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Integral submanifolds with closed conformal
vector field in Sasakian manifolds

Gheorghe Pitiş

Abstract. A class of Legendrian submanifolds with closed conformal vector
field in Sasakian space forms is studied. The existence of these submanifolds
is analyzed and some topological and geometric properties are given. A char-
acterization up to conformal transformation by the Maslov form is also given.
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1. Introduction

An important topic in contact geometry is the study of integral submanifolds
of the contact distribution in a contact manifold M̃ of dimension 2n + 1. Many
remarkable results were obtained, starting from Sasaki’s theorems (1964) which
assert that the maximum dimension of such a submanifold is n and that any r

linearly independent vectors (r ≤ n) vanishing the contact form of M̃ and its
differential determine an r-dimensional integral submanifold of M̃ . Hence a contact
manifold has a great wealth of integral submanifolds and this is a serious argument
for the difficulty of their study. Moreover, these submanifolds are anti-invariant
and then, by usual methods, we are guided to study their transverse geometry, but
not the properties of the submanifold itself.

In maximum dimension (i.e., for Legendrian submanifolds) we know many re-
sults about the geometry of integral submanifolds, especially in Sasakian space
forms. We also mention Vaisman’s construction [Vai1], [Vai2] of the Maslov class
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for Legendrian submanifolds in the cotangent unit sphere bundle of a Riemannian
manifold endowed with the classical contact structure. In [Pit3] some characteristic
classes are associated to an integral submanifold of dimension < n in a Sasakian
manifold, while in [Pit2] the stability and different kinds of minimality for such
submanifolds of dimension ≤ n are studied.

The first part of this paper is devoted to the study of some tensor fields related
to the mean curvature vector of an integral submanifold in a Sasakian manifold and
we prove that under a general hypothesis its first Betti number cannot be equal
to zero (Theorem 2.4). Also, we prove that an integral submanifold with nowhere
zero parallel mean curvature vector in a Sasakian manifold is locally conformal to
the cylinder of a leaf of some foliation associated to a special closed and conformal
vector field on the submanifold (Theorem 2.5). We also study the eigenvalues and
the eigenvectors of the Weingarten operator AFX of an integral submanifold, for a
special closed and conformal vector field X. These results are applied to the case
of integral submanifolds in a Sasakian space form with F -sectional curvature equal
to −3. The local decomposition of integral submanifolds with a nowhere special
parallel vector field is also given (Theorem 3.5).

A class of Legendrian submanifolds having a special closed and conformal vec-
tor field are studied in the second part. Their importance follows from the fact
that generally ordinary spheres cannot be embedded in a Sasakian space form as
Legendrian submanifolds (Propositions 4.1 and 4.3) and so these submanifolds are
the best spherical type Legendrian submanifolds in the sense that these have a
topological and geometric behaviour similar to the spheres. The existence of such
submanifolds is analyzed and some examples are presented. A characterization up
to conformal transformation by the Maslov form is given (Theorem 5.1) and their
orientability is also studied (Theorem 4.10).

2. Some results about integral submanifolds

Let M̃ be a Sasakian manifold of dimension 2n + 1 with the contact structure
defined by the tensor fields F, ξ, η, g and denote by D its contact distribution. If M
is an integral submanifold of dimension m (m ≤ n) of D then at each point x ∈ M
the normal space of M has the following decomposition

T⊥
x M = FTxM ⊕ τx(M) ⊕ 〈ξx〉(1)

and the 2(n − m)-dimensional vector spaces τx(M) span the so-called maximal
invariant normal bundle of M , studied in [Pit3].

We denote by ∇̃,∇,∇⊥ the Levi-Civita connections on M̃, M , and respectively
the normal connection of M , induced by ∇̃. Also, we denote by h, A, Ric the second
fundamental form, the Weingarten endomorphism and the Ricci curvature of M ,
respectively. From the well-known equality

∇̃Xξ = −FX,(2)

that holds for any vector field X in a Sasakian manifold M̃ , and taking into account
the Gauss formula it follows that h(X, Y ) is orthogonal to ξ for X and Y tangent
to M and then, from (1) we obtain the decomposition

h(X, Y ) = hF (X, Y ) + hτ (X, Y )(3)
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with hF (X, Y ) ∈ FTxM and hτ (X, Y ) ∈ τx(M). Moreover, by using the Wein-
garten formula and the expression of the tensor field ∇̃XF , we obtain by straight-
forward computation:

Proposition 2.1. On any integral submanifold of a Sasakian manifold we have

∇⊥ ◦ F = F ◦ ∇ + F ◦ hτ + g ⊗ ξ, F ◦ hF + AF = 0.(4)

Remark. If M is a Legendrian submanifold of M̃ (i.e., M has maximal dimension
equal to n), then the first equality in (4) becomes

∇⊥ ◦ F = F ◦ ∇ + g ⊗ ξ.

