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N_-type quotient modules on the torus

ARl

Keiji Izuchi and Rongwei Yang

ABSTRACT. Structure of the quotient modules in H?(I'?) is very com-
plicated. A good understanding of some special examples will shed light
on the general picture. This paper studies the so-called N,-type quo-
tient modules, namely, quotient modules of the form H2(F2) oz — ¢,
where ¢(w) is a function in the classical Hardy space H*(T') and [z — ¢]
is the submodule generated by z — ¢(w). This type of quotient mod-
ule provides good examples in many studies. A notable fact is its close
connections with some classical operators, namely the Jordan block and
the Bergman shift. This paper studies spectral properties of the com-
pressions S, and S,,, compactness of evaluation operators, and essential
reductivity of H*(I'?) & [z — ¢].

CONTENTS

Introduction

Preliminaries

The spectra of S, and S,
Compactness of L(0)|x, and D,
The case when ¢ is inner

References

1. Introduction

431
433
436
443
450
456

Let H?(I'?) be the Hardy space on the two-dimensional torus I'2. We

denote by z and w the coordinate functions. Shift operators T, and T, on

H?(I'?) are defined by T.f = zf and T, f = wf for f € H*(I'?). Clearly,
both T, and T, have infinite multiplicity. A closed subspace M of H?(T?)
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is called a submodule (over the algebra H*(D?)), if it is invariant under
multiplications by functions in H°(D?). Here D stands for the open unit
disk. Equivalently, M is a submodule if it is invariant for both 7T, and T,.
The quotient space N := H?(I'?) © M is called a quotient module. Clearly
TYN C N and T;; N C N. And for this reason N is also said to be backward
shift invariant. In the study here, it is necessary to distinguish the classical
Hardy space in the variable z and that in the variable w, for which we denote
by H?(I',) and H%(T,), respectively. H?(T',) and H?(T',,) are thus different
subspaces in H2(I'?). We will simply write H?(I') when there is no need to
tell the difference. In H%(T), it is well-known as the Beurling theorem that
if M c H*T) is invariant for T, then M = qH?(T") for an inner function
q(z). The structure of submodules in H?(I'?) is much more complex, and
there has been a great amount of work on this subject in recent years. A
good reference of this work can be found in [3]. One natural approach to the
problem is to find and study some relatively simple submodules, and hope
that the study will generate concepts and general techniques that will lead
to a better understanding of the general picture. This in fact has become
an interesting and encouraging work.

In this paper, we look at submodules of the form [z — ¢(w)], where ¢ is a
function in H%(T',,) with ¢ # 0 and [z—(w)] is the closure of (z—p) H>(I'?)
in H*(I'?). For simplicity we denote [z — ¢(w)] by M,. One good way of
studying M, is through the so-called two variable Jordan block (S.,Sy)
defined on the quotient module

N, = H*(T?) & M,.

For every quotient module N, the two variable Jordan block (S, S,,) is the
compression of the pair (7,,T,) to N, or more precisely,

Szf:Pszv Swf:Pwaa fGN,

where Py : H?(I'?) — N is the orthogonal projection. This paper studies
interconnections between the quotient module N, the two variable Jordan
block (S,,S,) and the function ¢. Some related work has been done in
(14, 22, 23]. By [14], N, # {0} if and only if (D) ND # 0. If p = 0,
then M, = zH?(I'?) and N, = H*(T',), so we assume that ¢ # 0. For
convenience, we let

Qy ={web:|pw) <1},

and assume throughout the paper that N, # {0}, i.e., p(ID) "D # 0. The
paper is organized as follows.

Section 1 is the introduction.

Section 2 introduces some useful tools and states a few related known
results.

Section 3 studies the spectral properties of the operators S, and S,. It
is interesting to see how these properties depend on the function .
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A notable phenomenon in many cases is the compactness of the defect op-
erators [ — 5,57 and I —S%S,. Section 4 aims to study how the compactness
is related to the properties of .

