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Spectral theory of Toeplitz and Hankel
operators on the Bergman space A1

Jari Taskinen and Jani A. Virtanen

Abstract. The Fredholm properties of Toeplitz operators on the Berg-
man space A2 have been well-known for continuous symbols since the
1970s. We investigate the case p = 1 with continuous symbols under
a mild additional condition, namely that of the logarithmic vanishing
mean oscillation in the Bergman metric. Most differences are related
to boundedness properties of Toeplitz operators acting on Ap that arise
when we no longer have 1 < p < ∞; in particular bounded Toeplitz op-
erators on A1 were characterized completely very recently but only for
bounded symbols. We also consider compactness of Hankel operators
on A1.
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1. Introduction

Spectral theory of Toeplitz and Hankel operators has been extensively
studied in the Hilbert space setting, most prolifically in the case of the
Hardy space H2 and of the Bergman space A2, but also a very extensive
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theory exists for Hp and Ap when 1 < p < ∞, see [4]. The endpoint cases
have received less attention in the past, see [15, 18] and references therein
for these operators acting on H1 (and on its dual BMOA). In the present
paper we deal with Toeplitz and Hankel operators on the Bergman space
A1.

Denote the unit disk of the complex plane C by D and the unit circle by
T. For 1 ≤ p < ∞, the Bergman space Ap consists of all analytic functions
that belong to Lp = Lp(D); the space of all bounded analytic functions in
D is denoted by H∞. The standard Bergman projection is defined by

Pf(z) =
∫

D

f(w)
(1 − wz)2

dA(w),

where dA(w) = dxdy/π is the normalized Lebesgue measure on D. The
Toeplitz operator with symbol a ∈ L1 is defined by Taf = P (af) and the
Hankel operator by Haf = Q(af) = af − P (af), where Q = I − P is the
complementary projection of P .

The boundedness of the Bergman projection on Lp with 1 < p < ∞
has been known since the 1960s, from which it directly follows that Han-
kel and Toeplitz operators with bounded symbols are bounded on Ap when
1 < p < ∞. The question of boundedness for unbounded symbols is still
an open problem and only known for some special classes of symbols, such
as positive, harmonic and radial symbols—see [8, 10, 22]. It is well-known
that the Bergman projection fails to be bounded on L1 (there are bounded
projections from L1 onto A1, however, unlike in the case of H1), and so
boundedness of Toeplitz and Hankel operators needs further considerations.
Indeed, K. Zhu [21] was the first one to study this question and found a suf-
ficient condition providing a large class of bounded functions that generate
bounded Toeplitz operators on A1. Further conditions can be found in [1]
and [19]. However, as in the case of 1 < p < ∞ these results have been
inconclusive in the sense that boundedness is completely characterized only
for bounded symbols. We discuss this in some more detail in Section 3.

The Fredholm properties of Toeplitz operators acting on A2 have been
studied for several classes of symbols—see, e.g., results in Venugopalkr-
ishna [17], Coburn [5], McDonald [12], McDonald and Sundberg [13], Lueck-
ing [11], and Böttcher [3]. Much of the recent progress is due to Grudsky,
Karapetyants, and Vasilevski [6, 7, 9, 16]. The case p = 1 has not been ex-
ploited previously and so we aim to establish Fredholm theory first for sym-
bols that are continuous up to the boundary of D and belong to VMO∂ log;
note that the fact that Ta is unbounded for some continuous symbols causes
great difficulties in dealing with most symbol classes familiar from A2 Fred-
holm theory.

We also deal with compactness of Hankel operators to a certain extent
as needed in connection with Fredholm theory. Regarding Hankel operators
acting on the Bergman space A2, Stroethoff [14] gave a characterization for
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compactness when the symbol is bounded in D, and Zhu [20] found a con-
nection between compactness and the mean oscillation of a general symbol
in the Bergman metric; recall also Axler’s result [2], which is concerned with
analytic symbols and shows that Ha is compact if and only if a is in the little
Bloch space. Here we prove a useful sufficient condition for compactness of
Hankel operators on A1. Part of our approach is based on certain estimates
in connection with the mean oscillation similar to those of Zhu [21] but now
with the logarithmic weight.

We would like to thank Kehe Zhu for a useful discussion that took place
when JAV visited the University at Albany in December 2006.

2. Logarithmic BMO in the Bergman metric

In this section we recall some results on bounded mean oscillation in
the Bergman metric (see [22] for further details and proofs) and develop
analogous theory for the logarithmic BMO∂ and VMO∂ .

