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Bounded geometry in relatively hyperbolic groups

François Dahmani and AslıYaman

Abstract. If a group is relatively hyperbolic, the parabolic subgroups are
virtually nilpotent if and only if there exists a hyperbolic space with bounded
geometry on which it acts geometrically finitely.

This provides, via the embedding theorem of M. Bonk and O. Schramm,
a very short proof of the finiteness of asymptotic dimension for such groups
(which is known to imply Novikov conjectures).
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The class of relatively hyperbolic groups is an important class of groups en-
compassing hyperbolic groups, fundamental groups of geometrically finite orbifolds
with pinched negative curvature, groups acting on CAT(0) spaces with isolated
flats, and many other examples. It was introduced by M. Gromov in [G1] and
developed by B. Bowditch, B. Farb, and other authors (e.g., [Bow, F]). There is
now an interesting and rich literature on the subject.

A finitely generated group Γ is hyperbolic relative to a family of finitely generated
subgroups G if it acts on a proper complete hyperbolic geodesic space X, preserving
a family of disjoint open horoballs {Bp, p ∈ P}, finite up to the action of Γ, such
that the stabilizers Gp of the Bp, p ∈ P are exactly the elements of G, and for all
p, Gp acts cocompactly on the horospheres of Bp, and such that the action of Γ on
X \ (

⋃
p∈P Bp) is cocompact (see [Bow]).

A space X satisfying the conditions of the definition is referred to as an associated
space to Γ. Geometrically, one should think of the complement of the horoballs as
the universal cover of the convex core of a geometrically finite hyperbolic manifold
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(or equivalently of the thick part of the manifold for Margulis decomposition), and
should think of the horoballs as the covers of the cusps.

In many geometrical examples, the parabolic subgroups of Γ, that is, the elements
of the family G, are virtually nilpotent. The main examples are geometrically finite
manifolds with pinched negative curvature (one can also mention limit groups [D1],
groups with boundary homeomorphic to a Sierpinski curve or a 2-sphere [D2]).
If the curvature on the manifold is allowed to collapse to −∞, one can obtain
other parabolic subgroups (especially nonamenable ones, see [GP, Prop. 0.3]). The
difference between these two cases can be identified.

Let us say that a space X is geometrically bounded if there exists a function
f : R+ → R+ such that, for all R > 0, every ball of radius R can be covered by
f(R) balls of radius 1, and every ball of radius 1 can be covered by f(R) balls of
radius 1/R. In some sense, the function f measures the volume of balls. Such a
function always exists when there is a cocompact action on X.

A difference between a complete simply connected manifold M of pinched nega-
tive curvature, and M ′ in which the curvature is not bounded below, is that M is
geometrically bounded, whereas the volumes of a sequence of balls of same radius
in M ′ may tend to infinity. This remark generalizes:

Theorem 0.1. Let Γ be a finitely generated group, hyperbolic relative to a family
G of finitely generated subgroups. Then, every element of G is virtually nilpotent if
and only if there exists a space X associated to Γ that has bounded geometry.

The purpose of this note is to prove this characterization, and explain how, in this
case, one can deduce short proofs of significant results. Namely we prove that these
groups have finite asymptotic dimension, a property with strong consequences.

The asymptotic dimension of a metric space is a quasiisometric invariant intro-
duced by M. Gromov in [G3]. For an introduction, we refer to [R]. It is denoted
asdim(X), for a space X, and is defined as follows: it is an integer, and it is less
than n ∈ N if and only if for all d > 0 there exists a covering of X by subsets of
uniformly bounded diameter, with d-multiplicity at most n + 1.

Here, the d-multiplicity of a covering is the minimal number m such that each
ball of radius d intersects at most m elements of the covering.

For the classical examples, the notion gives what is expected, as for example, for
Euclidean and hyperbolic spaces, asdim(Rn) = asdim(Hn) = n (see [R] or [G3]).

Corollary 0.2. Let Γ a finitely generated group that is hyperbolic relative to a
family of virtually nilpotent groups. Then, the asymptotic dimension of Γ is finite.

