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Refined measurable rigidity and flexibility
for conformal iterated function systems

Marc Kesseböhmer and Bernd O. Stratmann

Abstract. In this paper we investigate aspects of rigidity and flexibil-
ity for conformal iterated function systems. For the case in which the
systems are not essentially affine we show that two such systems are
conformally equivalent if and only if in each of their Lyapunov spectra
there exists at least one level set such that the corresponding Gibbs
measures coincide. We then proceed by comparing this result with the
essentially affine situation. We show that essentially affine systems are
far less rigid than nonessentially affine systems, and subsequently we
then investigate the extent of their flexibility.
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1. Introduction

In 1982 D. Sullivan published his influential purely measurable form of
Mostow’s rigidity theorem. It states that if two geometrically finite Kleinian
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groups are conjugate under a Borel map F which is nonsingular with respect
to the Patterson measures associated with the two groups, then F agrees
almost everywhere with a conformal conjugacy ([Sul82], see also [Sul87],
[Sul88] and [Bow79]). Since the appearance of this theorem the concept
of measurable rigidity has attracted a great deal of attention, and in the
meanwhile numerous generalisations and variations have been obtained.
One of these was derived by Hanus and Urbański ([HU99]), who considered
nonessentially affine, conformal iterated function systems (see Section 2 for
the definitions), and showed that two such systems Φ and Ψ are confor-
mally equivalent if and only if their associated conformal measures μΦ and
μΨ (each of maximal Hausdorff dimension) coincide up to permutation of
the generators. This result can be seen as the starting point for this paper.

Our first goal is to give a multifractal refinement of the result in [HU99].
For ease of exposition, throughout we restrict the discussion to the 1-dimen-
sional, finitely generated case (note that the results in [HU99] include also
certain infinitely generated systems; however, in this paper we are mainly
concerned with studying conceptual differences between the affine and non-
affine settings, and this is done best first for the finitely generated cases).
Recall that each system Φ gives rise to its Lyapunov spectrum u �→ �Φ(u),
which is given by the multifractal spectrum of the measure of maximal en-
tropy associated with Φ. Moreover, each level set in this spectrum supports
a canonical shift-invariant Gibbs measure μΦ,u. In a nutshell, our main re-
sult for nonessentially affine, conformal iterated function systems is that two
such systems Φ and Ψ are conformally equivalent if and only if μΦ,u is equal
to μΨ,v up to permutation of the generators, for some u, v ∈ R \ {0} (see
Theorem 3.2 for a more complete statement which also involves cohomolog-
ical equivalence of the associated canonical geometric potential functions,
equality of pressure functions as well as equality of Lyapunov spectra).

In the second part of the paper we consider essentially affine, confor-
mal iterated function systems. Note that for nonessentially affine systems
a conjugating map between two systems is conformal if and only if it is bi-
Lipschitz (see [MU03, Theorem 7.2.4]). Hence, for essentially affine systems
bi-Lipschitz conjugacy is the natural substitute for conformal conjugacy. By
investigating similar questions as before for the nonessentially affine case, we
obtain that from the point of view of multifractal rigidity essentially affine
systems behave rather different than nonessentially affine systems. For in-
stance, if for two essentially affine systems Φ and Ψ we have that μΦ,u is
equal to μΨ,v up to permutation of the generators, for some u, v ∈ R \ {0},
then this does not necessarily imply that Φ and Ψ are bi-Lipschitz equivalent.
More precisely, we show that equality of μΦ,u and μΨ,u up to permutation
of the generators together with the equality of the pressure functions PΦ

and PΨ at u, for some u ∈ R \ {0}, is equivalent to the fact that Φ is bi-
Lipschitz equivalent to Ψ, as well as to the facts PΦ = PΨ, �Φ = �Ψ and
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cohomological equivalence of the two canonical geometric potential func-
tions associated with the systems (see Theorem 4.3). These results clearly
show that essentially affine systems are less rigid than nonessentially affine
systems, and a further investigation of this phenomenon of flexibility is then
given in Section 4.3. There, we derive sufficient and necessary conditions
for equality of μΦ,u and μΨ,v in terms of the pressure functions and the
canonical geometric potential functions (see Theorem 4.5). Also, we show
that this situation does in fact occur. Namely, in Proposition 4.8 we ob-
tain that if μΦ,u is given and v fulfils a certain admissibility condition (see
Definition 4.7), then there exists an essentially affine system Ψ such that
μΦ,u is equal to μΨ,v up to permutation of the generators. Finally, we give
a brief discussion of the extent of flexibility of an essentially affine system.
The outcome here is that for a nondegenerate Φ the set of systems Ψ for
which μΦ,u is equal to μΨ,v up to permutation of the generators, for some
u, v ∈ R \ {0}, forms a 2-dimensional submanifold of the moduli space of Φ,
whereas if Φ is degenerate then this set is a 1-dimensional submanifold (see
Proposition 4.10).

2. Preliminaries

2.1. Conformal iterated function systems. Throughout this paper we
consider conformal iterated function systems (CS) on some connected com-
pact set X ⊂ R. Recall from [HU99] (see also [MU03]) that these systems
are generated by a family Φ of injective contractions (ϕi : X → X | i ∈ I),
for some given finite index set I := {1, . . . , d} with at least two elements.
Furthermore, Φ satisfies the following conditions, where we use the notation
ϕω := ϕx1 ◦ ϕx2 ◦ · · · ◦ ϕxn for ω = x1x2 . . . xn ∈ In.

Strong separation condition:

ϕi(X) ∩ ϕj(X) = ∅ for all i, j ∈ I, i 	= j.

Conformality-condition: There exists an open connected set U ⊂ R con-
taining X such that ϕi extends to a real-analytic map on U , for each
i ∈ I.

