains Rα1...αj . Since
Rα1...αj

� Rβ1...βj
, Rβ1...βj

⊥ P and SαS∗
β = PSαS∗

βP⊥. This implies that

SαS∗
β = PSαS∗

β − SαS∗
βP = [P, SαS∗

β ] ∈ C
and the proposition is proven. �

If we let D = {(x, 0, x) | x ∈ P}, then D = A(D) = AlgN ∩ (AlgN )∗. Since
D∪R is a proper subset of σ(AlgN ), it follows that the norm closure of A(D)+A(R)
is a proper subset of AlgN . Thus, AlgN does not have a radical plus diagonal
decomposition. Furthermore, since σ(AlgN )∪σ(AlgN )−1 is a proper subset of G,
AlgN +(AlgN )∗ is not norm dense in A. This says that AlgN is “non-Dirichlet.”
When every loop has an entrance, D is a masa in A and AlgN is triangular, but
not strongly maximal triangular. However, we do have the following proposition:

Proposition 9.16. Assume that G is a finite graph in which every loop has an
entrance. AlgN is maximal triangular in A.

Proof. Since AlgN ∩ (AlgN )∗ = D is a masa, AlgN is a triangular subalgebra
of A. Assume that AlgN ⊆ T ⊂ A and that T is triangular. It follows that
T ∩ T ∗ = D. Let T ∈ T . Let P be a projection in N . Since PTP⊥ leaves
invariant each projection in N , PTP⊥ ∈ AlgN . Since N ⊆ T , P⊥TP ∈ T . It
follows that S = PTP⊥ + P⊥TP is a selfadjoint element of T and hence lies in
D. Since D is abelian and P ∈ D, P commutes with S. Thus 0 = P⊥SP . But
P⊥SP = P⊥TP , so P⊥TP = 0. Thus T leaves invariant each projection in N
and so must be an element of AlgN . This shows that T ⊆ AlgN and AlgN is
maximal triangular. �

10. Normalizing partial isometries

In this section we characterize the partial isometries in a graph C*-algebra A =
C∗(G) which normalize the canonical diagonal algebra D. We assume throughout
that G is a countable range finite directed graph with no sources such that each
loop has an entrance. In particular, by Theorem 5.2, this ensures that D is a
masa. The characterization of the D-normalizing partial isometries will be applied
in Section 11 to show that gauge invariant triangular subalgebras are classified by
their spectra.

Recall that a partial isometry v is D-normalizing if v∗Dv ⊆ D and vDv∗ ⊆ D.
We write ND(B) for the set of all D-normalizing partial isometries in a subset B.
Also we say that v1 + · · · + vn is an orthogonal sum of partial isometries if the
set of initial projections v∗i vi, and also the set of final projections viv

∗
i , consists of

pairwise orthogonal projections.
In Theorem 10.1 we show that D-normalizing partial isometries are, modulo

coefficients from D, orthogonal sums of Cuntz–Krieger partial isometries; moreover
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they are characterized by a property which is preserved by isometric isomorphism.
The equivalence of (1) and (2) in the case of Cuntz algebras was obtained in [14,
Lemma 5.4], where it formed the basis for the calculation of normalizing partial
isometry homology groups of various triangular subalgebras.

Theorem 10.1. Let v be a partial isometry in A. Then the following assertions
are equivalent :

(1) v is a D-normalizing partial isometry.
(2) v is an orthogonal sum of a finite number of partial isometries of the form

dSαS∗
β, where d ∈ D.

(3) For all projections p, q ∈ D, the norm ‖qvp‖ is equal to 0 or 1.

This theorem is in complete analogy with the following counterpart for AF C*-
algebras. (See [13] or [15, Lemma 5.5 and Proposition 7.1].) The Cuntz–Krieger
partial isometries play the same role for graph C∗-algebras as systems of matrix
units do for AF C∗-algebras.

Theorem 10.2. Let B be an AF C∗-algebra with finite-dimensional subalgebra
chain B1 ⊆ B2 ⊆ . . . and masas Ck ⊆ Bk such that NCk

(Bk) ⊆ NCk+1(Bk+1),
for all k. Suppose also that the union of the Bk is dense in B. Then the closed
union C of the masas Ck is a masa in B and the following assertions are equivalent
for a partial isometry v in B:

(1) v is a C-normalizing partial isometry.
(2) v = cu where c ∈ C and u ∈ NCk

(Bk), for some k.
(3) For all projections p, q ∈ C, the norm ‖qvp‖ is equal to 0 or 1.

Theorem 10.2 will be used in the proof of Theorem 10.1 to show that if v is in
ND(A) then so too is its AF part v0 = Φ0(v). We also require the following two
lemmas:

Lemma 10.3. Let α, β be paths of the same length and let e = SαS∗
β be a nonzero

partial isometry in the AF subalgebra F of C∗(G). For each positive integer k there
exist nonzero projections q, p with q = epe∗, such that for all paths γ with length
at most k, and for all SλS∗

µ in F with |λ| = |µ| ≤ k, we have

q(SγSλS∗
µ)p = q(SλS∗

µSγ)p = 0.