Shortly after our preprint was first posted on arXiv, D. Osin announced a result
in [O] that generalizes ours, for groups hyperbolic relative to a family of groups of
finite asymptotic dimension. He uses completely different methods. The interest of
our method, we believe, is its simplicity and rapidity, and that we show a general
property in the spirit of the Margulis Lemma(s).

Once Theorem 0.1 is established, Corollary 0.2 follows from the embedding theo-
rem of M. Bonk and O. Schramm [BS], stating, in particular, that any geometrically
bounded Gromov-hyperbolic geodesic space is quasiisometric to some convex sub-
space of some hyperbolic space H

n. Such a space has asymptotic dimension at most
n. Applying this to the space associated to Γ given by Theorem 0.1, we get that
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Γ acts properly discontinuously by isometries on a space that has finite asymptotic
dimension. Therefore, it has finite asymptotic dimension itself.

It is worth noting that G. Yu proved in [Y] the coarse Baum-Connes conjecture
for proper metric spaces with finite asymptotic dimension. G. Carlsson and B.
Goldfarb [CG] proved the integral Novikov conjecture under such a hypothesis.

In order to prove Theorem 0.1, we make use of a certain space X associated
to Γ, that is constructed by B. Bowditch in [Bow] when he proves that certain
definitions are equivalent. In this model, we first prove, by a growth argument,
that, if the horospheres have polynomial growth for their length metric, then the
horoballs are geometrically bounded. Then we prove it for the whole space X, using
the cocompactness of the action on the complement.

The converse finds its roots in a claim of M. Gromov [G3, p. 150] titled “Gener-
alised and Weakened Margulis Lemma”. We prove it by giving an upper bound to
the growth of the volume of a space X associated to Γ, and deduce that a group
acting properly discontinuously on an horosphere must have polynomial growth.

Acknowledgements. We would like to thank to Ilya Kapovich for bringing the
question to our attention, and Andrzej Szczepanski for his encouragement. We also
thank the referee for his/her remarks.

1. Preliminaries

Let Γ be a finitely generated group. We note by gr the growth function of Γ,
i.e., for all R > 0, gr(R) is the cardinality of a ball of radius R. It is a well-known
theorem of M. Gromov that a finitely generated group is virtually nilpotent if and
only if it has polynomial growth (i.e., gr(R) ≤ CRp for some constants C and p).
We formulate this latter condition in a slightly different way in the following lemma:

Lemma 1.1. Given a finitely generated group Γ with a word metric, the following
are equivalent:
A1) For all ε < 1 there is a constant N = N(ε) such that all balls B(R) of radius

R can be covered by at most N balls of radius εR.
A2) The growth of Γ is polynomial.

Before giving the proof let us recall a result that characterises polynomial growth.

Theorem 1.2 (H. Bass [Bas]). A group G has polynomial growth if and only if
there exist constants K1, K2, p such that for all R, one has K1R

p ≤ gr(R) ≤ K2R
p.

Proof of Lemma 1.1. If one assumes A1, then, for ε = 1
2 , there exists N such

that for all k and R, one has gr(R) ≤ N × gr(εR) ≤ Nkgr(εkR). Choose k such
that 1 ≤ εkR ≤ 2. One has

(ek log(ε))
log(N)
log(ε) ≤ R− log(N)

log(ε) ,

hence Nk ≤ R− log(N)/ log(ε). Therefore, gr(R) ≤ gr(2) × R− log(N)/ log(ε), what we
wanted.

Conversely if one assumes that A1 is not satisfied, then we claim that there is
ε ∈ (0, 1), such that for all N > 0, there exists R and a ball B of radius R containing
N disjoint ball of radius εR/4.

To see this, consider a ball B′ of radius R′ that is a counterexample of A1 (for
given ε < 1 and N − 1), and let choose R = R′

1−ε/2 , and B the ball of same center
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as B′ and radius R. Consider B1, . . . , BN , N balls of radius εR′/2 in B. Assume
they are not disjoint. By assumption, the balls of same centers but of radius εR′ do
not fill B′, we choose x be a point in the complement of this union, in B′. Hence,
if two of the balls B1 . . . BN intersect, one can exchange one of them with a ball
of same radius centered in x, and this one intersects no other, being at distance at
least εR′ + 1 from any other center. After at most N − 1 of these moves, one has a
family of disjoint balls of radius εR′/2 = εR × (2 − ε)/4 ≥ εR/4 in B′, and by the
triangle inequality, they all lie in B. This proves the claim.