Note that the conformality-condition immediately implies the bounded dis-
tortion property. That is, we have that the following holds.

Bounded distortion property: There exists C ≥ 1 such that for all n ∈
N, ω ∈ In and x, y ∈ U we have

|ϕ′
ω(y)| ≤ C |ϕ′

ω(x)|.

A central object associated with a CS Φ is its limit set

Λ(Φ) :=
⋂
n∈N

⋃
ω∈In

ϕω(X).
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Clearly, Λ(Φ) is the unique nonempty compact subset of R for which

Λ(Φ) =
⋃
i∈I

ϕi(Λ(Φ)).

From a combinatorial point of view Φ is described by the full-shift Σd := IN.
As usual, we assume Σd to be equipped with the left-shift map σ. The link
between Σd and Φ is provided by the canonical bijection πΦ : Σd → Λ(Φ)
which is given by πΦ(x1x2 . . . ) := limn→∞ ϕx1x2...xn(X). Evidently, we can
always think of Φ as being a conformal fractal representation of Σd.

We also consider the special situation in which all the ϕi are in partic-
ular affine transformations. In this case the system is called affine iterated
function system (AS), and occasionally it will also be referred to as an affine
fractal representation of Σd. One of the major issues of this paper is to
study certain deformations of a given CS Φ = (ϕi : X → X | i ∈ I). More
precisely, let Ψ := (ψi : Y → Y | i ∈ I) be some other CS defined on
some connected compact set Y ⊂ R. Then Ψ is called a deformation of Φ
if there exists a bi-Lipschitz map h : Λ(Φ) → Λ(Ψ) such that after some
permutation of the generators,

ψi = h ◦ ϕi ◦ h−1, for each i ∈ I.

A map h of this type will be called a fractal correspondence. In particular,
if Φ is an AS, that is if Ψ is a deformation of an affine iterated function
system, then Ψ will be referred to as essentially affine iterated function
system (EAS). On the other hand, if Φ is a CS which is not an EAS then Φ
will be called nonessentially affine iterated function system (NAS).
Let us also introduce the deformation space T (Σd) associated with Σd. This
is given by

T (Σd) := {Ψ : Ψ is a CS on Σd}.
Clearly, T (Σd) relates to Σd similarly to the relationship between the Te-
ichmüller space for a Riemann surface and the associated fundamental group.
We then decompose the space T (Σd) into the two disjoint deformation spaces

TE(Σd) := {Ψ : Ψ is an EAS on Σd},
TN(Σd) := {Ψ : Ψ is an NAS on Σd}.

Also, we introduce an equivalence relation on T (Σd) as follows. Two
systems Φ,Ψ ∈ T (Σd) are said to be equivalent (Φ ∼ Ψ) if and only if there
exists a fractal correspondence h : Λ(Φ) → Λ(Ψ) between them. Finally,
recall that a CS is called degenerate if it is equivalent to an AS Ψ = (ψi :
X → X | i ∈ I) for which ψ′

i = ψ′
j, for all i, j ∈ I. It is easy to see that for

a degenerate EAS the multifractal analysis in this paper is trivial.

2.2. Thermodynamic and multifractal formalism for CS. Let Φ =
(ϕi : X → X | i ∈ I) ∈ T (Σd) be given, and let δΦ refer to the Hausdorff
dimension of Λ(Φ). Throughout, we require the following standard concepts
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from thermodynamic formalism, and we assume that the reader is famil-
iar with the basics of this formalism (see e.g., [Bow75], [MU03], [Pes97],
[Rue78]). Here we use the common notations

[x1 . . . xn] := {y = (y1y2 . . . ) ∈ Σd : yi = xi for i = 1, . . . , n},

Snf :=
n−1∑
k=0

f ◦ σk.

• The canonical geometric potential IΦ : Σd → R associated with Φ is
given by IΦ(x) := log

∣∣ϕ′
x1

(ϕ−1
x1

(πΦ(x)))
∣∣ for all x = (x1x2 . . . ) ∈ Σd.

This function is Hölder continuous.
• μΦ refers to a Gibbs measure on Σd for the potential δΦIΦ.
• �Φ refers to the Lyapunov spectrum of Φ, given for α ∈ R by

�Φ(α) := dimH

(
πΦ

({
x ∈ Σd : lim

n→∞
SnIΦ(x)

−n = α

}))
.

• PΣd
: C(Σd) → R denotes the pressure function, given for a potential

function f : Σd → R by

PΣd
(f) := lim

n→∞
1
n

log
∑
ω∈In

exp( sup
x∈[ω]

Snf(x)).

Also, for u ∈ R we define

PΦ(u) := PΣd
(u IΦ)

and

αΦ(u) := −P ′
Φ(u) = −

∫
IΦ dμΦ,u.

Here, μΦ,u refers to the σ-invariant Gibbs measure on Σd for the po-
tential function uIΦ−PΦ(u), where ‘Gibbs’ means as usual that for all
n ∈ N, (x1, . . . , xn) ∈ In and x ∈ [x1 . . . xn],

μΦ,u([x1, . . . , xn]) 
 euSnIΦ(x)−nPΦ(u).

Furthermore, we let mΦ,u denote the (uIΦ−PΦ(u))-conformal measure
within the measure class of μΦ,u, given by

dmΦ,u ◦ ϕi
dmΦ,u

=
∣∣ϕ′
i

∣∣u e−PΦ(u), for all i ∈ I.

Finally, throughout we require the following notions of equivalence in con-
nection with two given Φ,Ψ ∈ T (Σd).