Denote the Bergman metric on D by β(z,w) and the Bergman disk by
D(z, r) = {w ∈ D : β(z,w) < r}. A function f ∈ L1(D) is said to be of
bounded mean oscillation, f ∈ BMO∂ , if

MOr(f)(z) : =

[
1

|D(z, r)|
∫

D(z,r)

∣∣∣f(w) − f̂r(z)
∣∣∣2 dA(w)

] 1
2

=

[
1

2 |D(z, r)|2
∫

D(z,r)

∫
D(z,r)

|f(u) − f(v)|2 dA(u)dA(v)

] 1
2

=
[
|̂f |2r(z) −

∣∣∣f̂r(z)
∣∣∣2] 1

2

is bounded, where

f̂r(z) =
1

|D(z, r)|
∫

D(z,r)
f(w)dA(w), z ∈ D;

note that this condition is independent of r as for each r > 0

‖f‖BMOr
:= sup

z∈D

MOr(f)(z)

is equivalent to

‖f‖BMO∂
:= sup

z∈D

MO(f)(z) :=
[
|̃f |2(z) − |f̃(z)|2

]1/2

,

where f̃ is the Berezin transform. Its closed subspace that consists of all
functions f with vanishing mean oscillation,

lim
|z|→1

MO(f)(z) = 0,
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is denoted by VMO∂ . Note that for any r > 0, f ∈ VMO∂ if and only if

lim
|z|→1

MOr(f)(z) = 0.

Let us next consider the spaces above with the logarithmic weight, de-
noted by BMO∂ log and VMO∂ log, which are equipped with the following
norm

‖f‖BMO∂ log
= sup

z∈D

log
1

1 − |z|2 MOr(f)(z).

Proposition 1. The spaces L∞ ∩ BMO∂ log and C(D) ∩ VMO∂ log are both
Banach algebras.

Proof. It suffices to note that∣∣∣fg − f̂rĝr

∣∣∣ ≤ ∣∣∣(f − f̂r)g
∣∣∣ + ∣∣∣(g − ĝr)f̂r

∣∣∣
for all f, g ∈ BMO∂ log. �

In order to describe the image of P on (weighted) BMO∂ and VMO∂ , we
state the definitions of the (logarithmic) Bloch and little Bloch spaces. Let
f be analytic in D. Then we say that f is a Bloch function and write f ∈ B
if

sup
z∈D

∣∣f ′(z)∣∣ (1 − |z|)2 <∞;

if in addition (1− |z|2)f ′(z) → 0, then f is said to belong to the little Bloch
space B0. The logarithmic versions of these spaces, denoted by LB and LB0,
are defined simply by adding the factor log(1−|z|2)−1 to the two conditions
above.

Recall that P (BMO∂) = B and P (VMO∂) = B0; an analogous result,
whose proof we omit here, holds in the case of weighted spaces:

Theorem 2. We have P (BMO∂ log) = LB and P (VMO∂ log) = LB0.

When dealing with Toeplitz operators on A1, we restrict our study to the
symbols in the Banach algebra L∞ ∩ BMO∂ log, which is equipped with the
following norm

‖f‖ = ‖f‖∞ + ‖f‖BMO∂ log
.

Our next aim is to show that continuous functions can be approximated
by C∞ functions in the L∞ ∩ BMO∂ log norm. We start with a preliminary
lemma.

Lemma 3. Let f ∈ C(D). For every ε > 0, there is a g ∈ C∞(D) ∩ C(D)
such that

(2.1) |f(z) − g(z)| < ε(1 − |z|2)
for all z ∈ D.
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Proof. We use mollification. Define the usual compactly supported C∞
function ϕ(z) := exp(−1/(1 − |z|2)), if |z| < 1, and ϕ(z) = 0 otherwise.
Let C :=

∫
C

ϕdxdy and J := ϕ/C. For all δ > 0 and z := x + iy ∈ C let

Jδ(z) := δ−2J(z/δ). The support of Jδ is the disc with center 0 and radius
δ, and moreover,

(2.2)
∫
C

Jδ dxdy = 1.

Let us define a positive valued auxiliary function δ on D as follows. Since
f is uniformly continuous on D, for all 0 ≤ r < 1 it is possible to find
δ̃(r) > 0 such that δ̃(r) ≤ (1 − r)/2 and

(2.3) sup
|w−z|≤eδ(|z|)

|f(z) − f(w)| ≤ ε(1 − |z|2).

Again by the uniform continuity of f , one can require that δ̃ is bounded
from below by a strictly positive constant on every compact interval [0, R],
0 < R < 1. Hence, it is possible to find a C∞ function δ : [0, 1[→ R such
that 0 < δ(r) ≤ δ̃(r) for all 0 ≤ r < 1. Finally, set δ(z) := δ(|z|) for all
z ∈ D.

We define the approximating function g by g(z) = f(z), if |z| = 1, and

g(z) := Jδ(z) ∗ f(z) :=
∫
C

Jδ(z)(z − w)f(w)dw for |z| < 1,

where dw = dxdy and f is extended as 0 outside the closed unit disc; in
view of the support of Jδ(z), it actually does not matter how f is extended
there. Differentiating under the integral sign one verifies that g ∈ C∞(D).

