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On generators of shy sets on Polish
topological vector spaces

G. R. Pantsulaia

Abstract. We introduce the notion of generators of shy sets in Polish
topological vector spaces and give their various interesting applications.
In particular, we demonstrate that this class contains specific measures
which naturally generate implicitly introduced subclasses of shy sets.
Moreover, such measures (unlike σ-finite Borel measures) possess many
interesting, sometimes unexpected, geometric properties.
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1. Preliminaries

The main goal of the present work is to construct specific Borel measures
in Polish topological vector spaces which naturally generate classes of null
sets playing an important role in studying the properties of a function space
(see, for example, [1], [4], [6], [8], [12], [16], [20], [21], [23], [25]). In this
direction, for a Polish topological vector space V , we introduce the notion
of a generator of shy sets which is a Borel measure μ in V such that every
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set of μ-measure zero is a Haar null set (or a shy set). Note that since no
nonzero σ-finite Borel measure possesses the above mentioned property, we
have to choose measures in the class of nonzero non-σ-finite Borel measures
defined on the entire spaces.

The paper is organized as follows.
In Section 2 we introduce the notion of a generator defined in a Polish

topological vector space and prove that the class of generators is nonempty.
We also show that in the class of generators there does not exist a generator
with the property of uniqueness. We prove that every generator defined in
the infinite-dimensional topological vector space is non-σ-finite. We demon-
strate that a quasifinite translation-quasiinvariant Borel measure, as well
as a quasifinite translation-invariant Borel measure, is a generator. Some
interesting examples of generators [2], [3], and [19] are considered in this
section.

In Section 3 we focus on the so-called quasigenerator μ which is a Borel
measure whose every pair of shifts is equivalent or orthogonal. The main
result of this section (Theorem 3.1) states that the structure of an arbitrary
quasigenerator μ allows one to construct a new quasifinite generator Gμ such
that the class of all shy sets S(μ) defined by any quasigenerator μ coincides
with the σ-ideal of null sets N(Gμ) defined by the constructed generator
Gμ.

Section 4 presents various examples of Gikhman–Skorokhod measures
which were constructed in papers [5], [9], [10], [11], [13], [14], [24], [26].
A simple example of a Gaussian generator is given in an arbitrary Polish
topological vector space. A general problem is stated whether a Gaussian
generator is quasifinite.

In Section 5 we describe a construction of A.B. Kharazishvili’s quasigen-
erators and, using their structures, we construct an example of a semifinite
quasifinite Baker’s generator in RN.

In Section 6, A.B. Kharazishvili’s quasigenerator ν[0,1]N is used to con-
struct Mankiewicz’s generator Gν

[0,1]N
which generates exactly the class of

all cube null sets [16] in RN. Also, we consider the generator defined by a
finite-dimensional manifold in Polish topological vector space V . Here we
establish that the class of all shy sets defined by any finite-dimensional man-
ifold L ⊆ V coincides with the σ-ideal of GλL

-null sets, where λL denotes a
Lebesgue measure concentrated on L.

In Section 7, we construct n-dimensional Preiss–Tǐser generators in Ba-
nach spaces (in this context, see [20]) and establish their some interesting
geometrical properties.
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2. Existence and uniqueness of generators

Let V be a Polish topological vector space, by which we mean a vector
space with a complete metric for which the addition and the scalar multi-
plication are continuous. Let B(V ) be the σ-algebra of Borel subsets of V
and μ be a nonzero nonnegative measure defined on B(V ). We write X + a
for the translation of a set X ⊆ V by a vector a ∈ V .

Definition 2.1 ([12, Definition 1, p. 221 ]). A measure μ is said to be
transverse to a Borel set S ⊂ V if:

(1) There exists a compact set U ⊂ V for which 0 < μ(U) < ∞.
(2) μ(S + v) = 0 for every v ∈ V .

Definition 2.2 ([12, Definition 1, p. 222 ]). A Borel set S ⊂ V is called shy
if there exists a Borel measure which is transverse to S. More generally, a
subset of V is called shy if it is contained in a shy Borel set.

The class of all shy sets in V is denoted by S(V ).

Definition 2.3 ([12, p. 226 ]). The complement of a shy set is called a
prevalent set. We say that almost every element of V satisfies a given
property if the subset of V on which the property holds is prevalent.

As Christensen [6, p. 119] notes, there is no σ-finite (equivalently, proba-
bility) measure μ such that S being shy is equivalent to μ(S) = 0. Slightly
more can be said that any σ-finite measure μ must assign 0 to a prevalent
set of points. On these grounds, we introduce the following:

Definition 2.4. A Borel measure μ in V is called a generator (of shy sets)
in V , if

μ(X) = 0 ⇒ X ∈ S(V ),
where μ denotes the usual completion of the Borel measure μ.

Definition 2.5. A Borel measure μ in V is called quasifinite if there exists
a compact set U ⊂ V for which 0 < μ(U) < ∞.

Definition 2.6. A Borel measure μ in V is called semifinite if for X with
μ(X) > 0 there exists a compact subset F ⊂ X for which 0 < μ(F ) < ∞.

Definition 2.7. For a Borel measure μ in V and h ∈ V , the shift μh is
defined by

(2.1) μh(X) = μ(X + h)

for X ∈ B(V ). We say that μ is translation-quasiinvariant if μ ∼ μh (i.e., μ
is equivalent to μh) for all h ∈ V .

Definition 2.8. A Borel measure μ in V is called translation-invariant if
μh = μ for all h ∈ V .

Definition 2.9. Let K be a class of measures on V . We say that a measure
μ ∈ K has the property of uniqueness in the class K if μ and λ are equivalent
for every λ ∈ K.
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Now there naturally arises the following:

Question 2.1. Let V be a Polish topological vector space. Does there exist
a generator in V ?

Let V be a Polish vector space. Let L be a proper vector subspace of V .
By the Axiom of Choice, we can construct a proper vector subspace F ⊂ V
such that

(2.2) L ∩ F = {0} and L + F = V,

where {0} denotes the zero of V .
In the sequel we denote by F such a class of vector subspaces F ⊂ V

satisfying (2.2). We set L⊥ = τ(F), where τ denotes a global operator of
choice. A vector subspace L⊥ is said to be a linear complement of the vector
space L in V . In the sequel we will apply such a notation.

The next assertion gives a positive answer to Question 2.1.

Theorem 2.1. Let V be a Polish topological vector space. For every v0 ∈ V ,
there exists a semifinite inner regular generator λ such that

λ({αv0 : α ∈ [0, 1]}) = 1

and λ is non-σ-finite iff dim(V ) ≥ 2.

Proof. Let L1 be the one-dimensional vector subspace defined by v0. Let
μ be the classical one-dimensional Borel measure in L1 = {αv0 : α ∈ R}
defined by μ(Y ) = b1(X) for Y = Xv0,X ∈ B(R).

We put

λ(X) =
∑

v∈L⊥
1

μ((X + v) ∩ L1)

for X ∈ B(V ). First, we are to show the correctness of the definition of a
functional λ. Indeed, let F be any element from the class F and assume
that λ1 is defined by

λ1(X) =
∑
u∈F

μ((X + u) ∩ L1)

for X ∈ B(V )
We have L1 + F = L1 + L⊥

1 which means that

∪u∈F (L1 + u) = ∪v∈L⊥
1
(L1 + v) = V.

