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Microlocal analysis in the dual of a Colombeau
algebra: generalized wave front sets and

noncharacteristic regularity

Claudia Garetto

Abstract. We introduce different notions of wave front set for the functionals
in the dual of the Colombeau algebra Gc(Ω) providing a way to measure the G
and the G∞- regularity in L(Gc(Ω), C̃). For the smaller family of functionals
having a “basic structure” we obtain a Fourier transform-characterization for
this type of generalized wave front sets and results of noncharacteristic G and
G∞-regularity.
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0. Introduction

The past decade has seen the emergence of a differential-algebraic theory of
generalized functions of Colombeau type [2, 4, 5, 22, 41, 44, 51] that answered a
wealth of questions on solutions to linear and nonlinear partial differential equations
involving nonsmooth coefficients and strongly singular data [3, 6, 38, 43]. Interesting
results were obtained in Lie group invariance of generalized functions [8, 31, 46,
48], nonlinear hyperbolic equations with generalized function data [7, 39, 40, 42,
45, 47, 49, 50], distributional metrics in general relativity [32, 33, 34, 35, 36, 37],
propagation of strong singularities in linear hyperbolic equations with discontinuous
coefficients [27, 28, 38, 43], microlocal analysis, pseudodifferential operators and
Fourier integral operators with nonsmooth symbols [13, 18, 19, 20, 25, 26, 29, 30].

The elements of Colombeau algebras are given by classes of regularizations, i.e.,
sequences of smooth functions, subject to asymptotic conditions with respect to
the regularization parameter ε. Distributions are embedded via convolution with a
mollifier ϕε(x) = ε−nϕ(ε−1x) and smooth functions are embedded as a subalgebra,
where the multiplication agrees with the classical ones. It follows that Colombeau
algebras can be considered as a unifying and well-structured framework for deal-
ing with equations of the type Aε(x,D)uε(x) = fε(x), ε > 0, which arise in the
study of singularly perturbed partial differential equations, in semiclassical analy-
sis, or when regularizing partial differential operators with nonsmooth coefficients
or pseudodifferential operators with irregular symbols [18, 27, 28, 25]. By adopt-
ing the point of view of asymptotic analysis, the regularity of the right-hand side
and of the solution as well as the mapping properties of the operator are described
by means of asymptotic estimates in terms of the parameter ε → 0. This leads
to introducing different scales of growth in the parameter ε in order to measure
different kinds of regularity (e.g., moderate nets, negligible nets, logarithmic and
slow scale nets [18, 29]). A strong motivation for the use of Colombeau techniques
with refined scales comes from important models in acoustic wave propagation, as
illustrated in [1, 5, 21, 43].

Some “key technologies” for the regularity theory of partial differential equa-
tions in the Colombeau context have been developed in [13, 17, 18, 19]. They
consist in a complete theory of generalized pseudodifferential operators (includ-
ing a parametrix-construction for operators with generalized hypoelliptic symbol)
[13, 18] and the application of those pseudodifferential techniques to the microlo-
cal analysis of generalized functions [19]. Particular attention has been given to
the dual of a Colombeau algebra which plays a main role in the kernel theory for
generalized pseudodifferential operators [13, 18]. It is now natural to extend the
pseudodifferential operator’s action to the dual and to shift the microlocal investiga-
tions from the level of generalized functions to the level of C̃-linear functionals. This
will require notions of local and microlocal regularity in the dual of a Colombeau
algebra and suitable ways of measuring such kinds of regularity. Microlocal analysis
is essential for a full understanding of the generalized pseudodifferential operator’s
action and propagation of singularities and has to be developed in the dual context
since the kernels of such operators are not always Colombeau generalized functions
but functionals.

The aim of this paper is to provide tools of microlocal analysis suited to inves-
tigate the dual of a Colombeau algebra. Based on the duality theory developed
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within the Colombeau framework in [14, 15] it extends and adapts the microlocal
results for Colombeau generalized functions stated in [19]. In the usual Colombeau
context a generalized function u ∈ G(Ω) is said to be regular if it belongs to the sub-
algebra G∞(Ω). This allows to set up a regularity theory for G(Ω) which is coherent
with the usual concept of regularity for distributions since G∞(Ω)∩D′(Ω) = C∞(Ω).
In [9, 41] a notion of generalized wave front set is defined for u ∈ G(Ω) as a G∞-
wave front set. It means that the conic regions of “microlocal regularity” we deal
with in the cotangent space are regions of G∞-regularity. Coming now to the dual
L(Gc(Ω), C̃), i.e., the space of all continuous and C̃-linear functionals on Gc(Ω),
where C̃ is the ring of complex generalized numbers, by continuous embedding it
contains both G∞(Ω) and G(Ω). As a consequence, two levels of regularity concern
a functional in L(Gc(Ω), C̃): the regularity with respect to G(Ω) and the regularity
with respect to G∞(Ω). In this paper in order to measure such different kinds of reg-
ularity of T ∈ L(Gc(Ω), C̃) we introduce the notions of G-wave front set (WFG(T ))
and G∞-wave front set (WFG∞(T )).

Inspired by [19] and making use of the theory of pseudodifferential operators with
generalized symbols elaborated in [18, 19], WFG(T ) and WFG∞(T ) are defined as
intersection of suitable regions of generalized nonellipticity of those pseudodiffer-
ential operators which map T in G(Ω) and G∞(Ω) respectively. Core of the paper
is a Fourier transform-characterization of WFG(T ) and WFG∞(T ) as in [12, Theo-
rem 8.56] which consists in the direct investigation of the properties of the Fourier
transform of T after multiplication by a suitable cut-off function. For this purpose
special spaces of generalized functions with rapidly decreasing behavior on a conic
subset of R

n are introduced and among all the functionals of L(Gc(Ω), C̃) we re-
strict to consider those elements which have a “basic structure”. More precisely we
assume T ∈ L(Gc(Ω), C̃) is defined by a net of distributions (Tε)ε which fulfills a
continuity assumption uniform with respect to ε (Definition 1.3) and the equality
Tu = [(Tεuε)ε] ∈ C̃ for all u = [(uε)ε] ∈ Gc(Ω). Even though the G-wave front set
and the G∞-wave front set can be defined on any functional of the dual L(Gc(Ω), C̃),
the main theorems and propositions presented here are proven to be valid for ba-
sic functionals. In addition, all the results of microlocal regularity have a double
version: the G-version and the G∞-version.

We now describe in detail the contents of the sections.
Section 1 provides the needed theoretical background of basic functionals and

refers for topological issues to [14, 15]. After the first definitions and basic prop-
erties, the action of a basic functional on a Colombeau generalized function in two
variables is investigated in Subsection 1.1. Together with some results on the com-
position of a basic functional with an integral operator in Subsection 1.2, it gives
the essential tools for dealing with the convolution of Colombeau generalized func-
tions and functionals in Subsection 1.3. The algebras of generalized functions here
involved are Gc(Ω), G(Ω) and G

S
(Rn) while the functionals are elements of the duals

L(Gc(Ω), C̃), L(G(Ω), C̃) and L(G
S

(Rn), C̃). A regularization of basic functionals is
obtained via convolution with a generalized mollifier. Finally in Subsection 1.4 we
extends the natural notion of Fourier transform on G

S
(Rn) to the dual L(G

S
(Rn), C̃)

and we study the Fourier transform of a basic functional in L(G(Ω), C̃).
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In the recent Colombeau literature a pseudodifferential operator with general-
ized symbol is a C̃-linear continuous operator which maps Gc(Ω) into G(Ω). Sec-
tion 2 extends the action of such generalized pseudodifferential operator to the
duals L(Gc(Ω), C̃) and L(G(Ω), C̃). The extension procedure is obtained via trans-
position and gives interesting mapping properties concerning the subspaces of basic
functionals. A variety of symbols (and amplitudes) is considered: generalized sym-
bols of order m and type (ρ, δ), regular symbols, slow scale symbols, generalized
symbols of order −∞, regular symbols of order −∞ and generalized symbols of
refined order (see [18, 19]). A connection is shown to exist between G-regularity,
generalized symbols of order −∞ and basic functionals as well as between G∞-
regularity, regular symbols of order −∞ and basic functionals. More precisely we
prove that R is an integral operator with kernel in G(Ω × Ω) if and only if it is a
pseudodifferential operator with generalized amplitude of order −∞ and that R is
G-regularizing on the basic functionals of L(G(Ω), C̃), in the sense that RT ∈ G(Ω)
if T ∈ L(G(Ω), C̃) is basic. Analogously R is an integral operator with kernel in
G∞(Ω×Ω) if and only if it is a pseudodifferential operator with regular amplitude
of order −∞ and it is G∞-regularizing on the basic functionals of L(G(Ω), C̃). A
G-pseudolocality property is obtained for properly supported pseudodifferential op-
erators with generalized symbols while a G∞-pseudolocality property is valid when
the symbols are regular. Section 2 ends by adapting the result of G∞-regularity
in [18] for pseudodifferential operators with generalized hypoelliptic symbols to the
dual context of basic functionals.

A G-microlocal analysis and a G∞-microlocal analysis for the dual L(Gc(Ω), C̃)
are settled and developed in Section 3. The additional assumption of basic structure
on the functional T is employed in Subsection 3.1 in proving that the projections
on Ω of WFG(T ) and WFG∞(T ) coincide with the G-singular support and the
G∞-singular support of T respectively. The Fourier transform-characterizations of
WFG(T ) and WFG∞(T ) are the result of the G and the G∞-microlocal investiga-
tions of pseudodifferential operators elaborated throughout Subsection 3.2 in the
dual L(Gc(Ω), C̃). Concerning the notion of slow scale micro-ellipticity here em-
ployed this has been already introduced in [19] while the concept of generalized
microsupport of a generalized symbol in [19, Definition 3.1] is transformed into
G-microsupport and G∞-microsupport (Definition 3.6).

Section 4 concludes the paper with a theorem on noncharacteristic G and G∞-
regularity for pseudodifferential operators with slow scale symbols when they act
on basic functionals of L(Gc(Ω), C̃). This is an extension and adaptation to the
dual L(Gc(Ω), C̃) of Theorem 4.1 in [19].

For the advantage of the reader we recall in the sequel some topological issues
discussed in [14, 15] and we fix some notations.

0.1. Notions of topology and duality theory for spaces of Colombeau
type. A topological investigation into spaces of generalized functions of Colombeau
type has been initiated in [14, 15, 17, 52, 53, 54] setting the foundations of duality
theory in the recent work on topological and locally convex topological C̃-modules
[14, 15, 17]. Without presenting the technical details of this theoretical construc-
tion, we recall that a suitable adaptation of the classical notion of seminorm, called
ultra-pseudo-seminorm [14, Definition 1.8], allows us to characterize a locally convex
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C̃-linear topology as a topology determined by a family of ultra-pseudo-seminorms.
The most common Colombeau algebras can be introduced as C̃-modules of gen-
eralized functions based on a locally convex topological vector space E. Such a
C̃-module GE is the quotient of the set

ME :=
{
(uε)ε ∈ E(0,1] : ∀i ∈ I ∃N ∈ N pi(uε) = O(ε−N ) as ε→ 0

}
(0.1)

of E-moderate nets with respect to the set

NE :=
{
(uε)ε ∈ E(0,1] : ∀i ∈ I ∀q ∈ N pi(uε) = O(εq) as ε→ 0

}
,(0.2)

of E-negligible nets, and it is naturally endowed with a locally convex C̃-linear
topology usually called sharp topology in [41, 52, 53, 54]. Given a family of semi-
norms {pi}i∈I on E, the sharp topology on GE is determined by the ultra-pseudo-
seminorms Pi(u) := e−vpi

(u), where vpi is the valuation

vpi([(uε)ε]) := vpi((uε)ε) := sup{b ∈ R : pi(uε) = O(εb) as ε→ 0}
(see [14, Subsection 3.1] for further explanations). Note that valuations and ultra-
pseudo-seminorms are defined on ME and extended to the factor space GE in a
second time. It is clear that the ring C̃ of complex generalized numbers is an
example of GE-space obtained by choosing E = C. The valuation and ultra-pseudo-
norm on C̃ obtained as above by means of the absolute value on C are denoted by
v

C̃
and | · |e respectively.
As proved in [14, Corollary 1.17] for an arbitrary locally convex topological C̃-

module (G, {Qj}j∈J), a C̃-linear map T : GE → G is continuous if and only if for
all j ∈ J there exists a finite subset I0 ⊆ I and a constant C > 0 such that for all
u ∈ GE

Qj(Tu) ≤ Cmax
i∈I0

Pi(u).

The Colombeau algebras G(Ω), Gc(Ω), G
S

(Rn). The Colombeau algebra G(Ω)
is the C̃-module of GE-type given by E = E(Ω). Equipped with the family of
seminorms pK,i(f) = supx∈K,|α|≤i |∂αf(x)| where K � Ω, the space E(Ω) induces
on G(Ω) a metrizable and complete locally convex C̃-linear topology which is de-
termined by the ultra-pseudo-seminorms PK,i(u) = e−vpK,i

(u). For coherence with
some well-established notations in Colombeau theory we write ME(Ω) = EM (Ω)
and NE(Ω) = N (Ω).

The Colombeau algebra Gc(Ω) of generalized functions with compact support is
topologized by means of a strict inductive limit procedure. More precisely, setting
GK(Ω) := {u ∈ Gc(Ω) : suppu ⊆ K} for K � Ω, Gc(Ω) is the strict inductive limit
of the sequence (GKn(Ω))n∈N, where (Kn)n∈N is an exhausting sequence of compact
subsets of Ω such that Kn ⊆ Kn+1. We recall that the space GK(Ω) is endowed with
the topology induced by GDK′ (Ω) where K ′ is a compact subset containing K in its
interior. In detail we consider on GK(Ω) the ultra-pseudo-seminorms PGK(Ω),n(u) =
e−vK,n(u). Note that the valuation vK,n(u) := vpK′,n(u) is independent of the choice
of K ′ when acts on GK(Ω). As observed in [17, Subsection 1.2.2] the Colombeau
algebra Gc(Ω) is isomorphic to the factor space Ec,M (Ω)/Nc(Ω) where Ec,M (Ω)
and Nc(Ω) are obtained by intersecting EM (Ω) and N (Ω) with ∪K�ΩDK(Ω)(0,1]

respectively.
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The Colombeau algebra G
S

(Rn) of generalized functions based on S (Rn) is
obtained as a GE-module by choosing E = S (Rn). It is a Fréchet C̃-module
according to the topology of the ultra-pseudo-seminorms Ph(u) = e−vph

(u), where
ph(f) = supx∈Rn,|α|≤h(1 + |x|)h|∂αf(x)|, f ∈ S (Rn), h ∈ N. In the course of the
paper we will use the notations ES (Rn) and NS (Rn) for the spaces of nets MS (Rn)

and NS (Rn) respectively.

The regular Colombeau algebras G∞(Ω), G∞
c (Ω), G∞

S
(Rn). Given a locally

convex topological space (E, {pi}i∈I) the C̃-module G∞
E of regular generalized func-

tions based on E is defined as the quotient M∞
E /NE , where

M∞
E :=

{
(uε)ε ∈ E(0,1] : ∃N ∈ N ∀i ∈ I pi(uε) = O(ε−N ) as ε→ 0

}
,

the set of E-regular nets. The moderateness properties of M∞
E allows to define the

valuation

v∞
E ((uε)ε) := sup{b ∈ R : ∀i ∈ I pi(uε) = O(εb) as ε→ 0}

which extends to G∞
E and leads to the ultra-pseudo-norm P∞

E (u) := e−v∞
E (u). This

topological model is employed in endowing the Colombeau algebras G∞(Ω), G∞
c (Ω),

G∞
S

(Rn) and G∞
τ (Rn) with a locally convex C̃-linear topology.

We begin by recalling that G∞(Ω) is the subalgebra of all elements u of G(Ω)
having a representative (uε)ε belonging to the set

E∞
M (Ω) :=

{
(uε)ε ∈ E [Ω] : ∀K � Ω ∃N ∈ N ∀α ∈ N

n

sup
x∈K

|∂αuε(x)| = O(ε−N ) as ε→ 0
}
.

G∞(Ω) can be seen as the intersection ∩K�ΩG∞(K), where G∞(K) is the space
of all u ∈ G(Ω) having a representative (uε)ε satisfying the condition: ∃N ∈ N

∀α ∈ N
n, supx∈K |∂αuε(x)| = O(ε−N ). The ultra-pseudo-seminorms

PG∞(K)(u) := e−vG∞(K) , where

vG∞(K) := sup
{
b ∈ R : ∀α ∈ N

n sup
x∈K

|∂αuε(x)| = O(εb)
}
,

equip G∞(Ω) with the topological structure of a Fréchet C̃-module.
The algebra G∞

c (Ω) is the intersection of G∞(Ω) with Gc(Ω). On

G∞
K (Ω) := {u ∈ G∞(Ω) : suppu ⊆ K � Ω}

we define the ultra-pseudo-norm PG∞
K (Ω)(u) = e−v∞

K (u) where v∞
K (u) := v∞

DK′ (Ω)(u)
and K ′ is any compact set containing K in its interior. At this point, given an
exhausting sequence (Kn)n of compact subsets of Ω, the strict inductive limit pro-
cedure determines a complete and separated locally convex C̃-linear topology on
G∞

c (Ω) = ∪nG∞
Kn

(Ω). Clearly G∞
c (Ω) is isomorphic to E∞

c,M (Ω)/Nc(Ω), where

E∞
c,M (Ω) := E∞

M (Ω) ∩
(
∪K�ΩDK(Ω)(0,1]

)
.
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Finally G∞
S

(Rn) is the C̃-module of regular generalized functions based on E =
S (Rn). In coherence with the notations already in use we set M∞

S (Ω) = E∞
S (Ω)

for any open subset Ω of R
n.