From the second equality in (4) we obtain

g(hF (X, Y ), FZ) = g(hF (X, Z), FY )

for any vectors X, Y, Z tangent to M and therefore we can define a symmetric
3-linear form CF on M by

CF (X, Y, Z) = g(hF (X, Y ), FZ).

Proposition 2.2. If M̃(c) is a Sasakian space form of F -sectional curvature c then
the 3-linear form ∇CF is also symmetric.

Proof. Simple computations give

(∇XCF )(Y, Z, U) − (∇Y CF )(X, Z, U) = g((∇XhF )(Y, Z) − (∇Y hF )(X, Z), FU)
(5)

for X, Y, Z and U tangent to M . But from the well-known expression of the
curvature tensor R̃ of the Sasakian space form M̃(c) (see for instance [Bla1, p. 113])

R̃(X, Y )Z =
c + 3

4
[g(Y, Z)X − g(X, Z)Y ]

(6)

+
c − 1

4
[η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ

− g(Y, Z)η(X)ξ + g(Z, FY )FX − g(Z, FX)FY + 2g(X, FY )FZ].

We deduce [
R̃(X, Y )Z

]⊥
= 0

and then from (5) and the Codazzi equation we obtain the symmetry of ∇CF with
respect to X and Y . �

In [Pit3], the 1-form α�n, defined on the integral submanifold M by the equality

α�n(X) = g(F�n, X), X ∈ X (M)(7)

for a given normal vector field �n to M , is used for the computation of some Chern
classes of the maximal invariant normal bundle of M . It is proved that if the mean
curvature vector H of M is parallel then αH is closed ([Pit3], Proposition 5(b)).
On the other hand, if M̃ is a Sasakian space form and M is Legendrian then αH is
always closed ([Pit3], Proposition 5(c)) and HF = H. Hence we have:
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Proposition 2.3. Let M be an integral submanifold of the Sasakian manifold M̃ .
If one of the following conditions is satisfied, then FHF is a closed vector field on
M :

(a) M has parallel mean curvature vector.
(b) M̃ is a Sasakian space form and M is Legendrian.

On the other hand, from Theorems 1 and 2, [Pit2], it follows that if M is a
compact integral submanifold with parallel mean curvature vector in a Sasakian
manifold then Hτ = 0, δαH = 0 and using Proposition 2.3 we deduce the following
known result:

Theorem 2.4. Let M be a compact integral submanifold with nontrivial parallel
mean curvature vector in a Sasakian manifold. Then the first Betti number of M
does not vanish.

If X = FHF is a closed vector field on the integral submanifold M then from
dαHF = 0 it follows that the distribution

I : x ∈ M 	→ I(x) = {Y ∈ TxM : g(X, Y ) = 0}
is integrable and then it defines a foliation on M , also denoted by I. A characteri-
zation of integral submanifolds by this foliation is given in the following:

Theorem 2.5. Let M be a compact integral submanifold of a Sasakian manifold.
If M has nowhere zero parallel mean curvature vector then M is locally conformal
to the Riemannian product I × N of an open interval I of the real line with a leaf
N of the foliation I, endowed with the natural metric dt2 × gN .

Proof. We have H = HF and as H is parallel, we obtain ∇̃Y H = −AHY . Now,
applying F to this formula and taking into account the well-known equality

(∇̃XF )Y = g(X, Y )ξ − η(Y )X(8)

we deduce

∇̃Y (FH) = −F AHY(9)

for any Y ∈ X (M). But FH = FHF is tangent to M and then, by using the Gauss
formula, from (9) we deduce that FH is also parallel. Therefore FH is conformal
and from Proposition 2.3 and taking into account Lemma 1 of [RUr1] it follows that
(M, ‖H‖−2g) is locally isometric to (I × N, dt2 × gN ), where gN is the restriction
of the metric g to the leaf N . �
Finally, in the case of maximal integral submanifolds we have:

Proposition 2.6. There are no compact Legendrian submanifolds with Ric > 0 in
a Sasakian space form M̃(c) when c ≤ −3.