The latter equalities imply that for every u ∈ F there exists f(u) ∈ L⊥
1

such that L1 + u = L1 + f(u). It is not hard to show that f is an injective
function from F to L⊥

1 , and so is f−1 : L⊥
1 → F . Thus, f defines a bijection

between F and L⊥
1 . Since a sum of an arbitrary family of nonnegative real
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numbers is invariant under their permutations, for X ∈ B(V ), we have

λ1(X) =
∑
u∈F

μ((X + u) ∩ L1) =
∑

f(u)∈f(F )

μ((X + f(u)) ∩ L1)

=
∑

v∈L⊥
1

μ((X + v) ∩ L1) = λ(X).

The latter equality shows the definition of the functional λ is correct.
Now let us show that λ is a measure. Let (Xk)k∈N be a family of pairwise

disjoint Borel sets in B. Then we get

λ(∪k∈NXk) =
∑

v∈L⊥
1

μ(((∪k∈NXk) + v) ∩ L1) =
∑

v∈L⊥
1

μ((∪k∈N(Xk + v)) ∩ L1)

=
∑

v∈L⊥
1

∑
k∈N

μ((Xk + v) ∩ L1) =
∑
k∈N

∑
v∈L⊥

1

μ((Xk + v) ∩ L1)

=
∑
k∈N

λ(Xk).

The measure λ is quasifinite. Indeed, for D = [0, 1]v0, we have

λ(D) =
∑

v∈L⊥
1

μ((D + v) ∩ L1) = μ((D + 0) ∩ L1) = 1.

The measure λ is translation-invariant. Indeed, for h ∈ V we have a
representation h = h1 + h2 where h1 ∈ L1 and h2 ∈ L⊥

1 . Therefore for
X ∈ B(V ), we have

λ(X + h) =
∑

v∈L⊥
1

μ((X + h + v) ∩ L1) =
∑

v∈L⊥
1

μ((X + h1 + h2 + v) ∩ L1)

=
∑

v∈L⊥
1

μ((X + h2 + v) ∩ L1) =
∑

h2+v∈h2+L⊥
1

μ((X + h2 + v) ∩ L1)

=
∑

h2+v∈L⊥
1

μ((X + h2 + v) ∩ L1) =
∑

s∈L⊥
1

μ((X + s) ∩ L1) = λ(X).

Now let us show that λ is a generator. Let S be a subset of V with
λ(S) = 0. Since λ is a completion of λ, there exists a Borel set S

′
for which

S ⊆ S
′

and λ(S
′
) = 0. Taking into account that D is a compact set in

V with λ(D) = 1 and applying a simple consequence of the translation-
invariance of the measure λ, stating that λ(S

′
+v) = 0 for v ∈ V , we deduce

that λ is transverse to a Borel set S
′
. This means that S

′
is a Borel shy set.

Finally, since S is a subset of a Borel shy set S
′
, we conclude that S is a

shy set. One can observe that the generator λ is non-σ-finite if and only if
dim(V ) ≥ 2.
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Let us show that the generator λ is inner regular. For this, we are to show
that for all X with 0 < λ(X) < ∞ and all ε > 0, there exists a compact
Fε ⊆ X such that λ(X \ Fε) < ε.

Since 0 < λ(X) < ∞, there exists G0 ⊂ L⊥
1 such that card(G0) ≤ ℵ0 and

0 < λ(X) =
∑
g∈G0

μ((X + g) ∩ L1) < ∞.

We set G0 = (gm)m∈N . Let n0 be a natural number such that∑
1≤m≤n0

μ((X + gm) ∩ L1) > λ(X) − ε

2
.

For ε > 0 there exists a compact set Fm ⊂ V such that Fm ⊆ (X+gm)∩L1

and
μ(((X + gm) \ Fm) ∩ L1) <

ε

2m+1

for 1 ≤ m ≤ n0.
We set Fε = ∪1≤k≤n0(Fk − gk). It is obvious that Fε is compact in V .
Finally, we get

λ(X \ ∪1≤k≤n0(Fk − gk)) =
∑
g∈G0

μ(((X \ ∪1≤k≤n0(Fk − gk)) + g) ∩ L1)

=
∑
m∈N

μ(((X \ ∪1≤k≤n0(Fk − gk)) + gm) ∩ L1)

=
∑

1≤m≤n0

μ(((X \ ∪1≤k≤n0(Fk − gk)) + gm) ∩ L1)

+
∑

m>n0

μ(((X \ ∪1≤k≤n0(Fk − gk)) + gm) ∩ L1)

≤
∑

1≤m≤n0

μ(((X \ (Fm − gm)) + gm) ∩ L1)

+
∑

m>n0

μ((X + gm) ∩ L1)

≤
∑

1≤m≤n0

μ(((X + gm) \ Fm) ∩ L1)

+
∑

m>n0

μ((X + gm) ∩ L1)

≤
∑

1≤m≤n0

ε

2m+1
+

ε

2
≤
∑
m∈N

ε

2m+1
+

ε

2
=

ε

2
+

ε

2

= ε.

Let us show that λ is semifinite. Indeed, if λ(X) > 0, then there exists
g0 ∈ L⊥

1 such that 0 < μ((X + g0) ∩ L1) < ∞. Using the property of inner
regularity of μ we deduce that there exists a compact set U ⊆ (X + g0)∩L1

with 0 < λ(U) < ∞. The latter relation means that λ is semifinite. �
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Theorem 2.2. Let V be a Polish topological vector space whose dimension
is not equal to one. Then there does not exist a generator with the property
of uniqueness in the class of all generators in V .

Proof. Let us consider two linearly independent elements v0 and v1 in V
and apply the construction used in the proof of Theorem 2.1 with respect
to the above-mentioned elements. Hence we will construct two generators
λ0 and λ1 such that

λ0({αv0 : 0 ≤ α ≤ 1}) = 1,

λ1({αv0 : 0 ≤ α ≤ 1}) = 0,

which means that λ0 and λ1 are not equivalent. From the latter relations
it follows that there does not exist a generator in V with the property of
uniqueness. �
Theorem 2.3. Every generator in an infinite-dimensional Polish topological
vector space V is non-σ-finite.

Proof. Assume the contrary and let λ be a σ-finite generator in V . Then
there exists a countable family of compact sets {Kn : n ∈ N} such that

λ(V \ ∪n∈NKn) = 0.

Note that the compact set Kn is shy for n ∈ N (cf. [12, Fact 8, p. 225]).
Following Definition 2.4, the set V \ ∪n∈NKn is a shy set because it is of
λ-measure zero. Thus, we get that V is shy, which is a contradiction since
there does not exists a Borel measure in V which is transverse to the set
V . �
Remark 2.1. An n-dimensional classical Borel measure in Rn(n ≥ 2) is an
example of a σ-finite generator, but on the same space an example of such
a generator which is non-σ-finite can be constructed (cf. Theorem 2.1).

Theorem 2.4. Every quasifinite translation-quasiinvariant Borel measure
μ defined in a Polish topological vector space V is a generator.