The Colombeau algebras of tempered generalized functions Gτ (Rn) and
G∞

τ (Rn). The Colombeau algebra of tempered generalized functions Gτ (Rn) is de-
fined as Eτ (Rn)/Nτ (Rn), where Eτ (Rn) is the space{

(uε)ε ∈ OM(Rn)(0,1] : ∀α ∈ N
n ∃N ∈ N

sup
x∈Rn

(1 + |x|)−N |∂αuε(x)| = O(ε−N ) as ε→ 0
}

of τ -moderate nets and Nτ (Rn) is the space{
(uε)ε ∈ OM(Rn)(0,1] : ∀α ∈ N

n ∃N ∈ N ∀q ∈ N

sup
x∈Rn

(1 + |x|)−N |∂αuε(x)| = O(εq) as ε→ 0
}

of τ -negligible nets. The subalgebra G∞
τ (Rn) of regular and tempered generalized

functions is the quotient E∞
τ (Rn)/Nτ (Rn), where E∞

τ (Rn) is the set of all (uε)ε ∈
OM(Rn)(0,1] satisfying the following condition:

∃N ∈ N ∀α ∈ N
n ∃M ∈ N sup

x∈Rn

(1 + |x|)−M |∂αuε(x)| = O(ε−N ).

The topological duals L(Gc(Ω), C̃), L(Gc(Ω), C̃), L(G
S

(Rn), C̃). Throughout
the paper the topological duals L(Gc(Ω), C̃), L(Gc(Ω), C̃), L(G

S
(Rn), C̃) are en-

dowed with the corresponding topologies of uniform convergence on bounded sub-
sets. These topologies, denoted by βb(L(Gc(Ω), C̃),Gc(Ω)), βb(L(G(Ω), C̃),G(Ω))
and βb(L(G

S
(Rn), C̃),G

S
(Rn)), are determined by the ultra-pseudo-seminorms

PB(T ) := sup
u∈B

|Tu|e

with B varying in the family of all bounded subsets of Gc(Ω), G(Ω) and G
S

(Rn)
respectively. As in the classical functional analysis a subset B of a locally convex
topological C̃-module (G, {Pi}i∈I) is bounded if and only if every ultra-pseudo-
seminorm Pi is bounded on B, i.e., supu∈B Pi(u) <∞. With respect to the topolo-
gies collected in this subsection and the topology on Gτ (Rn) introduced in [14,
Example 3.9] we have that the following chains of inclusions

G∞(Ω) ⊆ G(Ω) ⊆ L(Gc(Ω), C̃),

G∞
c (Ω) ⊆ Gc(Ω) ⊆ L(G(Ω), C̃),

G∞
S

(Rn) ⊆ G
S

(Rn) ⊆ Gτ (Rn) ⊆ L(G
S

(Rn), C̃)

are continuous [15, Theorems 3.1, 3.8]. Moreover Ω → L(Gc(Ω), C̃) is a sheaf and
the dual L(G(Ω), C̃) can be identified with the set of functionals in L(Gc(Ω), C̃)
having compact support [15, Theorem 1.2].
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1. Duality theory in the Colombeau context: basic maps and
functionals

This section is devoted to maps and functionals defined on C̃-modules of Colom-
beau type. Before considering topics more related to the duals of the Colombeau
algebras Gc(Ω), G(Ω) and G

S
(Rn) in Subsections 1.1, 1.2, 1.3 and 1.4 we focus our

attention on the set L(GE ,GF ) of all C̃-linear and continuous maps from GE to GF .
Among all the elements of L(GE ,GF ) we study those elements whose action has a
“basic structure” at the level of representatives.

Definition 1.1. Let (E, {pi}i∈I) and (F, {qj}j∈J) be locally convex topological
vector spaces. We say that T ∈ L(GE ,GF ) is basic if there exists a net (Tε)ε of
continuous linear maps from E to F fulfilling the continuity property

(1.1) ∀j ∈ J ∃I0 ⊆ I finite ∃N ∈ N ∃η ∈ (0, 1]∀u ∈ E ∀ε ∈ (0, η]

qj(Tεu) ≤ ε−N max
i∈I0

pi(u),

such that Tu = [(Tε(uε))ε] for all u ∈ GE .

Note that the equality Tu = [(Tε(uε))ε] holds for all the representatives of (uε)ε

since (1.1) entails (Tεvε)ε ∈ MF if (vε)ε ∈ ME and (Tεvε)ε ∈ NF if (vε)ε ∈ NE .

Remark 1.2.
(i) If the net (T ′

ε)ε satisfies the condition

(1.2) ∀j ∈ J ∃I0 ⊆ I finite ∀q ∈ N ∃η ∈ (0, 1]∀u ∈ E ∀ε ∈ (0, η]

qj(T ′
εu) ≤ εq max

i∈I0
pi(u),

then (Tε + T ′
ε)ε defines the map T , in the sense that for all u ∈ GE ,

Tu = [(Tεuε)ε] = [((Tε + T ′
ε)(uε))ε] in GF .

Inspired by the established language of moderateness and negligibility in Co-
lombeau theory we define the space

M(E,F ) :=
{
(Tε)ε ∈ L(E,F )(0,1] : (Tε)ε satisfies (1.1)

}
of moderate nets and the space

N (E,F ) :=
{
(Tε)ε ∈ L(E,F )(0,1] : (Tε)ε satisfies (1.2)

}
of negligible nets. By the previous considerations it follows that the classes of
M(E,F )/N (E,F ) generate maps in L(GE ,GF ) which are basic. One easily
proves that if E is a normed space with dimE <∞ then the space of all basic
maps in L(GE ,GF ) can be identified with the quotient M(E,F )/N (E,F ).
Moreover by Proposition 3.22 in [14] it follows that for any normed space E
the ultra-pseudo-normed C̃-module GE′ is isomorphic to the set of all basic
functionals in L(GE , C̃).

(ii) Any continuous linear map t : E → F produces a natural example of a basic
element of L(GE ,GF ). Indeed, as observed in [14, Remark 3.14], it is sufficient
to take the constant net (t)ε and the corresponding map

T : GE → GF : u→ [(tuε)ε].
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(iii) A certain regularity of the basic operator T ∈ L(GE ,GF ) can be already
viewed at the level of the net (Tε)ε. Indeed, if we assume that (Tε)ε belongs
to the subset M∞(E,F ) of M(E,F ) obtained by replacing the string

∀j ∈ J ∃I0 ⊆ I finite ∃N ∈ N

with

∃N ∈ N ∀j ∈ J ∃I0 ⊆ I finite

in (1.1), we have that T maps G∞
E into G∞

F .

Definition 1.3. Let E = span(∪γ∈Γιγ(Eγ)), ιγ : Eγ → E be the inductive limit
of the locally convex topological vector spaces (Eγ , {pi,γ}i∈Iγ )γ∈Γ and F be a lo-
cally convex topological vector space. Let G = C̃-span(∪γ∈Γιγ(GEγ )) ⊆ GE be
the inductive limit of the locally convex topological C̃-modules (GEγ )γ∈Γ. We say
that T ∈ L(G,GF ) is basic if there exists a net (Tε)ε ∈ L(E,F )(0,1] fulfilling the
continuity property

(1.3) ∀γ ∈ Γ∀j ∈ J ∃I0,γ ⊆ Iγ finite ∃N ∈ N ∃η ∈ (0, 1]∀u ∈ Eγ ∀ε ∈ (0, η]

qj(Tειγ(u)) ≤ ε−N max
i∈I0,γ

pi,γ(u),

such that Tu = [(Tε(uε))ε] for all u ∈ G.

It is clear that (Tε)ε ∈ L(E,F )(0,1] defines a basic map T ∈ L(G,GF ) if and only
if (Tε ◦ ιγ)ε defines a basic map Tγ ∈ L(GEγ ,GF ) such that T ◦ ιγ = Tγ for all γ ∈ Γ.
We recall that nets (Tε)ε which define basic maps as in Definitions 1.1 and 1.3 were
already considered in [10, 11] with slightly more general notions of moderateness
and different choices of notations and language.

Particular choices of E and F in the lines above yield the following statements:

(i) A functional T ∈ L(G(Ω), C̃) is basic if it is of the form Tu = [(Tεuε)ε], where
(Tε)ε is a net of distributions in E ′(Ω) satisfying the following condition:

∃K � Ω ∃j ∈ N ∃N ∈ N ∃η ∈ (0, 1]∀u ∈ C∞(Ω)∀ε ∈ (0, η]

|Tε(u)| ≤ ε−N sup
x∈K,|α|≤j

|∂αu(x)|.

(ii) A functional T ∈ L(Gc(Ω), C̃) is basic if it is of the form Tu = [(Tεuε)ε], where
(Tε)ε is a net of distributions in D′(Ω) satisfying the following condition:

∀K � Ω ∃j ∈ N ∃N ∈ N ∃η ∈ (0, 1]∀u ∈ DK(Ω)∀ε ∈ (0, η]

|Tε(u)| ≤ ε−N sup
x∈K,|α|≤j

|∂αu(x)|.

Note that in analogy with distribution theory there exists a natural multiplication
between functionals in L(Gc(Ω), C̃) and generalized functions in G(Ω) given by

uT (v) = T (uv), v ∈ Gc(Ω).

It provides a C̃-linear operator from L(Gc(Ω), C̃) to L(Gc(Ω), C̃) which maps basic
functionals into basic functionals. Moreover, if u ∈ Gc(Ω) then uT ∈ L(G(Ω), C̃) ⊆
L(G(Rn), C̃).
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1.1. Action of basic functionals on generalized functions in two variables.
In this subsection we study the action of a basic functional T belonging to the duals
L(Gc(Ω), C̃), L(G(Ω), C̃) or L(G

S
(Rn), C̃) on a generalized function u(x, y) in two

variables. Throughout the paper π1 : Ω′ × Ω → Ω′ and π2 : Ω′ × Ω → Ω are
the projections of Ω′ × Ω on Ω′ and Ω respectively. We recall that V is a proper
subset of Ω′ × Ω if for all K ′ � Ω′ and K � Ω we have π2(V ∩ π−1

1 (K ′)) � Ω and
π1(V ∩ π−1

2 (K)) � Ω′.

Proposition 1.4. Let Ω′ be an open subset of R
n′

.
Let T be a basic functional of L(Gc(Ω), C̃).
(i) If u ∈ Gc(Ω′ ×Ω) then T (u(x, ·)) := [(Tε(uε(x, ·)))ε] is a well-defined element

of Gc(Ω′).
(ii) If u ∈ G∞

c (Ω′ × Ω) then T (u(x, ·)) ∈ G∞
c (Ω′).

(iii) If u ∈ G(Ω′×Ω) and suppu is a proper subset of Ω′×Ω then T (u(x, ·)) defines
a generalized function in G(Ω′).

(iv) G can be replaced by G∞ in (iii).

Let T be a basic functional of L(G(Ω), C̃).
(v) If u ∈ G(Ω′ × Ω) then T (u(x, ·)) ∈ G(Ω′).
(vi) G can be replaced by G∞ in (v).
(vii) If u ∈ G(Ω′ × Ω) and suppu is a proper subset of Ω′ × Ω then

T (u(x, ·)) ∈ Gc(Ω′).

(viii) G can be replaced by G∞ in (vii).

Finally, let T be a basic functional of L(G
S

(Rn), C̃).

(ix) If u ∈ Gτ (R2n) has a representative (uε)ε satisfying the condition

(1.4) ∀α ∈ N
n ∀s ∈ N ∃N ∈ N

sup
x∈Rn

(1 + |x|)−N sup
y∈Rn,|β|≤s

(1 + |y|)s|∂α
x ∂

β
y uε(x, y)| = O(ε−N ) as ε→ 0,

then T (u(x, ·)) is a well-defined element of Gτ (Rn).
(x) If (uε)ε fulfills the property

(1.5) ∃M ∈ N ∀α ∈ N
n ∀s ∈ N ∃N ∈ N

sup
x∈Rn

(1 + |x|)−N sup
y∈Rn,|β|≤s

(1 + |y|)s|∂α
x ∂

β
y uε(x, y)| = O(ε−M ) as ε→ 0,

then T (u(x, ·)) ∈ G∞
τ (Rn).

Proof. For the sake of brevity we give a detailed proof of the first and the fourth
assertions only. We recall that the final statements (ix) and (x) are easily obtained
by employing the moderateness conditions which characterize the objects involved
there and the point value theory for tempered generalized functions (cf. [23, Section
1.2.3]).

(i)–(ii) Let u ∈ Gc(Ω′×Ω) and (uε)ε be a representative of u such that suppuε ⊆
K1 ×K2, K1 � Ω′, K2 � Ω for all ε ∈ (0, 1]. By definition of basic functional there
exists a net (Tε)ε ∈ D′(Ω)(0,1], N ∈ N, j ∈ N and η ∈ (0, 1] such that

|Tε(uε(x, ·))| ≤ ε−N sup
y∈K2,|β|≤j

|∂β
y uε(x, y)|(1.6)
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for all x ∈ Ω′ and for all ε ∈ (0, η]. From (1.6) it follows immediately that
(uε)ε ∈ Ec,M (Ω′ ×Ω) implies (Tε(uε(x, ·)))ε ∈ Ec,M (Ω′), (uε)ε ∈ Nc(Ω′ ×Ω) implies
(Tε(uε(x, ·)))ε ∈ Nc(Ω′) and (uε)ε ∈ E∞

c,M (Ω′×Ω) implies (Tε(uε(x, ·)))ε ∈ E∞
c,M (Ω′).

To complete the proof that T (u(x, ·)) is a well-defined generalized function we still
have to prove that it does not depend on the choice of the net (Tε)ε which deter-
mines T . Let (T ′

ε)ε ∈ D′(Ω)(0,1] be another net defining T and x̃ a generalized point
of Ω̃′

c. Since u(x̃, ·) := [(uε(xε, ·))ε] belongs to Gc(Ω) we have that

((Tε − T ′
ε)(uε(xε, ·)))ε ∈ N ,

i.e., the generalized functions [(Tε(uε(x, ·)))ε] ∈ Gc(Ω′) and [(T ′
ε(uε(x, ·)))ε] ∈ Gc(Ω′)

have the same point values. By point value theory this means ((Tε−T ′
ε)(uε(x, ·)))ε ∈

Nc(Ω′).
(iii)–(iv) Let us now assume that u ∈ G(Ω′ × Ω) and that suppu is a proper

subset of Ω′ × Ω. Let χ(x, y) be a proper smooth function on Ω′ × Ω identically
1 in a neighborhood of suppu. Clearly we can write χu = u in G(Ω′ × Ω). By
the previous reasoning we have that for any ψ ∈ C∞

c (Ω′) the generalized function
ψ(x)T (u(x, ·)) = [(ψ(x)Tε(χ(x, ·)uε(x, ·)))ε] belongs to Gc(Ω′) if u ∈ G(Ω′ × Ω)
and to G∞

c (Ω′) if u ∈ G∞(Ω′ × Ω). Finally, let (Ω′
λ)λ∈Λ be a locally finite open

covering of Ω′ with Ω′
λ � Ω′ and (ψλ)λ∈Λ be a family of cut-off functions such

that ψλ = 1 in a neighborhood of π2(suppu ∩ π−1
1 (Ω′

λ)). One can easily see
that ψλ(x)T (u(x, ·))|Ω′

λ
∈ G(Ω′

λ) determines a coherent family of generalized func-
tions for λ varying in Λ and therefore, by the sheaf properties of G(Ω′) it de-
fines a generalized function T (u(x, ·)) in G(Ω′) when u ∈ G(Ω′ × Ω). Analogously
T (u(x, ·)) ∈ G∞(Ω′) if u ∈ G∞(Ω′ × Ω). We use the notation T (u(x, ·)) since the
definition of this generalized function does not depend on (Ω′

λ)λ∈Λ and (ψλ)λ∈Λ. �

Remark 1.5. By means of the continuous map

ν : G
S

(Rn) → G(Rn) : (uε)ε + NS (Rn) → (uε)ε + N (Rn)

the dual L(G(Rn), C̃) can be embedded into L(G
S

(Rn), C̃) as follows:

L(G(Rn), C̃) → L(G
S

(Rn), C̃)(1.7)

T �→ (u→ T (ν(u))).