The quotient module N, has very rich structure. Indeed, when ¢ is inner,
N, can be identified with the tensor product of two well-known classical
spaces, namely the quotient space H?(I') © oH?(T") and the Bergman space
L3(D). Section 5 makes a detailed study of this case.

Acknowledgements. This paper was finished when the second author was
visiting the Niigata University. The hospitality and conveniences provided
by its Department of Mathematics are greatly appreciated.

2. Preliminaries

For every A € D, we define a left evaluation operator L(\) from H?(I'?)
to H%(T',,) and a right evaluation operator R(\) from H?(I'?) to H*(T.) by

Lf(w) = fAhw), RNf(2)=f(zX), feH I?).
Clearly, L(A) and R(\) are operator-valued analytic functions over D. Re-

strictions of L(A) and R(\) to quotient spaces N, M © zM and M & wM
play key roles in the study here. The following lemma is from [4].

Lemma 2.1. The restriction of R(\) to M ©wM is equivalent to the char-
acteristic operator function for Sy.

The following spectral relations are thus clear. Details can be found in
[4] and [18].
(a) A € o(Sy) if and only if R(\) : M © wM — H?(T',) is not invertible.
(b) dlmker( — M) = dimker(R(\)|prowar)-
(c) Sw—AI has a closed range if and only if R(\)(M © wM) is closed.
(d) Sw—AIis Fredholm if and only if R(\)|arewns is Fredholm, and in this
case

ind(Sy, — AI) = ind(R(N) | mownr)-
Restrictions T3 |pro.nm and T |prowns are also important here, and for
simplicity they are denoted by D, and D,,, respectively. Clearly,
sz(z,w) _ f(z,w) - f(07w)’ Dwf(Z,'IU) _ f(z,w) - f(zao)’

z w

and it is not hard to check that the ranges of D, and D,, are subspaces of
N. The following lemma (cf. [22]) gives a description of the defect operators
for S,, and it will be used often.

Lemma 2.2. On a quotient module N :

(i) 88, + D.Dr =1I.
(i) S-S + (L(0)|n)*L(0)|v = 1.
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A parallel version of Lemma 2.2 for S, will also be used.
The operator D, is a useful tool in this study. We first note that

Soif Dif =0, then zf € N. Clearly zf € ker L(0)|n. Conversely, if h is in
ker L(0)|n, then we can write h = zhg. One checks easily that hg € ker D}.
This observation shows that

z ker D = ker L(0)|n.

So on Ny, since L(0)|n, is injective (cf. [14]), D has trivial kernel, i..,
the range R(D.) is dense in N,. The following theorem describes R(D,) in
detail.

Theorem 2.3. Let N be a quotient module of H*(I'?) and M = H*(IT?)SN.
Suppose that L(0)|n is one to one and R(D,) is dense in N. Let f € N.

Then f € R(D,) if and only if there exists a positive constant Cy depending
on f such that |(Sth, f)| < C¢||L(0)h| for every h € N.

Proof. Suppose that f € R(D,). Let g € M & zM with T g = f. We have
g=zf+ L(0)g. Then for h € N,

[(SZh £

,2f)]

.9 — L(0)g)|
h, L(0)g)]
L(0)h, L(0)g)|
< IL(0)gl[[|[L(0)A].

To prove the converse, suppose that there exists a positive constant C'y
satisfying

h
h

/\/\/\/\

[(S2h, 1) < CrIL(O)A]]
for every h € N. Since L(0) on N is one to one, we have a map A defined
by
A LO)N 3 u(w) — L(0) 'u — (SFL(0) tu, f) € C
Note that L(0)"tu € N. Obviously, A is linear and
|Auf = [(SZL(0) ™ u, )] < Cr|IL(0)L(0) " ull = Cplul.