In view of (2.2), (2.3), the remark on the support of the function Jδ(z)

and the fact that δ(z) ≤ δ̃(z), we have the following estimate for all z ∈ D

|f(z) − g(z)| =

∣∣∣∣∣
∫
C

Jδ(z)(z − w)(f(w) − f(z))dw

∣∣∣∣∣
≤
∫
C

Jδ(z)(z − w)|f(w) − f(z)|dw

≤
∫
C

Jδ(z)(z − w)dw sup
|w−z|≤eδ(|z|)

|f(z) − f(w)|

≤ ε(1 − |z|2).
This proves the required approximation. It remains to prove that g is con-
tinuous on the boundary of the unit disc. However, this obviously follows
from the continuity of f on D and from (2.1). �
Theorem 4. The space C∞(D) ∩ C(D) is dense in C(D) ∩ BMO∂ log.
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Proof. Let f ∈ C(D) ∩ BMO∂ log and ε > 0. According to the previous
lemma, there is a function g ∈ C∞ ∩C(D) so that |f(z) − g(z)| ≤ ε(1− |z|).
It is clear that ‖f − g‖∞ < ε, so it remains to estimate the difference in the
BMO∂ log norm. Indeed, we have

MOr(f − g)(z) ≤
[

1
|D(z, r)|

∫
D(z,r)

|f(u) − g(u)|2 dA(u)

]1/2

≤ sup
w∈D(z,r)

|f(w) − g(w)| ,

and thus

log
1

1 − |z|2 MOr(f − g)(z) ≤ ε log
1

1 − |z|2 sup
w∈D(z,r)

(1 − |w|2).

Since Euclidean center and radius of D(z, r) are given by

Cz =
1 − s2

1 − s2 |z|2 z and Rz =
1 − |z|2

1 − s2 |z|2 s,

respectively, where s = tanh r ∈ (0, 1), we see that

sup
w∈D(z,r)

(1 − |w|2) = 1 − (Cz −Rz)2

is asymptotically comparable to 1 − |z|2 as |z| → 1. Therefore,

log
1

1 − |z|2 sup
w∈D(z,r)

(1 − |w|2)

is bounded for all z ∈ D, and it follows that

‖f − g‖ < ε+ Cε

for some absolute constant C. �

3. Boundedness

Suppose that a ∈ L∞. Then according to [19], the Toeplitz operator Ta

is bounded on A1 if and only if P (a) belongs to the logarithmic Bloch space
LB. This condition is unsuitable for our purposes as we need a symbol
algebra to deal with the Fredholm theory of Toeplitz operators and it is
far from clear whether the condition above forms an algebra. However, the
following sufficient condition enables us to have a large class that is indeed
a Banach algebra. According to [21], Ta is bounded on A1 if

a ∈ L∞ ∩ BMO∂ log.

We concentrate on the case in which a is continuous up to the boundary
of D and belongs to VMO∂ log. Note that C(D) ∩VMO∂ log contains Hölder
continuous functions.
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Observe also that, for bounded symbols a, the boundedness of the Toeplitz
operator Ta is both sufficient and necessary for the Hankel operator Ha to
be bounded. Indeed, sufficiency follows from the following estimate

(3.1) ‖Haf‖ ≤ ‖af‖ + ‖Taf‖ ≤ (‖a‖∞ + ‖Ta‖) ‖f‖ ;

and, conversely, if Ha is bounded,

‖Taf‖ ≤ ‖af‖ + ‖Haf‖
implies that Ta is bounded and thus P (a) ∈ LB.

In order to give a bound for the norm of these operators in terms of their
symbols, we state a lemma whose proof is contained in the proof of [21,
Theorem 4]. We include the proof for completeness.

Lemma 5. Suppose that a ∈ L∞ ∩ BMO∂ log. If f ∈ BMO∂ ,

(3.2) MOr

(
af
)
(z) ≤ 2 ‖a‖∞ ‖f‖BMO∂

+ |f̂r(z)|MOr(a)(z)

for all z ∈ D.

Proof. Write

a(z)f(z) − (âf)r(w) = a(z)
(
f(z) − f̂r(w)

)
+ f̂r(w)

(
a(z) − âr(w)

)
+ f̂r(w)âr(w) − (âf)r(w),

and so

|a(z)f(z) − (âf)r(w)| ≤ ‖a‖∞|f(z) − f̂r(w)| + |f̂r(w)||a(w) − âr(w)|
+ |f̂r(w)âr(w) − (âf)r(w)|.