Indeed, by composition of continuous maps, u → T (ν(u)) belongs to the dual
L(G

S
(Rn), C̃) and, taking a cut-off function χ ∈ C∞

c (Rn) identically 1 in a neigh-
borhood of suppT , if u → T (ν(u)) is the null functional in L(G

S
(Rn), C̃) we get

that T (u) = T (χu) = T (ν(χu)) = 0 in C̃ for all u ∈ G(Rn). This shows that the
map in (1.7) is injective. Obviously all the previous considerations hold for basic
functionals.

Before stating the next proposition we recall that every tempered generalized
function can be viewed as an element of G(Rn) via the map

ντ : Gτ (Rn) → G(Rn)

(uε)ε + Nτ (Rn) �→ (uε)ε + N (Rn).

Proposition 1.6. Let T be a basic functional of L(G(Rn), C̃).
(i) If u ∈ Gτ (R2n) then T ((ντu)(ξ, ·)) ∈ Gτ (Rn).
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(ii) If u ∈ G∞
τ (R2n) then T ((ντu)(ξ, ·)) ∈ G∞

τ (Rn).
(iii) If u ∈ Gτ (R2n) has a representative (uε)ε fulfilling the condition

∀α, β, γ ∈ N
n ∃N ∈ N sup

y∈Rn,ξ∈Rn

(1 + |y|)−N |ξβ∂α
ξ ∂

γ
yuε(ξ, y)| = O(ε−N ),(1.8)

then T ((ντu)(ξ, ·)) ∈ G
S

(Rn).
(iv) If u ∈ Gτ (R2n) has a representative (uε)ε fulfilling the condition

(1.9) ∃M ∈ N ∀α, β, γ ∈ N
n ∃N ∈ N

sup
y∈Rn,ξ∈Rn

(1 + |y|)−N |ξβ∂α
ξ ∂

γ
yuε(ξ, y)| = O(ε−M ),

then T ((ντu)(ξ, ·)) ∈ G∞
S

(Rn).

Proof. We begin by observing that the generalized function T ((ντu)(ξ, ·)) is de-
fined by the net (Sε(ξ))ε := (Tε(uε(ξ, ·)))ε, where (uε)ε ∈ Eτ (R2n) and (Tε)ε satisfies
the following condition:

(1.10) ∃K � R
n ∃j ∈ N ∃N ∈ N ∃η ∈ (0, 1]∀u ∈ C∞(Rn)∀ε ∈ (0, η]

|Tε(u)| ≤ ε−N sup
y∈K,|β|≤j

|∂βu(y)|.

Consequently if (uε)ε ∈ Eτ (R2n) then for all α ∈ N
n there exists N ′ ∈ N such that

for all ε small enough the estimate

|∂αSε(ξ)| = |Tε(∂α
ξ uε(ξ, y))| ≤ ε−N sup

y∈K,|β|≤j

|∂α
ξ ∂

β
y uε(ξ, y)| ≤ cε−N−N ′

(1 + |ξ|)N ′

holds. This proves that (Sε)ε ∈ Eτ (Rn). In an analogous way we obtain that (Sε)ε ∈
Nτ (Rn) when (uε)ε ∈ Nτ (R2n) and that (Sε)ε ∈ E∞

τ (Rn) when (uε)ε ∈ E∞
τ (R2n).

Note that for all ξ ∈ R̃n, u(ξ̃, ·) := (uε(ξε, ·))ε + N (Rn) ∈ G(Rn). Therefore, for
(Tε)ε and (T ′

ε)ε different nets defining T and (uε)ε ∈ Eτ (R2n) one has that

(Sε(ξε) − S′
ε(ξε)) := (Tε(uε(ξε, ·)) − T ′

ε(uε(ξε, ·)))ε

is negligible. Since ξ̃ is arbitrary this implies that (Sε − S′
ε)ε ∈ Nτ (Rn) and com-

pletes the proof of (i) and (ii).
Let us assume that u ∈ Gτ (R2n) has a representative fulfilling (1.8). Then the

corresponding net (Sε)ε, which is already known to belong to Eτ (Rn), satisfies the
following estimate:

sup
ξ∈Rn

|ξβ∂αSε(ξ)| = sup
ξ∈Rn

|ξβTε(∂α
ξ uε(ξ, y))|

≤ ε−N sup
ξ∈Rn

sup
y∈K,|γ|≤j

|ξβ∂α
ξ ∂

γ
yuε(ξ, y)|

≤ ε−N−N ′
sup
y∈K

(1 + |y|)N ′
,

uniformly for small values of ε. This means that T ((ντu)(ξ, ·)) ∈ G
S

(Rn).
Finally, when (uε)ε satisfies (1.9) then

sup
ξ∈Rn

|ξβ∂αSε(ξ)| ≤ ε−N sup
ξ∈Rn

sup
y∈K,|γ|≤j

|ξβ∂α
ξ ∂

γ
yuε(ξ, y)| ≤ ε−N−M sup

y∈K
(1 + |y|)N ′

,
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for some N,N ′,M ∈ N. Since N and M do not depend on α, β we have that
(Sε)ε ∈ E∞

S (Rn) and therefore T ((ντu)(ξ, ·)) ∈ G∞
S

(Rn). �

Remark 1.7. As a straightforward application of the previous proposition we con-
sider the action of a basic functional T ∈ L(G(Rn), C̃) on e−iyξ ∈ G∞

τ (R2n). Omit-
ting the notation ντ for simplicity, we are allowed to claim that

T (e−i·ξ) := (Tε(e−i·ξ))ε + Nτ (Rn)

is a generalized function in G∞
τ (Rn).

1.2. Composition of a basic functional with an integral operator. We now
recall the results on integral operators elaborated in [18, Proposition 2.14]. They
are needed in stating and proving Proposition 1.9.

Proposition 1.8. Consider the expression∫
Ω′
k(x, y)u(x) dx.(1.11)

(i) If k ∈ G(Ω′ × Ω) then (1.11) defines a C̃-linear continuous map

u→
∫

Ω′
k(x, y)u(x) dx

from Gc(Ω′) into G(Ω).
(ii) If k ∈ Gc(Ω′ × Ω) then (1.11) defines a C̃-linear continuous map from G(Ω′)

into Gc(Ω).
(iii) If k ∈ G(Ω′ × Ω) has proper support then the integral operator determined by

(1.11) maps Gc(Ω′) continuously into Gc(Ω) and can be uniquely extended to
a C̃-linear continuous map from G(Ω′) into G(Ω).

Proposition 1.9. Let T be a basic functional of L(G(Ω), C̃).
(i) If k ∈ G(Ω × Ω) and u ∈ Gc(Ω) then

T

(∫
Ω

k(x, y)u(x) dx
)

=
∫

Ω

T (k(x, ·))u(x) dx.(1.12)

(ii) If supp k is proper then (1.12) holds for all u ∈ G(Ω).

Let T be a basic functional of L(Gc(Ω), C̃).
(iii) If k ∈ Gc(Ω × Ω) then (1.12) holds for all u ∈ G(Ω).
(iv) If k ∈ G(Ω × Ω) has proper support then (1.12) holds for all u ∈ Gc(Ω).

Proof. (i) By Proposition 1.8(i) we know that
∫
Ω
k(x, y)u(x) dx ∈ G(Ω) and from

Proposition 1.4(v) we have that T (k(x, ·)) ∈ G(Ω). Therefore it has a meaning the
action of T on

∫
Ω
k(x, y)u(x) dx and the integral at the right-hand side of (1.12).

The equality is clear since at the level of representatives we can write

Tε

(∫
Ω

kε(x, y)uε(x) dx
)

=
∫

Ω

Tε(kε(x, ·))uε(x) dx.

(ii) If supp k is a proper subset of Ω × Ω then Proposition 1.4(vii) says that
T (u(x, ·)) ∈ Gc(Ω) and from Proposition 1.8(iii) it follows that

∫
Ω
k(x, y)u(x) dx

defines a generalized function in G(Ω) when u ∈ G(Ω). Let us take a cut-off function
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ψ identically 1 in a neighborhood of suppT with suppψ ⊆ V ⊆ V � Ω and a cut-
off function ϕ identically 1 in a neighborhood of π1(π−1

2 (V ) ∩ supp k). By the first
assertion we obtain that

T

(∫
Ω

k(x, y)u(x) dx
)

= T

(
ψ(y)

∫
Ω

k(x, y)u(x) dx
)

= T

(
ψ(y)

∫
Ω

k(x, y)ϕ(x)u(x) dx
)

=
∫

Ω

T (k(x, ·)ψ(·))ϕ(x)u(x) dx

=
∫

Ω

T (k(x, ·))u(x) dx.

We leave it to the reader to prove the remaining assertions (iii) and (iv) by
arguing at the level of representatives and employing the needed statements of
Propositions 1.4 and 1.8. �

1.3. Convolution of Colombeau generalized functions and functionals.
We proceed by studying the convolution between a Colombeau generalized function
and a functional in the dual of the algebras Gc(Ω), G(Ω) and G

S
(Rn) or more in

general the convolution between two functionals. As in distribution theory these
kinds of convolutions are possible under suitable assumptions on the supports of
the generalized objects involved. Concerning the functionals we will deal with, a
main role is played by the additional hypothesis of “basic structure”.

We begin by considering the Colombeau generalized function in two variables
u(x− y). One can easily prove that:

(i) If u ∈ G(Rn) then u(x− y) ∈ G(R2n).
(ii) If u ∈ Gc(Rn) then u(x− y) ∈ G(R2n) and its support is proper.
(iii) (i) and (ii) hold with G∞ in place of G.
(iv) If u ∈ G

S
(Rn) then u(x − y) ∈ Gτ (R2n) and has a representative satisfying

condition (1.4).
(v) If u ∈ G∞

S
(Rn) then u(x − y) ∈ G∞

τ (R2n) and has a representative satisfying
condition (1.5).

Definition 1.10. Let T be a basic functional in L(Gc(Rn), C̃) and u ∈ Gc(Rn).
The convolution u ∗ T is the generalized function in G(Rn) defined by

u ∗ T (x) = T (u(x− ·)).(1.13)

Definition 1.10 is the combination of assertion (ii) above with Proposition 1.4(iii).
Formula (1.13) allows to define the convolution of u ∈ G(Rn) with a basic functional
T ∈ L(G(Rn), C̃) (Proposition 1.4(v)) and the convolution of u ∈ G

S
(Rn) with a

basic functional T ∈ L(G
S

(Rn), C̃). In this last case we obtain, by the assertion
(iv) above and Proposition 1.4(ix), that u ∗ T is a generalized function in Gτ (Rn).
Analogously, by Proposition 1.4(x) it follows that u ∗ T ∈ G∞

τ (Rn) when u ∈
G∞
S

(Rn).

Proposition 1.11. If T is a basic functional in L(G(Rn), C̃) and u ∈ G
S

(Rn) then
u ∗ T ∈ G

S
(Rn).
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Proof. Since L(G(Rn), C̃) ⊆ L(G
S

(Rn), C̃) we already know that u ∗ T ∈ Gτ (Rn).
If we prove that this tempered generalized function has a representative in ES (Rn)
then the proof is complete. By definition of T there exists a net (Tε)ε ∈ E ′(Rn)(0,1],
a compact subset K of R

n and a natural number j such that for some N ∈ N for
all small enough ε and for all f ∈ C∞(Rn),

|Tε(f)| ≤ ε−N sup
y∈K,|γ|≤j

|∂γf(y)|.(1.14)

Combining (1.14) with the moderateness properties of (uε)ε ∈ ES (Rn) we have
that (Tε(uε(x− ·)))ε is a net of functions in S (Rn) such that

sup
x∈Rn

|xβ∂α
xTε(uε(x− ·))| = sup

x∈Rn

|Tε(xβ∂α
x uε(x− y))|(1.15)

≤ ε−N sup
x∈Rn,y∈K,|γ|≤j

|xβ∂α
x ∂

γ
yuε(x− y)|

≤ ε−N−N ′
sup
y∈K

(1 + |y|)|β|,

where N ′ depends on α, β ∈ N
n and j ∈ N and the parameter ε is varying in a

sufficiently small interval (0, η]. �

In the next proposition we collect some continuity results. We add a subindex
“b” in the notation of the duals in order to denote the subspaces of basic func-
tionals. Lb(Gc(Rn), C̃), Lb(G(Rn), C̃) and Lb(G

S
(Rn), C̃) are equipped with the

corresponding topologies of uniform convergence on bounded subsets.

Proposition 1.12. The C̃-bilinear map

(u, T ) → u ∗ T
(i) from Gc(Rn) × Lb(Gc(Rn), C̃) into G(Rn),
(ii) from G(Rn) × Lb(G(Rn), C̃) into G(Rn),
(iii) from G

S
(Rn) × Lb(G(Rn), C̃) into G

S
(Rn),

(iv) from G∞
c (Rn) × Lb(Gc(Rn), C̃) into G∞(Rn),

(v) from G∞(Rn) × Lb(G(Rn), C̃) into G∞(Rn),
(vi) from G∞

S
(Rn) × Lb(G(Rn), C̃) into G∞

S
(Rn),

is separately continuous.

Proof. For the sake of brevity we give the proof of the first and the third assertion
only.

(i) We want to prove that the map

Gc(Rn) → G(Rn)(1.16)
u �→ u ∗ T

is continuous for fixed T ∈ L(Gc(Rn), C̃) basic and that the map

Lb(Gc(Rn), C̃) → G(Rn)(1.17)
T �→ u ∗ T

is continuous for fixed u ∈ Gc(Rn).
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We recall that the action of T is given by a net (Tε)ε ∈ D′(Rn)(0,1] fulfilling the
following condition:

(1.18) ∀K � R
n ∃j ∈ N ∃N ∈ N ∃η ∈ (0, 1]∀u ∈ DK(Rn)∀ε ∈ (0, η]

|Tε(u)| ≤ ε−N sup
y∈K,|β|≤j

|∂βu(y)|.

Let us consider the restriction of the map in (1.16) to GK(Rn) and a compact subset
L of R

n. Since suppu(x−·) = x− suppu, if u ∈ GK(Rn) then u(x−·) ∈ GL−K(Rn)
for all x ∈ L. Under the assumption of K ⊆ int(K ′) ⊆ K ′ � R

n and suppuε ⊆ K ′

for all ε ∈ (0, 1], by (1.18) it follows that there exist j,N ∈ N such that the estimate

sup
x∈L,|α|≤i

|∂α
xTε(uε(x− ·))| = sup

x∈L,|α|≤i

|Tε(∂α
x uε(x− y))|

≤ ε−N sup
x∈L,|α|≤i

sup
y∈L−K′,|β|≤j

|∂α
x ∂

β
y uε(x− y)|

≤ ε−N sup
z∈K′,|γ|≤i+j

|∂γuε(z)|

holds for ε small. This leads to the continuity of GK(Rn) → G(Rn) : u → u ∗ T
for all K � R

n. Concerning the map in (1.17) we begin by observing that for
u ∈ GK(Rn) ⊆ Gc(Rn) and L � R

n the set BL,i := {∂α
x u(x− ·), x ∈ L, |α| ≤ i} is

bounded in Gc(Rn), because it is contained in GL−K(Rn) and it is bounded there.
As a consequence we have the estimate

PL,i(u ∗ T ) ≤ sup
v∈BL,i

|T (v)|e,(1.19)

showing the continuity of the map T → u ∗ T .
(iii) Proposition 1.11 yields that when T is a basic functional in L(G(Rn), C̃) and

u ∈ G
S

(Rn) then u ∗ T ∈ G
S

(Rn). More precisely, (1.15) yields the inequality

sup
x∈Rn

|xβ∂α
xTε(uε(x− ·))| ≤ ε−N sup

z∈Rn,|γ|≤j+|α|
(1 + |z|)|β||∂γuε(z)|,

where N, j depend only on T and ε is small enough. This means that Ph(u ∗ T ) ≤
eNPh+j(u) for all h ∈ N. In other words the map G

S
(Rn) → G

S
(Rn) : u→ u ∗ T is

continuous. For fixed u ∈ G
S

(Rn) the set Bi := {〈x〉i∂α
x u(x− ·), |α| ≤ i, x ∈ R

n} is
bounded in G(Rn). Therefore, the continuity of Lb(G(Rn), C̃) → G

S
(Rn) : T → u∗T

is due to Pi(u ∗ T ) ≤ supv∈Bi
|T (v)|e. �

Definition 1.13. Let S ∈ L(G(Rn), C̃) and T be a basic functional of the dual
L(Gc(Rn), C̃). The convolution S ∗ T is a functional in L(Gc(Rn), C̃) defined by

S ∗ T (u) = Sx(Ty(u(x+ y))).(1.20)

Definition 1.13 is meaningful since (1.20) can be rewritten as

S((ũ ∗ T )̃ ),

where ṽ(y) := v(−y) is a continuous map from Gc(Rn) and G(Rn) into themselves
respectively. By Proposition 1.12(i) the map Gc(Rn) → G(Rn) : u → (ũ ∗ T )̃ is
continuous and by composition with the C̃-linear and continuous functional S we
conclude that S ∗ T ∈ L(Gc(Rn), C̃).
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Proposition 1.14. If S ∈ L(G(Rn), C̃) and T is a basic functional of the dual
L(Gc(Rn), C̃) then

supp(S ∗ T ) ⊆ suppS + suppT.(1.21)

Proof. Let A = suppT and B = suppS. Then A + B is a closed subset of R
n.