• The Gibbs measures μΦ,u and μΨ,v are equal up to permutation (μΦ,u
∼=

μΨ,v) if and only if μΦ,u = μΨ0,v for some system Ψ0 obtained from Ψ
by a permutation of the generators of Ψ.
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• The potentials IΦ and IΨ are cohomologically equivalent (IΦ � IΨ)
if IΦ is cohomologous to IΨ0, for some system Ψ0 obtained from Ψ
by a permutation of the generators of Ψ. (Recall that two functions
f, g : Σd → R are cohomologous if there exists a continuous function
e : Σd → R such that f − g = e− e ◦ σ.)

For the type of iterated function systems which we consider in this paper
the calculation of the Lyapunov spectrum is basically an application of the
multifractal analysis of the measure of maximal entropy for cookie-cutter
Cantor sets. The following proposition summarises the outcome of this
analysis. Subsequently, we will outline the proof employing the down-to-
earth approach given in [Fal97]. Note that the proposition also immediately
follows from the multifractal formalism for growth rates developed in [KS04].
Also, note that in here the function βΦ is the inverse of the function αΦ,
that is βΦ ◦ αΦ = id.

Proposition 2.1. Let Φ ∈ T (Σd) nondegenerate be given. Then there exists
a real-analytic function βΦ : (α−, α+) → R, α−, α+ > 0, such that �Φ(α) = 0
for all α /∈ [α−, α+] and such that for all α ∈ [α−, α+],

�Φ(α) = βΦ(α) +
PΦ (βΦ(α))

α
.

Proof. (Sketch) Let ν refer to the measure of maximal entropy for (Σd, σ).
Then ν is a Gibbs measure for the potential function ϕ constant equal to the
negative of the topological entropy htop := log d. Hence, we in particular
have ν([ω]) 
 exp(Snϕ(x)) = d−n for all n ∈ N, ω ∈ In and x ∈ [ω].
Trivially, we have ϕ < 0 and PΣd

(ϕ) = 0, which shows that ν can be
analysed by standard multifractal analysis (see e.g., [Fal97]). This gives
that there exists a well-defined, strictly decreasing, real-analytic function
γΦ : R → R such that PΣd

(γΦ(t) IΦ + tϕ) = 0, for all t ∈ R. In order to
determine the Hausdorff dimension spectrum

{dimH (Eτ ) : τ ∈ R} ,
where

Eτ :=

{
x ∈ Λ(Φ) : lim

n→∞
log ν

(
π−1

Φ (B(x, r))
)

log r
= τ

}
,

one considers the Legendre transform of γΦ, given by f(τ) = inf{γΦ(t)+t τ :
t ∈ R}, or what is equivalent f(τ) = γΦ(tτ ) + tτ τ where tτ is determined
by γ′Φ(tτ ) = −τ . In particular, there exists a maximal interval (τ−, τ+) on
which f is continuous, concave and strictly positive; outside this interval f
vanishes. Now, the key observation is that there exists a Gibbs measure ντ
for the potential function γΦ(tτ ) IΦ + tτϕ which is concentrated on π−1

Φ (Eτ ).
(Note that the measure ντ coincides with the measure μΦ,γΦ(tτ ) which we
already introduced above). Hence, we have for all n ∈ N, ω ∈ In and x ∈ [ω],

ντ ([ω]) 
 exp (γΦ(tτ )SnIΦ(x) + tτSnϕ(x)) .
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Since by the bounded distortion property exp(SnIΦ(x)) 
 |πΦ([ω])|, the
mass distribution principle immediately gives dimH(Eτ ) = f(τ). To finish
the proof, note that

π−1
Φ (Eτ ) =

{
x = (x1x2 . . . ) ∈ Σd : lim

n→∞
−nhtop

log |πΦ([x1 . . . xn])|
= τ

}
=
{
x ∈ Σd : lim

n→∞
SnIΦ(x)

−n =
htop

τ

}
.

This shows that f(τ) = �Φ(α), for α := htop/τ . Finally, define βΦ(α) :=
γΦ(tτ ) and note that PΣd

(γΦ(tτ ) IΦ + tτϕ) = 0 immediately implies that
PΦ(βΦ(α)) = tτ htop. Using this and rewriting the above in terms of α, the
result follows. �

3. Multifractal rigidity for NAS

For the proof of the main result of this section (Theorem 3.2) we require
the following proposition. Note that for u = δΦ this result was obtained by
Mauldin and Urbański [MU03, Theorem 6.1.3]. Since it is straightforward
to adapt the arguments in [MU03] to our multifractal situation here, we will
only give an outline of the proof emphazising the major changes which have
to be made.

Proposition 3.1. Let Φ ∈ TN(Σd) and u ∈ R \ {0} be given, and let mΦ,u

refer to the (uIΦ − PΦ(u))-conformal measure in the measure class of μΦ,u.
Then there exists an open connected set W ⊃ X such that dμΦ,u/dmΦ,u has
a positive real-analytic extension to W .

Proof. (Sketch) The first step consists of applying Arzelà–Ascoli to obtain
that

F : C(X) → C(X), F (g) := e−PΦ(u)
∑
i∈I

|ϕ′
i|ug ◦ ϕi

is an almost periodic operator, that is {Fn(g) : n ∈ N} is relatively compact
with respect to the sup-norm for every g ∈ C(X) (see [MU03, Lemma
6.1.1]). Also, the Gibbs-property of μΦ,u immediately implies that Fn(1) is
uniformly bounded away from zero and infinity, for each n ∈ N.

The second step is to use the above results to show that there exists a
unique positive continuous function ρ : X → R

+ such that (see [MU03,
Theorem 6.1.2])

F (ρ) = ρ,

∫
ρ dmΦ,u = 1 and ρ|Λ(Φ) =

dμΦ,u

dmΦ,u
.