Assuming that Γ has polynomial growth, it satisfies Bass’ Theorem 1.2. It follows
from the claim that gr(R) ≥ (K1R

pεp/4p) × (N + 1). On the other hand, gr(R) ≤
K2R

p. Therefore, K2 ≥ K1(ε/4)p × (N + 1). As this is true for all N this yields a
contradiction. �

2. Polynomial growth for groups and bounded geometry for
horoballs

We recall constructions that can be found in the work of Bowditch [Bow] that
associate an hyperbolic horoball to every group G, on which G acts, cocompactly
on horospheres. We remark that if G has polynomial growth then this space has
bounded geometry.

In the upper half plane model of the hyperbolic plane H
2 let us note Tt =

[0, 1] × [t,∞), for all t ≥ 1.
Let K be a connected graph. Let C(K) be the space K × [1,∞), with a length

metric ρ that induces an isometry between T1 and e× [1,∞), for every edge e. It is
shown in [Bow] that C(K) is a proper hyperbolic metric space in which every two
rays are asymptotic. Its Gromov boundary consists in a single point a.

For all t ≥ 1, let Kt be the horosphere K × {t}, at distance t − 1 from K. Note
that Kt with its induced metric is isometric to (K, dt) where dt = e1−td1, and d1

is the graph metric of K.

Proposition 2.1. There exists constants A, B > 0 and α, β > 0 depending only
on the constant of hyperbolicity of (C(K), ρ) such that for all t ≥ 0 and for all
x, y ∈ Kt, B exp(βρ(x, y)) ≤ dt(x, y) ≤ A exp(αρ(x, y)).

Proof. The lower bound is classical and true in any horosphere of any hyperbolic
space. The upper bound follows from the fact that, if [x, y] is a geodesic segment
of Kt, then its convex hull in (C(K), ρ) is, by construction, isometric to the region
of the upper half plane [0, dt(x, y)] × [t, +∞), where the result is classical. �

We denote by πt the orthogonal projection map on Kt. For all t ≥ t′ ≥ 0 and
for all x, y ∈ Kt′ we have dt′(x, y) = exp(t − t′)dt(πt(x), πt(y)). Note that the
projection map πt sends the balls of Kt′ to the balls of Kt.

Let G be a finitely generated group given with a preferred set of generators and
let KG be its associated Cayley graph. We consider the space C(KG) = C(G).

Proposition 2.2. If G has polynomial growth then C(G) has bounded geometry.

Proof. We identify G with the set of vertices of a Cayley graph KG = K1. We first
note that K1 also satisfies the property A1 of Lemma 1.1. In fact it suffices to show
that A1 is satisfied for ε = 1/2, since by iteration each ball B(R) of radius R in the
Cayley graph can be covered by at most N(1/2)n balls of radius (1/2)nR, where n
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is the first integer with (1/2)n < ε. Thus N(ε) = N(1/2)n gives the result. Now
when R ≥ 1 the statement is justified by Lemma 1.1, since B(R) can be entirely
covered by N ′ balls centered at vertices of the Cayley graph and of radius R/2.
When R < 1, B(R) is covered by gr(1) + 1 balls of radius R/2. Thus by setting
N(1/2) = max{N ′, gr(1) + 1} we prove the claim. Note also that this property is
invariant by homothety, thus for all t, (Kt, dt) satisfies A1.

Let R be a number, and let R′ be equal to R or 1. We want to cover any ball of
radius R′ in C(G) by a controlled number of balls of radius R′/R.

Consider a ball B of radius R′ in C(G). Let Kt be an horosphere intersecting
it. Then Kt ∩ B has diameter at most 2R′ in C(G) and hence is contained in a
ball of Kt of radius A exp(2αR′) for the metric dt, which is homothetic (with factor
exp(t − 1)) to (K1, d1). By the remark above this intersection can be covered by
N(R′, R, A, B, α, β) balls (note that this number does not depend on t) of radius
B exp(βR′/2R) of (Kt, dt), which are contained in balls of C(G) of same center, and
radius at most R′/(2R) for the ambiant metric.