Let V = R
n \ (A+B) and u ∈ Gc(V ). Since supp(u(x+ y)) ⊆ {(x, y) : x+ y ∈ V }

then S ∗ T (u) = 0 and the proof is complete. �

Proposition 1.14 proves that if T ∈ L(G(Rn), C̃) is basic, then the convolution
of S ∈ L(G(Rn), C̃) with T is an element of the dual L(G(Rn), C̃). It is clear that
in all the situations considered so far S ∗ T is basic if both S and T are basic.

Proposition 1.15. The convolution product ∗ between functionals extends the con-
volution product between Colombeau generalized functions and functionals.

Proof. Let T ∈ L(Gc(Rn), C̃) be basic and u ∈ Gc(Rn) ⊆ L(G(Rn), C̃). By (1.20)
for all v ∈ Gc(Rn) we can write

(u ∗ T )(v) =
∫

Rn

u(x)T (v(x+ ·)) dx

Proposition 1.9(iv) leads to∫
Rn

u(x)T (v(x+ ·)) dx = T

(∫
Rn

v(x+ ·)u(x) dx
)

= T

(∫
Rn

v(z)u(z − ·) dz
)

=
∫

Rn

v(z)T (u(z − ·)) dz

and shows that Definition 1.13 coincides with Definition 1.10 on the couple (u, T ).
In the same way, making use of assertions (i) and (ii) of Proposition 1.9 one can
prove that

(u ∗ T )(v) =
∫

Rn

v(z)T (u(z − ·)) dz v ∈ Gc(Rn)

when u ∈ G(Rn) and T is a basic functional of L(G(Rn), C̃). �

Remark 1.16. Combining Proposition 1.12 with Propositions 1.14 and 1.15 we
obtain that if u ∈ Gc(Rn) and T ∈ L(G(Rn), C̃) is basic then u ∗ T ∈ Gc(Rn).
In particular Proposition 1.12(v) yields that u ∗ T ∈ G∞

c (Rn) when u ∈ G∞
c (Rn).

We leave to the reader to check that in both these cases the convolution product
is a separately continuous C̃-bilinear map. It follows that (1.20) applies to S ∈
L(Gc(Rn), C̃) and T basic functional in L(G(Rn), C̃) and defines an element of
L(Gc(Rn), C̃).

Proposition 1.17. The C̃-bilinear map

(S, T ) �→ S ∗ T
(i) from L(G(Rn), C̃) × Lb(Gc(Rn), C̃) into L(Gc(Rn), C̃),
(ii) from L(Gc(Rn), C̃) × Lb(G(Rn), C̃) into L(Gc(Rn), C̃),
(iii) from L(G(Rn), C̃) × Lb(G(Rn), C̃) into L(G(Rn), C̃),

is separately continuous.
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Proof. We begin by writing the action of the convolution product S ∗ T on u as
S((ũ ∗ T )̃ ).

(i) We fix a basic functional T ∈ L(Gc(Rn), C̃) and a bounded subset B ⊆ Gc(Rn).
By Proposition 1.12(i) the map u→ (ũ ∗T )̃ is continuous from Gc(Rn) into G(Rn),
then the set B′ := {(ũ ∗ T )̃ , u ∈ B} is bounded in G(Rn). As a consequence, the
equality supu∈B |(S ∗ T )(u)|e = supv∈B′ |S(v)|e holds and proves the continuity of
L(G(Rn), C̃) → L(Gc(Rn), C̃) : S → S ∗ T .

Let us now fix S ∈ L(G(Rn), C̃). Since it is continuous there exist some compact
set K and a natural number m such that for all u ∈ B, B bounded subset of Gc(Rn),
one has

sup
u∈B

|(S ∗ T )(u)|e ≤ c sup
u∈B

PK,m((ũ ∗ T )̃ ).(1.22)

Note that

PK,m((ũ ∗ T )̃ ) ≤ sup
v∈B′

|T (v)|e(1.23)

where B′ := {∂α
x u(x̃ + ·), u ∈ B, x̃ ∈ K̃, |α| ≤ m} is a bounded subset of Gc(Rn).

This is due to the fact that, working at the level of representatives, we have

v

((
sup

x∈K,|α|≤m

|Tε(∂αuε(x+ ·))|
)

ε

)
≥ min

|α|≤m
v
((
Tε(∂αuε(xε + ·)))

ε

)
,

where (xε)ε is a net of points of K. (1.22) combined with (1.23) proves that the
map Lb(Gc(Rn), C̃) → L(Gc(Rn), C̃) : T → S ∗ T is continuous.

(ii) We omit the details of the proof since the arguing is analogous to the one
adopted in the first case. We only observe that Remark 1.16 is employed in proving
the desired continuity.

(iii) Finally we assume that both the functionals S, T belong to L(G(Rn), C̃)
and that T is basic. For B bounded subset of G(Rn), by Proposition 1.12(ii) it
follows that B′ := {(ũ ∗ T )̃ , u ∈ B} ⊆ G(Rn) is bounded. Thus, the equality
supu∈B |(S ∗T )(u)|e = supv∈B′ |S(v)|e shows that the map S → S ∗T is continuous.
Consider now S fixed. For some K � R

n and m ∈ N it holds that

sup
u∈B

|(S ∗ T )(u)|e ≤ c sup
u∈B

PK,m((ũ ∗ T )̃ ) ≤ c sup
v∈B′

|T (v)|e,

where B′ := {∂α
x u(x̃+ ·), u ∈ B, x̃ ∈ K̃, |α| ≤ m} ⊆ G(Rn) is bounded. �

We conclude this subsection with the following regularization of basic functionals.

Theorem 1.18. Let ρ ∈ C∞
c (Rn) with

∫
Rn ρ(y)dy = 1.

(i) If T is a basic functional of L(Gc(Rn), C̃) then [(ρεq )ε] ∗ T ∈ G(Rn) for all
q ∈ N and

[(ρεq )ε] ∗ T → T

in L(Gc(Rn), C̃) as q → ∞.
(ii) If T is a basic functional of L(G(Rn), C̃) then [(ρεq )ε]∗T → T in L(G(Rn), C̃)

as q → ∞.
(iii) If T is a basic functional of L(G

S
(Rn), C̃) then [(ρεq )ε]∗T → T in L(G

S
(Rn), C̃)

as q → ∞.
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Proof. (i) We begin by proving that when u ∈ Gc(Rn) then uq := [(ρεq )ε] ∗ u→ u
in Gc(Rn) and that this convergence is uniform on bounded subsets of Gc(Rn). If
u ∈ Gc(Rn) then u ∈ GK(Rn) for some K � R

n and by Proposition 1.14 (uq)q is
a sequence of generalized functions in GK1(R

n) with K1 = K + Br(0), supp ρ ⊆
Br(0) := {y ∈ R

n : |y| ≤ r}. In particular, at the level of representatives one has
that

∂β(ρεq ∗ uε − uε)(x) =
∫

Rn

ρ(z)[∂βuε(x− εqz) − ∂βuε(x)] dz

=
∫

Rn

ρ(z)
∑
|α|=1

1
α!
∂α+βuε(x− εqθz)(−εqz) dz

and for some K ′
1 � R

n such that K1 ⊂ int(K ′
1) ⊆ K ′

1,

sup
x∈K′

1

|∂β(ρεq ∗ uε − uε)(x)| ≤ cεq−N ,(1.24)

where N depends only on β, u and ρ. (1.24) yields that uq → u in GK1(R
n). This

convergence is uniform on bounded subsets of Gc(Rn). Indeed, if B ⊆ Gc(Rn) is
bounded then it is contained in some GK(Rn) and bounded there. Thus, for some
K ′ � R

n with K ⊆ int(K ′) ⊆ K ′ by the previous computations the inequality

sup
x∈K′

1

|∂β(ρεq ∗ uε − uε)(x)| ≤ cεq sup
|γ|≤|β|+1,y∈K′

|∂γuε(y)|

holds and leads to vK1,|β|(uq − u) ≥ q + vK,|β|+1(u). By the assumption of bound-
edness of B we have that there exists N ∈ N such that vK,|β|+1(u) ≥ −N for all
u ∈ B. Hence, supu∈B PGK1 (Rn),|β|(uq − u) ≥ q −N or in other words

sup
u∈B

PGK1 (Rn),|β|(uq − u) → 0.

Let us now consider T ∈ L(Gc(Rn), C̃) basic and Tq := [(ρεq )ε] ∗ T ∈ G(Rn). For
all u ∈ Gc(Rn) since (Tε ∗ ρεq ) ∗ ũε(0)− Tε ∗ ũε(0) = (Tε ∗ (ρεq ∗ ũε − ũε))(0), where
ũ(x) = u(−x), we have that

(Tq − T )(u) = T ((ũq − ũ)̃ ).(1.25)

By the uniform convergence proved above we know that when B is a bounded
subset of Gc(Rn) there exists K1 � R

n such that

∀m ∈ N ∀η ∈ (0, 1]∃q ∈ N ∀q ≥ q sup
u∈B

PGK1 (Rn),m((ũq − ũ)̃ ) ≤ η.(1.26)

(1.26) combined with the continuity of T implies that for all q ≥ q

sup
u∈B

|(Tq − T )(u)|e ≤ c sup
u∈B

PGK1 (Rn),m((ũq − ũ)̃ ) ≤ c η.

This means that Tq → T in L(Gc(Rn), C̃) according to βb(L(Gc(Rn), C̃),Gc(Rn)).
(ii) Now let T be a basic functional of L(G(Rn), C̃). When u ∈ G(Rn) the

sequence uq := [(ρεq )ε] ∗ u converges to u uniformly on bounded subsets of G(Rn).
Indeed, from the same computations of case (i) we have that

sup
u∈B

PK,|β|(uq − u) ≤ e−q sup
u∈B

PK1,|β|+1(u),(1.27)

where K1 = K+Br(0). Since T is continuous from G(Rn) to C̃ by (1.27) and (1.25)
we conclude that Tq → T with respect to the topology βb(L(G(Rn), C̃),G(Rn)).
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We omit the proof of (iii) since it consists in showing that uq tends to u uniformly
on any bounded subset of G

S
(Rn). �

For the sake of completeness note that the previous regularization for basic
functionals in L(G

S
(Rn), C̃) is valid for ρ ∈ S (Rn) with

∫
ρ(x) dx = 1. Such a

convergence result was already stated in [15, Proposition 3.12] for a special family
of basic functionals: the generalized delta functionals δx̃ with x̃ ∈ R̃n.

1.4. Fourier transform in the dual L(G
S

(Rn), C̃). We conclude this section
by introducing a natural notion of Fourier transform in the dual of the Colombeau
algebra G

S
(Rn). We recall that the Fourier transform Fu and the inverse Fourier

transform F∗u of a generalized function u ∈ G
S

(Rn) are defined by the corre-
sponding transformations at the level of representatives. F and F∗ are continuous
isomorphisms from G

S
(Rn) onto G

S
(Rn). Note that the continuity is the conse-

quence of F and F∗ being basic maps on G
S

(Rn). Finally, as explained in detail
in [17, Subsection 1.2.6] all the properties which hold for the transformations on
S (Rn) can be stated on G

S
(Rn).

Definition 1.19. Let T ∈ L(G
S

(Rn), C̃). We define the Fourier transform of T as
the functional FT on G

S
(Rn) given by the formula

F(T )(u) = T (Fu).(1.28)

By the continuity of F : G
S

(Rn) → G
S

(Rn) it is clear that FT ∈ L(G
S

(Rn), C̃).
Moreover the embedding of G

S
(Rn) into L(G

S
(Rn), C̃) proved in [15, Theorem 3.8]

shows that F is an extension of the Fourier transform on G
S

(Rn) to L(G
S

(Rn), C̃).
This motivates the choice of the same notation on G

S
(Rn) and its dual. Obviously

the inverse Fourier transform is defined by replacing F with F∗ in (1.28). F and
F∗ are continuous isomorphisms on L(G

S
(Rn), C̃). In fact if B is a bounded subset

of G
S

(Rn) then F(B) := {F(u), u ∈ B} is bounded itself and the equality

sup
u∈B

|FT (u)|e = sup
u∈B

|T (Fu)|e = sup
v∈F(B)

|Tv|e

holds. Analogously this kind of arguing is valid for F∗. We leave to the reader to
verify that basic functionals are mapped into basic functionals by F and F∗.

In Section 3 we will often deal with the Fourier transform on a basic functional
of L(G(Rn), C̃). By combining some of the results presented in Subsection 1.1 we
arrive at the following conclusion.

Proposition 1.20. The Fourier transform of a basic functional in L(G(Rn), C̃) is
the tempered generalized function in G∞

τ (Rn) given by

T (e−i·ξ) := (Tε(e−i·ξ))ε + Nτ (Rn).

Proof. The functional T can be expressed by a net (Tε)ε of distributions in E ′(Rn).
Hence, denoting the Fourier transform on S ′(Rn) by ̂ we have that FT (u) =
[(T̂ε(uε))ε] and by classical arguments the equality

T̂ε(uε) =
∫

Rn

Tε(e−i·ξ)uε(ξ) dξ
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is valid for all values of ε. By Remark 1.7 it follows that for all u ∈ G
S

(Rn)

FT (u) =
∫

Rn

T (e−i·ξ)u(ξ) dξ,

where T (e−i·ξ) := (Tε(e−i·ξ))ε + Nτ (Rn). �

2. Generalized pseudodifferential operators acting on the

duals L(Gc(Ω), C̃) and L(G(Ω), C̃)

In the Colombeau literature a systematic approach to the theory of generalized
pseudodifferential operators is given for the first time in [18]. Based on a notion
of generalized symbols as equivalence classes it develops a full local calculus for
the corresponding pseudodifferential operators acting on the Colombeau algebras
Gc(Ω) and G(Ω). Results of G∞-regularity are obtained by means of a parametrix
construction for a certain family of operators whose generalized symbols satisfy
suitable hypoellipticity assumptions. Concerning this issue a main role is played by
different scales in ε at the level of representatives and by the concept of slow scale
net. We say that (ωε)ε ∈ C

(0,1] is a slow scale net if for all p ≥ 0 there exists cp > 0
such that |ωε|p ≤ cpε

−1 for all ε ∈ (0, 1]. Sometimes the additional assumption
of infε ωε ≥ c > 0 is required on ωε ∈ R

(0,1] for technical reasons. In this case
ωε ∈ R

(0,1] is said to be a strongly positive slow scale net. In the sequel Πsc denotes
the set of all strongly positive slow scale nets. Finally we recall that Sm

ρ,δ(Ω × R
p)

is the usual set of Hörmander symbols of order m and type (ρ, δ), with ρ ∈ (0, 1],
δ ∈ [0, 1) and Ω open subset of R

n. Sm
ρ,δ(Ω × R

p) is a Fréchet space endowed with
the seminorms

|a|(m)
ρ,δ,K,α,β = sup

x∈K,ξ∈Rp

〈ξ〉−m+ρ|α|−δ|β||∂α
ξ ∂

β
xa(x, ξ)|,

where K ranges over the compact subsets of Ω.
In this paper we make use of the following sets of symbols:
- generalized symbols: S̃m

ρ,δ(Ω × R
p) := GSm

ρ,δ(Ω×Rp),

- regular symbols: S̃m
ρ,δ,rg(Ω × R

p) := ∩K�Ω S̃m
ρ,δ,rg(K × R

p),
- slow scale symbols: S̃m

ρ,δ,sc(Ω × R
p) := Sm

ρ,δ,sc(Ω × R
p)/Nm

ρ,δ(Ω × R
p),

- generalized symbols of order −∞: S̃−∞(Ω × R
p) := GS−∞(Ω×Rp),

- regular symbols of order −∞: S̃−∞
rg (Ω × R

p) := ∩K�Ω S̃−∞
rg (K × R

p),

where, for K compact subset of Ω, S̃m
ρ,δ,rg(K × R

p) is the set of all generalized
symbols a having a representative (aε)ε fulfilling the condition

∃N ∈ N ∀α ∈ N
p ∀β ∈ N

n |aε|(m)
ρ,δ,K,α,β = O(ε−N ) as ε→ 0,(2.1)

the space Nm
ρ,δ(Ω × R

p) is the set NSm
ρ,δ(Ω×Rp) of negligible nets, Sm

ρ,δ,sc(Ω × R
p) is

the set of all nets (aε)ε ∈ Sm
ρ,δ(Ω × R

p)(0,1] such that

∀K � Ω ∃(ωε)ε ∈ Πsc ∀α ∈ N
p ∀β ∈ N

n |aε|(m)
ρ,δ,K,α,β = O(ωε)(2.2)

and finally S̃−∞
rg (K×R

p) is the space of all a ∈ S̃−∞(Ω×R
p) for which there exists

a representative (aε)ε with the property

∃N ∈ N ∀m ∈ R ∀α ∈ N
p ∀β ∈ N

n |aε|(m)
K,α,β = O(ε−N ).(2.3)
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By construction S̃m
ρ,δ,sc(Ω × R

p) ⊆ S̃m
ρ,δ,rg(Ω × R

p) and the generalized symbols
of S̃−∞(Ω × R

p) and S̃−∞
rg (Ω × R

p) can be regarded as elements of S̃m
ρ,δ(Ω × R

p)
and S̃m

ρ,δ,rg(Ω × R
p) respectively. In all the previous notations the absence of the

subindex (ρ, δ) means ρ = 1 and δ = 0.
When a ∈ S̃m

ρ,δ(Ω × Ω × R
n) and u ∈ Gc(Ω) the generalized oscillatory integral∫

Ω×Rn

ei(x−y)ξa(x, y, ξ)u(y) dy d−ξ :=
[(∫

Ω×Rn

ei(x−y)ξaε(x, y, ξ)uε(y) dy d−ξ
)

ε

]
defines a generalized function in G(Ω) (see [17, 18] for details on the theory of
generalized oscillatory integrals). The C̃-linear continuous map

A : Gc(Ω) → G(Ω)

u �→
∫

Ω×Rn

ei(x−y)ξa(x, y, ξ)u(y) dy d−ξ

is called generalized pseudodifferential operator of amplitude a ∈ S̃m
ρ,δ(Ω×Ω×R

n).
In the next proposition we recall the mapping properties concerning generalized
pseudodifferential operators which will be involved in the extension of the action of
A from Gc(Ω) to L(G(Ω), C̃). For the corresponding proofs the reader should refer
to [17, Chapter 4] and [18, Section 4].