Proof. Let μ(S) = 0 for S ⊂ V . Since μ(S) = 0, there exists a Borel set
S

′
for which S ⊆ S

′
and μ(S

′
) = 0. By using the property of translation-

quasiinvariance of the Borel measure μ, we have μ(S
′
+h) = 0 for all h ∈ V .

Thus, μ is transverse to the Borel set S
′
and therefore S

′
is a Borel shy set.

S is a shy set because it is a subset of the Borel shy set S
′
. �

Corollary 2.1. Since every translation-invariant measure is at the same
time translation-quasiinvariant, we deduce that every quasifinite translation-
invariant Borel measure in V is a generator.

Let R be the real line and RN stand for the space of all real-valued se-
quences equipped with the Tychonoff topology (i.e., the product topology).
Denote by B(RN) the σ-algebra of all Borel subsets in RN.
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Example 2.1. Let R1 be the class of all infinite-dimensional rectangles
R ∈ B(RN) of the form

R =
∞∏
i=1

(ai, bi), −∞ < ai ≤ bi < +∞

such that

0 ≤
∞∏
i=1

(bi − ai) := lim
n→∞

n∏
i=1

(bi − ai) < ∞.

Let τ1 be a set function on R1 defined by

τ1(R) =
∞∏
i=1

(bi − ai).

Following R. Baker [2], the functional λ defined by

λ(X) = inf

{ ∞∑
j=1

τ1(Rj) : Rj ∈ R1 & X ⊆ ∪∞
j=1Rj

}
for X ∈ B(RN) is a quasifinite translation-invariant Borel measure in RN.
By Corollary 2.1 we deduce that λ is a generator in RN.

Example 2.2. Let R2 be the class of all infinite-dimensional rectangles
R ∈ B(RN) of the form

R =
∞∏
i=1

Ri, Ri ∈ B(R)

such that

0 ≤
∞∏
i=1

m(Ri) := lim
n→∞

n∏
i=1

m(Ri) < ∞,

where m denotes a one-dimensional classical Borel measure on R.
Let τ2 be a set function on R2, defined by

τ2(R) =
∞∏
i=1

m(Ri).

R. Baker [3] proved that the functional μ defined by

μ(X) = inf

{ ∞∑
j=1

τ2(Rj) : Rj ∈ R2 & X ⊆ ∪∞
j=1Rj

}
for X ∈ B(RN) is a quasifinite translation-invariant Borel measure in RN.
By Corollary 2.1 we establish that μ is a generator in RN.

Remark 2.2. Following [12, Theorem 15.2.1, p. 204] the generator μ is
absolutely continuous with respect to the generator λ, and the generators
λ and μ are not equivalent. This fact gives an answer to R. Baker’s one
question posed in [3].
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Example 2.3 ([19, Theorem 7.1, p. 119]). Let J be any nonempty subset
of the set of all natural numbers N. Then, in the Solovay model [22] there
exists a translation-invariant measure μJ on the power set of RJ such that
μJ([0, 1]J) = 1. Following Corollary 2.1, the restriction of the measure μJ on
B(RJ) is a generator in RJ.

3. Quasigenerators in Polish topological vector
spaces

For a Borel measure μ in V we denote by N(μ) a class of all subsets which
are of μ-measure zero, where μ denotes a completion of μ.

Definition 3.1. A set S ⊂ V is called μ-shy if it is a subset of a Borel set
S

′
with μ(S

′
+ v) = 0 for v ∈ V . The class of all μ-shy sets is denoted by

S(μ).

It is clear that
S(V ) = ∪μS(μ).

If μ has atoms, then S(μ) = {∅}. This means that the measures which
matter in defining shy sets are the ones without atoms (equivalently, diffused
measures) (cf. [23], p. 456).

In the context of the above representation of S(V ) there naturally arises
the following:

Problem 3.1. Let μ be a diffused Borel measure on V . Does there exist a
quasifinite generator λ in V such that the following equality

S(μ) = N(λ)

holds?

Note that Problem 3.1 is not trivial and its solution depends on the struc-
ture of the measure μ. Below we identify a subclass of diffused Borel mea-
sures (cf. Definition 3.5) for which Problem 3.1 has a positive solution.

Definition 3.2. A quasifinite Borel measure μ in V is called a Gikhman–
Skorokhod measure if for each h ∈ V , the shift μh (2.1) is either orthogonal
(⊥) or equivalent to μ.

Definition 3.3. Let μ be a Borel measure in V . The set of admissible
translations of μ in the sense of quasiinvariance is

Qμ = {h ∈ V : μh ∼ μ}.

It is clear that Qμ = V iff μ is translation-quasiinvariant.

Definition 3.4. Let μ be a Borel measure in V . The set of admissible
translations of μ in the sense of invariance is

Iμ = {h ∈ V : μh = μ}.
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It can be shown that Iμ = V iff μ is translation-invariant.

Remark 3.1. Obviously, Iμ ⊆ Qμ for every measure μ. Note that every
quasifinite Borel measure with Qμ = V or Iμ = V is a Gikhman–Skorokhod
measure in V .

Now there naturally arises a question whether an analogous result is valid
when Qμ or Iμ are everywhere dense linear manifolds in V .

In this context I.I. Gikhman and A.V. Skorokhod considered the following
problem in [10, Chapter 7, Paragraph 2]:

Does there exist a probability Borel measure μ in the Hilbert space �2

which satisfies the following conditions?

(i) The group Qμ of all admissible translations (in the sense of quasiin-
variance) is an everywhere dense linear manifold in �2.

(ii) There exists a ∈ �2 \ Qμ such that a measure μ is not orthogonal to
the measure μ(a), where

μ(a)(X) = μ(X − a)

for X ∈ B(�2).

Gikhman–Skorokhod’s positive solution of this problem employs the tech-
nique of Gaussian measures in an infinite-dimensional separable Hilbert
space. In [18], Gikhman–Skorokhod’s result was extended to invariant Borel
measures in �2. In particular, a nonzero σ-finite Borel measure μ is con-
structed in �2 which satisfies the following conditions:

(iii) The group Iμ of all admissible (in the sense of invariance) translations
for the measure μ is an everywhere dense linear manifold in �2.

(iv) There exists a ∈ �2 \ Iμ such that a measure μ(a) is not orthogonal
to the measure μ.

Definition 3.5. A quasifinite Borel measure μ in V is called a quasigener-
ator if the following two conditions are satisfied:

(i) Qμ is a linear manifold in V .
(ii) There exists a σ-compact F such that for all u ∈ Qμ and v ∈ Q⊥

μ \{0},
μ(V \ (F ∩ (F + u))) = 0 and μ(F ∩ (F + v)) = 0.

Remark 3.2. Note that every quasigenerator is a Gikhman–Skorokhod
measure, but the converse statement is not always valid. Indeed, consider
an arbitrary generator λ in an infinite-dimensional Polish topological vector
space V . Obviously, Qλ = V , which means that λ is a Gikhman–Skorokhod
measure. If we assume that λ is a quasigenerator, then there will be a σ-
compact set F such that λ(V \(F ∩(F +0))) = 0 because 0 ∈ Qλ. Therefore,
λ(V \F ) = 0, from which by Definition 2.4 it follows that V \F ∈ S(V ). So
F ∈ S(V ) (cf. [12, Fact 8, p. 225] ), we get V = (V \ F ) ∪ F ∈ S(V ), which
is a contradiction.
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Let μ be an arbitrary Borel measure in V . Let us define a functional Gμ

by
Gμ(X) =

∑
v∈Q⊥

µ

μ(X + v)

for X ∈ B(V ). The main result of the present section is formulated as
follows.