To cover the entire ball B by balls of radius 1, it is enough to perform this on
4R′ regularly spaced horospheres (at distance 1/(2R′) from each other) intersecting
B. One gets a number depending only on R, of balls of radius R′/R that cover
B. �

3. Proof of Theorem 0.1

We recall now some of the results and constructions given by Bowditch in [Bow].
Given a group Γ hyperbolic relative to the family G and a space X associated to
Γ, he shows that there is a family of disjoint Γ-invariant, quasiconvex horoballs Hp

based at parabolic points p ∈ ∂X with following properties:
� There are only finitely many orbits of horoballs in the family, and the elements

of G are exactly the stabilizers of the different horoballs.
� The quotient of an horosphere based at p (i.e., the frontier in X of an horoball

based at p) by the stabiliser of p in Γ is compact.
� The quotient of X\⋃

p int(Hp) by Γ is compact.

The proof of these statements can be found in [Bow, Chapter 6] under Lemma 6.3
and Proposition 6.13. Moreover he proves that there exists another associated space
to Γ where the horoballs can be chosen to be isometric to the space C(G) where G is
a maximal parabolic subgroup in G ([Bow] Chapter 3, Lemma 3.7 and Theorem 3.8).
We will refer for the rest of the paper to this particular space as Bowditch’s space.
In general a space X associated to a relatively hyperbolic group Γ can be different
from it.

Proof of Theorem 0.1. We first prove that if the parabolic subgroups are virtu-
ally nilpotent then Bowditch’s space is geometrically bounded. Indeed, as Γ acts on
X\ ∪p intHp cocompactly X has bounded geometry if and only if each horoball in
X has uniformly bounded geometry. On the other hand since there are only finitely
many orbits of horoballs it suffices to show that they all have bounded geometry.
But in this particular space, each horoball Hp is isometric to some C(G) where G
is the stabiliser of p in Γ, and therefore, by Proposition 2.2, this follows.

We turn to the converse. Given a relatively hyperbolic group Γ we assume that
there exists a space X of bounded geometry associated to Γ. Denote its metric
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by ρ. We consider a family of disjoint Γ-invariant horoballs Hp based at parabolic
points with the above properties, and we note Σp their horospheres. By assumption
each horoball Hp has bounded geometry.

For all parabolic points p, let Gp be the parabolic group associated. It acts
cocompactly on the horosphere Σp. Let us consider Op an orbit of Gp in Σp, with
a metric dp induced by a word metric on Gp. Then (Op, dp) is quasiisometric to
Gp, and note that it is s-separated, for a certain constant s that can be chosen to
be 2, up to rescaling X once and for all (note that being geometrically bounded is
preserved by rescaling the metric). Thus to show that Gp has polynomial growth
it is sufficient to show that (Op, dp) has polynomial growth. It is classical that the
distortion of Op in X is at least exponential, since it lies on a horosphere.

Let x0 ∈ Op, and let us consider R > 0 and BR(x0) the ball of radius R of
X centered at x0. Let f(R) be the cardinality of Op ∩ BR(x0). By minoration
by an exponential of distances on the horosphere, one deduces that Op ∩ BR(x0)
contains a ball of (Op, dp) of center x0 and radius A exp(αR), where A and α depend
only on X and Hp. Let us denote grO the growth function of Op. Thus one has
grO(A exp(αR)) ≤ f(R).

We now remark that the definition of bounded geometry allows one to map a
N -regular tree T on an 1-dense image in X by a 2-Lipschitz map π : T → X, where
N is the constant required to cover a ball of radius 2 by balls of radius 1. Indeed
it suffices to map the neighbors of a vertex v of the tree to the centers of balls of
radius 1 covering a ball of radius 2 centered at π(v).

The growth function of a N -regular tree is exponential. Therefore, the number
of disjoint balls of radius 1 that belong to a ball of radius R in X is bounded
exponentially depending only on R and X, and hence the function f is at most an
exponential, since it counts 2-separated elements in the ball BR(x0). Let us say
that f(R) ≤ B exp(β(R)). From this and the fact grO(A exp(αR)) ≤ f(R), one
computes that grO(t) ≤ B(t/A)β/α, which is polynomial. �
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