Proposition 2.1.

(i) Let a ∈ S̃m
ρ,δ(Ω×Ω×R

n). The corresponding pseudodifferential operator A is
a continuous map from Gc(Ω) to G(Ω).

(ii) If a ∈ S̃m
ρ,δ,rg(Ω × Ω × R

n) then A maps G∞
c (Ω) continuously into G∞(Ω).

(iii) If a ∈ S̃−∞
rg (Ω × Ω × R

n) then A maps Gc(Ω) continuously into G∞(Ω).

Clearly Proposition 2.1 can be stated for the formal transpose of A. tA is the
pseudodifferential operator defined by

tAu(x) =
∫

Ω×Rn

ei(x−y)ξa(y, x,−ξ)u(y) dy d−ξ.

The functional kA ∈ L(Gc(Ω × Ω), C̃) given by

kA(u) :=
∫

Ω

A(u(x, ·)) dx

is called kernel of A. As shown in [17] it can be written as the oscillatory integral∫
Ω×Ω×Rn

ei(x−y)ξa(x, y, ξ)u(x, y) dx dy d−ξ

and fulfills the property

kA(v ⊗ u) =
∫

Ω

Au(x)v(x) dx =
∫

Ω

u(y) tAu(y) dy

for all u, v ∈ Gc(Ω) (v ⊗ u := (vε(x)uε(y))ε + N (Ω × Ω)). We say that the pseudo-
differential operator A is properly supported if the support of its kernel is a proper
subset of Ω × Ω. Proposition 4.3.18 in [17] proves that the following mapping
properties hold for properly supported pseudodifferential operators.
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Proposition 2.2. If A is a properly supported pseudodifferential operator with am-
plitude a ∈ S̃m

ρ,δ(Ω × Ω × R
n) then:

(i) A maps Gc(Ω) continuously into itself.
(ii) A can be uniquely extended to a C̃-linear continuous map from G(Ω) into G(Ω)

such that for all u ∈ G(Ω) and v ∈ Gc(Ω),∫
Ω

Au(x)v(x)dx =
∫

Ω

u(y) tAv(y)dy.(2.4)

If a ∈ S̃m
ρ,δ,rg(Ω × Ω × R

n) then:

(iii) A maps G∞
c (Ω) continuously into itself.

(iv) The extension defined above maps G∞(Ω) continuously into itself.
The same results hold with tA in place of A.

Concluding, let us consider the expression

Ru(x) =
∫

Ω

k(x, y)u(y) dy,(2.5)

where k ∈ G(Ω × Ω) and u ∈ Gc(Ω). By Proposition 1.2.25 in [17] (2.5) defines a
continuous C̃-linear operator R : Gc(Ω) → G(Ω). Note that k is uniquely determined
by (2.5) as an element of G(Ω × Ω). For this reason, we may call it the kernel of
R, adopt the notation kR, and we may call R an operator with generalized kernel.
When kR ∈ G∞(Ω × Ω) then R maps Gc(Ω) continuously into G∞(Ω) and we use
the expression operator with regular generalized kernel. A simple adaptation of the
reasoning of [17, Proposition 4.3.13] and [18, Proposition 4.12] yields the following
characterizations.

Proposition 2.3.
(i) R is an operator with generalized kernel if and only if it is a pseudodifferential

operator with amplitude in S̃−∞(Ω × Ω × R
n).

(ii) R is an operator with regular generalized kernel if and only if it is a pseudo-
differential operator with amplitude in S̃−∞

rg (Ω × Ω × R
n).

Proof. We leave to the reader to check that in both (i) and (ii) the amplitude r is
given by

ei(x−y)ξkR(x, y)χ(ξ) :=
(
ei(x−y)ξkR,ε(x, y)χ(ξ)

)
ε
+ N−∞(Ω × Ω × R

n),

where χ is a cut-off function in C∞
c (Rn) with

∫
χ(ξ) d−ξ = 1. �

Remark 2.4. According to the language of Section 1 all the operators considered
so far are basic. More precisely, the generalized pseudodifferential operators are
basic elements of the space L(Gc(Ω),G(Ω)) and their kernels are basic functionals
in L(Gc(Ω × Ω), C̃).

Definition 2.5. Let A be a pseudodifferential operator with amplitude

a ∈ S̃m
ρ,δ(Ω × Ω × R

n).

We extend the action of A to the dual L(G(Ω), C̃) as

AT (u) := T ( tAu), u ∈ Gc(Ω).(2.6)
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The fact that (2.6) extends the original definition of A on Gc(Ω) is due to the
equality (2.4).

Proposition 2.6.

(i) The operator A defined in (2.6) maps L(G(Ω), C̃) continuously into the dual
L(Gc(Ω), C̃).

(ii) If A is properly supported then it maps L(G(Ω), C̃) and L(Gc(Ω), C̃) into them-
selves, respectively, and with continuity.

(iii) If a ∈ S̃m
ρ,δ,rg(Ω × Ω × R

n) then A maps L(G∞(Ω), C̃) continuously into
L(G∞

c (Ω), C̃) and when it is properly supported the duals L(G∞(Ω), C̃) and
L(G∞

c (Ω), C̃) are mapped into themselves, respectively, with continuity.

Proof. (i) By composition of continuous maps AT is an element of the dual
L(Gc(Ω), C̃) when T ∈ L(G(Ω), C̃). Since the map tA : Gc(Ω) → G(Ω) is con-
tinuous the image tA(B) of a bounded subset B of Gc(Ω) is bounded in G(Ω).
Hence, from

sup
u∈B

|AT (u)|e = sup
v∈ tA(B)

|Tv|e(2.7)

we have that A is continuous from L(G(Ω), C̃) to L(Gc(Ω), C̃).
(ii) By the assertions (i) and (ii) of Proposition 2.2 if A is properly supported then

tAmaps Gc(Ω) continuously into itself and can be extended to a C̃-linear continuous
map on G(Ω). It follows that A maps the duals L(G(Ω), C̃) and L(Gc(Ω), C̃) into
themselves, respectively, and with continuity.

(iii) Assume that a ∈ S̃m
ρ,δ,rg(Ω × Ω × R

n). By Proposition 2.1(ii) the operator
tA is continuous from G∞

c (Ω) to G∞(Ω). This means that if T ∈ L(G∞(Ω), C̃) then
AT ∈ L(G∞

c (Ω), C̃). Since tA(B) is bounded in G∞(Ω) when B is a bounded subset
of G∞

c (Ω) we have that the equality (2.7) holds and proves the continuity of A from
L(G∞(Ω), C̃) to L(G∞

c (Ω), C̃). By combining (iii) and (iv) in Proposition 2.2 with
the definition given in (2.6) the proof of the assertion is complete. �

The action of a generalized pseudodifferential operator on a basic functional gives
a functional which is still basic in all the statements above.

Due to Proposition 2.3 the action of an operator with generalized kernel on a
functional in L(G(Ω), C̃) can be seen as the action of a pseudodifferential operator
with generalized symbol of order −∞ on a functional. Interesting mapping proper-
ties are obtained on the spaces Lb(G(Ω), C̃) and Lb(Gc(Ω), C̃) of basic functionals.

Proposition 2.7. Let R be an operator with generalized kernel kR ∈ G(Ω × Ω).

(i) R maps Lb(G(Ω), C̃) into G(Ω) with continuity.
(ii) If R is properly supported then it is a continuous map from Lb(G(Ω), C̃) to

Gc(Ω) and from Lb(Gc(Ω), C̃) to G(Ω).
(iii) If kR ∈ G∞(Ω × Ω) then (i) and (ii) hold for the same spaces of functionals

and with G∞
c (Ω) and G∞(Ω) in place of Gc(Ω) and G(Ω), respectively.

Proof. (i) By Definition 2.5 we know that for T ∈ L(G(Ω), C̃) and u ∈ Gc(Ω)

RT (u) = T ( tRu) = T

(∫
Ω

kR(x, ·)u(x) dx
)
,
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where
∫
Ω
kR(x, ·)u(x) dx ∈ G(Ω). Since T is basic, from Proposition 1.9(i) we have

that

T

(∫
Ω

kR(x, ·)u(x) dx
)

=
∫

Ω

T (kR(x, ·))u(x) dx(2.8)

and then

RT (u) =
∫

Ω

T (kR(x, ·))u(x) dx.

As shown in Proposition 1.4(v), T (kR(x, ·)) is a generalized function in G(Ω). This
proves that RT ∈ G(Ω). Note that for K � Ω the subset

BK,j,R := {v := ∂α
x kR(x, ·)}|α|≤j,x∈K

of G(Ω) is bounded. Easy computations at the level of representatives lead to the
inequality

PK,j(RT ) ≤ sup
v∈BK,j,R

|Tv|e(2.9)

which proves the continuity of R from Lb(G(Ω), C̃) to G(Ω).
(ii) If R is properly supported then its kernel kR has proper support and by

Proposition 1.4(vii) the generalized function T (kR(x, ·)) ∈ Gc(Ω). An argument
analogous to the one employed in (2.9) yields that R is continuous from Lb(G(Ω), C̃)
to Gc(Ω). Assume now that T is a basic functional of L(Gc(Ω), C̃). Since kR has
proper support from Proposition 1.4(iii) we have that T (kR(x, ·)) ∈ G(Ω) and by
Proposition 1.9(iv) we conclude that (2.8) is valid for all u ∈ Gc(Ω). Thus, R maps
Lb(Gc(Ω), C̃) into G(Ω). Since the set CK,j,R := {v := ∂α

x kR(x, ·)χ(x, ·)}|α|≤j,x∈K ,
where χ is a proper function identically 1 in a neighborhood of supp kR is contained
in Gc(Ω) and bounded there, the inequality

PK,j(RT ) ≤ sup
v∈CK,j,R

|Tv|e

implies the continuity of R : Lb(Gc(Ω), C̃) → G(Ω).
(iii) Finally we suppose that kR ∈ G∞(Ω × Ω). The desired mapping properties

are a consequence of the assertions (vi), (viii) and (iv) in Proposition 1.4. For con-
tinuity, an investigation at the representatives’ level shows that if T ∈ Lb(G(Ω), C̃)
then

PG∞(K)(RT ) ≤ sup
v∈BK,R

|Tv|e,

where, for ψ cut-off function in C∞
c (Ω) identically 1 in a neighborhood of suppT ,

the set BK,R := {v := ∂α
x kR(x, ·)ψ(·)}α∈Nn,x∈K ⊆ G(Ω) is bounded. Analogously if

supp kR is proper then R is continuous from Lb(G(Ω), C̃) to G∞
c (Ω). Since the set

CK,R := {v := ∂α
x kR(x, ·)χ(x, ·)}α∈Nn,x∈K is bounded in Gc(Ω), the inequality

PG∞(K)(RT ) ≤ sup
v∈CK,R

|Tv|e,

for T in Lb(Gc(Ω), C̃) entails the continuity of R from Lb(Gc(Ω), C̃) to G∞(Ω). �

Proposition 4.10 in [18] has a natural version in the dual context.
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Proposition 2.8. Let A be a pseudodifferential operator with amplitude

a ∈ S̃m
ρ,δ(Ω × Ω × R

n).

(i) kA ∈ G(Ω×Ω \Δ) where Δ is the diagonal of Ω×Ω and for W and W ′ open
subsets of Ω with W ×W ′ ⊆ Ω × Ω \ Δ, the equality

Au|W (x) =
∫

W ′
kA(x, y)u(y) dy

holds for all u ∈ Gc(W ′). Moreover, for all u ∈ Gc(W ),

tAu|W ′(x) =
∫

W

kA(y, x)u(y) dy.(2.10)

(ii) If T is a basic functional of L(G(Ω), C̃) with suppT ⊆W ′ then AT |W ∈ G(W )
and

AT |W (u) =
∫

W

T (kA(x, ·))u(x) dx

for all u ∈ Gc(W ).
(iii) If a ∈ S̃m

ρ,δ,rg(Ω×Ω×R
n) then kA ∈ G∞(Ω×Ω\Δ) and for all basic functionals

T of L(G(Ω), C̃) with suppT ⊆W ′ the restriction AT |W belongs to G∞(W ).

Proof. The first assertion is proven in [18, Proposition 4.10]. In particular the
equality (2.10) is due to (2.4). Now let T be a basic functional of L(G(Ω), C̃) with
suppT ⊆W ′ and ψ be a cut-off function in C∞

c (W ′) identically 1 in a neighborhood
of suppT . By (2.10) for all u ∈ Gc(W ) we can write

AT |W (u) = T ( tAu) = T (( tAu)ψ) = T

(∫
W

kA(y, ·)u(y) dy ψ(·)
)
.

By Proposition 1.9(i) and Proposition 1.4(v) the functional T goes under the inte-
gral sign and we obtain that

AT |W (u) =
∫

W

T (kA(y, ·)ψ(·))u(y) dy =
∫

W

T (kA(x, ·))u(x) dx,(2.11)

where T (kA(x, ·)) ∈ G(W ). Finally, when a ∈ S̃m
ρ,δ,rg(Ω × Ω × R

n) then kA ∈
G∞(Ω × Ω \ Δ) (see [18, Proposition 4.10(iv)]) and combining Proposition 1.9(i)
with Proposition 1.4(vi) we have that T (kA(x, ·)) ∈ G∞(W ). In view of (2.11) this
means that AT |W ∈ G∞(W ). �

Before proceeding we observe that since the dual L(Gc(Ω), C̃) contains both
G∞(Ω) and G(Ω) by continuous embedding and Ω → L(Gc(Ω), C̃) is a sheaf, it is
meaningful to look for the regions where a functional is a Colombeau function or
a G∞-Colombeau function. The regularity with respect to G(Ω) or with respect to
G∞(Ω) is measured by the following notions of G-singular support and G∞-singular
support.

Definition 2.9. The G-singular support of T ∈ L(Gc(Ω), C̃) (sing suppG T ) is the
complement of the set of all points x ∈ Ω such that the restriction of T to some
neighborhood V of x belongs to G(V ).
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The G∞-singular support of T ∈ L(Gc(Ω), C̃) (sing suppG∞ T ) is the complement
of the set of all points x ∈ Ω such that the restriction of T to some neighborhood
V of x belongs to G∞(V ).

By definition it is clear that sing suppG T and sing suppG∞ T are both closed
subsets of Ω and that the inclusion sing suppG T ⊆ sing suppG∞ T holds. Clearly
the G∞-singular support extends the usual notion of generalized singular support
of a Colombeau function in G(Ω) ([18, Section 2]) to the dual L(Gc(Ω), C̃).

The pseudolocality-property proved in [18] to be valid for a pseudodifferential
operator A : Gc(Ω) → G(Ω) with regular amplitude can now be stated for the exten-
sion to the dual L(G(Ω), C̃). The two different ways of measuring the regularity of
a functional in L(G(Ω), C̃) considered above give a new and more elaborated aspect
to the following result of pseudolocality.

Theorem 2.10. Let T be a basic functional in L(G(Ω), C̃).

(i) If A is a pseudodifferential operator with amplitude in S̃m
ρ,δ(Ω×Ω×R

n) then

sing suppG AT ⊆ sing suppG T.(2.12)

(ii) If A is a pseudodifferential operator with amplitude in S̃m
ρ,δ,rg(Ω × Ω × R

n)
then

sing suppG∞ AT ⊆ sing suppG∞ T.(2.13)

It is clear that (2.12) and (2.13) can be written for basic functionals in the dual
L(Gc(Ω), C̃) when A is properly supported.