Theorem 3.1. Let μ be an arbitrary Borel measure in V . Then Gμ is a
generator in V such that

S(μ) = N(Gμ),

where Gμ denotes a usual completion of Gμ. If μ is a quasigenerator, then
the generator Gμ is quasifinite.

Proof. Step (i) We show that if Gμ(X) = 0 then Gμ(X + h) = 0 for every
h ∈ V . For h ∈ V we have the representation h = h1 + h2, where h1 ∈ Qμ

and h2 ∈ Q⊥
μ . Thus

Gμ(X) = 0 ⇔
∑

v∈Q⊥
µ

μ(X + v) = 0 ⇔
∑

v∈Q⊥
µ

μ(X + h1 + v) = 0

⇔
∑

v∈Q⊥
µ

μ(X + h1 + h2 + v) = 0 ⇔
∑

v∈Q⊥
µ

μ((X + h) + v) = 0

⇔ Gμ(X + h) = 0.

Step (ii) We show the measure Gμ is quasifinite if μ is a quasigenerator.
Indeed, in such a situation there exists a σ-compact set F such that for all
u ∈ Qμ and v ∈ Q⊥

μ \ {0}, μ(V \ (F ∩ (F + u))) = 0 and μ(F ∩ (F + v)) = 0.
Since μ(V \F ) = 0, there exists a compact set U ⊂ F with 0 < μ(U) < ∞.

Thus, μ(U + v) = 0 for all v ∈ Q⊥
μ \ {0, as

μ(U + v) = μ((U + v) ∩ F ) ≤ μ((F + v) ∩ F ) = 0

for v ∈ Q⊥
μ \ {0}.

Hence
Gμ(U) =

∑
v∈Q⊥

µ

μ(U + v) = μ(U + 0) = μ(U).

Thus Gμ is a quasifinite generator.

Step (iii) We show that S(μ) = N(Gμ). Let X ∈ S(μ). This means that
there exists a Borel set X

′
such that X ⊆ X

′
and μ(X

′
+ v) = 0 for v ∈ V .

The latter relation means that∑
v∈Q⊥

µ

μ(X
′
+ v) = 0

which implies that X
′ ∈ N(Gμ) and X ∈ N(Gμ).
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Now let X ∈ N(Gμ). This means that there exists a Borel set X
′
, where

X ⊆ X
′
and ∑

v∈Q⊥
µ

μ(X
′
+ v) = 0.

The latter relation implies that μ(X
′
+ v) = 0 for v ∈ Q⊥

μ .
Now let h = h1 + h2 be an arbitrary element of V , where h1 ∈ Qμ and

h2 ∈ Q⊥
μ . Since μ(X

′
+h2) = 0 and h1 ∈ Qμ, we conclude that μ(X

′
+h) = 0,

which means that X
′ ∈ S(μ). Therefore X ∈ S(μ) because X ⊆ X

′
. �

4. On the quasifiniteness problem for Gaussian
generators

The problem of equivalence and orthogonality relations between two mea-
sures in infinite-dimensional topological vector spaces, which underlies the
notion of a quasigenerator, has been investigated by many authors. In this
direction, a special mention should be made of the result of S. Kakutani
[13] stating that if one has equivalent probability measures μi and νi on the
σ-algebra Li of subsets of a set Ωi, i = 1, 2, . . . , and if μ and ν denote re-
spectively the infinite product measures

∏
i∈N

μi and
∏

i∈N
νi on the infinite

product σ-algebra generated on the infinite product set Ω, then μ and ν are
either equivalent or orthogonal. Similar dichotomies have revealed them-
selves in the study of Gaussian stochastic processes. C. Cameron and W.E.
Martin showed in [5] that if one considers the measures induced on a path
space by a Wiener process on the unit interval, then the measures are or-
thogonal provided that the variances of the processes are different. Results
of this kind were generalized by many authors (cf. [9], [11], [26] and others).

Let μ be a Gaussian measure in V . The question whether Gμ is quasifinite
depends on the structure of μ. Below we give a simple example of such a
generator in an infinite-dimensional Polish topological vector space V .

Example 4.1. Let e1, . . . , ek be any family of linearly independent vectors
in V . We set L(e1, . . . , ek) = span(e1, . . . , ek). We denote by λL(e1,...,ek) a
Gaussian Borel measure on L(e1, . . . , ek) defined by

λL(e1,...,ek)({t1e1 + · · · + tkek : (t1, . . . , tk) ∈ X}) = γk(X),

where X ∈ B(Rk) and γk is a standard k-dimensional Gaussian Borel mea-
sure in Rk.

Clearly, λL(e1,...,ek) is a quasigenerator in V and GλL(e1,...,ek)
is a quasifinite

Gaussian generator in V such that

S(λL(e1,...,ek)) = N(GλL(e1,...,ek)
).

Remark 4.1. Let μk be the standard Gaussian probability Borel measure in
R for k ∈ N. Let X = RN and μ =

∏
k∈N

μk be the canonical Gaussian Borel
probability measure in RN. Following Kakutani [14], Qμ = �2, which implies
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that μ is a Gikhman–Skorokhod measure. It follows from Theorem 3.1 that
Gμ is a generator and

N(Gμ) = S(μ),
but we do not know whether Gμ is a quasifinite.

Remark 4.2. We remind the reader that a Borel measure μ in an infinite-
dimensional separable Hilbert space is called Gaussian if an arbitrary con-
tinuous linear functional �z(x) = (z, x)(z, x ∈ H) is a normally distributed
random variable (cf. [10, Chapter v, Paragraph 6]).

Following A.M. Vershik [26], a group Qμ of arbitrary Gaussian measure
μ in an infinite-dimensional separable Hilbert space is linear manifold. In
particular, if μ is a Gaussian measure in H with zero mean and correlation
operator B, then Qμ = B

1
2 (H) (cf. [10]).

Following Phelps [21], a Borel set is called Gaussian null if it is null for
every Gaussian measure in H. A set is called Gaussian null if it is contained
in a Borel Gaussian null set.

The class of all Gaussian null sets in H is denoted by GN(H). Let Γ be
a class of all Gaussian measures in H. Then the representation

GN(H) = ∩γ∈ΓN(Gγ)

is valid. The proof of this fact employs the result of Theorem 3.1.
In the context of Example 4.1, there naturally arises a question whether

any Gaussian measure γ in H is a quasigenerator or whether Gγ is quasifi-
nite.