The final step is to consider the sequence of functions (bn)n∈N
, given by

bn(z) :=
∑
|ω|=n

|ϕ′
ω(z)|ue−nPΦ(u).
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One verifies that each bn is defined locally on a sufficiently large neighbour-
hood of each w ∈ X, where it is analytic, uniformly bounded and equicon-
tinuous (see [MU03], proof of Theorem 6.1.3). It then follows that (bn) has
a subsequence converging to an analytic function which locally extends ρ.
Since X is compact and simply connected, this provides us with a globally
defined analytic extension of ρ, which is uniformly bounded from above and
below. �

The following theorem gives the main results of this section. Here, the
main outcome is that if we have equality up to permutation of two Gibbs
measures associated with two points in the Lyapunov spectra of two NAS,
then the two systems are already bi-Lipschitz equivalent. Therefore, the
theorem represents a refinement of the Hanus–Urbański rigidity theorem
mentioned in the introduction (see also Corollary 3.3).

Theorem 3.2 (Multifractal rigidity for NAS). Let Φ,Ψ ∈ TN (Σd) and u, v ∈
R \ {0} be given. Then the following three statements are equivalent:

(i) μΦ,u
∼= μΨ,v.

(ii) Φ ∼ Ψ and u = v.
(iii) IΦ � IΨ and u = v.

Also, the following two statements are equivalent:

(iv) PΦ = PΨ.
(v) �Φ = �Ψ.

Furthermore, each of the statements in (i)–(iii) implies the statements in
(iv) and (v).

Proof. The implications (ii) =⇒ (i), (iii) =⇒ (i) and (iii) =⇒ (iv), as well
as the equivalence of (iv) and (v) follow exactly as in the case Φ ∈ TE(Σd),
and for this we refer to Theorem 4.3 in Section 4.2.

On the basis of the assumption that (i) =⇒ (ii) holds, the implication
(i) =⇒ (iii) can be obtained as follows. Assume that μΦ,u

∼= μΨ,v. We then
have uIΦ � vIΨ + c, for some constant c. Also, since (i) =⇒ (ii) holds, we
have that u = v and Φ ∼ Ψ. It hence follows that IΦ − IΨ � c and δΦ = δΨ.
Consequently, 0 = PΦ(δΦ) − PΨ(δΨ) = cδΦ. Since δΦ 	= 0, this implies that
c = 0, and hence (iii) follows.

It remains to show (i) =⇒ (ii). For this note that by applying a suitable
permutation if necessary, we can assume without loss of generality that
μΦ,u = μΨ,v. Let h := πΨ ◦ π−1

Φ : Λ(Φ) → Λ(Ψ) refer to the associated
measurable map. Clearly, ψi ◦ h = h ◦ ϕi for all i ∈ I. The aim is to show
that there exists an open neighbourhood of Λ(ϕ) such that h extends to
a real-analytic map on this neighbourhood. For ease of notation we will
not distinguish between measures on Σd and measures on the corresponding
limit sets arising from representations of Σd. For ω ∈ In, define Jϕω ,u :=
dμΦ,u ◦ϕω/dμΦ,u, and similar Jψω ,v for the system Ψ. We then have for each
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i ∈ I,

Jϕi,u =
dμΦ,u ◦ ϕi
dμΦ,u

=
dμΨ,v ◦ ψi ◦ h
dμΨ,v ◦ h

=
dμΨ,v ◦ ψi
dμΨ,v

◦ h = Jψi,v ◦ h.

On the other hand, we have

Jψi,v =
dμΨ,v ◦ ψi
dmΨ,v ◦ ψi

dmΨ,v ◦ ψi
dmΨ,v

dmΨ,v

dμΨ,v

=
dμΨ,v

dmΨ,v
◦ ψi

dmΨ,v ◦ ψi
dmΨ,v

(
dμΨ,v

dmΨ,v

)−1

.

Also, since mΨ,v is the (vIΨ − PΨ(v))-conformal measure in the measure
class of μΨ,v, we have

dmΨ,v ◦ ψi
dmΨ,v

=
∣∣ψ′
i

∣∣v e−PΨ(v), for all i ∈ I.

Now, the conformality condition in the definition of a CS guarantees that
|ψ′
i|
v has a real-analytic extension to an open neighbourhood of X. Hence,

by combining these observations with Proposition 3.1, it follows that there
exists W ⊃ X such that Jψi,v has a real-analytic extension J̃ψi,v to W . In
the same way we obtain a real-analytic extension J̃ϕi,u for the system Φ.
Next, note that since Ψ ∈ TN (Σd), there exists j ∈ I such that J̃ψj ,v is not
equal to a constant. Since J̃ϕj ,u = J̃ψj ,v ◦ h, the same holds for J̃ϕj ,u (note,
h is defined on the perfect set Λ(Φ)). In particular, the set of zeros of J̃ ′

ϕj ,u,

and J̃ ′
ψj ,v

respectively, can not have points of accumulation in X, and Y

respectively. Therefore, there exists x ∈ Λ(Φ) such that J̃ ′
ϕj ,u(x) 	= 0 and

J̃ ′
ψj ,v

(h(x)) 	= 0. This implies that there exists an inverse branch J̃−1
ψj ,v

which

is analytic in a neighbourhood of J̃ϕj ,u(x) such that J̃−1
ψj ,v

(
J̃ϕj ,u(x)

)
= h(x).

By choosing a neighbourhood W ′ ⊂ X of x sufficiently small, we obtain that
J̃−1
ψj ,v

◦ J̃ϕj ,u is well-defined and bijective on W ′, and

J̃−1
ψj ,v

◦ J̃ϕj ,u(y) = h(y), for all y ∈W ′ ∩ Λ(Φ).