Proof. (i) Given a basic functional T ∈ L(G(Ω), C̃) we consider an open neigh-
borhood V of sing suppG T and ψ ∈ C∞

c (V ) identically 1 in a neighborhood of
sing suppG T . We write T = ψT +(1−ψ)T . ψT is a basic functional in L(G(Ω), C̃)
and by definition of G-singular support we know that (1−ψ)T ∈ Gc(Ω). By Propo-
sition 2.1(i), A((1 − ψ)T ) ∈ G(Ω), hence our assertion becomes

sing suppG A(ψT ) ⊆ sing suppG T.(2.14)

We will prove (2.14) by first showing that

sing suppG AT ⊆ suppT.(2.15)

Let x0 ∈ Ω \ suppT and W and W ′ be open neighborhoods of x0 and suppT
respectively such that W ×W ′ ⊆ Ω × Ω \ Δ. By Proposition 2.8 it follows that
AT |W ∈ G(W ) and therefore (2.15) is proven. Replacing T with ψT in (2.15) we get
sing suppG A(ψT ) ⊆ suppψT ⊆ V and since V is arbitrary the proof is complete.

(ii) Assume now that V is an open neighborhood of sing suppG∞ T . By definition
of G∞-singular support, (1− ψ)T ∈ G∞

c (Ω). By Proposition 2.1(ii), A((1− ψ)T ) ∈
G∞(Ω). Thus, our assertion becomes sing suppG∞AT ⊆ suppT . This can be proven
as above making use of Proposition 2.8(iii). �

A parametrix construction, based on the symbolic calculus for generalized pseu-
dodifferential operators developed in [18], can be provided for pseudodifferential
operators whose generalized symbols satisfy suitable assumptions of hypoellipticity.
In the sequel, we slightly simplify the notion of generalized hypoelliptic symbol in-
troduced in [18] and within the dual context we state the theorem on the existence
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of a parametrix and the following result of Colombeau regularity. For technical
reasons (see [18, Section 5]) we consider generalized symbols a whose representing
nets (aε)ε fulfill the characterizing seminorms estimates for all values of ε in the
interval (0, 1]. In this way we define the subspaces S̃ m

ρ,δ(Ω × R
p), S̃ m

ρ,δ,rg(Ω × R
p),

S̃ m

ρ,δ,sc(Ω × R
p), S̃−∞

(Ω × R
p) and S̃−∞

rg (Ω × R
p) of S̃ m

ρ,δ(Ω × R
p), S̃ m

ρ,δ,rg(Ω × R
p),

S̃ m
ρ,δ,sc(Ω × R

p), S̃−∞(Ω × R
p) and S̃−∞

rg (Ω × R
p), respectively.

Definition 2.11. Let m, l, ρ, δ be real numbers with l ≤ m and 0 ≤ δ < ρ ≤ 1.
We say that a ∈ S̃ m

ρ,δ,rg(Ω×R
n) is a generalized hypoelliptic symbol of order (m, l)

and type (ρ, δ) if it has a representative (aε)ε fulfilling the following condition: for
all K � Ω there exists a strongly positive slow scale net (rK,ε)ε, a net (ω1,K,ε)ε,
ω1,K,ε ≥ CKε

sK on the interval (0, 1] for certain constants CK > 0, sK ∈ R, and
slow scale nets (ω2,K,α,β,ε)ε, such that for all x ∈ K, for |ξ| ≥ rK,ε, for all ε ∈ (0, 1],

|aε(x, ξ)| ≥ ω1,K,ε〈ξ〉l(2.16)

and

|∂α
ξ ∂

β
xaε(x, ξ)| ≤ ω2,K,α,β,ε|aε(x, ξ)|〈ξ〉−ρ|α|+δ|β|(2.17)

for all (α, β) �= (0, 0).

A generalized symbol a satisfying Definition 2.11 with l = m is said to be elliptic.
Theorem 6.8 in [18] proves that when A is a pseudodifferential operator with

generalized hypoelliptic symbol of order (m, l) and type (ρ, δ) then there exists a

properly supported pseudodifferential operator P with symbol in S̃−l

ρ,δ,rg(Ω × R
n)

such that for all u ∈ Gc(Ω),
PAu = u+Ru,

APu = u+ Su,
(2.18)

whereR and S are operators with regular generalized kernel. Note that ifA properly
supported then R and S are properly supported operators themselves and the
equalities in (2.18) hold for all u ∈ G(Ω). Moreover, by definition of the extension
of a pseudodifferential operator to the dual L(Gc(Ω), C̃) we can replace u with
T ∈ L(Gc(Ω), C̃) in (2.18). In this case the equalities have to be read in L(Gc(Ω), C̃).

Theorem 2.12. Let A be a properly supported pseudodifferential operator with
generalized hypoelliptic symbol. Then, for every basic functional T in the dual
L(Gc(Ω), C̃),

sing suppG AT = sing suppG T(2.19)

and

sing suppG∞ AT = sing suppG∞ T.(2.20)

Proof. The inclusions

sing suppG AT ⊆ sing suppG T
sing suppG∞ AT ⊆ sing suppG∞ T

are clear from the pseudolocality-property of A (Theorem 2.10). Taking a pa-
rametrix P we can write T as PAT − RT and by the assertions (ii) and (iii) of
Proposition 2.7, RT belongs to G∞(Ω). Hence, sing suppG T = sing suppG PAT and
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sing suppG∞ T = sing suppG∞ PAT . At this point since AT is a basic functional of
L(Gc(Ω), C̃) the pseudolocality-property of P allows us to conclude the proof. �

3. G-wave front set and G∞-wave front set of a functional in
L(Gc(Ω), C̃)

Microlocal analysis in Colombeau algebras of generalized functions as it has been
initiated (in published form) in [9, 41] is a compatible extension of its distribution
theoretic analogue to an unrestricted differential-algebraic context. The classical
Hörmander definition of wave front set of a distribution u (see [24]) makes use of
the notion of micro-ellipticity and consists in the intersection of the characteristic
sets (i.e., region of nonellipticity) of those pseudodifferential operators which map
u in a C∞-function. A characterization of WFu is given in terms of direct estimates
of the Fourier transform of u, after multiplication by a suitable cut-off function.

The generalized wave front set of u ∈ G(Ω) (or G∞-wave front set of u denoted
by WFG∞(u)) is defined by translating the Fourier transform-characterization of
the distributional wave front set into the language of representatives of generalized
functions and replacing the C∞-regularity with the G∞-regularity. This sort of
“elementary” approach to the wave front set is a natural definition in the Colombeau
framework.

The theory of generalized pseudodifferential operators established in [18] and
extended to the dual space L(Gc(Ω), C̃) in the previous section, has suggested a
“pseudodifferential-characterization” of the G∞-wave front set of a Colombeau gen-
eralized function. This has been provided in [19] by making use of pseudodifferential
operators with slow scale symbols and introducing a sufficiently strong notion of
micro-ellipticity. In the sequel we give an essential overview of the concepts in [19]
which will be employed in this section more frequently, referring to [19] for the
proofs of the main results and for further explanations.

Definition 3.1. Let a ∈ S̃m
ρ,δ,sc(Ω × R

n) and (x0, ξ0) ∈ T ∗(Ω) \ 0. We say that
a is slow scale micro-elliptic at (x0, ξ0) if it has a representative (aε)ε satisfying
the following: there is a relatively compact open neighborhood U of x0, a conic
neighborhood Γ of ξ0, and (rε)ε, (sε)ε in Πsc such that

|aε(x, ξ)| ≥ 1
sε

〈ξ〉m (x, ξ) ∈ U × Γ, |ξ| ≥ rε, ε ∈ (0, 1].(3.1)

We denote by Ellsc(a) the set of all (x0, ξ0) ∈ T ∗(Ω) \ 0 where a is slow scale
micro-elliptic.

If there exists (aε)ε ∈ a such that (3.1) holds at all points in T ∗(Ω) \ 0 then the
symbol a is called slow scale elliptic.

Remark 3.2.
(i) Note that in the definition of the set Ellsc(a) makes no difference to require

that the estimate from below in (3.1) holds for all ε ∈ (0, 1] or in a smaller
interval (0, η]. Indeed, assume that (3.1) holds for some representative (aε)ε

of a when ε is smaller of a certain η ∈ (0, 1] and take b ∈ Sm
ρ,δ(Ω × R

n)
such that |b(x, ξ)| ≥ 〈ξ〉m on U × Γ. It is not restrictive to suppose that the
representative (aε)ε is identically 0 when (x, ξ) ∈ U × Γ and ε ∈ (η, 1]. Let
(ωε)ε be a net in R

(0,1] defined as follows: ωε = 1/sε for ε ∈ (η, 1], ωε = 0
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for ε ∈ (0, η]. It is clear that a′ε := aε + ωεb is another representative of a.
Moreover, by construction, |a′ε(x, ξ)| ≥ s−1

ε 〈ξ〉m when (x, ξ) ∈ U ×Γ, |ξ| ≥ rε,
ε ∈ (0, η] and |a′ε(x, ξ)| = ωε|b(x, ξ)| ≥ s−1

ε 〈ξ〉m when (x, ξ) ∈ U × Γ, |ξ| ≥ rε,
ε ∈ (η, 1].

(ii) Any symbol a ∈ S̃m

ρ,δ,sc(Ω × R
n) which is slow scale micro-elliptic at (x0, ξ0)

fulfills the stronger hypoellipticity estimates of Definition 2.11 and it is sta-
ble under lower order (slow scale) perturbations [19, Proposition 2.3]. More
precisely if (aε)ε ∈ Sm

ρ,δ,sc(Ω × R
n) satisfy (3.1) in U × Γ � (x0, ξ0) then:

- For all α, β ∈ N
n there exist (λε)ε ∈ Πsc and η ∈ (0, 1] such that

|∂α
ξ ∂

β
xaε(x, ξ)| ≤ λε|aε(x, ξ)|〈ξ〉−ρ|α|+δ|β|, (x, ξ) ∈ U × Γ, |ξ| ≥ rε, ε ∈ (0, η].

- For all (bε)ε ∈ Sm′
ρ,δ,sc(Ω×R

n), m′ < m, there exist (r′ε)ε, (s′ε)ε ∈ Πsc and
η ∈ (0, 1] such that

|aε(x, ξ) + bε(x, ξ)| ≥ 1
s′ε

〈ξ〉m (x, ξ) ∈ U × Γ, |ξ| ≥ r′ε, ε ∈ (0, η].

As in [19] we use prΨm
sc(Ω) to denote the set of all properly supported operators

a(x,D) with symbol in S̃m

sc(Ω × R
n) and given u ∈ G(Ω) we define the set

Wsc
G∞(u) :=

⋂
a(x,D)∈ prΨ0

sc(Ω)

a(x,D)u∈G∞(Ω)

Ellsc(a)
c
.(3.2)

Theorem 3.9 in [19] proves that for all u ∈ G(Ω),

Wsc
G∞(u) = WFG∞(u).

Inspired by these results and aware of the fact that two kinds of regularity, with
respect to G(Ω) and with respect to G∞(Ω), coexist in the dual L(Gc(Ω), C̃), in this
section we define the G-wave front set and the G∞-wave front set of T ∈ L(Gc(Ω), C̃)
and we provide a Fourier transform-characterization in case of basic functionals.

3.1. Definition and basic properties of the generalized wave front sets
WFG(T ) and WFG∞(T ).

Definition 3.3. The G-wave front set and the G∞-wave front set of a functional
T in L(Gc(Ω), C̃) are defined as follows:

WFG(T ) :=
⋂

a(x,D)∈ prΨ0
sc(Ω)

a(x,D)T ∈G(Ω)

Ellsc(a)
c
,(3.3)

WFG∞(T ) :=
⋂

a(x,D)∈ prΨ0
sc(Ω)

a(x,D)T ∈G∞(Ω)

Ellsc(a)
c
.(3.4)

Remark 3.4.



Microlocal analysis 305

(i) As observed in [19] the action of a pseudodifferential operator with generalized
symbol does not change by adding negligible nets of symbols of order −∞.
This means that considering the set

S̃0/−∞
sc (Ω × R

n) := S0
sc(Ω × R

n)/N−∞(Ω × R
n)

of slow scale generalized symbols of refined order and the corresponding set

prΨ
0/−∞
sc (Ω) of properly supported pseudodifferential operators, WFG(T )

and WFG∞(T ) can be defined equivalently by replacing the set prΨ0
sc(Ω)

with prΨ
0/−∞
sc (Ω) in (3.3) and (3.4). Clearly all the results of Section 2

are valid for pseudodifferential operators with generalized symbols of refined
order.

(ii) By the standard procedure of lifting symbol orders with (1 − Δ)m/2 we eas-
ily show that we may take the intersections over a(x,D) ∈ prΨm

sc(Ω) (or

prΨ
m/−∞
sc (Ω)) in both (3.3) and (3.4).

(iii) By Theorem 3.9 in [19] it is clear that the notion of G∞-wave front set coincides
with the usual generalized wave front set (see [19, (3.10)]) on the Colombeau
algebra G(Ω).

Proposition 3.5. Let π : T ∗(Ω) \ 0 → Ω : (x, ξ) �→ x. For any basic functional T
in L(Gc(Ω), C̃),

π(WFG(T )) = sing suppG T(3.5)

and

π(WFG∞(T )) = sing suppG∞ T.(3.6)

Proof. The proof is a revised version of the proof of Proposition 2.8 in [19] by em-
ploying the new concepts introduced in the dual context. Crucial are the mapping
properties of the generalized pseudodifferential operators acting on L(Gc(Ω), C̃) here
involved and the definitions of G- and G∞-singular support.

We begin with (3.5), by proving that Ω \ sing suppG T ⊆ Ω \ π(WFG(T )). If
x0 ∈ Ω \ sing suppG T then there exists φ ∈ C∞

c (Ω) with φ(x0) = 1 such that
φ(x,D)T = φT ∈ G(Ω). The multiplication operator φ(x,D) belongs to prΨ0

sc(Ω)
and its symbol is (slow scale) micro-elliptic at (x0, ξ0) for all ξ0 �= 0. Therefore,
x0 �∈ Ω \ π(WFG(T )).

To show the opposite inclusion let x0 ∈ Ω\π(WFG(T )). For all ξ �= 0 there exists

a ∈ S̃0/−∞
sc (Ω×R

n) slow scale micro-elliptic at (x0, ξ) such that a(x,D) is properly
supported and a(x,D)T ∈ G(Ω). Arguing as in the proof of [19, Proposition 2.8] we

find a finite number of generalized symbols ai ∈ S̃0/−∞
sc (Ω×R

n) such that ai(x,D)
is properly supported and ai(x,D)T ∈ G(Ω). Let A :=

∑N
i=1 ai(x,D)∗ai(x,D).

Since ai(x,D)T ∈ G(Ω) and each ai(x,D)∗ maps G(Ω) into G(Ω) we conclude
that AT ∈ G(Ω). The arguing at the level of generalized symbols developed for
Proposition 2.8 in [19] shows that there exists a slow scale elliptic symbol b(x, ξ) ∈
S̃0/−∞

sc (Ω×R
n) such that b(x,D) ∈ prΨ

0/−∞
sc (Ω) and b(x,D)T |V = AT |V ∈ G(Ω)

on some neighborhood V of x0. Since T is a basic functional an application of (2.19)
in Theorem 2.12 leads to sing suppG T = sing suppG b(x,D)T and consequently
V ∩ sing suppG T = ∅. This shows that x0 �∈ sing suppG T .
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The proof of the second assertion is immediate. In proving Ω \ π(WFG∞(T )) ⊆
Ω \ sing suppG∞ T is essential to note that since the slow scale generalized symbols
can be seen as a special kind of regular symbols, the operators of prΨ

0/−∞
sc (Ω)

map G∞(Ω) into itself. Hence, if a(x,D)T ∈ G∞(Ω) then AT ∈ G∞(Ω) and
b(x,D)T |V ∈ G∞(V ). An application of (2.20) in Theorem 2.12 allows to con-
clude that sing suppG∞ T = sing suppG∞ b(x,D)T and completes the proof. �

3.2. Fourier transform-characterization of WFG(T ) and WFG∞(T ) when
T is a basic functional. The Fourier transform-characterization of the gener-
alized wave front sets introduced before needs some preliminary microlocal re-
sults concerning the action of a generalized pseudodifferential operator on the dual
L(Gc(Ω), C̃). Whereas for regular symbols it is relevant to talk of G∞-regularity in
a conical neighborhood (see [19, Definition 3.1]), in the larger class of generalized
symbols it is meaningful to talk of microlocal G-regularity.

Definition 3.6. Let a ∈ S̃m
ρ,δ(Ω×R

n) and (x0, ξ0) ∈ T ∗(Ω)\0. The symbol a is G-
smoothing at (x0, ξ0) if there exist a representative (aε)ε of a, a relatively compact
open neighborhood U of x0 and a conic neighborhood Γ of ξ0 such that

(3.7) ∀m ∈ R ∀α, β ∈ N
n ∃N ∈ N ∃c > 0∃η ∈ (0, 1]∀(x, ξ) ∈ U × Γ∀ε ∈ (0, η]

|∂α
ξ ∂

β
xaε(x, ξ)| ≤ c〈ξ〉mε−N .