Let D = D(w, r). Since

|âr(w)f̂r(w) − (âf)r(w)| =
∣∣∣∣ 1
|D|

∫
D
a(z)

(
f(z) − f̂r(w)

)
dA(z)

∣∣∣∣
≤ ‖a‖∞

(
1
|D|

∫
D
|f(z) − f̂r(w)|2dA(z)

)1/2

≤ ‖a‖∞‖f‖BMO∂
,

we have

|a(z)f(z) − (âf)r(w)| ≤ ‖a‖∞‖f‖BMO∂
+ ‖a‖∞|f(z) − f̂r(w)|

+ |f̂r(w)||a(z) − âr(w)|.
Therefore,

MOr

(
af
)
(z) ≤ 2 ‖a‖∞ ‖f‖BMO∂

+ |f̂r(z)|MOr(a)(z). �

Theorem 6. Let a ∈ L∞(D) ∩ BMOlog. Then there are constants C1 and
C2 such that

‖Ta‖L(A1) ≤ C1 ‖a‖ , ‖Ha‖L(A1,L1) ≤ C2 ‖a‖ ,
where ‖a‖ = ‖a‖∞ + ‖a‖BMO∂ log

.



312 J. Taskinen and J. A. Virtanen

Proof. Let f ∈ B. Since P is bounded from BMO∂ to the Bloch space B,
we have

‖Taf‖B = ‖P (af)‖B ≤ const ‖af‖BMO∂

≤ const ‖a‖∞ ‖f‖BMO∂
+ const sup

z∈D

f̂r(z)MOr(a)(z),

where the last inequality follows from the previous lemma. According to
[21, Theorem 1] and its proof,

sup{|f̂r(z)| : ‖f‖BMO∂
≤ 1, f̂(0) = 0} ≤ const β(0, z)

for all z ∈ D. Therefore, since Ta is a bounded operator and β(0, z) is
comparable to log(1/|D(z, r)|), it follows that

‖Ta‖ ≤ const
(
‖a‖∞ + ‖a‖BMOlog

)
.

Since Ta : B → B is the adjoint of Ta : A1 → A1, we have the desired inequal-
ity. The claim regarding the Hankel operator Ha now follows from (3.1). �

4. Compactness

As usual, in the study of the Fredholm properties of Toeplitz operators,
Hankel operators play an important role, especially their compactness. Also,
we need to pay attention to the compactness of Toeplitz operators (for com-
parison, recall however that nontrivial Toeplitz operators on Hp are never
compact).

In the definition of the mean oscillation MOr choose r > 0 so small that
always

(4.1) D(z, r) ⊂ {w ∈ D : |w − z| < (1 − |z|)/2}.
We also denote W (z) := log(e/(1 − |z|)) for all z ∈ D.

We start with a preliminary lemma that provides a key approximation
result.

Lemma 7. Let f ∈ VMO∂ log(D) ∩ C(D).
(a) Given ε > 0, it is possible to find h ∈ VMO∂ log(D)∩C(D) such that h

is C1 in an annular neighborhood that contains T and such that

‖f − h‖BMO∂ log
≤ ε and ‖f − h‖∞ ≤ ε.

(b) If in addition f(t) = 0 for all t ∈ T, then it is possible to choose h to
be compactly supported in D.

Proof. Suppose that ‖f‖BMO∂ log
≤ 1 and ‖f‖∞ ≤ 1. Let ε > 0 and choose

0 < R < 1 such that

(4.2) W (z)MOr(f)(z) ≤ ε/2

for |z| ≥ R. In case (b), we fix R further so that

sup{|f(z)| : R < |z| < 1} < ε/2.
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Let us define P in a neighborhood of D such that it is C1 and

sup
R<|z|<1

|P (z) − f(z)| ≤ ε/2 .

(To find such a P , one can for example extend f as a uniformly continuous
function on 2 D by setting f(z) = f(z/|z|) for |z| > 1, and then define P ,
say, on 3

2 D by mollifying the extended f .) In case (b), we simply set P ≡ 0.
As a C1 function, P definitely belongs to VMO∂ log(D) and thus there exists
R′ ∈ (R, 1) such that

(4.3) W (z)MOr(P )(z) ≤ ε/2

for |z| ≥ R′.
In order to define the desired function h, we construct a continuous radial

function ψ : D → [0, 1] such that

(4.4) ψ(z) = 0 for |z| ≤ 1 − δ/2,

where δ = 1 −R′, ψ(z) = 1 for z sufficiently close to T, and, in addition,

(4.5) W (z)MOr(ψ)(z) ≤ ε

for all z ∈ D. Indeed, let N ∈ N be such that 2−N = ε′, where ε′ > 0
is so small that ε′ < δ/4 and 10ε′| log ε′| < ε. Let ν ∈ N be the largest

positive integer such that
ν∑

k=1

1/k ≤ 2N . For all z with |z| ≤ 1− 2−N , define

ψ(z) = 0. Then (4.4) holds, by the choice of ε′. For all n, 1 ≤ n ≤ ν, define

ψ(z) =
n∑

k=1

ε′

k
,

where z = 1 − 2−N−n. For all n > ν, for z = 1 − 2−N−n we simply set

ψ(z) = 1.