It now follows that there exists ω ∈ In, for some n ∈ N, such that ϕω(X) ⊂
W ′. Hence, there exists W ′′ ⊃ X on which ψ−1

ω ◦ J̃−1
ψj ,v

◦ J̃ϕj ,u ◦ ϕω is

real-analytic and such that ψ−1
ω ◦ J̃−1

ψj ,v
◦ J̃ϕj ,u ◦ ϕω coincides with h on

W ′′ ∩ Λ(Φ). �
The following corollary is an immediate consequence of the previous theo-

rem. We remark that the fact that μΦ
∼= μΨ implies that the two Lyapunov

spectra coincide is somehow characteristic for nonessentially affine systems.
Namely, as we will see in Section 4.1, in this respect essentially affine sys-
tems behave rather different. Also, note that the equivalence of (i) and (ii)
is precisely the content of the Hanus–Urbański rigidity theorem.
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Corollary 3.3. For Φ,Ψ ∈ TN (Σd), the following statements are equivalent:
(i) μΦ

∼= μΨ.
(ii) Φ ∼ Ψ.

In particular, we also have

μΦ
∼= μΨ =⇒ �Φ = �Ψ.

Remark. Recently, it has been shown in [PW05] that for cocompact Fuch-
sian groups the pressure function is not a complete invariant of isometry, that
is equality of the pressure functions of two isomorphic cocompact Fuchsian
groups does not necessarily imply that the two associated Riemann surfaces
are isometric. This result suggests that one might expect that for two sys-
tems Φ,Ψ ∈ TN (Σd) we have that PΦ = PΨ does not necessarily imply
Φ ∼ Ψ. However, the argument in [PW05] relies on Buser’s constructive
example of isospectral but nonisometric, compact Riemann surfaces (see
[Bus92]), and it is currently not clear (at least to the authors) how to adapt
this construction to the situation of an NAS.

4. Multifractal rigidity and flexibility for EAS

4.1. Deformation spaces for EAS. We require some elementary obser-
vations concerning how to switch forward and backward between two given
essentially affine iterated function systems. The content of the following
lemma is quite certainly well-known to experts in this area. However, for
the reader’s convenience we decided to include its proof.

Lemma 4.1. Let Φ = (ϕi : X → X | i ∈ I),Ψ = (ψi : Y → Y | i ∈ I) ∈
TE(Σd) be given. Then there exists a Hölder continuous homeomorphism
h : Λ(Φ) → Λ(Ψ) such that

ϕi ◦ h = h ◦ ψi, for all i ∈ I.

Moreover, if ϕ′
i = ψ′

i for all i ∈ I, then h is bi-Lipschitz.

Proof. Let Φ,Ψ be given as stated in the lemma. Without loss of generality
we can assume that X = Y = [0, 1] and that both systems are affine. For
each n ∈ N, we define a piecewise linear map hn by induction as follows.
For i ∈ I let Ii := ϕi(Λ(Φ)) and Ji := ψi(Λ(Ψ)), and define

h0,i : Conv(Ii) → Conv(Ji)

to be the uniquely determined linear surjection from Ii onto Ji, where Conv
refers to the convex hull. The map h0 :=

∑n
i=1 h0,i is piecewise linear and

maps
⋃
i∈I Conv(Ii) onto

⋃
i∈I Conv(Ji). Similarly, for each ω ∈ In, i ∈ I

and n ∈ N, let hω,i be the uniquely determined linear surjection which maps
Conv(ϕωi(Λ(Φ))) onto the set Conv(ψωi(Λ(Ψ))). Hence,

hn :=
∑
ω∈In

∑
i∈I

hω,i
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is a piecewise linear surjection with

hn

( ⋃
ω∈In

⋃
i∈I

Conv(ϕω(Ii))

)
=
⋃
ω∈In

⋃
i∈I

Conv(ψω(Ji)).

Also, one readily verifies that hn converges uniformly to a continuous func-
tion h := limn→∞ hn. The fact that h is Hölder continuous with Hölder
exponent

s := min
{
log(ψ′

i)/ log(ϕ′
i) : i ∈ I

}
can be seen as follows. Let x = πΦ(x1x2 . . . ) and y = πΦ(y1y2 . . . ) be two
distinct elements of Λ(Φ). If x1 	= y1 then the assertion follows immediately,
and hence we can assume without loss of generality that x1 = y1. Then
there exists a smallest n ∈ N such that xn+1 	= yn+1 and xi = yi, for all
1 ≤ i ≤ n. The open set condition gives that there exists c > 0 such that
|x− y| ≥ c

∏n
i=1 ϕ

′
xi

. Using this, we obtain

|h(x) − h(y)| ≤
n∏
i=1

ψ′
xi

≤
n∏
i=1

ϕ′s
xi

=
1
cs

(
c
n∏
i=1

ϕ′
xi

)s
≤ 1
cs
|x− y|s.

The remainder of the proposition is now straightforward. �

Note that we necessarily have that each equivalence class in TE(Σd)/ ∼
contains an affine fractal representation. Also, note that each affine fractal
representation Φ = (ϕi : X → X | i ∈ I) can be parameterized by its
contraction rate vector (ϕ′

1, . . . , ϕ
′
d), and the previous lemma shows that

this vector has to be unique up to permutations of its entries. Therefore, as
an immediate consequence of the previous lemma we obtain the following.

Proposition 4.2. There exists a canonical bijection from TE(Σd)/ ∼ onto{
(λ1, . . . , λd) ∈ (R+)d :

d∑
i=1

λi < 1

}
/Πd.

Here, Πd refers to the group of permutations of the elements in I.