Proof. By the Bochner theorem the first de Rham cohomology group of the sub-
manifold M is zero. But FH is closed (Proposition 2.3), hence it is the gradient
of a function f ∈ F(M). On the other hand M is compact and then f has critical
points which are zeroes for H. Now, if {e1, . . . , en} is a local orthonormal frame in
M then by using the Gauss equation we have

n g(h(U, U), H) = Ric(U) +
n∑

i=1

‖h(U, ei)‖2 − c + 3
4

(n − 1)‖U‖2 > 0
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for any nonzero tangent vector U at the point x ∈ M . We deduce that ‖H‖ > 0
for all x ∈ M and our assertion is proved. �

3. Integral submanifolds with special closed conformal
vector field

Let X be a closed and conformal nontrivial vector field defined on the integral
submanifold M of the Sasakian manifold M̃ . This means that X satisfies the
following conditions:

(i) X is a closed vector field.

(ii) g(∇Y X, Z) + g(∇ZX, Y ) =
2

dim M
div X for any Y, Z ∈ X (M).

In this paper, a closed conformal vector field X with the property that

h(X, X) = f FX

for some real-valued function f ∈ F(M), is called special closed conformal vector
field.

It is well-known (see for instance [RUr1], Lemma 1) that, for the closed conformal
vector field X, the foliation I is umbilical.

In the following we shall study the eigenvalues and the eigenvectors of the Wein-
garten operator AFX associated to this kind of vector field.

Proposition 3.1. Let M be an integral submanifold of dimension m ≥ 2 in the
Sasakian manifold M̃ . If X is a special closed and conformal vector field on M
then:

(a) X is an eigenvector of AFX , corresponding to the eigenvalue f .
(b) Y is an eigenvector of AFX , corresponding to the eigenvalue λ if and only if

hF (X, Y ) = λ FX.
(c) Y is an eigenvector of AFX if and only if

∇⊥
Y (FX) =

divX

m
FY + F hν(X, Y ) + g(X, Y )ξ.

(d) Any eigenvectors Y, Z ∈ I, corresponding to different eigenvalues of AFX ,
are orthogonal and CF (X, Y, Z) = 0.

Proof. (a) and (b) follow easily from the second equality in (4), taking into account
the symmetry of hF .

(c) follows from the Weingarten formula by using (b) and from the character-
ization of the closed and conformal vector field X (conditions (i) and (ii) at the
beginning of this section) by the well-known equality

∇Y X =
div X

m
Y , Y ∈ X (M).(10)

If Y, Z are eigenvectors corresponding to the eigenvalues λ1, λ2 respectively, then
by using the Gauss formula we have

g (AFXY, Z) = g (h(Y, Z), FX) = CF (Y, Z, X) = λ1 g(Y, Z),

g (AFXZ, Y ) = g (h(Z, Y ), FX) = CF (Z, Y, X) = λ2 g(Z, Y ),

and because CF is symmetric, we deduce (d). �
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Proposition 3.2. Under the assumptions of Proposition 3.1, if M̃ = M̃(c) is a
Sasakian space form of constant F -sectional curvature c then we have:

(a) AFX has at most three eigenvalues f, λ1, λ2 at any point of M , where λ1, λ2

are the roots of the equation

λ2 − f λ +
Ric(X)
m − 1

− c + 3
4

‖X‖2 = 0.(11)

(b) The eigenvalues λ1, λ2 of AFX are constant on the connected leaves of the
foliation I.