We extend ψ affinely for other positive z and then radially all over the disc.
To prove (4.5) it is enough to consider the weighted mean oscillation for

D(z, r) with 1−2−N+2 ≤ |z| ≤ 1−2−N−ν−2; for other values of z, the mean
oscillation on D(z, r) is 0, since ψ is constant there, see (4.1). If n ≤ ν + 1
is such that 1 − 2−N−n ≤ |z| < 1 − 2−N−n−1, we have

1 − 2−N−n+1 ≤ |w| < 1 − 2−N−n−2

for all w ∈ D(z, r). Hence,

ε′
n−1∑
k=1

1
k
≤ ψ(w) ≤ ε′

n+2∑
k=1

1
k

and moreover
W (z) ≤ 3 log(2N+n) ≤ 3n| log ε′|
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for all w ∈ D(z, r). Hence,

W (z)MOr(ψ)(z)(4.6)

≤ 3n| log ε′|
(

1
|D(z, r)|

∫
D(z,r)

∣∣∣∣∣ε′
n+2∑
k=1

1
k
− ε′

n−1∑
k=1

1
k

∣∣∣∣∣
2

dA(w)

) 1
2

≤ 3n| log ε′|
(

1
|D(z, r)|

∫
D(z,r)

(3ε′

n

)2
dA(w)

) 1
2

≤ 9| log ε′|ε′ < ε

for such z, and by the remark above, this estimate holds true for all z ∈ D.
Define h = (1−ψ)f+ψP . Let us show that h is the desired approximation.

Note first that in case (b), the support of h is trivially compact since P ≡ 0.
Clearly, since ψ(z) = 0 for all |z| < R,

‖f − h‖∞ = ‖ψ(f − P )‖∞ < ε

according to the choice of P . So it remains to estimate the other norm.
Writing

(4.7) ‖f − h‖BMO∂ log
≤ ‖ψf‖BMO∂ log

+ ‖ψP‖BMO∂ log

we start with the first term on the right-hand side. By (4.4), ψ(w) = 0, if
w ∈ D(z, r) with |z| ≤ 1 − δ, hence,

‖ψf‖BMO∂ log
= sup

|z|≥1−δ
W (z)MOr(ψf)(z).

Let |z| ≥ 1 − δ and w ∈ D(z, r). We write Mr(f) = f̂r and

ψ(w)f(w) −Mr(ψf)(z)

= ψ(w)
(
f(w) −Mr(f)(z)

)
+Mr(f)(z)

(
ψ(w) −Mr(ψ)(z)

)
+Mr(ψ)(z)Mr(f)(z) −Mr(ψf)(z).
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Hence,

W (z)MOr(ψf)(z)

≤ C

(
1

|D(z, r)|
∫

D(z,r)

W (z)2
∣∣ψ(w)f(w) −Mr(ψf)(z)

∣∣2dA(w)

) 1
2

≤ C

(
1

|D(z, r)|
∫

D(z,r)

(
W (z)2‖ψ‖∞

∣∣f(w) −Mr(f)(z)
∣∣2

+W (z)2‖f‖∞
∣∣ψ(w) −Mr(ψ)(z)

∣∣2
+W (z)2

∣∣Mr(ψ)(z)Mr(f)(z) −Mr(ψf)(z)
∣∣2)dA(w)

) 1
2

≤ C ′W (z)MOr(f)(z) + C ′W (z)MOr(ψ)(z)

+W (z)
∣∣Mr(ψ)(z)Mr(f)(z) −Mr(ψf)(z)

∣∣ .
The second and third but last terms are comparable to ε, by (4.2) and (4.5).
The same is true for the last one, since

W (z)
∣∣Mr(ψ)(z)Mr(f)(z) −Mr(ψf)(z)

∣∣(4.8)

≤
∣∣∣∣∣ W (z)
|D(z, r)|

∫
D(z,r)

f(w)
(
ψ(w) −Mr(ψ)(z)

)
dA(w)

∣∣∣∣∣
≤ ‖f‖∞W (z)

(
1

|D(z, r)|
∫

D(z,r)

|ψ(w) −Mr(ψ)(z)|2dA(w)

)1/2

= ‖f‖∞W (z)

(
1

|D(z, r)|
∫

D(z,r)

|ψ(w) −Mr(ψ)(z)|2dA(w)

)1/2

= ‖f‖∞W (z)MOr(ψ)(z) ≤ ε

So we obtained the estimate

‖ψf‖BMO∂ log
< Cε.