4.2. Multifractal rigidity for EAS. The goal of this section is to study
rigidity for essentially affine iterated function systems. We show that for
these systems one can only obtain a multifractal version of Sullivan’s purely
measurable rigidity theorem which is significantly weaker than the one for
the nonessentially affine situation which we obtained in the previous section.

The following theorem states the main result of this section. In there
it is shown that in the EAS setting there is a 1-1 correspondence between
the space of pressure functions and the moduli space TE(Σd)/ ∼. Also, the
theorem in particular gives that for essentially affine systems equivalence of
μΦ and μΨ alone does in general not imply that the pressure functions of
the systems coincide. In fact, as we will see in Section 4.3, this will only
be the case if the two systems are equivalent. Clearly, this can be seen as
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a first instance exhibiting the difference between the essentially affine and
the nonessentially affine settings. Also note that unlike in the nonessentially
affine situation (see the remark at the end of Section 3), the following the-
orem gives that for the essentially affine cases it is clear that PΦ = PΨ is
equivalent to Φ ∼ Ψ.

Theorem 4.3 (Multifractal rigidity for EAS). For Φ,Ψ ∈ TE(Σd) nonde-
generate, the following statements are equivalent:

(i) μΦ,u
∼= μΨ,u and PΦ(u) = PΨ(u), for some u ∈ R \ {0}.

(ii) Φ ∼ Ψ.
(iii) IΦ � IΨ.
(iv) PΦ = PΨ.
(v) �Φ = �Ψ.

Proof. Let Φ = (ϕi : X → X | i ∈ I),Ψ = (ψi : Y → Y | i ∈ I) ∈ TE(Σd) be
two given nondegenerate systems.

(i) =⇒ (ii): Suppose that μΦ,u = μΨ,u, for some u ∈ R \ {0}. We then
have for each n ∈ N and ω ∈ In,

|ϕω(Λ(Φ))| 
 (μΦ,u ◦ π−1
Φ (ϕω(Λ(Φ))))1/uenPΦ(u)/u

= (μΨ,u ◦ π−1
Ψ (ψω(Λ(Ψ)))1/uenPΨ(u)/u 
 |ψω(Λ(Ψ))|.

We can now proceed similar as in Proposition 4.1 to build up a bi-Lipschitz
map h : Λ(Φ) → Λ(Ψ) as the limit of piecewise linear surjections. (Note
that the existence of h can be obtained alternatively by applying Theorem
2.2 in [HU99]).

(ii) =⇒ (i): Suppose that Φ ∼ Ψ, and note that a bi-Lipschitz conjugacy
does not alter the pressure function. Hence, similar as in the previous case,
we obtain for each n ∈ N, ω ∈ In and u ∈ R,

μΦ,u ◦ π−1
Φ (ϕω(Λ(Φ))) 
 |ϕω(Λ(Φ))|ue−nPΦ(u) 
 |h(ϕω(Λ(Φ)))|ue−nPΦ(u)


 |ψω(Λ(Ψ))|ue−nPΨ(u) 
 μΨ,u ◦ π−1
Ψ (ψω(Λ(Ψ))).

Therefore, using the ergodicity of μΦ,u and μΨ,u, it follows that μΦ,u = μΨ,u.
(i) ⇐⇒ (iii): This is an immediate consequence of the fact that μΦ,u and

μΨ,u are Gibbs measures for the potential uIΦ − PΦ(u), and uIΨ − PΨ(u)
respectively.

(iii) =⇒ (iv): This follows from the definition of the pressure function.
(iv) ⇐⇒ (v): This follows since PΦ and �Φ are a Legendre transform pair.
(iv) =⇒ (iii): Suppose that PΦ = PΨ, and let Φa and Ψa be the affine

fractal representations within the equivalence classes [Φ], [Ψ] ∈ TE(Σd)/ ∼.
Also, let (λ1, . . . , λd) and (ρ1, . . . , ρd) refer to the contraction rate vectors
associated with Φa, and Ψa respectively. Using the fact that (i) implies (iv),
we obtain

PΦa = PΦ = PΨ = PΨa .
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Since for affine systems the pressure function at u is equal to the logarithm
of the sum of the contraction rates raised to the power u, it follows that

log
d∑
i=1

λui = PΦa(u) = PΨa(u) = log
d∑
i=1

ρui , for all u ∈ R.

We can now employ a finite inductive argument as follows. Let the λi and
ρi be ordered by their sizes such that λi1 ≥ λi2 ≥ · · · ≥ λid and ρj1 ≥ ρj2 ≥
· · · ≥ ρjd . Since

∑d
i=1 λ

u
i =

∑d
i=1 ρ

u
i , it follows

(
λi1
ρj1

)u
=

1 +
∑d

m=2(ρjm/ρj1)
u

1 +
∑d

m=2(λim/λi1)u
.

Since for each u ≥ 0 the right-hand side in the latter equality lies between 1/d
and d, we deduce, by letting u tend to infinity, that the assumption λi1 	= ρj1
gives rise to an immediate contradiction. Hence, we have that λi1 = ρj1.
For the inductive step assume that for some k ∈ I we have λin = ρjn , for all
n ∈ {1, . . . , k}. We then have

∑d
m=k+1 λ

u
im

=
∑d

m=k+1 ρ
u
jm

, and hence(
λik+1

ρjk+1

)u
=

1 +
∑d

m=k+2(ρjm/ρjk+1
)u

1 +
∑d

m=k+2(λim/λik+1
)u
.

As above, the right-hand side in the latter equality lies between 1/d and d,
and hence, by letting u tend to infinity, we get an immediate contradiction to
the assumption λik+1

	= ρjk+1
. This shows that the contraction rate vectors

(λ1, . . . , λd) and (ρ1, . . . , ρd) coincide up to a permutation. Combining this
observation with the fact that (i) implies (iii), it follows that

IΦ � IΦa = IΨa � IΨ.