The symbol a is G∞-smoothing at (x0, ξ0) if there exist a representative (aε)ε of a,
a relatively compact open neighborhood U of x0, a conic neighborhood Γ of ξ0 and
a natural number N ∈ N such that

(3.8) ∀m ∈ R ∀α, β ∈ N
n ∃c > 0∃η ∈ (0, 1]∀(x, ξ) ∈ U × Γ∀ε ∈ (0, η]

|∂α
ξ ∂

β
xaε(x, ξ)| ≤ c〈ξ〉mε−N .

We define the G-microsupport of a, denoted by μ suppG(a), as the complement of
the set of points (x0, ξ0) where a is G-smoothing and the G∞-microsupport of a,
denoted by μ suppG∞(a), as the complement of the set of points (x0, ξ0) where a is
G∞-smoothing.

In analogy with [19] when a ∈ S̃ m/−∞
ρ,δ (Ω×R

n) we denote the complements of the
sets of points (x0, ξ0) ∈ T ∗(Ω)\0 where (3.7) and (3.8) hold for some representative
of a by μG(a) and μG∞(a) respectively. It is clear that:

(i) If a ∈ S̃−∞(Ω × R
n) then μ suppG(a) = ∅.

(ii) If a ∈ S̃−∞
rg (Ω × R

n) then μ suppG∞(a) = ∅.
(iii) If a ∈ S̃ m/−∞

ρ,δ (Ω × R
n) and μG(a) = ∅ then a ∈ S̃−∞(Ω × R

n).

(iv) If a ∈ S̃ m/−∞
ρ,δ,rg (Ω × R

n) and μG∞(a) = ∅ then a ∈ S̃−∞
rg (Ω × R

n).
(v) When a is a classical symbol then μ supp(a) = μG(a) = μG∞(a).

In the sequel we work under the hypothesis 0 ≤ δ < ρ ≤ 1. We recall that
when a(x,D) and b(x,D) are properly supported pseudodifferential operators with
symbols a ∈ S̃m

ρ,δ(Ω×R
n) and b ∈ S̃m′

ρ,δ(Ω×R
n) respectively, then a(x,D) ◦ b(x,D)

is properly supported itself and has generalized symbol a�b in S̃m+m′
ρ,δ (Ω×R

n). a�b
has asymptotic expansion

∑
γ ∂

γ
ξ aD

γ
xb/γ! in the sense that for all representatives
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(aε)ε and (bε)ε of a and b respectively there exists a representative ((a�b)ε)ε of a�b
such that for all r ∈ N \ 0,(

(a�b)ε −
r−1∑
|γ|=0

1
γ!
∂γ

ξ aεD
γ
xbε

)
ε

∈ M
S

m+m′−(ρ−δ)r
ρ,δ (Ω×Rn)

.(3.9)

Note that when a and b are regular symbols then a�b is regular. More precisely for
K � Ω, the assumption |aε|(m)

ρ,δ,K,α,β = O(ε−N ) and |bε|(m
′)

ρ,δ,K,α,β = O(ε−N ′
), valid

for all α, β ∈ N
n, implies that∣∣∣∣∣(a�b)ε −

r−1∑
|γ|=0

1
γ!
∂γ

ξ aεD
γ
xbε

∣∣∣∣∣
(m+m′−(ρ−δ)r)

ρ,δ,K,α,β

= O(ε−N−N ′
)(3.10)

for all r ∈ N \ 0 and α, β ∈ N
n.

Proposition 3.7. Let a(x,D) and b(x,D) be properly supported pseudodifferential
operators with generalized symbols.

(i) If a ∈ S̃m
ρ,δ(Ω × R

n) and b ∈ S̃m′
ρ,δ(Ω × R

n) then

μ suppG(a�b) ⊆ μ suppG(a) ∩ μ suppG(b).(3.11)

(ii) If a ∈ S̃m
ρ,δ,rg(Ω × R

n) and b ∈ S̃m′
ρ,δ,rg(Ω × R

n) then

μ suppG∞(a�b) ⊆ μ suppG∞(a) ∩ μ suppG∞(b).(3.12)

When we deal with symbols of refined order we have that μ suppG and μ suppG∞

can be replaced by μG and μG∞ respectively in (3.11) and (3.12).

Proof. (i) Assume that (x0, ξ0) �∈ μ suppG(a). This means that (3.7) holds for
some representative (aε)ε of a in a region U × Γ. Combined with the properties of
b we have that:

(3.13) ∀l ∈ R ∀α, β, γ ∈ N
n ∃N ∈ N ∃c > 0∃η ∈ (0, 1]∀(x, ξ) ∈ U × Γ∀ε ∈ (0, η]

|∂α
ξ ∂

β
x (∂γ

ξ aεD
γ
xbε)(x, ξ)| ≤ c〈ξ〉lε−N .

By (3.9), taking for each α, β ∈ N
n the integer r large enough such that

m+m′ − (ρ− δ)r − ρ|α| + δ|β| ≤ l,

we conclude that the following assertion

(3.14) ∀l ∈ R ∀α, β, γ ∈ N
n ∃N ∈ N ∃c > 0∃η ∈ (0, 1]∀(x, ξ) ∈ U × Γ∀ε ∈ (0, η]

|∂α
ξ ∂

β
x (a�b)ε(x, ξ)| ≤ c〈ξ〉lε−N

holds for some representative ((a�b)ε)ε of a�b. Hence, (x0, ξ0) �∈ μ suppG(a�b).
(ii) When we deal with regular symbols and their G∞-microsupports, (3.13) is

transformed into

∃N,N ′ ∈ N ∀l ∈ R ∀α, β, γ ∈ N
n ∃c > 0∃η ∈ (0, 1]∀(x, ξ) ∈ U × Γ∀ε ∈ (0, η]

|∂α
ξ ∂

β
x (∂γ

ξ aεD
γ
xbε)(x, ξ)| ≤ c〈ξ〉lε−N−N ′

.

By means of (3.10) it is immediate that for all order of derivatives and for all l ∈ R

|∂α
ξ ∂

β
x (a�b)ε(x, ξ)| ≤ c〈ξ〉lε−N−N ′
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on U × Γ when ε is small enough, i.e., (x0, ξ0) �∈ μ suppG∞(a�b). �

Theorem 3.8. Let a(x,D) be a properly supported pseudodifferential operator with
generalized symbol and T be a basic functional in L(Gc(Ω), C̃).

(i) If a ∈ S̃m/−∞
ρ,δ (Ω × R

n) then

WFG(a(x,D)T ) ⊆ WFG(T ) ∩ μG(a).(3.15)

(ii) If a ∈ S̃m/−∞
ρ,δ,rg (Ω × R

n) then

WFG∞(a(x,D)T ) ⊆ WFG∞(T ) ∩ μG∞(a).(3.16)

As for Proposition 3.5 the proof is an elaboration of the proof of Theorem 3.6 in
[19].

Proof. (i) We prove the first assertion in two steps.

Step 1: WFG(a(x,D)T ) ⊆ μG(a). If (x0, ξ0) �∈ μG(a) then (3.7) holds on some

U × Γ, and by Lemma 3.4 in [19] we find q ∈ S0(Ω × R
n) ⊆ S̃0/−∞

rg (Ω × R
n),

which is micro-elliptic at (x0, ξ0) with μ supp(q) = μG(q) ⊆ U × Γ. By Proposi-
tion 3.7, q(x,D)a(x,D) is a properly supported pseudodifferential operator with
symbol q�a ∈ S̃m/−∞

ρ,δ (Ω × R
n) and

μG(q�a) ⊆ μG(q) ∩ μG(a) ⊆ (U × Γ) ∩ μG(a) = ∅.
This shows that q�a ∈ S̃−∞(Ω×R

n) and that q(x,D)a(x,D) has kernel in G(Ω×Ω).
By Proposition 2.7(ii) we have that q(x,D)a(x,D)T ∈ G(Ω). Hence, (x0, ξ0) �∈
WFG(a(x,D)T ).

Step 2: WFG(a(x,D)T ) ⊆ WFG(T ). Let (x0, ξ0) �∈ WFG(T ). By definition of G-
wave front set there exists p(x,D) ∈ prΨ

0/−∞
sc (Ω) such that p is slow scale micro-

elliptic at (x0, ξ0) and p(x,D)T ∈ G(Ω). As shown in the proof of [19, Theorem
3.6] there exist:

- r(x,D) ∈ prΨ
0/−∞
sc (Ω) whose symbol r is classical, micro-elliptic at (x0, ξ0)

and with μ supp(r) contained in a conic neighborhood U ′ × Γ′ of (x0, ξ0);
- p(x,D)∗p(x,D) = σ(x,D) ∈ prΨ

0/−∞
sc (Ω);

- b(x,D) ∈ prΨ
0/−∞
sc (Ω) whose symbol b is slow scale elliptic and μG∞(b−σ)∩

(U ′ × Γ′) = ∅;
- t(x,D) ∈ prΨ

0/−∞
rg (Ω) parametrix of b(x,D).

As a consequence s(x,D) := r(x,D)a(x,D)t(x,D) is a properly supported pseu-
dodifferential operator with symbol in S̃m/−∞

ρ,δ (Ω × R
n). We write the difference

r(x,D)a(x,D)T − s(x,D)p(x,D)∗p(x,D)T as

(3.17) r(x,D)a(x,D)
(
T − t(x,D)b(x,D)T

)
+ r(x,D)a(x,D)t(x,D)

(
b(x,D) − σ(x,D)

)
T.

Since I − t(x,D)b(x,D) has kernel in G∞(Ω×Ω) then by Proposition 2.7(iii), T −
t(x,D)b(x,D)T ∈ G∞(Ω) and by the mapping properties of r(x,D) and a(x,D) the
first summand in (3.17) belongs to G(Ω). An iterated application of Proposition 3.7
stated for symbols of refined order proves that the second summand can be written
as the action on T of a properly supported pseudodifferential operator d(x,D)
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with generalized symbol of refined order m having G-microsupport contained in the
region μ supp(r)∩ μG(b− σ) ⊆ μ supp(r)∩ μG∞(b− σ) ⊆ U ′ ×Γ′ ∩ μG∞(b− σ) = ∅.
This means that d ∈ S̃−∞(Ω×R

n) and by Proposition 2.3(i) and Proposition 2.7(ii)
we conclude that d(x,D)T ∈ G(Ω). Therefore, (3.17) gives a generalized function
in G(Ω).

Let us now consider r(x,D). Recalling that p(x,D)T ∈ G(Ω) and that the
operators p(x,D)∗ and s(x,D) map G(Ω) into itself, the considerations above imply
that r(x,D)a(x,D)T ∈ G(Ω). Thus, (x0, ξ0) �∈ WFG(a(x,D)T ) since r is micro-
elliptic at (x0, ξ0).

(ii) When a ∈ S̃m/−∞
ρ,δ,rg (Ω × R

n) then a(x,D) maps G∞(Ω) into itself. Since
the same mapping property holds for r(x,D) it follows that the first summand in
(3.17) belongs to G∞(Ω). By iterated application of Proposition 3.7 the second
summand d(x,D)T has symbol d with G∞-microsupport contained in μ supp(r) ∩
μG∞(b − σ) = ∅, that is d ∈ S̃−∞

rg (Ω × R
n) and the kernel of the corresponding

pseudodifferential operator is an element of G∞(Ω × Ω). Proposition 2.7(iii) yields
d(x,D)T ∈ G∞(Ω) and then (3.17) gives a generalized function in G∞(Ω). Recalling
that by definition of G∞-wave front set p(x,D)T ∈ G∞(Ω) and that p(x,D)∗ and
s(x,D) map G∞(Ω) into itself, we obtain that r(x,D)(a(x,D)T ) ∈ G∞(Ω) which
implies that (x0, ξ0) �∈ WFG∞(a(x,D)T ). �

Note that if a ∈ S̃m
ρ,δ(Ω×R

n) and κ is the quotient map from MSm
ρ,δ(Ω×Rn) onto

S̃m/−∞
ρ,δ (Ω × R

n) then

μ suppG(a) =
⋂

(aε)ε∈a

μG
(
κ
(
(aε)ε

) )
.(3.18)

Indeed, for every representative (aε)ε of the symbol a we have that μ suppG(a) ⊆
μG(κ((aε)ε)) and if (x0, ξ0) �∈ μ suppG(a) then (x0, ξ0) �∈ μG(κ((aε)ε)) for some
(aε)ε ∈ a. In the same way

μ suppG∞(a) =
⋂

(aε)ε∈a

μG∞
(
κ
(
(aε)ε

) )
.(3.19)

We are ready now to prove the following corollary of Theorem 3.8.

Corollary 3.9. For any properly supported pseudodifferential operator a(x,D) with
symbol a ∈ S̃m

ρ,δ(Ω × R
n) and for any T basic functional in L(Gc(Ω), C̃),

WFG(a(x,D)T ) ⊆ WFG(T ) ∩ μ suppG(a).(3.20)

Similarly, if a ∈ S̃m
ρ,δ,rg(Ω × R

n) then

WFG∞(a(x,D)T ) ⊆ WFG∞(T ) ∩ μ suppG∞(a).(3.21)

Proof. For any representative (aε)ε of a the generalized symbol κ((aε)ε) = (aε)ε +
N−∞(Ω × R

n) satisfies the hypotheses of Theorem 3.8 and the corresponding op-
erator κ((aε)ε)(x,D) coincides with a(x,D). Hence from Theorem 3.8(i) we have
that ⋂

(aε)ε∈a

WFG(κ((aε)ε)(x,D)T ) ⊆ WFG(T ) ∩
⋂

(aε)ε∈a

μG(κ((aε)ε)).
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Clearly the properties of κ((aε))(x,D) and equality (3.18) lead to

WFG(a(x,D)T ) ⊆ WFG(T ) ∩ μ suppG(a).

The proof of (3.21) when a is a regular symbol is an analogous combination of
Theorem 3.8 with (3.19). �
Remark 3.10. Note that the assumption of regularity of the symbol a is essential
in order to get (3.21). Indeed, for φ ∈ C∞

c (R) let us consider φε(x) = ε−1φ(x/ε), the
generalized function [(φε)ε] ∈ G(R) and the multiplication operator a(x,D) : T →
[(φε)ε]T . The generalized symbol determined by [(φε)ε] is not regular since [(φε)ε] ∈
G(R) \ G∞(R). Taking now the basic functional T (u) =

∫
R
u(x) dx of L(Gc(R), C̃)

we have that WFG∞(T ) = ∅ while WFG∞(a(x,D)T ) = WFG∞([(φε)ε]) �= ∅.
As in the classical theory [12] we introduce notions of microsupport for operators.
In the case of generalized psuedodifferential operators, taking into account the
noninjectivity when mapping symbols to operators (cf. [18]), we distinguish the
corresponding notions for symbols and operators.

Definition 3.11. Let A be a properly supported pseudodifferential operator with
generalized symbol in S̃m

ρ,δ(Ω × R
n). We define the G-microsupport of A as

μ suppG(A) :=
⋂

a∈S̃m
ρ,δ(Ω×R

n)

a(x,D)=A

μ suppG(a).

Let A be a properly supported pseudodifferential operator with generalized symbol
in S̃m

ρ,δ,rg(Ω × R
n). We define the G∞-microsupport of A as

μ suppG∞(A) :=
⋂

a∈S̃m
ρ,δ,rg(Ω×R

n)

a(x,D)=A

μ suppG∞(a).

Corollary 3.9 can therefore be stated in the following way: for any properly
supported pseudodifferential operator A with generalized symbol and for any basic
functional T ∈ L(Gc(Ω), C̃),

WFG(AT ) ⊆ WFG(T ) ∩ μ suppG(A).

If A has regular generalized symbol then

WFG∞(AT ) ⊆ WFG∞(T ) ∩ μ suppG∞(A).

Corollary 3.12. Let A be a properly supported pseudodifferential operator with
generalized hypoelliptic symbol. Then for any basic functional T ∈ L(Gc(Ω), C̃),

WFG(AT ) = WFG(T )

and

WFG∞(AT ) = WFG∞(T ).

Proof. Since A = a(x,D) where a ∈ S̃m

ρ,δ,rg(Ω × R
n), Corollary 3.9 implies that

WFG(AT ) ⊆ WFG(T ) and WFG∞(AT ) ⊆ WFG∞(T ). Let p(x,D) be a parametrix

for A. The symbol p belongs to S̃−l

ρ,δ,rg(Ω × R
n) and from (2.18) we have that

p(x,D)AT = T + RT , where R is an operator with kernel in G∞(Ω × Ω). Propo-
sition 2.7(iii) implies that RT ∈ G∞(Ω). Finally an application of Corollary 3.9
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to p(x,D) yields WFG(T ) = WFG(p(x,D)AT ) ⊆ WFG(AT ) and WFG∞(T ) =
WFG∞(p(x,D)AT ) ⊆ WFG∞(AT ). �

Note that combining Corollary 3.12 with Proposition 3.5 we obtain the equalities
between singular supports claimed by Theorem 2.12. Moreover, the statements of
the above theorem and corollaries are valid for operators not necessarily properly
supported when we consider basic functionals in L(G(Ω), C̃).