Proof. (a) Let Y ∈ Ix be an eigenvector corresponding to the eigenvalue λ of AFX

at x ∈ M . From the Gauss equation and by using Proposition 3.1(b), we obtain

g(R̃(X, Y )X, Y ) = g(R(X, Y )X, Y ) − λ2‖Y ‖2 + f λ ‖Y ‖2,(12)

where R denotes the curvature tensor of the submanifold M . On the other hand
we have ([RUr1], Lemma 1)

‖X‖2R(U, V )X =
Ric (X)
m − 1

[g(V, X)U − g(U, X)V ](13)

for any U, V ∈ TxM . Then

R(X, Y )X = −Ric(X)
m − 1

Y(14)

and from (6) we deduce

R̃(X, Y )X = −c + 3
4

‖X‖2Y.(15)

Now, from (12), (14), (15) we obtain (11).
The argument for (b) is essentially the same as in [RUr1, proof of Lemma 2]. �

For a simple case of special closed conformal vector field, we have the following
characterization of the function f :

Proposition 3.3. Let X be a nowhere zero parallel vector field on the connected
integral submanifold M, dimM ≥ 2, in a Sasakian space form. If there exists a
real-valued function f such that h(X, X) = f FX, then f is constant on M .

Proof. For any Y, Z ∈ X (M) we have

g (∇Y (h(X, X)), FZ) = g (∇Y (f FX), FZ)

and because X is parallel, we deduce(∇Y CF
)
(X, X, Z) = (Y f) g(X, Z).(16)

But ∇Y CF is symmetric (Proposition 2.2) and then from (16) we deduce

(Y f) g(X, Z) = (Xf) g(Y, Z)

for any Z ∈ X (M), hence (Xf)Y − (Y f)X = 0 for all Y ∈ X (M) and taking into
account X has no zeros and dim M ≥ 2, it follows f = constant. �
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The above results will be applied to integral submanifolds having a special closed
and conformal vector field, namely we shall obtain a characterization of connected
integral submanifolds with nowhere zero parallel vector field X with the property
h(X, X) = f FX in a Sasakian space form M̃(−3). By Proposition 3.3 we have the
following two possibilities for the function f :

Case 1: f ≡ 0. From (12), (14), (15) it follows Ric (X) = 0 and taking into
account (11) we deduce AFX = 0, hence AFX has only 0 as eigenvalue. But it is
known ([RUr1], formula (3)) that the second fundamental form h0 of a leaf N of the
distribution I, corresponding to the vector field X in a m-dimensional submanifold
M of the Riemannian manifold M̃ , is given by

h0(V, W ) = − div X

m‖X‖2
g(V, W ) X(17)

for any V, W ∈ X (N).
Now, taking into account formula (17), we deduce that M is locally isometric to

the Riemannian product Γ × N , where Γ is a geodesic of M̃ (integral curve of X).
Case 2: f = constant �= 0. We have Ric (X) = 0 in this case too and then

from (11) it follows that AFX has two different eigenvalues f and 0. We denote by
m1, m−m1 their multiplicities, respectively and by {e1, . . . , em1 , em1+1, . . . , em} a
local orthonormal basis with the property that e1, . . . , em1 are eigenvectors of f and
em1+1, . . . , em are eigenvectors of 0. We remark that m1 is constant because M is
connected and then we can define two distributions D1, D2 on M , where D1(x) =
eigenspace of f and D2(x) = eigenspace of 0 at x ∈ M . These distributions have
the following properties:

Proposition 3.4. D1 and D2 are orthogonal, parallel and define two totally geo-
desic foliations on M .

Proof. For any V ∈ X (M) we have

(∇h)(V, X, ei) + h(X,∇V ei) = 0, i = m1 + 1, . . . , m

and taking into account the symmetry of (∇h)(V, X, ei) in X, ei and because X is
parallel, we deduce h(X,∇V ei) = 0. But by Proposition 3.1(b), and because ∇V ei

is orthogonal to X, this happens if and only if ∇V ei ∈ D2, hence D2 is parallel
and then, by the Gauss formula, it is totally geodesic. On the other hand, for any
j = 1, . . . , m1 we have

g(∇V ej , ei) = −g(ej ,∇V ei) = 0, i = m1 + 1, . . . , m

and then D1 is also parallel and totally geodesic.
Now, taking into account ∇ is torsionfree, it follows that D1 and D2 are integrable

and then these define two foliations on M . By Proposition 3.1(d), D1 and D2 are
also orthogonal. �

From the above argument we deduce:

Theorem 3.5. Let M be a connected m-dimensional integral submanifold in a
Sasakian space form M̃(−3). If M has a nowhere zero parallel vector field X with
the property h(X, X) = fFX then M is locally isometric to one of the following
manifolds:
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(a) the Riemannian product of a geodesic of M̃(−3) with an (m− 1)-dimensional
integral submanifold of M̃(−3), totally geodesic in M ,

(b) the Riemannian product M1 × M2 of two leaves M1, M2 of the foliations D1

and D2, respectively.