Proof. Note that if we verify the lemma for an integer k, then we have verified
it for all integers less than k; thus we may increase a value for k if needed. This,
together with the hypothesis that every loop has an entrance, allows us to choose a
path π = f2k . . . f1 of length 2k and a path w = w1w2 . . . of length at least k such
that:

(1) r(π) = r(f2k) = s(α) = s(β).
(2) r(w) = s(π) = s(f1).
(3) For every integer d with 1 ≤ d ≤ k, fd . . . f1 �= w1 . . . wd.

Indeed, the assumption that there are no sources allows us to choose the path
π with range vertex equal to s(α) = s(β). Possibly, we can choose π so that
r(fd) �= s(f1) for d = 1, . . . , k. In this case, any extension w = w1 . . . wk works,
since r(w1 . . . wd) = r(w1) = s(f1) �= r(fd) = r(fd . . . f1). On the other hand, if we
must back into a loop then (increasing k if necessary), we can arrange that fk . . . f1
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consists of multiple repeats of a single simple loop. By choosing w so that w1 is an
entrance to the loop, we guarantee that fd . . . f1 �= w1 . . . wd for all d ≤ k.

Now let

p = SβπwS∗
βπw and q = SαπwS∗

απw = epe∗.

Let γ = γ1 . . . γd be a path with 1 ≤ d = |γ| ≤ k. We first show that qSγp = 0. If
not, then

SαπwS∗
απwSγSβπwS∗

βπw �= 0.

Now, recall that for any edges e and f , S∗
eSf = 0 except when e = f (the ranges

of the generating partial isometries Se are pairwise orthogonal) and that, if g is
an edge with r(g) = s(e) then S∗

eSeSg = Sg (from the Cuntz–Krieger relations).
Consequently, the edges in the finite path απw match the edges (reading from left
to right) in the path γβπw. Since the length of π is at least twice the length of γ,
the cancellations into γβπw bring us d edges into w; this forces fd . . . f1 = w1 . . . wd.
But this contradicts the choice of π and w.

Insertion of SλS∗
µ either before or after Sγ does not change the result: there are

at most k cancellations from S∗
µ, which cannot affect the second half of Sπ since

|π| = 2k, and the cancelled partial isometries are replaced by partial isometries
from Sλ. Thus the general result holds. �

In Lemma 10.4, B∗(G) is the (nonclosed) algebra generated by the Cuntz–Kreiger
partial isometries and the maps Φm are as defined in Section 2.

Lemma 10.4. Let a ∈ B∗(G) and let e = SαS∗
β be a partial isometry in the AF

subalgebra F of C∗(G). Then there exist projections p and q = epe∗ such that
qap = qΦ0(a)p.

Proof. By the observations in Section 2, a−Φ0(a) can be written as a finite linear
combination of terms of one of the two forms: SγSλS∗

µ and SλS∗
µS∗

γ , where |γ| ≥ 1
and |λ| = |µ|. An application of Lemma 10.3 gives projections p1 and q1 such that
q1 = ep1e

∗ and q1SγSλS∗
µp1 = 0 for all terms of this type in the linear combination.

Now let f = (ep1)∗ and apply Lemma 10.3 again to obtain projections q ≤ q1

and p ≤ p1 with fqf∗ = p and pSγSµS∗
λq = 0 for all terms of the second type

in the linear combination for a − Φ0(a). It now follows that qSλS∗
µS∗

γp = 0 and
qSγSλS∗

µp = 0 for all the terms; hence qap = qΦ0(a)p. �

Proof of Theorem 10.1. The implications (2) =⇒ (1) and (1) =⇒ (3) are rou-
tine.

It remains prove that (3) =⇒ (2): Let v be a partial isometry in A which satisfies
condition (3). We claim first that Φ0(v) is a D-normalizing partial isometry. If not,
then, since Φ0(v) is in the AF subalgebra F , we can use Theorem 10.2 to find a
partial isometry e = SαS∗

β in F and a δ > 0 such that, for any pair p ≤ e∗e,
q = epe∗ we have

δ ≤ ‖qΦ0(v)p‖ ≤ 1− δ.

(This is easy to do using the function representation of v0 on the AF subgroupoid
and knowledge of the form of v0 — that it is not an element of D times a matrix
unit.)
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Now let v′ ∈ B∗(G) be such that ‖v′ − v‖ < δ/2. By Lemma 10.4, there exist
nonzero projections p and q with q = epe∗ such that qΦ0(v′)p = qv′p. Since ‖qvp‖ is
either 0 or 1, either ‖qv′p‖ ≤ δ/2 or 1−δ/2 ≤ ‖qv′p‖. Since ‖Φ0(v′)−Φ0(v)‖ < δ/2
(Φ0 is contractive), this implies that either ‖qΦ0(v)p‖ < δ or 1− δ < ‖qΦ0(v)p‖, a
contradiction. Thus, the 0-order term in the ‘Fourier’ series for v is D-normalizing.
It follows from Theorem 10.2 that Φ0(v) has the form required in condition (2).