Before proving the Fourier transform-characterization of the wave front sets
WFG(T ) and WFG∞(T ) when T is a basic functional in L(Gc(Ω), C̃) we observe that
if φ ∈ C∞

c (Ω) then φT is a basic functional in L(G(Rn), C̃) and by Proposition 1.20
its Fourier transform F(φT ) belongs to G∞

τ (Rn). In the sequel the regularity of a
tempered generalized function is measured on a conic region Γ ⊆ R

n \ 0 by means
of

GS ,0(Γ) :=
{
u ∈ Gτ (Rn) : ∃(uε)εrepr. of u ∀l ∈ R ∃N ∈ N

sup
ξ∈Γ

〈ξ〉l|uε(ξ)| = O(ε−N ) as ε→ 0
}
,

and

G∞
S,0(Γ) :=

{
u ∈ Gτ (Rn) : ∃(uε)εrepr. of u ∃N ∈ N ∀l ∈ R

sup
ξ∈Γ

〈ξ〉l|uε(ξ)| = O(ε−N ) as ε→ 0
}
.

Note that if (uε)ε and (u′ε)ε are two different representatives of u fulfilling the
condition which defines GS ,0(Γ) (or G∞

S,0(Γ)) then their difference has the property
supξ∈Γ〈ξ〉l|(uε − u′ε)(ξ)| = O(εq) for all l ∈ R and all q ∈ N.

Theorem 3.13. Let T be a basic functional in L(Gc(Ω), C̃).
(i) (x0, ξ0) �∈ WFGT if and only if there exists a conic neighborhood Γ of ξ0 and

a cut-off function φ ∈ C∞
c (Ω) with φ(x0) = 1 such that

F(φT ) ∈ GS ,0(Γ).

(ii) (x0, ξ0) �∈ WFG∞T if and only if there exists a conic neighborhood Γ of ξ0 and
a cut-off function φ ∈ C∞

c (Ω) with φ(x0) = 1 such that

F(φT ) ∈ G∞
S,0(Γ).

Proof. (i) We first prove that if (x0, ξ0) is a point in T ∗(Ω) \ 0 such that F(φT ) ∈
GS ,0(Γ) for some conic neighborhood Γ of ξ0 and some cut-off function φ with
φ(x0) = 1, then (x0, ξ0) �∈ WFG(T ). As noted in [19, Remark 3.5] there exists
p(ξ) ∈ S0(Ω×R

n) with supp(p) ⊆ Γ, which is identically 1 in a conical neighborhood
Γ′ of ξ0 when |ξ| ≥ 1. Taking a proper cut-off χ, we can write the properly supported
pseudodifferential operator with amplitude χ(x, y)p(ξ)φ(y) in the form σ(x,D) ∈
prΨ

0/−∞
sc (Ω), where σ(x, ξ) − p(ξ)φ(x) ∈ S−1(Ω × R

n); in particular for any S ∈
L(Gc(Ω), C̃), σ(x,D)S− p(D)(φS) can be seen as the action of a pseudodifferential
operator with kernel in C∞(Ω×Ω) on the functional φS ∈ L(G(Ω), C̃). Hence, if S
is basic,

σ(x,D)S − p(D)(φS) ∈ G∞(Ω).(3.22)
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By assumption the symbol σ is micro-elliptic at (x0, ξ0) and by definition of Fourier
transform on L(G

S
(Rn), C̃) we have that for all u ∈ Gc(Rn),

p(D)(φT )(u) = φT ( tp(D)(u)) = φT (F(pF∗u)) = F(φT )(pF∗u)

=
∫

Ω

∫
Rn

eiyξF(φT )(ξ)p(ξ) d−ξ u(y) dy,

where pF∗u ∈ G
S

(Rn) and from the hypothesis on F(φT ) it follows that the integral∫
Rn

eiyξF(φT )(ξ)p(ξ) d−ξ(3.23)

defines a generalized function in G(Ω). As a consequence p(D)(φT ) ∈ G(Ω) and by
(3.22) we conclude that σ(x,D)T ∈ G(Ω). Therefore, (x0, ξ0) �∈ WFG(T ).

Conversely, suppose (x0, ξ0) �∈ WFG(T ). There is an open neighborhood U of x0

such that (x, ξ0) ∈ WFG(T )c for all x ∈ U . Choose φ ∈ C∞
c (U) with φ(x0) = 1 and

define

ΣG := {ξ ∈ R
n \ 0 : ∃x ∈ Ω (x, ξ) ∈ WFG(φT )}.

By Corollary 3.9 we have that WFG(φT ) ⊆ WFG(T ) ∩ (supp(φ) × R
n \ 0) and

therefore ξ0 /∈ ΣG . Arguing as in the proof of Theorem 3.9 in [19] we find p(ξ) ∈
S0(Ω × R

n) such that 0 ≤ p ≤ 1, p(ξ) = 1 in a conic neighborhood Γ of ξ0
when |ξ| ≥ 1 and p(ξ) = 0 in a conic neighborhood Σ0 of ΣG . By construction
μ supp(p) ∩ (Ω × Σ0) = ∅ and WFG(φT ) ⊆ Ω × ΣG . Therefore, WFG(p(D)φT ) ⊆
WFG(φT ) ∩ μ supp(p) = ∅ and by Proposition 3.5, p(D)(φT ) ∈ G(Ω). Note that
the pseudodifferential operator p(D) maps G

S
(Rn) into itself and can be extended

to the dual L(G
S

(Rn), C̃). Since φT ∈ L(G(Ω), C̃) ⊆ L(G(Rn), C̃) ⊆ L(G
S

(Rn), C̃),
p(D)(φT ) can be also viewed as a basic functional in L(G

S
(Rn), C̃) which restricted

to Gc(Ω) is a generalized function of G(Ω). We now want to study the action of
p(D)(φT ) on a generalized function u ∈ G

S
(Rn). First of all for δ > 0 we define

Bδ := {x ∈ R
n : dist(x, suppφ) ≤ δ}.

Recalling that p̌ is a Schwartz function outside the origin, i.e., sup|x|>λ |xα∂β p̌(x)| <
∞ for all λ > 0 and α, β ∈ N

n ([12, Theorem (8.8a)]), from the properties of a net
(Tε)ε ∈ E ′(Ω)(0,1] defining T we have that there exist K � Ω, j ∈ N and N ∈ N

such that for all l ∈ R and α ∈ N
n,

sup
x∈Rn\Bδ

|〈x〉l∂α
x (φTε ∗ p̌)(x)|(3.24)

= sup
x∈Rn\Bδ

|Tε(y → 〈x〉l∂α
x p̌(x− y)φ(y))|

≤ cε−N sup
x∈Rn\Bδ

sup
y∈K,|β|≤j

|〈x〉l∂β
y (∂α

x p̌(x− y)φ(y))| ≤ c′ε−N

when ε is small enough. SinceN depends only on (Tε)ε we conclude that (φTε∗p̌)ε ∈
E∞

S (Rn \Bδ). Take now δ small enough such that B2δ is a compact set contained in
Ω and a covering (Ωj)j∈N of R

n such that Ω0 = B2δ and Ωj ⊆ R
n \Bδ for all j ≥ 1.

Let (ϕj)j be a partition of unity subordinated to the covering (Ωj)j (suppϕj ⊆ Ωj)
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fulfilling the following condition:

∀α ∈ N
n ∃Aα > 0∀j ∈ N sup

x∈Rn

|∂αϕj(x)| ≤ Aα2−j|α|(3.25)

(see [55, Theorem 6.1] for details). Making use of this technical tool we complete
the proof of the first assertion of the theorem showing that the Fourier transform
of p(D)(φT ) ∈ L(G

S
(Rn), C̃) belongs to G

S
(Rn). From (3.25) we have that if

f ∈ S (Rn) then
∑

j ϕjf converges to f in S (Rn). As a consequence for all
u ∈ G

S
(Rn) we can write

p(D)(φT )(u) = p(D)(φT )(ϕ0u) +

⎡⎣⎛⎝ ∞∑
j=1

∫
Rn

(φTε ∗ p̌)(x)ϕj(x)uε(x) dx

⎞⎠
ε

⎤⎦ .
Since suppϕ0 ⊆ B2δ ⊆ B2δ � Ω the generalized function ϕ0u belongs to Gc(Ω)
and by the properties of p(D)(φT ) discussed above there exists v ∈ G(Ω) such that
p(D)(φT )(ϕ0u) =

∫
Ω
v(x)ϕ0u(x) dx. A combination of the estimate (3.24) with the

fact that suppϕj ⊆ Ωj ⊆ R
n \Bδ for all j ≥ 1 and the convergence property (3.25)

allows us to conclude that
∞∑

j=1

∫
Rn

(φTε ∗ p̌)(x)ϕj(x)uε(x) dx =
∫

Rn

∞∑
j=1

(φTε ∗ p̌)(x)ϕj(x)uε(x) dx

=
∫

Rn

w2,ε(x)uε(x) dx,

where (w2,ε)ε ∈ E∞
S (Rn). In other words there exists w ∈ G

S
(Rn) of the form

w = w1 + w2 with w1 ∈ Gc(Rn) and w2 ∈ G∞
S

(Rn) such that

p(D)(φT )(u) =
∫

Rn

w(x)u(x) dx(3.26)

for all u ∈ G
S

(Rn). At this point by applying the Fourier transform on both the
members of (3.26) we arrive at∫

Rn

Fw(ξ)u(ξ) dξ = F(p(D)(φT ))(u) = φT ( tp(D)Fu) = φT (F(pu))

=
∫

Rn

F(φT )(ξ)p(ξ)u(ξ) dξ,

where by Proposition 1.20 F(φT ) ∈ G∞
τ (Rn) and the generalized functions Fw and

pu are elements of G
S

(Rn). Therefore, F(φT )p ∈ G
S

(Rn) and by construction of
the symbol p it is clear that F(φT ) ∈ GS ,0(Γ).

(ii) The sufficiency of the second assertion is proven as in the case of the first
assertion by simply observing that when (x0, ξ0) is a point in T ∗(Ω) \ 0 such that
F(φT ) ∈ G∞

S,0(Γ) then the integral in (3.23) defines a generalized function in G∞(Ω).
Analogously, when (x0, ξ0) �∈ WFG∞(T ) then p(D)(φT ) ∈ L(G

S
(Rn), C̃) acts on

Gc(Ω) as a generalized function in G∞(Ω). It follows that for all u ∈ G
S

(Rn),
p(D)(φT )(u) =

∫
Rn w(x)u(x) dx, where w = w1+w2 ∈ G∞

S
(Rn) since w1 ∈ G∞

c (Rn)
and w2 ∈ G∞

S
(Rn). Hence, F(φT ) ∈ G∞

S,0(Γ). �

As for the generalized wave front set of a Colombeau function (cf. [19, Theorem
3.11]), the G-wave front set and the G∞-wave front set of a basic functional in
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L(Gc(Ω), C̃) can be defined by considering only classical pseudodifferential operators
in (3.3) and (3.4). This is already partially proved in the proof of Theorem 3.13.
In the sequel we set

Wcl,G(T ) :=
⋂

AT∈G(Ω)

Char(A)(3.27)

and

Wcl,G∞(T ) :=
⋂

AT∈G∞(Ω)

Char(A)(3.28)

where the intersections are taken over all the classical properly supported operators
A ∈ Ψ0(Ω) such that AT ∈ G(Ω) in (3.27) and AT ∈ G∞(Ω) in (3.28).

Proposition 3.14. For all basic functionals T ∈ L(Gc(Ω), C̃),

Wcl,G(T ) = WFG(T )

and

Wcl,G∞(T ) = WFG∞(T ).

Proof. The inclusions WFG(T ) ⊆ Wcl,G(T ) and WFG∞(T ) ⊆ Wcl,G∞(T ) are ob-
vious. Let now (x0, ξ0) be a point in the complement of WFG(T ). As in the proof
of Theorem 3.13 one can find a properly supported operator P ∈ Ψ0(Ω) such that
PT ∈ G(Ω) and (x0, ξ0) �∈ CharP . Hence, (x0, ξ0) �∈ Wcl,G(T ). In the same way if
(x0, ξ0) �∈ WFG∞(T ) then PT ∈ G∞(Ω) and (x0, ξ0) �∈ Wcl,G∞(T ). �

Remark 3.15. Let ι be the embedding of D′(Ω) into G(Ω). We denote the com-
position of ι with the embedding of G(Ω) into the dual L(Gc(Ω), C̃) by ι′ and the
straightforward embedding w → (u→ [(w(uε))ε]) of D′(Ω) into L(Gc(Ω), C̃) by ιd.
Note that by [15, Proposition 3.10] for any classical properly supported pseudodif-
ferential operator A and for any distribution w the relation A(ιd(w)) = ιd(Aw) ∈
G∞(Ω) implies Aw ∈ C∞(Ω). Hence a combination of this fact with the previous
proposition and Remark 3.4(iii) yields

WFG∞(ιd(w)) = Wcl,G∞(ιd(w)) = WF(w) = WFG∞(ι(w)) = WFG∞(ι′(w)).

4. Noncharacteristic G and G∞-regularity

The classical result on noncharacteristic regularity for distributional solutions of
arbitrary pseudodifferential equations (with smooth symbols) had been extended
to generalized pseudodifferential operators with slow scale generalized symbols and
Colombeau solutions in [19, Theorem 4.1]. We conclude the paper by providing a
suitable adaptation and extension of this result to the context of basic functionals in
L(Gc(Ω), C̃). This will allow us to consider Cauchy problems as in [19, Proposition
4.3] where the initial data is a functional now and to investigate the microlocal
regularity of the solution in L(Gc(Ω), C̃).

Theorem 4.1. If P = p(x,D) is a properly supported pseudodifferential operator
with symbol p ∈ S̃m

sc(Ω × R
n) and T is a basic functional in L(Gc(Ω), C̃) then

WFG(PT ) ⊆ WFG(T ) ⊆ WFG(PT ) ∪ Ellsc(p)c(4.1)
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and

WFG∞(PT ) ⊆ WFG∞(T ) ⊆ WFG∞(PT ) ∪ Ellsc(p)c.(4.2)

Proof. From Corollary 3.9 the first inclusions in (4.1) and (4.2) are clear. Assume
now that (x0, ξ0) �∈ WFG(PT ) and that p is slow scale micro-elliptic there. By
definition of G-wave front set we find a(x,D) ∈ prΨ0

sc(Ω) with a(x,D)(p(x,D)T ) ∈
G(Ω). By the (slow scale) symbol calculus and Remark 3.2(ii) we obtain that
a(x,D)p(x,D) has a slow scale symbol micro-elliptic at (x0, ξ0). So (x0, ξ0) �∈
WFG(T ). Analogously, WFG∞(PT )c ∩ Ellsc(p) ⊆ WFG∞(T )c. �

Remark 4.2. The dual L(Gc(Ω), C̃) and the analytic (local and microlocal) tools so
far developed can be employed in investigating the solvability in G(Ω) of generalized
partial differential equations. More precisely let us consider a partial differential
operator P (D) with coefficients in C̃ whose symbol satisfies the assumption of in-
vertibility in a point given in [29, Theorem 7.7]. A solution u ∈ G(Ω) of the equation
P (D)u = v ∈ Gc(Ω) is obtained by convolving a representative (vε)ε with a suitable
net of distributions (Eε)ε (fundamental solutions of Pε) depending on P . Note that
(Eε)ε does not generate a Colombeau generalized function but a basic functional
E in the dual L(Gc(Ω), C̃). This suggests introducing the notion of fundamental
solution in the Colombeau context as a basic functional E solving P (D)E = ιd(δ).
This topic is currently being studied by the author in connection with issues of
regularity theory as necessary conditions for G- and G∞-hypoellipticity (see [16,
Subsection 4.1.1]). Theorem 4.1 already gives a hint on how fundamental solutions
in L(Gc(Ω), C̃) may be related to G- and G∞-hypoellipticity. If P (D) is defined by
an elliptic generalized symbol p of slow scale type then it is a G∞-hypoelliptic oper-
ator in the sense that sing suppG∞ P (D)T = sing suppG∞ T for all basic functionals
T in L(Gc(Ω), C̃). By (4.2) it follows that every fundamental solution E of P (D)
has G∞- singular support contained in {0}. We expect that this property of the
fundamental solutions will be not only a necessary but also a sufficient condition
of G∞-hypoellipticity for partial differential operators with generalized constant
coefficients.
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[29] Hörmann, Günther; Oberguggenberger, Michael. Elliptic regularity and solvability for partial
differential equations with Colombeau coefficients. Electron. J. Diff. Eqns. 2004, No. 14, 30
pp. (electronic). MR2036198 (2005b:46086), Zbl 1062.46032.
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[39] Marti, Jean-André; Nuiro, Silvere Paul; Valmorin, Vincent. Algèbres différentielles et
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