This completes the proof of the theorem. �

The following corollary is an immediate consequence of the previous theo-
rem. Note that a comparison of the statement in here with Corollary 3.3 (see
also Theorem 3.2) clearly shows in which respect essentially affine systems
have to be considered as being less rigid than nonessentially affine systems.
Also, we remark that it is straightforward to incorporate the degenerate
cases.

Corollary 4.4. For Φ,Ψ ∈ TE(Σd), the following statements are equivalent:

(i) μΦ
∼= μΨ and δΦ = δΨ.

(ii) Φ ∼ Ψ.

Moreover, we have

μΦ
∼= μΨ and δΦ = δΨ =⇒ �Φ = �Ψ.
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4.3. Multifractal flexibility for EAS and applications to Lyapunov
spectra. As shown in Theorem 4.3, if for two essentially affine systems Φ
and Ψ we have that μΦ

∼= μΨ, then this does not necessarily imply that
the two systems are equivalent, nor that their pressure functions coincide.
This naturally raises the question of what can be said about the pressure
functions in case μΦ

∼= μΨ and δΦ 	= δΨ. The following theorem gives a
complete answer to this question.

Theorem 4.5 (Multifractal flexibility for EAS). For Φ,Ψ ∈ TE(Σd) and
u, v ∈ R \ {0}, the following three statements are equivalent:

(i) μΦ,u
∼= μΨ,v.

(ii) IΦ � v

u
IΨ +

PΦ(u) − PΨ(v)
u

.

(iii) PΦ(s) = PΨ

(
s · v

u

)
+ s · PΦ(u) − PΨ(v)

u
, for all s ∈ R.

Furthermore, each of the statements in (i)–(iii) implies

(iv) αΦ(u) �Φ(αΦ(u)) = αΨ(v) �Ψ(αΨ(v)).

Proof. The equivalence (ii) ⇐⇒ (iii) can be obtained by exactly the same
means as the equivalence (iii) ⇐⇒ (iv) in Theorem 4.3. Hence, it is sufficient
to show that (i) ⇐⇒ (ii).

(i) ⇐⇒ (ii): By using a permutation of the generators if necessary, we can
assume without loss of generality that μΦ,u = μΨ,v. It is then a standard
result for Gibbs measure that this is equivalent to uIΦ � vIΨ+PΦ(u)−PΨ(v),
giving that all three statements are equivalent.

To finish the proof, it remains to show that (i) and (ii) imply (iv). For
this, we have by Proposition 2.1,

αΦ(u) �Φ(αΦ(u)) = uαΦ(u) + PΦ(u) = −
∫

(uIΦ − PΦ(u)) dμΦ,u

= −
∫

(vIΨ − PΨ(v)) dμΨ,v = vαΨ(v) + PΨ(v)

= αΨ(v) �Ψ(αΨ(v)). �

For the special case in which u = δΦ and v = δΨ, the previous theorem
has the following immediate implication.

Corollary 4.6. For Φ,Ψ ∈ TE(Σd), the following statements are equivalent:

(i) μΦ
∼= μΨ.

(ii) IΦ � δΨ/δΦ · IΨ.
(iii) PΦ(s) = PΨ(δΨ/δΦ · s), for all s ∈ R.
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Our next aim is to show that there exist systems which are not bi-Lipschitz
equivalent but which nevertheless admit multifractal measures which coin-
cide up to permutation of the generators. For this note that using Theo-
rem 4.5, we have

u

v
IΦ = Iψ +

PΦ(u) − PΨ(v)
v

<
PΦ(u) − PΨ(v)

v
.

By monotonicity of the pressure function, it therefore follows

PΦ

(u
v

)
<
PΦ(u) − PΨ(v)

v
.

This observation motivates the following notion of admissibility.

Definition 4.7. Let Φ ∈ TE(Σd) and u, v, p ∈ R such that v 	= 0 be given.
The triple (u, v, p) is called Φ-admissible if and only if

PΦ

(u
v

)
<
PΦ(u) − p

v
.

Proposition 4.8 (Flexibility of Lyapunov spectra for EAS (I)). Let a non-
degenerate Φ ∈ TE(Σd) be given, and let (u, v, p) be a Φ-admissible triple.
Then there exists [Ψ] ∈ TE(Σd)/ ∼ (which is unique up to permutations of
the generators of Ψ) such that

μΦ,u
∼= μΨ,v and p = PΨ(v).

Proof. Without loss of generality we can assume that Φ is an AS. Let
(λ1, . . . , λd) ∈ (R+)d be the contraction rate vector associated with Φ, and
let (u, v, p) be a given Φ-admissible triple. Then define

ρn :=
(
ep−PΦ(u) λun

)1/v
, for each n ∈ {1, . . . , d}.

An elementary calculation immediately shows that the Φ-admissibility of
(u, v, p) is equivalent to

∑d
n=1 ρn < 1. Hence, by Corollary 4.2 there exists

an affine fractal representation Ψ = (ψi : [0, 1] → (0, 1) | i ∈ I) ∈ TE(Σd)
whose contraction rate vector is (ρ1, . . . , ρd). Next, observe that

uIΦ − PΦ(u) − (vIΨ − PΨ(v)) = −p+ PΨ(v) = −p+ lim
k→∞

1
k

log

(
d∑

n=1

ρvn

)k

= −p+ log

(
ep−PΦ(u)

d∑
n=1

λun

)

= −PΦ(u) + log
d∑

n=1

λun = 0.