4. Spherical type Legendrian submanifolds

In this section we study the existence of imbeddings of the sphere Sn as a Leg-
endrian submanifold in a (2n + 1)-dimensional Sasakian space form. Because the
answer to this problem is generally negative, we consider a kind of Legendrian sub-
manifold having some topological and geometric properties similar to those of the
sphere.

Proposition 4.1. Let M̃(c) be a (2n + 1)-dimensional Sasakian space form. If n

is even and c < 1 then the sphere Sn cannot be embedded in M̃(c) as a Legendrian
submanifold.

Proof. If Sn is a Legendrian submanifold of M̃(c) then from the Gauss equation
it follows that

g
(
R̃(X, Y )Y, X

)
= 1 − g (h(X, X), h(Y, Y )) + ‖h(X, Y )‖2(18)

for any orthogonal unit vectors X, Y tangent to Sn. Via (6), we deduce
c + 3

4
+ g (h(X, X), h(Y, Y )) = 1 + ‖h(X, Y )‖2.(19)

If {e1, e2, . . . , en} is an orthonormal basis of TxSn, x ∈ Sn, (19) now gives

n2g(H, H) =
n∑

i=1

‖h (ei, ei) ‖2 + 2
∑

1≤i<j≤n

‖h (ei, ej) ‖2 +
1 − c

2
(
n2 − n

)
.(20)

But for n even, every vector field of Sn has at least one zero and then the last
equality is impossible on Sn, for any c < 1. �

R2n+1 admits a standard contact structure (see for instance [Bla1, p. 114] and
with respect to this structure it is a Sasakian space form of constant F -sectional
curvature c = −3. Then from Proposition 4.1 we deduce:

Corollary 4.2. For n even the sphere Sn cannot be embedded as a Legendrian
submanifold of R2n+1(−3).

Concerning the problem on nonimbeddability of spheres in an arbitrary Sasakian
space form, we have the following result:

Proposition 4.3. Let M̃(c) be a (2n + 1)-dimensional Sasakian space form with
n odd. The sphere Sn cannot be embedded in M̃(c) as:

(a) a totally geodesic Legendrian submanifold for c �= 1,
(b) a minimal Legendrian submanifold for c ≤ 1,
(c) a Legendrian submanifold with parallel mean curvature vector for any c and

n > 1,
(d) a totally umbilical Legendrian submanifold for c ≥ 1,
(e) a parallel Legendrian submanifold for any c �= 1.
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Proof. (a) and (b) follow from (19) and (20), respectively. (c) is a consequence of
Theorem 2.4 because the first Betti number of Sn is zero. (d) follows from (19).

(e) By [Pit1, Corollary 1], Sn must be totally geodesic in M̃(c) and then we use
(a). �

Now, we shall introduce and study a class of Legendrian submanifolds whose
topological behaviour is similar to the sphere. From the point of view of the their
geometry, these submanifolds have an expression of the fundamental form which is
the simplest one, except the case of totally geodesic submanifolds. Moreover, these
submanifolds have a remarkable special conformal vector field.

Definition. Let M̃(c) be a Sasakian space form. A ∗-Legendrian submanifold of
M̃(c) is a Legendrian submanifold M whose second fundamental form is given by

h(Y, Z) = α [g(Y, Z)H + g(FY, H)FZ + g(FZ, H)FY ](∗)
for any X, Y ∈ X (M) and for some function α ∈ F(M).

Obviously, any totally geodesic integral submanifold satisfies the condition (∗).
On the other hand, direct computation shows that α = n/(n + 2). We also remark
that any totally umbilical or minimal ∗-Legendrian submanifold is totally geodesic.

In low-dimensional Sasakian space forms we have the following result concerning
the existence of ∗-Legendrian submanifolds.

Proposition 4.4. Any curve orthogonal to the structure vector field of a 3-dimen-
sional Sasakian space form is a ∗-Legendrian submanifold.