Now suppose that m > 0. If |ν| = m and |λ|−|µ| = m, then the product S∗
νSλS∗

µ

is either zero or of the form Sλ1
S∗

µ with |λ1| = |µ|. It follows that S∗
νΦm(v) =

Φ0(S∗
νv). Since v satisfies condition (3), so does S∗

νv; the argument above shows
that S∗

νΦm(v) is D-normalizing and has the required form (condition (2)). This, in
turn, implies that SνS∗

νΦm(v) is D-normalizing and has the required form for every
path ν with length m. Consequently, Φm(v) satisfies condition (2). In a similar
fashion, we can show that when m < 0, Φm(v) satisfies condition (2) (consider
adjoints, for example).

Now, if w is a partial isometry and ww∗xw∗w �= 0 then ‖w + ww∗xw∗w‖ > 1.
From this observation and the Cesaro convergence, it follows that the operators
Φm(v) are nonzero for only finitely many values of m and that v is the orthogonal
sum of these operators. Thus v has the form required in condition (2). �

11. Triangular subalgebras determine their spectrum

In this section we show that the gauge invariant triangular subalgebras of certain
graph C*-algebras are classified by the isomorphism type of their spectra. We
assume throughout the section that G1 and G2 are countable range finite directed
graphs with no sources and that each loop has an entrance.

Theorem 11.1. For i = 1, 2, let Ti be a triangular subalgebra of Ai with diag-
onal Di such that Ti generates Ai as a C∗-algebra and Ti is invariant under the
gauge automorphisms (so that Ti = A(Pi), where Pi = σ(Ti)). Then the following
statements are equivalent :

(1) T1 and T2 are isometrically isomorphic operator algebras.
(2) There is a groupoid isomorphism γ : G1 → G2 with γ(P1) = P2.

Proof. If γ has the properties of (2) it is plain that there is a C∗-algebra isomor-
phism C∗(G1) → C∗(G2) which restricts to an isometric isomorphism T1 → T2.
Assume then that Γ: T1 → T2 is an isometric isomorphism. In view of the norm
characterization of normalizing partial isometries, Theorem 10.1 condition (3), we
have Γ(ND1(T1)) = ND2(T2). Moreover, since Γ(D1) = D2, the groupoid support of
Γ(du) with d ∈ D1 and u in ND1(T1) is independent of d if d is a partial isometry and
d∗du = u. Reciprocally, in view of Theorem 10.1 condition (2), normalizing partial
isometries are determined by their groupoid support, up to a diagonal multiplier.
Thus Γ induces a map

γ̃ : {supp(u) : u ∈ ND1(T1)} → {supp(v) : v ∈ ND2(T2)}.
Each point g in P1 is an intersection of the sets Z(α, β) that contain it and so by

local compactness γ̃ defines a bijection γ : G1 → G2 and this map, in turn, induces
γ̃. In particular, γ is a homeomorphism.

Note now that γ is a semigroupoid map. To see this observe first that if u1 and
u2 are normalizing partial isometries in T1 with support sets U1 and U2 then u1u2
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has support set U1 · U2. Thus, if g1 and g2 are composable elements in P1 and

{g1} = ∩∞n=1Un, {g2} = ∩∞n=1Vn,

where Un, Vn are supports of normalizing partial isometries, then

{g1 · g2} = ∩∞n=1Un · Vn.

Thus

{γ(g1 · g2)} = ∩∞n=1γ̃(Un · Vn) = ∩∞n=1γ̃(Un) · γ̃(Vn)

and this last set is the singleton set {γ(g1) · γ(g2)}.
We now extend γ to a map from G1 to G2. Note first that since, by hypothesis,

T1 generates A1 as a C*-algebra, the sets

U = U1 · U−1
2 · U3 · U−1

4 · · · · · U−1
2n ,

where U = supp(ui) and ui ∈ ND1(T1), have union equal to G1. Indeed, approxi-
mate u in ND1(A1) by a polynomial p in the generators and their adjoints,

p =
∑
m

∑
|λ|−|µ|=m

aλµSλS∗
µ

and it follows that a point g in supp(u) must lie in the support of some SλS∗
µ in

the sum. Extend γ to G1 by setting

γ(g1 · g−1
2 · · · · · g−1

2n ) = γ(g1) · γ(g−1
2 ) · · · · · γ(g−1

2n ).

This is well-defined and onto, since T2 generatesA2, and so, as before, this extension
is a groupoid isomorphism. �

It is clear that the proof method above simplifies to give the following equivalence
between the isomorphism type of the pair (C∗(G),D) and the isomorphism type of
the groupoid G. (Compare, for example, [15, Theorem 7.5].)

Theorem 11.2. The following statements are equivalent :
(1) There is a C*-algebra isomorphism Γ : C∗(G1)→ C∗(G2) with Γ(D1) = D2,

where each Di is the canonical abelian diagonal subalgebra of C∗(Gi).
(2) There is a groupoid isomorphism γ : G1 → G2.

Similarly the proof above extends with only trivial changes to give an equivalence
between the isomorphism type of the pair (B,D), consisting of a gauge invariant
subalgebra B containing the diagonal D, and the isomorphism type of the spectrum
of B.
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