The other term ‖ψP‖BMO∂ log
in (4.7) is treated in the same way, using (4.3)

instead of (4.2). �

We can now deal with compactness of Hankel and Toeplitz operators; in
particular, we obtain sufficient conditions for compactness of these operators
that are of great importance in the next section.

Corollary 8. If a ∈ C(D) ∩ VMO∂ log and a(t) = 0 for all t ∈ T, then
Ta : A1 → A1 is compact.
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Proof. Suppose that a = 0 on T. If K := suppa is compact and T :
A1 → L1 is defined by Tf(z) = χK(z)f(z), then T is compact, and so
Ta = PMaT must also be compact. Otherwise, use case (b) of Lemma 7 to
approximate the given symbol a by a sequence of ak with suppak compact,
so that ‖Ta − Tak

‖ → 0 as k → ∞ according to the norm estimate in
Theorem 6. Thus Ta is compact. �
Lemma 9. If h ∈ C(D) ∩ VMO∂ log is C1 in an annular neighborhood Ω
that contains T, then Hh : A1 → L1 is compact.

Proof. One can easily check that the transpose of the operator

PHh : C(D) → B0

is the operator Hh : A1 → C(D)∗ (or, Hh : A1 → L1, since L1 is a closed
subspace of C(D)∗ and Hh is known to map A1 into L1). We prove that
Hh : C(D) → C(D) is compact. Since P : C(D) → B0 is bounded, the
compactness of Hh : A1 → L1 will follow.

Let ε > 0 be so small that {|z| ≥ 1 − ε} is contained in Ω. Define a C∞

cutoff function χ(z) : D → R such that 0 ≤ χ(z) ≤ 1 for all z and such that
χ(z) = 1 for |z| ≤ 1 − 2ε and χ(z) = 0 for |z| ≥ 1 − ε.

The integral operator H̃ : C(D) → C(D),

H̃f(z) :=
∫
D

(h(z) − h(w))
(1 − zw)2

χ(w)f(w)dA(w),

is compact (as a consequence of the Arzela–Ascoli theorem), since its kernel
is a continuous function on D×D. Hence, there exist finitely many functions
fj ∈ C(D) such that

(4.9) H̃(B(0, 1)) ⊂
⋃
j

B(fj, ε);

here B(g, r) denotes the open ball in C(D) with center g and radius r.
On the other hand, since h ∈ C1 on Ω, it is also Lipschitz on Ω, and so

we have

|(Hh − H̃)f(z)| ≤
∫
D

|h(z) − h(w)|
|1 − zw|2 (1 − χ(w))|f(w)|dA(w)

≤ C

∫
|w|≥1−2ε

|z − w|
|1 − zw|2 dA(w)

for all f ∈ B(0, 1). Since |z − w|/|1 − zw| ≤ 1, the above integral can be
bounded by a constant times∫

|w|≥1−2ε

1
|1 − zw|dA(w)
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By radial symmetry, we may assume that z is positive and obtain, with
w = 
eiθ, a further bound

C

1∫
1−2ε

π∫
−π

1
|1 − z
 cos θ| + 
| sin θ|
dθd


≤ C ′
1∫

1−2ε

3π/4∫
−3π/4

1
1 − 
+ 
|θ|
dθd
+ C ′

1∫
1−2ε

∫
3
4
π<|θ|<π

1
|1 + z
/2|
dθd


≤ C ′′
1∫

1−2ε

| log(1 − 
)|d
+ C ′′
1∫

1−2ε

d


≤ C ′′′ε| log ε| ≤ cε1/2.

Combining this with (4.9) we conclude that

Hh(B(0, 1)) ⊂
⋃
j

B(fj, Cε
1/2),

i.e., Hh : C(D) → C(D) is compact. �

Theorem 10. Let a ∈ C(D) ∩ VMO∂ log. Then Ha : A1 → L1 is compact.

Proof. Apply Lemmas 7 and 9. �

5. Fredholmness and index

A bounded linear operator A on a Banach space X is said to be Fredholm
if both its kernel and cokernel are finite-dimensional; the index of a Fredholm
operator is defined by

IndA = dimkerA− dim cokerA.

We also define the index (or the winding number) of a nonvanishing con-
tinuous function a by

ind a =
[arg a]T

2π
,

where [arg a]T denotes the total increment of arg a(t) when t ranges over T.
Using the results of the previous section we can easily obtain a sufficient

condition for Fredholmness of Ta on A1.

Theorem 11. Suppose that a ∈ C(D) ∩ VMO∂ log with a(t) �= 0 for any
t ∈ T. Then Ta : A1 → A1 is Fredholm.
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Proof. There are ε > 0 and 0 < δ < 1 such that |a(z)| > ε whenever δ <
|z| ≤ 1. Define b = 1/a on {δ < |z| ≤ 1} and extend it continuously to the
whole D. Then it is clear that b ∈ C(D)∩BMO∂ log and also, for sufficiently
small r, we have W (z)MOrb(z) → 0 as |z| → 1. Thus, b ∈ C(D)∩VMO∂ log.