Proposition 4.5. Let M be a ∗-Legendrian submanifold of dimension ≥ 2 in a
Sasakian space form. Then either:

(a) M is totally geodesic, or
(b) FH is a nonparallel special closed and conformal vector field on M .

Proof. From (6) we have
[
R̃(Z, V )V

]⊥
= 0 and then, assuming that Z and V are

orthogonal and ‖V ‖ = 1, from the Codazzi equation we deduce

∇⊥
ZH + 2g(FV,∇⊥

ZH)FV = g(FV,∇⊥
V H)FZ + g(FZ,∇⊥

V H)FV(21)

+ g(FZ, H)ξ.

But by Proposition 2.3, FH is closed and then

g(FV,∇⊥
ZH) = g(FZ,∇⊥

V H).(22)

On the other hand, by using (8) and the Gauss formula, we have

g(FV,∇⊥
ZH) = 0.(23)

Now, taking into account (8), (21), (22), (23) and the Weingarten formula, a
straightforward computation says that

∇Z(FH) = −g(FV,∇⊥
V H)Z

hence FH is a conformal vector field. Moreover, from (∗) it follows

h(FH, FH) =
3n

n + 2
‖H‖2H, h(V, W ) =

n

n + 2
g(V, W )H(24)

for any V, W orthogonal to FH. Now, comparing (17) with the second equality in
(24), from (10) it follows that FH is nonparallel if M is nontotally geodesic. �
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From (∗) it follows that on a ∗-Legendrian submanifold the Ricci curvature is
given by

Ric(V ) = (n − 1)
c + 3

4
‖V ‖2 +

(
n

n + 2

)2 [
n‖V ‖2‖H‖2 + 2(n − 2) g2(FV, H)

]
for any V ∈ X (M). From this equality we deduce some sharp relationships between
the Ricci curvature, sectional curvature or scalar curvature and the squared mean
curvature of a ∗-Legendrian submanifold.

Proposition 4.6. Let M be a ∗-Legendrian submanifold of the Sasakian space form
M̃(c). Then:

(a) (n − 1) c+3
4 + n3

(n+2)2 ‖H‖2 ≤ Ric ≤ (n − 1) c+3
4 +

(
n

n+2

)2

(3n − 4)‖H‖2.

(b) sectional curvature ≥ c+3
4 +

(
n

n+2

)2

‖H‖2.

(c) scalar curvature ≥ n(n − 1) c+3
4 +

[
n2

(
n

n+2

)2

+ 2(n − 2)
]
‖H‖2.

Remark. Similar inequalities concerning Ricci curvature (second part of (a) from
the above Proposition) were obtained by B.-Y. Chen, [Che1], [Che2], in the case of
submanifolds of real space forms and for isotropic and Lagrangian submanifolds in
complex space forms. For integral submanifolds of arbitrary dimensions in Sasakian
space forms such an inequality was proved by K. Matsumoto and I. Mihai, [KMi1],
but our result obtained in Proposition 4.6(a), for ∗-Legendrian submanifolds is a
stronger version.

Proposition 4.7. Let M̃(c) be a (2n + 1)-dimensional Sasakian space form.
(a) There are no compact ∗-Legendrian submanifolds with Ric > 0 if c ≤ −3 or

with Ric ≤ 0 if c < −3.
(b) For c > −3 the mean curvature vector field of a compact ∗-Legendrian sub-

manifold of M̃(c) has zeros.

Proof. (a) is obvious by Proposition 2.6.
(b) From Proposition 4.6(a), it follows that Ric > 0 and then H1(M ;R) = 0,

hence the closed vector field FH is the gradient of a function f : M → R. Now, as
M is compact f has at least two critical points and at these points H vanish. �

When the mean curvature vector field of a ∗-Legendrian (or Legendrian) subman-
ifold is nontrivial (the submanifold is nonminimal), it is called a proper ∗-Legendrian
(or Legendrian) submanifold.

Theorem 4.8. Let M̃(c) be a (2n + 1)-dimensional Sasakian space form, n ≥ 2.
For n even and c > −3, any compact and connected proper ∗-Legendrian submani-
fold is conformal to the ordinary sphere Sn.