5. On generators defined by Kharazishvili’s
quasigenerators

The problem of the existence of a partial analog of a Lebesgue measure
in an infinite-dimensional topological vector space is interesting and im-
portant in itself and has been studied for over 50 years by many authors.
Among their results the result of V. Sudakov [24] should be mentioned spe-
cially. This result asserts that an arbitrary σ-finite quasiinvariant Borel
measure in an infinite-dimensional locally convex topological vector space is
identically zero. According to this result, the properties of the σ-finiteness
and the translation-invariance are not consistent for nonzero Borel mea-
sures in infinite-dimensional topological vector spaces. A.B. Kharazishvili
[15] constructed an example of a nonzero non-translation-invariant σ-finite
Borel measure in the Hilbert space �2 which is invariant with respect to an
everywhere dense (in �2) linear manifold. R. Baker gave constructions of
quasifinite non-σ-finite translation-invariant Borel measures in the infinite-
dimensional topological vector space RN (cf. Examples 2.1–2.2). A similar
construction (cf. [17]) is given in the well-known Solovay’s model [22].

Below we present the construction of A.B. Kharazishvili’s quasigenerators
in RN.
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Let (ai)i∈N and (bi)i∈N be sequences of real numbers such that ai < bi for
all i ∈ N.

We set
An = R0 × · · · × Rn ×

∏
i>n

Δi,

for n ∈ N, where Ri = R for i = 1, . . . , n and Δi = [ai, bi[ for i > n. We also
set

Δ =
∏
i∈N

Δi and BΔ = ∪n∈NAn.

For an arbitrary natural number i ∈ N, consider the Lebesgue measure
μi in the space Ri and satisfying the condition μi(Δi) = 1. Let us denote
by λi the normalized Lebesgue measure defined on the interval Δi.

For an arbitrary n ∈ N, let us denote by νn the measure defined by

νn =
∏

1≤i≤n

μi ×
∏
i>n

λi,

and by νn the Borel measure in the space RN defined by

νn(X) = νn(X ∩ An)

for X ∈ B(RN.

Lemma 5.1 ([19, Lemmas 15.3.2–15.3.3, p. 207]). The functional νΔ defined
by

νΔ(X) = lim
n→∞ νn(X),

is a quasifinite Borel measure for which

IνΔ
= QνΔ

=

{
h = (h1, h2, . . . ) ∈ R

N :
∑
i∈N

|hi|
bi − ai

is convergent

}

and for all u ∈ QνΔ
and v ∈ Q⊥

νΔ
\ {0},

μ(RN \ (∪n∈NAn ∩ (∪n∈NAn + u))) = 0,

μ((∪n∈NAn) ∩ (∪n∈NAn + v)) = 0.

As a consequence of Lemma 5.1 we get:

Corollary 5.1. The functional νΔ is a quasigenerator in RN.

Remark 5.1. The construction of νΔ belongs to A.B. Kharazishvili [15].
For this reason, a quasigenerator νΔ is called A.B. Kharazishvili’s quasigen-
erator. Note that a generator GνΔ

is a semifinite inner regular translation-
invariant Borel measure in RN, which assigns value one to Δ (cf. [19]).
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Now let K be the class of all positive sequences (ak)k∈N ∈ RN such that

0 <
∏
k∈N

ak < ∞.

Let (ak)k∈N, (bk)k∈N ∈ K. We say that (ak)k∈N � (bk)k∈N if

νQ
k∈N

[0,ak] = νQ
k∈N

[0,bk].

Lemma 5.2 ([19, Lemma 15.3.3, p. 207]). The relation � is an equivalence
relation on K.

Lemma 5.3 ([19, Lemma 15.3.4, p. 207]). Suppose (ak)k∈N, (bk)k∈N ∈ K
are not equivalent. Then νQ

k∈N
[0,ak] ⊥ νQ

k∈N
[0,bk].

Definition 5.1. Suppose R1 is the class of all infinite-dimensional rectan-
gles R ∈ B(RN) of a form

R =
∞∏

k=1

(ai, bi), −∞ < ai ≤ bi < ∞

such that 0 ≤
∏∞

k=1(bk − ak) < ∞. Following [2], a translation-invariant
Borel measure λ in RN is called Baker’s generator if

λ(R) =
∞∏

k=1

(bk − ak)

for R ∈ R1.

Theorem 5.1 ([19, Theorem 15.3.1, p. 208]). There exists a semifinite inner
regular Baker’s generator λ in RN.

Proof. Let us consider the equivalence classes (Ki)i∈I of K generated by
the equivalence relation � (cf. [19, Lemma 15.3.3]). Let

(
a

(i)
k

)
k∈N

∈ Ki for

i ∈ I. We set Δi =
∏

k∈N

[
0, a(i)

k

]
, Bi = BΔi and μi = νΔi . We put

λ(X) =
∑
i∈I

∑
g∈�⊥1

μi((X − g) ∩ Bi),

for X ∈ B(RN), where �⊥1 denotes a linear complement of the vector subspace
�1 in RN.

We shall show that λ is a translation-invariant Borel measure in RN such
that

λ

( ∞∏
k=1

(ak, bk)

)
=

∞∏
k=1

(bk − ak).

We do this in steps.
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Step (i) We show λ is σ-additive. Let (Xk)k∈N be a sequence of pairwise
disjoint Borel subsets in RN. Then

λ(∪k∈NXk) =
∑
i∈I

∑
g∈�⊥1

μi((∪k∈NXk − g) ∩ Bi)

=
∑
i∈I

∑
g∈�⊥1

μi((∪k∈N(Xk − g)) ∩ Bi)

=
∑
i∈I

∑
g∈�⊥1

∑
k∈N

μi((Xk − g) ∩ Bi)

=
∑
k∈N

∑
i∈I

∑
g∈�⊥1

μi((Xk − g) ∩ Bi) =
∑
k∈N

λ(Xk).

Step (ii)We show that λ is translation-invariant. Taking into account the
equality GΔ = �1 (cf. [19, Lemma 15.3.2, p. 214]) and the fact that an
arbitrary element h ∈ RN can be written in the form h = h1 + h2, where
h1 ∈ �1 and h2 ∈ �⊥1 , we get

λ(X + h) =
∑
i∈I

∑
g∈�⊥1

μi(((X + h1 + h2) − g) ∩ Bi)

=
∑
i∈I

∑
g∈�⊥1

μi(((X + h2) − g + h1) ∩ Bi)

=
∑
i∈I

∑
g∈�⊥1

μi(((X + h2) − g) ∩ Bi)

=
∑
i∈I

∑
g∈�⊥1

μi((X − (g − h2)) ∩ Bi)

=
∑
i∈I

∑
g−h2∈�⊥1 −h2

μi((X − (g − h2)) ∩ Bi)

=
∑
i∈I

∑
g−h2∈�⊥1

μi((X − (g − h2)) ∩ Bi)

=
∑
i∈I

∑
eg∈�⊥1

μi((X − g̃) ∩ Bi) = λ(X).

Step (iii) We now show

λ

( ∞∏
k=1

(ak, bk)

)
=

∞∏
k=1

(bk − ak).
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Assume that Ki0 is a class of equivalence of K such that (bk −ak)k∈N ∈ Ki0 .
By using the translation-invariance of λ we have

λ

( ∞∏
k=1

(ak, bk)

)
= λ

( ∞∏
k=1

(ak, bk) − (ak)k∈N

)
= λ

( ∞∏
k=1

(0, bk − ak)

)

=
∑
i∈I

∑
g∈�⊥1

μi

(( ∞∏
k=1

(0, bk − ak) − g

)
∩ Bi

)

= μi0

(( ∞∏
i=1

(0, bk − ak) − 0

)
∩ Bi0

)
=

∞∏
k=1

(bk − ak).