Since

TaTb = I − P (I −Mab) − PMa(I − P )Mb

= I − T1−ab − PMaHb,

Corollary 8 and Theorem 10 imply that TaTb = I + K for some compact
operator K; similarly TbTa = I + K ′ with K ′ compact. Therefore Tb is a
regularizer of Ta and hence Ta is Fredholm (see, e.g., [4, Theorem 1.12]). �

In order to deal with sufficiency we first consider the index of Fredholm
Toeplitz operators with continuous symbols.

Theorem 12. Suppose that a ∈ C(D) ∩ VMO∂ log and a(t) �= 0 for any
t ∈ T. Then

IndTa = − ind a|T,
where a|T denotes the restriction of a to T.

Proof. Suppose first that the index of a is nonnegative. According to
Lemma 9, there is a function b ∈ C(D) ∩ VMO∂ log that has no zeros on
T and is in C1 in an annulus containing T and approximates a so that
IndTa = IndTb and

inda|T = ind b|T =: κ.
For τ ∈ [0, 1], we define

Fτ (t) = tκ exp
(
τ log g(t)

)
(t ∈ T),

where g(t) = t−κb(t). Since b ∈ C1(T) and ind g = 0, Fτ is a homotopy in
C1(T) and has no zeros on T. We can now extend Fτ : T → C to a mapping
that belongs to C(D) ∩ VMO∂ log. Then TFτ is Fredholm for each τ ∈ [0, 1]
by Theorem 11, and since the index of a Fredholm operator is continuous
(see, e.g., [4, Theorem 1.12]), we have

IndTzκ = IndTF0 = IndTF1 = IndTb = IndTa.

As κ ≥ 0, it is not difficult to show that

−κ = IndTzκ = IndTa.

The case κ < 0 can be reduced to the preceding one via duality. Indeed
recall that the dual of A1 is the Bloch space under the usual integral pairing

(f, g) =
∫

D

f(z)g(z)dA(z)

and then in particular (Ta)∗ = Ta. Therefore,

− ind a|T = inda|T = − IndTa = IndTa

when κ < 0. �
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We use the index formula and Lemma 7 to prove that the condition
0 /∈ a(T) is also necessary for Fredholmness of Ta with a ∈ C(D)∩VMO∂ log.
It is worth noting that our approach is different from that of Coburn [5],
where the compactness of Toeplitz operators and C∗-algebra techniques are
applied, which, in our view, is not applicable to the setting at hand. In
particular, we assume that Ta is Fredholm but the symbol a has a zero, and
show that this leads to a contradiction. Before proceeding to the proof, we
consider a result that deals with the distribution of the zeros of approximat-
ing functions and hence allows us to deal with the other possible zeros of
a.

Lemma 13. Assume that the function f ∈ C(D)∩VMO∂ log is also defined
and C1 in a neighborhood of T and has finitely many zeros t1, . . . , tN ∈ T.
Given η > 0, one can find b ∈ C(D) ∩ VMO∂ log with

‖f − b‖ < η

as follows: b is also defined and C1 in a neighborhood Ω of T, b(tj) = 0 for
all j, and b has no other zeros in Ω.

Proof. Apply the proof of Lemma 7, where P should now be replaced with

P (reiθ) := rf(eiθ)

for r in a sufficiently small open interval containing 1. For a sufficiently large
R < 1 this is the desired approximation of f in the set {z ∈ D : R ≤ |z| ≤ 1}
with respect to sup-norm, and the rest of the proof of Lemma 7 applies word
for word. �

Theorem 14. Let a ∈ C(D) ∩ VMO∂ log. If Ta is Fredholm on A1, then
a(t) �= 0 for any t ∈ T.

Proof. Assume that Ta is Fredholm. Let ε > 0 be so small that IndTa =
IndTf for every symbol f ∈ C(D) ∩ VMO∂ log with

(5.1) ‖a− f‖ ≤ ε

(see Theorem 6). Supposing that a has a zero on the boundary we construct
two symbols with (5.1) for which the indices are different.