This shows that the potentials uIΦ − PΦ(u) and vIΨ − PΨ(v) coincide, and
also that p = PΨ(v). It follows that the Gibbs measures corresponding to
these potentials have to be equal up to permutation, that is μΦ,u

∼= μΨ,v. �
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We end this section by giving a brief discussion of the extent of flexibility
of an EAS. For this it is more convenient to work with the moduli space of
Σd

ME(Σd) := TE(Σd)/ ∼,
where without loss of generality we always assume that an equivalence class
in ME(Σd) is represented by the unique affine system contained in it. Now,
first note that there clearly always is a trivial measure-wise overlap between
the Lyapunov spectra of two EAS, namely μΦ,0

∼= μΨ,0 for all Φ,Ψ ∈ TE(Σd).
As we have seen above, for EAS there also is the possibility of nontrivial
overlaps, and we will now see that these are generically represented by 2-
dimensional submanifolds of ME(Σd).

Definition 4.9. Two systems Φ,Ψ ∈ ME (Σd) are called Lyapunov-related
if and only if there exist u, v ∈ R \ {0} such that μΦ,u

∼= μΨ,v.

Using Theorem 4.5 (ii), we immediately see that if Φ and Ψ are Lyapunov-
related, that is μΦ,u

∼= μΨ,v for some u, v ∈ R\{0}, then for each s ∈ R\{0}
there exists t ∈ R \ {0} such that μΦ,s

∼= μΨ,t (simply choose t = s · v/u).
More precisely, we have the following proposition which shows that for a
nondegenerate Φ the set of systems which are Lyapunov-related to Φ forms a
2-dimensional submanifold of ME (Σd), whereas if Φ is degenerate then this
set is a 1-dimensional submanifold. Note that here, the case d = 2 appears
to be special since it permits only exactly two equivalence classes modulo
Lyapunov-relatedness, namely the diagonal in TE (Σd) and the complement
of it in ME (Σd) (see Figure 1). In all other cases there is a continuum of
such equivalence classes.

Proposition 4.10 (Flexibility of Lyapunov spectra for EAS (II)).
(i) The ‘Lyapunov relation’ is an equivalence relation on ME (Σd).
(ii) Let Φ ∈ ME (Σd) be given, and let (λ1, . . . , λd) be the contraction rate

vector of Φ. Then the following holds for the equivalence class [[Φ]] of
Φ modulo the Lyapunov relation. If Φ is degenerate, then [[Φ]] is equal
to

{Ψ ∈ ME (Σd) : ρi = t, for all i ∈ I, for some t ∈ (0, 1/d)} .
If Φ is nondegenerate, then [[Φ]] is equal to

{Ψ ∈ ME (Σd) : ρi = t · λsi , for all i ∈ I, for some s, t ∈ R \ {0}} .
Here, (ρ1, . . . , ρd) refers to the contraction rate vector of the system Ψ.

Proof. The assertion in (i) is an immediate consequence of the definition of
the relation ∼=. Furthermore, the first part in (ii) follows since for degenerate
systems the Lyapunov spectrum is trivial. For the second part of (ii) we
proceed as follows. Let Φ,Ψ ∈ ME (Σd) be two nondegenerate systems with
contraction rate vector (λ1, . . . , λd), and (ρ1, . . . , ρd) respectively. First, if
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1

1

0
(a) The moduli space ME (Σ2).

−1

(b) The harmonized moduli space repre-
sented by the disc model.

Figure 1: (a) The shaded (or alternatively, the nonshaded) region of the
simplex parameterizes the moduli space ME (Σ2) := TE(Σ2)/ ∼. The major
axes (where at least one generator disappeared) are not included, whereas
the anti-diagonal opposite to the origin (where the limit set is the whole
space X) is included. The degenerate cases are found on the diagonal.
The lines with endpoints in (0,1) and (1,0) represent ‘iso-dimensionals’ (i.e.,
the Hausdorff-dimension is constant on each of these lines), whereas the
‘ortho-dimensionals’ (lines orthogonal to the iso-dimensionals) are the lines
of maximal decent of the Hausdorff dimension.
(b) The ‘harmonized model’ of the moduli space ME (Σ2), where the unit
intervals on the major axis are compressed to the singleton {−1} ∈ S

1. Here,
the iso-dimensionals give rise to the horocyclic foliation centred at {−1},
whereas the ortho-dimensionals are hyperbolic geodesics with one endpoint
at {−1}.

Φ and Ψ are Lyapunov-related, then Theorem 4.5 implies that there exist
u, v ∈ R \ {0} such that⎛⎜⎝ log λ1 1

...
...

log λd 1

⎞⎟⎠( u
−PΦ(u)

)
=

⎛⎜⎝ log ρ1 1
...

...
log ρd 1

⎞⎟⎠( v
−PΨ (v)

)
.

This implies that for some a, b ∈ R, a 	= 0, we have⎛⎜⎝ log λ1
...

log λd

⎞⎟⎠ =

⎛⎜⎝ log ρ1 1
...

...
log ρd 1

⎞⎟⎠( a
b

)
.
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This settles one direction of the equality. For the reverse direction, assume
that ⎛⎜⎝ log λ1

...
log λd

⎞⎟⎠ ∈ span

⎛⎜⎝
⎛⎜⎝ log ρ1

...
log ρd

⎞⎟⎠ ,

⎛⎜⎝ 1
...
1

⎞⎟⎠
⎞⎟⎠ .

We then have that IΦ = vIΨ + u, for uniquely determined u, v ∈ R, v 	= 0,
giving that u = PΦ(1) − PΨ(v). Hence, it follows that IΦ = vIΨ + PΦ(1) −
PΨ(v), which gives μΦ,1 = μΨ,v. This shows that Φ and Ψ are Lyapunov-
related. �
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