Finally, one can prove that if
∏∞

k=1(bk − ak) = 0, then λ(
∏∞

k=1(ak, bk)) = 0.

Step (iv) We now show the generator λ is inner regular. To this end, we
must to show that for all X with 0 < λ(X) < ∞ and all ε > 0, there exists
a compact Fε ⊆ X with λ(X \ Fε) < ε.

Since 0 < λ(X) < ∞, there exist I0 ⊆ I and G0 ⊆ �⊥1 with card(I0×G0) ≤
ℵ0 and

0 < λ(X) =
∑
i∈I0

∑
g∈G0

μi((X − g) ∩ Bi) < ∞.

We set I0 × G0 = (ik, gm)k,m∈N. Let n0 be a natural number such that∑
1≤k≤n0

∑
1≤m≤n0

μik((X − gm) ∩ Bik) > λ(X) − ε

2
.

For ε > 0 there exists a compact set Fk,m such that Fk,m ⊆ (X−gm)∩Bik
and

μik(((X − gm) ∩ Bik) \ Fk,m) <
ε

2k+m+1

for 1 ≤ k,m ≤ n0.
We set Fε = ∪1≤p,q≤n0(Fp,q + gq). It is clear that Fε ⊆ X. We get

λ(X \ Fε)

= λ(X \ ∪1≤p,q≤n0(Fp,q + gq))

=
∑
i∈I

∑
g∈�⊥1

μi(((X \ ∪1≤p,q≤n0(Fp,q + gq)) − g) ∩ Bi)

=
∑
i∈I0

∑
g∈G0

μi(((X \ ∪1≤p,q≤n0(Fp,q + gq)) − g) ∩ Bi)

+
∑

(i,g)∈I×�⊥1 \I0×G0

μi(((X \ ∪1≤p,q≤n0(Fp,q + gq)) − g) ∩ Bi)

≤
∑
i∈I0

∑
g∈G0

μi(((X \ ∪1≤p,q≤n0(Fp,q + gq)) − g) ∩ Bi)
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+
∑

(i,g)∈I×�⊥1 \I0×G0

μi((X − g) ∩ Bi)

=
∑
i∈I0

∑
g∈G0

μi(((X \ ∪1≤p,q≤n0(Fp,q + gq)) − g) ∩ Bi)

=
∑
k∈N

∑
m∈N

μik(((X \ ∪1≤p,q≤n0(Fp,q + gq)) − gm) ∩ Bik)

=
∑

1≤k≤n0

∑
1≤m≤n0

μik(((X \ ∪1≤p,q≤n0(Fp,q + gq)) − gm) ∩ Bik)

+
∑

(k,m)∈N×N\{1,...,n0}×{1,...,n0}
μik(((X \ ∪1≤p,q≤n0(Fp,q + gq)) − gm) ∩ Bik)

≤
∑

1≤k≤n0

∑
1≤m≤n0

μik((X \ (Fk,m + gm) − gm) ∩ Bik)

+
∑

(k,m)∈N×N\{1,...,n0}×{1,...,n0}
μik((X − gm) ∩ Bik)

=
∑

1≤k≤n0

∑
1≤m≤n0

μik(((X − gm) \ Fk,m) ∩ Bik)

+
∑

(k,m)∈N×N\{1,...,n0}×{1,...,n0}
μik((X − gm) ∩ Bik)

=
∑

1≤k≤n0

∑
1≤m≤n0

μik(((X − gm) ∩ Bik) \ (Fk,m ∩ Bik))

+
∑

(k,m)∈N×N\{1,...,n0}×{1,...,n0}
μik((X − gm) ∩ Bik)

since Fk,m ⊆ (X − gm) ∩ Bik we have Fk,m ∩ Bik = Fk,m

=
∑

1≤k≤n0

∑
1≤m≤n0

μik(((X − gm) ∩ Bik) \ Fk,m)

+
∑

(k,m)∈(N×N)\({1,...,n0}×{1,...,n0})
μik((X − gm) ∩ Bik)

≤
∑

1≤k,m≤n0

ε

2k+m+1
+

ε

2

≤
∑

k,m∈N

ε

2k+m+1
+

ε

2
=

ε

2
+

ε

2
= ε.

Step (v) We show that λ is semifinite. Indeed, if λ(X) > 0, then there exist
i0 ∈ I and g0 ∈ �⊥1 such that 0 < μi0((X − g0) ∩ Bi0). Using the property
of inner regularity of μi0 we deduce that there exists a compact set F ⊆ X
with 0 < λ(F ) < ∞. This means that λ is a semifinite measure. �
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Remark 5.2. If we consider R. Baker’s measure constructed in [2], we
observe that it is a nonsemifinite quasifinite Baker’s generator. Indeed, it
takes the value +∞ on the set (3Z)N, while every compact subset of (3Z)N is
null with respect to the same measure. Note that the set (3Z)N is null with
respect to A.B. Kharazishvili’s generator λ, because μi(((3Z)N−g)∩Bi)) = 0
for all i ∈ I and g ∈ �⊥1 .

6. Representation of cube null sets by P.
Mankiewicz’s generator

The following assertion plays key role in our further discussion.

Theorem 6.1 ([19, Theorem 15.3.2, p. 209]). There exists a semifinite
inner regular translation-invariant Borel measure λ1 in RN which satisfies
the following conditions:

(1) λ1([0, 1]N) = 1.
(2) There exists a rectangle

∏∞
k=1(ak, bk) with 0 <

∏∞
k=1(bk − ak) < ∞

such that

λ1

( ∞∏
k=1

(ak, bk)

)
= 0.

Remark 6.1. The inner regularity and semifiniteness can be proved by the
scheme of the proof of Theorem 5.1.

Remark 6.2. Note that the generator λ1 is absolutely continuous with
respect to R. Baker’s generator λ [2] but the converse relation is not valid
(cf. Theorem 6.1, condition (2)). This means that the generators λ and λ1

are not equivalent.

Let (μk)k∈N be a family of linear Lebesgue measures on [0, 1] such that
μk([0, 1]) = 1 for all k. We set μ =

∏
k∈N

μk.

Definition 6.1. A Borel subset X ⊂ RN is said to be a standard cube null
set if μ((X + a) ∩ [0, 1]N) = 0. for all a ∈ RN. More generally, a set is called
a standard cube null set if it is contained in a Borel standard cube null set.

The class of all standard cube null sets in RN is denoted by SCN (RN). It
is clear that SCN (RN) ⊂ S(RN).

Now naturally there arises the following:

Problem 6.1. Does there exist a semifinite inner-regular generator ν in RN

such that N (ν) = SCN (RN)?

The answer to this problem is contained in the following assertion.

Theorem 6.2 ([19, Theorem 15.3.3, p. 211]). The generator λ1 is a solution
of Problem 6.1, i.e.,

N (λ1) = SCN (RN).
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Remark 6.3. Following Theorem 6.2, the measure λ1 is a standard cube
generator which can be called P. Mankiewicz’s generator in RN. It is rea-
sonable to note that P. Mankiewicz’s generator λ1 is defined by A.B. Kha-
razishvili’s standard quasigenerator ν[0,1]N , i.e.,

λ1 = Gν
[0,1]N

,

and the following equality holds:

SCN (RN) = N (Gν
[0,1]N

).