Proof. By Proposition 4.7(b), FH is a nontrivial closed conformal vector field
with zeros. Then M is diffeomorphic to a sphere ([STs1], Theorem 3). It follows
H1(M ;R) = 0 and as in the proof of Proposition 4.7, we have FH = gradf . Then,
taking into account (10), we deduce

Hessf(Y, Z) =
divFH

n
g(X, Z)
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for any vectors Y, Z tangent to M . Then by Theorem 1, [Tas1], the function divFH
n

has at most two critical points and because M is compact, it has exactly two. Then
the same theorem asserts that M is conformal to an n-dimensional sphere. �
Proposition 4.9. Any compact ∗-Legendrian submanifold with Ric(FH) ≤ 0 in a
Sasakian space form has constant mean curvature.

Proof. If X is a closed conformal vector field then ([RUr1], Lemma 1 and its proof;
see also [Udr1] for a more general form)

Hess‖X‖2(Y, Z) = 2
(

divX

n

)2

g(Y, Z) +
2
n

g (grad(divX), Y ) g(X, Z)(25)

‖X‖2grad(divX) = − n

n − 1
Ric(X)X(26)

for any Y, Z ∈ X (M). But it is well-known that a closed and conformal vector field
X satisfies

grad‖X‖2 =
2divX

n
X(27)

hence the critical points of the function ‖X‖2 : M → R are either zeros of div
X or zeros of X ([Udr1], Lemma 1; see also [RUr1], Lemma 1 for a summary of
the most important properties of manifolds admitting closed and conformal vector
fields). The function 1

2‖X‖2 is sometimes called the energy of the conformal vector
field X (see for example [Udr1]).

Now, let x0 be a critical point of ‖X‖2, where X = FH. By Proposition 4.5, it
is a closed conformal vector field and if Xx0 = 0 then from (25) we deduce

Hessx0‖X‖2(Yx0 , Yx0) = 2
(

divx0X

n

)2

‖Yx0‖2 > 0

for any Yx0 ∈ Tx0M − 0, hence x0 is a minimum.
Assume divx0X = 0. Then Xx0 �= 0 and from (25), (26) we obtain

Hessx0‖X‖2(Yx0 , Yx0) = − 2
n − 1

1
‖Xx0‖2

Ricx0(X)g2(Xx0 , Yx0) ≥ 0

hence x0 is a minimum, too. It follows that ‖FH‖ = ‖H‖ is constant. �
Theorem 4.10. Any compact connected proper ∗-Legendrian submanifold M of
the (2n + 1)-dimensional Sasakian space form M̃(c) with c > −3 is orientable.
Moreover, if n is even then M is simply connected.

Proof. By Proposition 4.6(b), M has positive sectional curvature and then from
the Synge theorem (see for instance [Car1, p. 206]) it follows that for n odd, M is
orientable.

For n even M is orientable by Theorem 4.8 and then it is simply connected by
the same Synge theorem. �

5. Legendrian submanifolds with conformal Maslov form

By Proposition 2.3, if M is a Legendrian submanifold in a Sasakian space form
then FH is a closed vector field on M (or Legendrian variation of M , [Pit2]), hence
the 1-form αH defines a 1-dimensional cohomology class [αH ] ∈ H1(M,R). It is
proved in [Vai1] (the main theorem) that if M is a Legendrian submanifold of the
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cotangent unit sphere bundle S∗M∗ over a flat Riemannian manifold M∗, with the
natural contact structure (see for instance [Bla1], Chap. VII), then the Maslov class
m∗(M) of M can be simply expressed by αH , namely

m∗(M) =
n

π
[αH ].

This result suggest to call Legendrian submanifolds with conformal Maslov form the
Legendrian submanifolds with the property that the vector field FH is conformal.
Their properties and some relations with ∗-Legendrian submanifolds are studied in
this section.

Theorem 5.1. A compact and complete Legendrian submanifold with nontrivial
conformal Maslov form in a Sasakian space form of dimension 2n + 1, n ≥ 3, is
conformal to a ∗-Legendrian submanifold.

Proof. On the Legendrian submanifold M we consider the vector field

Z = F h(X, X) − 3n

n + 2
‖X‖2X, X = FH.