First, using Lemma 7, we approximate a by a function f̃ which is C1 in a
neighborhood of T such that ‖a− f̃‖ ≤ ε/10. There exists a constant α ∈ C

such that |α| ≤ ε/10 and such that the function f̃+α has only a finitely many
zeros on T. (If this were not true, one would pick countably many different
numbers zn, n ∈ N, with |zn| ≤ ε/10. The set Tn := {t ∈ T : f̃(t) = zn}
would be infinite for every n ∈ N, so each set Tn would have an accumulation
point wn ∈ T. The set {wn : n ∈ N} would still have an accumulation point
τ ; however, this would lead to a contradictory behavior of f̃ at τ .)
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Set f = f̃ + α. Approximate f by a function b as in Lemma 13 with
η := ε/10. Summing up, we then have

(5.2) ‖a− b‖ ≤ 3ε
10
,

and for some r′ > 1, the function b is defined in a set D
′ := {|z| ≤ r′} and

C1 in the set T
′ := {1/r′ ≤ |z| ≤ r′}. The numbers tj ∈ T, j = 1, . . . , N ,

denote the zeros of b on T, and b does not have other zeros on T
′.

Let us select for each j an open disc Bj := B(tj, δj) ⊂ T
′ such that

B(tj, 2δj) ∩B(tk, 2δk) = ∅ for j �= k.
Since |∇b| is bounded on T

′, we can find, using the mean value theorem,
a number 0 < δ < (1 − 1/r′)/10 with the following property

(5.3) |b(z) − b(w)| ≤ ε

10N
,

for all z,w ∈ D
′ with |z−w| ≤ 100δ. Moreover, we assume δ is so small that

W (z)MO(b)(z) < ε/(10N) for z with |z| ≥ 1− 4δ. If necessary, we diminish
the numbers δj so that each of them satisfies δj ≤ δ.

We next modify the function b on each of the sets B(tj, δj) as follows. We
start with j = 1, and without loss of generality we may assume t1 = 1. Let
z = x+ iy ∈ D. We define

f1(z) = b(z)
if x ≤ 1 − δ21/100, and

f1(z) = b(1 − δ21/100 + iy),

if x ≥ 1 − δ21/100 (notice that then z = x+ iy ∈ B1).
We also define

f2(z) = b(z)
if x ≤ 1 − δ21/100, and

f2(z) = b(1 − δ21/100 + 2(x− (1 − δ21/100)) + iy)

if x ≥ 1 − δ21/100.
Since the functions fk coincide with b except in the set B1, we have

sup
z∈D\B1

|fk(z) − b(z)| = 0.

If z ∈ B1, then, by the construction of the functions fk, we have

(5.4) fk(z) = b(w)

for a number w such that |z − w| ≤ δ1. Hence, we still obtain by (5.3)

|fk(z) − b(z)| = |b(w) − b(z)| < ε

10N
.

Therefore, ‖fk − b‖∞ ≤ ε/10N .
Concerning ‖fk − b‖BMO∂ log

, we show that

W (z)MO(fk)(z) ≤ 4ε
10N
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for the numbers z with |z| ≥ 1−4δ. Indeed, if |z| ≥ 1−4δ, then the Euclidean
radius of the set D(z) is smaller than 50δ. Moreover, (5.4) still holds. (If
z /∈ B1, then fk(z) = b(z)). Hence, by (5.3) and (5.4), |fk(w) − fk(ζ)| ≤
4ε/(10N) for all w, ζ ∈ D(z), which implies W (z)MO(fk)(z) ≤ 4ε/(10N).

On the other hand, for such z, we have W (z)MO(b)(z) ≤ ε/(10N) by
assumption, so we get for |z| ≥ 1 − 4δ the bound W (z)MO(b − fk)(z) <
5ε/(10N).

For |z| ≤ 1 − 4δ we have W (z)MO(b − fk)(z) = 0, since the functions
coincide on D(z). As a conclusion,

(5.5) ‖b− fk‖ ≤ ε

2N
for k = 1, 2.

As for the other discs Bj, j = 1, . . . , N , we modify b on them analogously
to f1 above. Eventually we thus get two modifications of b, namely b2, which
has exactly one zero in T

′ (the one sitting in B1), and b1, which has no zeros
in T

′. Moreover, both functions satisfy,

‖bk − b‖ < 4ε
10
,

hence, by (5.2),
‖bk − a‖ < ε,

and by construction, the indices of b′k := bk � T (k = 1, 2) are different since
the increments of arg b′1(t) and arg b′2(t) are the same when t ranges over
T \ B1 but differ when t ranges over T ∩ B1. This contradicts the index
theorem (see Theorem 12). �

As a consequence, we see that the condition a � T ≡ 0 is also necessary
for the compactness of Ta acting on A1:

Proposition 15. Let a ∈ C(D) ∩ VMO∂ log. Then Ta is compact on A1 if
and only if a(t) = 0 for all t ∈ T.

Proof. For sufficiency, see Corollary 8. Assume that Ta is compact but
a(t0) �= 0 for some t0 ∈ T. It is well-known that K−λ is Fredholm for all λ �=
0 whenever K is compact (the Riesz’s theorem for compact operators). In
particular, Ta−a(t0) must then be Fredholm, which contradicts the previous
theorem. �
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