Since the quasigenerator ν[0,1]N can be defined uniquely by the Haar mea-
sure μ in [0, 1]N, we can use the notation G(μ) for the generator Gν

[0,1]N
.

Such notation will be applied below.

Remark 6.4. Let λ and μ be R. Baker’s generators in RN considered in
Examples 2.1 and 2.2, respectively. Since1

Gν
[0,1]N

� μ � λ,

we deduce that the following strict inclusions

N (λ) ⊂ N (μ) ⊂ N (Gν
[0,1]N

)(= B(RN) ∩ SCN (RN))

are valid.

Now we consider one interesting application of Theorem 6.2 in a separable
Banach space with basis.

Let B be a separable Banach space with basis e1, e2, . . . such that∑
k∈N

||ek|| < ∞.

Definition 6.2. Following P. Mankiewicz [16], a Borel set X ⊂ B is called
a cube null set, if it is null for every nondegenerate cube measure. (Nonde-
generate cube measures in B can be defined as distributions of the random
variables of the form a +

∑
k∈N

Xkek, where a ∈ B and (Xk)k∈N are uni-
formly distributed independent random variables with values in [0, 1].)

The class of all cube null sets in B is denoted by CNS(B).
Let us denote by C the class of all cube measures defined in B. For μ ∈ C

we denote by G(μ) Mankiewicz’ generator defined by μ. Then it is clear
that

CNS(B) = ∩μ∈CN (G(μ)).

Again let V be a Polish topological vector space.

Definition 6.3 ([25, Definition 6, p. 225]). We call a finite-dimensional
subspace L ⊂ V a probe for a set X ⊂ V if an n-dimensional classical
Borel measure λL supported on L is transverse to a Borel set containing the
complement of X.

1Let μ and λ be two measures such that dom(μ) = dom(λ). We say that μ is absolutely
continuous with respect to λ and write μ � λ, if λ(X) = 0 implies μ(X) = 0.
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Let λL be an n-dimensional classical Borel measure in an n-dimensional
vector subspace L ⊂ V , where n ∈ N. It is obvious that GλL

is a quasifinite
translation-invariant generator in V .

It can be easily established that

N (GλL
) ⊂ S(V )

for all finite-dimensional vector subspace L ⊂ V .
One can show that every subset X ⊂ V is of GλL

-measure zero if and
only if the linear manifold L is a probe for the sets V \ X. The class of all
subsets of V whose complement have n-dimensional probes is denoted by
n(V ). It is clear that ∪n∈Nn(V ) is a subclass of the σ-ideal S(V ) and we
have the equality

∪n∈Nn(V ) = ∪L⊂V N (GλL
),

where the union on the right side is considered over all finite-dimensional
manifolds.

7. On the geometric aspects of Preiss–Tǐser
generators

Definition 7.1. A Borel set S in a separable Banach space B is said to be
an n-dimensional Preiss–Tǐser null set if every Lebesgue measure μ concen-
trated on any n-dimensional vector space Γ is transverse to S. Any subset
A of such a Borel set B is said to be an n-dimensional Preiss–Tǐser null set.

We denote the class of all n-dimensional Preiss–Tǐser null sets in B by
PT NS(B,n).

Let (Γi)i∈I be a family of all n-dimensional vector spaces and let μi be
an n-dimensional Lebesgue measure concentrated on Γi for i ∈ I.

Let Γ⊥
i be a linear complement of the vector space Γi in B for i ∈ I. We

put
λ(X) =

∑
i∈I

∑
g∈Γ⊥

i

μi((X − g) ∩ Γi)

for X ∈ B(B).

Theorem 7.1. A functional λ is a quasifinite generator in B such that

PT NS(B,n) = N (λ).
Proof. By using the construction of the proof of Theorem 5.1 one can
easily show that λ is a Borel measure in B.

Now we are to show that λ is quasifinite and translation-invariant.
Let i0 ∈ I and let (ek)1≤k≤n be any basis of Γi0 . The quasifiniteness is

obvious because

0 < μi0

({
n∑

i=1

αkek : (αk)1≤k≤n ∈ [0, 1]n
})

< ∞
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and

λ

({
n∑

i=1

αkek : (αk)1≤k≤n ∈ [0, 1]n
})

= μi0

({
n∑

i=1

αkek : (αk)1≤k≤n ∈ [0, 1]n
})

.

Let us show that λ is translation-invariant. Indeed, let X ∈ B(B) and
h ∈ B. For every i ∈ I we have h = h

(0)
i + h

(1)
i , where h

(0)
i ∈ Γi and

h
(1)
i ∈ Γ⊥

i . Then we obtain

λ(X + h) =
∑
i∈I

∑
g∈Γ⊥

i

μi(((X + h) − g) ∩ Γi)

=
∑
i∈I

∑
g∈Γ⊥

i

μi((X + h
(0)
i + h

(1)
i − g) ∩ Γi)

=
∑
i∈I

∑
g∈Γ⊥

i

μi((X + h
(2)
i − g) ∩ Γi)

=
∑
i∈I

∑
g∈Γ⊥

i

μi((X − (g − h
(2)
i )) ∩ Γi)

=
∑
i∈I

∑
g−h

(2)
i ∈Γ⊥

i −h
(2)
i

μi((X − (g − h
(2)
i )) ∩ Γi)

=
∑
i∈I

∑
g−h

(2)
i ∈Γ⊥

i

μi((X − (g − h
(2)
i )) ∩ Γi)

=
∑
i∈I

∑
s∈Γ⊥

i

μi((X − s) ∩ Γi) = λ(X).

Now let us assume that Y ∈ PT NS(B,n). Then there exists a Borel set
X such that Y ⊆ X and μi((X − g) ∩ Γi)) = 0 for g ∈ Γ⊥

i . Therefore,∑
i∈I

∑
g∈Γ⊥

i

μi((X − g) ∩ Γi)) = 0.

This means that λ(X) = 0 and we obtain that Y ∈ N (λ).
Now let λ(Y ) = 0. This means that there exists a Borel set X such

that Y ⊆ X and μi(X − g ∩ Γi) = 0 for g ∈ Γ⊥
i and i ∈ I. Let Γ be

an arbitrary n-dimensional vector subspace of B, and λΓ be a Lebesgue
measure concentrated on Γ. We are to show that λ is transverse to X.
Indeed, assume the contrary. Then for h ∈ B we have λΓ(X − h ∩ Γ) > 0.
Let i0 be an element of I such that Γi0 = Γ. Then we have

λΓ((X − h) ∩ Γ) = μi0((X − h) ∩ Γi0) > 0.
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Since h = h
(0)
i0

+ h
(1)
i0

, where h
(0)
i0

∈ Γi0 and h
(1)
i0

∈ Γ⊥
i0

, we get

0 < μi0((X − h) ∩ Γi0) = μi0((X − h
(1)
i0

) ∩ Γi0)

≤
∑
i∈I

∑
g∈Γ⊥

i

μi((X − g) ∩ Γi) = λ(X) = 0.

giving a contradiction. �

Remark 7.1. Following Theorem 7.1, the generator λ can be called an
n-dimensional Preiss–Tǐser generator.