By using (10) and the symmetry of CF we have

g(∇V (Fh(X, X)), W ) = −(∇V CF )(X, X, W ) + 2
div X

n
g(h(V, W ), H)(28)

g(∇V (‖X‖2X), W ) =
div X

n

[
2g(V, X)g(W, X) + ‖X‖2g(V, W )

]
(29)

for any V, W ∈ X (M).
For x ∈ M let B0 = {e0

1, . . . , e
0
n} be an orthonormal basis of TxM . In a normal co-

ordinate neighbourhood of x we can consider a local orthonormal basis {e1, . . . , en},
obtained by parallel displacement of B0 along an integral curve of X. On the other
hand, by using again (10), the symmetry of CF and Proposition 2.2, we obtain

n∑
i=1

(∇ei
CF )(X, X, ei) = −‖H‖2div X

and taking into account (28), (29), we deduce that div Z = 0 and

d αFZ(V, W ) = −g(∇V Z, W ) + g(∇W Z, V ) = 0

that is Z is closed. It follows that Z is harmonic. But M is compact and H is
nontrivial with at least one zero (see the proof of Proposition 4.7), hence the only
harmonic vector field is zero, and then we deduce that X = FH satisfies the first
equality in (24).

Denoting by A0 the Weingarten operator of a leaf N of the foliation I in M and
taking into account (17), we have

g(h(V, W ), FU) = g(AFUV, W ) = g(A0
FUV, W ) = g(h0(V, W ), FU) = 0(30)

for any U, V, W ∈ X (M) orthogonal to FH.
From Proposition 3.1(b) and (d), we deduce

g(h(V, W ), H) = −g(h(V, FH), FW ) = −λ g(V, W )(31)

if V, W are eigenvectors corresponding to the eigenvalue λ of A−H and

g(h(V, W ), H) = −CF (V, W, FH) = −CF (V, FH, W ) = 0(32)
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if V, W correspond to different eigenvalues (Proposition 3.2(a)).
If λ1, λ2 have the multiplicities p, n− p− 1 respectively, then at a point x ∈ M

with Hx �= 0, we can consider an orthonormal basis {e1, . . . , en} of TxM so that
e1, . . . , ep are eigenvectors of λ1, the vectors ep+1, . . . , en−1 correspond to λ2 and
en = FH/‖H‖. From (31), (32) and (24) we deduce

p λ1 + (n − p − 1) λ2 = − 3n

n + 2
‖H‖2

and, via (11), we obtain

λk = −n{(3 − k)(n − 1) − 3p}
(n + 2)(n − 2p − 1)

‖H‖2, k = 1, 2.(33)

From (30), (31) and using Proposition 3.1(b), we also deduce

h(V, W ) = − λ

‖H‖2
g(V, W )H, h(V, FH) =

λ

‖H‖2
g(FH, FH)FV(34)

for any V, W ∈ X (M) corresponding to an eigenvalue λ of A−H . But from (33) we
have that λ1/‖H‖2 and λ2/‖H‖2 are constant on M except the points x ∈ M with
Hx = 0. Thus (34) and the first equality in (24) (satisfied by FH in this case) tell
us that by a conformal change of the metric g of M̃ we have

h(V, W ) = α g(V, W )H, h(V, FH) = −α g(FH, FH)FV(35)

for some nonzero α ∈ R and for any V, W orthogonal to FH.
A simple computation of H using (35) and the first equality in (24) shows that

α = n/(n + 2) and then (∗) is verified at any point of M where H is nontrivial.
But H has only isolated zeros, hence by continuity (∗) is valid on the whole of M
and therefore M is conformal to a ∗-Legendrian submanifold. �

Proposition 5.2. Let M be a compact and complete proper Legendrian submani-
fold with conformal Maslov form in a Sasakian space form. If its first Betti number
is zero then M is conformal to a ∗-Legendrian submanifold.

Proof. Because b1 = 0, the argument used in the proof of Proposition 2.6 shows
that H has zeros. Now, we can apply Theorem 5.1. �

The proof of the following result is similar to the argument used in [RUr1],
Corollary 5.

Proposition 5.3. Let M be a compact and complete proper Legendrian subman-
ifold with conformal Maslov form in the Sasakian space form M̃(c) with c ≥ −3.
The following assertions are equivalent:

(a) Ric(FH) ≥ 0.
(b) M has parallel mean curvature vector or M is conformal to a ∗-Legendrian

submanifold of M̃(c).
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