Below we present one interesting property of the one-dimensional Preiss–
Tǐser generator in a Banach space whose dimension is larger than 1.

Theorem 7.2. Let (B, || · ||) be a Banach space whose dimension is larger
than 1. Then there exists a one-dimensional Preiss–Tǐser generator λ (not
σ-finite) such that for an arbitrary broken line A0A1 · · · defined by

A0A1 · · · ≡ [A0, A1[ ∪ · · ·
we have

λ(A0A1 · · · ) =
∞∑

k=0

||Ak+1 − Ak||.

Proof. Let B0 be the unit sphere in B, i.e.,

B0 = {h ∈ B : ||h|| = 1}.
For h1, h2 ∈ B0 we say that h1 ≈ h2 if h1 and h2 are antipodal points of the
unit sphere. It is clear that ≈ is an equivalence relation in B0. Let (Ki)i∈I

be the set of equivalent classes. Let (ai)i∈I be a family of elements of B0

such that ai ∈ Ki for i ∈ I. Let Γi be the one-dimensional vector subspace
in B generated by the vector ai for i ∈ I. Let Γ⊥

i be a co-space of the vector
space Γi for i ∈ I. Let μi be the one-dimensional classical Borel measure on
Γi with

μi({tai : 0 ≤ t ≤ 1}) = 1.
We put

λ(X) =
∑
i∈I

∑
g∈Γ⊥

i

μi((X − g) ∩ Γi).

for X ∈ B(B). Now one can easily check that all conditions formulated for
the measure λ in Theorem 7.2, are satisfied. �

In context of Theorem 7.2 the following assertion is of a certain interest.

Theorem 7.3. Let R3 be a three-dimensional Euclidean vector space. Then
there exists a two-dimensional Preiss–Tǐser generator μ (not σ-finite) in R3

such that for an arbitrary polyhedron P ⊂ R3 we have

μ(B(P )) = S(B(P )),
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where B(P ) denotes the surface of the polyhedron P and S(B(P )) the surface
area of P .

Proof. Let B0 be the unit sphere in R3, i.e.,

B0 = {h ∈ R
3 : ||h||3 = 1},

where || · ||3 denotes a usual norm in R3. For h1, h2 ∈ B0 we say that h1 ≈ h2

if h1 and h2 are antipodal points. It is clear that ≈ is an equivalence relation
in B0. Let (Ki)i∈I be the set of equivalence classes. Let (ai)i∈I be a family
of elements of B0 such that ai ∈ Ki for i ∈ I. Let Γi be a two-dimensional
plane which has a normal ai for i ∈ I and which contains the zero of R3.
Let Γ⊥

i be a linear complement of the vector subspace Γi for i ∈ I. Let μi

be a standard two-dimensional classical Borel measure in Γi which takes the
value π on the set Γi ∩ B0.

We put
μ(X) =

∑
i∈I

∑
g∈Γ⊥

i

μi((X − g) ∩ Γi).

for X ∈ B(R3). Now one can easily check that all conditions formulated for
the measure μ in Theorem 7.3 are satisfied. �

Remark 7.2. Other interesting geometric applications of generators of shy
sets in infinite-dimensional separable Banach spaces with basis can be found
in [19, Chapters 13 and 15].

Acknowledgments. The author expresses thanks to Professor Joseph Ro-
senblatt for his careful reading of the paper manuscript and some helpful
remarks.

References
[1] Aronszajn, N. Differentiability of Lipschitzian mappings between Banach spaces.

Studia Math. 57 (1976) 147–190. MR0425608 (54 #13562), Zbl 0342.46034.
[2] Baker, Richard. “Lebesgue measure” on R∞. Proc. Amer. Math. Soc. 113 (1991)

1023–1029. MR1062827 (92c:46051), Zbl 0741.28009.
[3] Baker, Richard. “Lebesgue measure” on R

∞. II. Proc. Amer. Math. Soc. 132
(2004) 2577–2591. MR2054783 (2005d:28012), Zbl 1064.28015.

[4] Borwein, J. M. Minimal CUSCOS and subgradients of Lipschitz functions,Fixed
point theory and applications (Marseille, 1989), 57–81. Pitman Res. Notes Math. Ser.,
252. Longman Sci. Tech., Harlow, 1991. MR1122818 (92j:46077), Zbl 0743.49006.

[5] Cameron, R. H.; Martin, W. T. Transformations of Wiener integrals under trans-
lations. Ann. of Math. (2) 45 (1944) 386–396. MR0010346 (6,5f), Zbl 0063.00696.

[6] Christensen, J. P. R., Topology and Borel structure. Descriptive topology and set
theory with applications to functional analysis and measure theory. North-Holland
Mathematics Studies, 10. North-Holland Publishing Co., Amsterdam-London; Amer-
ican Elsevier Publishing Co., Inc., New York, 1974. MR0348724 (50 #1221),
Zbl 0273.28001.

[7] Cichon, J.; Kharazishvili, A; Weglorz, B. Subsets of the real line. Wydawnictwo
Uniwersytetu Lodzkiego, Lodz, 1995.

http://www.emis.de/cgi-bin/MATH-item?0273.28001
http://www.ams.org/mathscinet-getitem?mr=0348724
http://www.emis.de/cgi-bin/MATH-item?0063.00696
http://www.ams.org/mathscinet-getitem?mr=0010346
http://www.emis.de/cgi-bin/MATH-item?0743.49006
http://www.ams.org/mathscinet-getitem?mr=1122818
http://www.emis.de/cgi-bin/MATH-item?1064.28015
http://www.ams.org/mathscinet-getitem?mr=2054783
http://www.emis.de/cgi-bin/MATH-item?0741.28009
http://www.ams.org/mathscinet-getitem?mr=1062827
http://www.emis.de/cgi-bin/MATH-item?0342.46034
http://www.ams.org/mathscinet-getitem?mr=0425608


On generators of shy sets 259

[8] Csörnyei, Marianna. Aronszajn null and Gaussian null sets coincide. Israel J.
Math. 111 (1999) 191–201. MR1710738 (2000f:46057), Zbl 0952.46030.

[9] Feldman, Jacob. Equivalence and perpendicularity of Gaussian processes. Pacific
J. Math. 8 (1958) 699–708. MR0102760 (21 #1546), Zbl 0089.13502.

[10] Gikhman, I. I.; Skorokhod, A. V. Teoriya sluchăınykh protsessov. Tom I. (Rus-
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Studia Math. 45 (1973) 15–29. MR0331055 (48 #9390), Zbl 0219.46006.

[17] Pantsulaia, G.R. Relations between shy sets and sets of νp-measure zero in Solo-
vay’s model. Bull. Pol. Acad. Sci. Math. 52 (2004) 63–69. MR2070029 (2005e:28003),
Zbl 1109.28002.

[18] Pantsulaia, G.R. On an invariant Borel measure in the Hilbert space. Bull. Pol.
Acad. Sci. Math. 52 (2004) 47–51. MR2070027 (2005f:28035), Zbl 1124.28013.

[19] Pantsulaia, G.R. Invariant and quasiinvariant measures in infinite-dimensional
topological vector spaces. Nova Science Publishers, Copyright 2004-2007, xiv+231
pages, 2007.
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