Hence by the Hahn—Banach theorem, A is extendable to a bounded linear
functional on H?(T',,) and there exists v(w) € H?(T',,) satisfying (u,v) = Au
for every u € L(0)N. We have

(u,v) = <S*L(0)_1u7 f) = (L(0) u, 2f).
Since v(w) € H*(Ty,), (u,v) = (L(0)"'u,v). Therefore
(L0) M u, 2f —v) =0
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for every u € L(0)N. Since L(0)~'(L(0)N) = N, we get zf —v L N. Hence
zf —v € M. Since v(w) € H?(['y), we have TF(zf —v) = f € N. This
implies that zf —v € M © zM. Thus we get f € R(D,). O

In the case of N, [14] provides a very useful description of the functions
in the space. Let p(w) € H*(Ty). For f(w) € H*(Ty,), we formally define
a function

(T3 ) (w) =Y apw™,
n=0
where o
on= [ B (e 0 2m = () o))

Generally, 77 f may not be in H?(T'y,). When 13 f € H?(T'y,), we can define

T3 f = T3(T5f). Inductively if 73" f € H?*(I',), we can define T;("H)f =
T;(T;"f). For convenience, we let

Ayf(z,w) = Z z”T;”f(w)
n=0

be an operator defined at every f € H*(I',,) for which A,f € H*(I'?). Then
it is shown in [14] that L(0) is one-to-one on N, and

1) N- {A@f  f(w) € BT, ST < oo}.
n=0
It is easy to see that L(0)A,f = f. Moreover by [14, Corollary 2.8], L(0)N,,
is dense in H?(Ty,).
The following two lemmas are needed for the study of o(S.).

Lemma 2.4. Let p(w),g(w) € H*(Ty) and ¢(w) € H®(T'y). Then
15T = T}y
Moreover if T;g € H?(T'y,), then 19 ="T5,9
Proof. Let n > 0. Then by the definitions above,
(T;Thg,2") = (g, 002") = (T9,2").
Thus T;Thg = 1,9 Suppose that T7g € H?(T'y). We have §g — 179 €

2H'. Hence
(TyT59,2") = (T,9,92")
= [ e 0
= (g,9pz").

Thus we get our assertion. O
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Let wg € Q. The following lemma follows easily from the calculation

Y1 — wow 1 — wow '

Lemma 2.5. For wy € €,,we have
1
(1 = p(wo)z)(1 — wow)

€ N,.

3. The spectra of S, and S,,

The spectra of S, and S,, on N, is evidently dependent on ¢. This
section aims to figure out how they are exactly related. Lemma 2.1 and the
description in (2.1) are helpful to this end.

Proposition 3.1. ¢(D)ND C o(S.) C ¢(D) ND.
p(w

(

(“’1)<<1 —W;(l —wlw>>‘

By Lemma 2.5, p(w;) is a point spectrum of S}. Thus we get o(D) ND C
a(Sz).
Let A ¢ o(ID). Then 1/(p(w) — X) € H*(I'y,). Let F' € N,. We have

Proof. Let wy € p(D) ND. Then wy = 1) for some wy € D and

(

> <<1 - so(wl)i)(l - w1w>> -

©

e

wy) (1 — wlw)_l)z”_l

|
©

[e.e]

-0 F = 51/pon) DTS LO)F)2"

n=0

= Z(T;” 1(p—n L(0)F)2" by Lemma 2.4.
n=0
Hence

oy SE A F =Y (T T,y L(0)SE_\F)2"

n=0
oo

= > (T3 T\ To AL(O)F)2"

n

Il
=)

M

(T L(0)F)=" by Lemma 2.4

3
Il
=)
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Also we have

ST F
= (T3 Ty L(O)F) 2" —XZ(T;” on L(0)F)2"

n=1
= Y (T TET ) L(O)F)2" — AZ T2 T (-0 L(0) )"
n=0
= > (Tl Ty n LO)F)2"
=F.
Thus (S. —A)~' = S} /(p—x) and hence A ¢ o(S.).
Since ||S;|| < 1, we have our assertion. O

For a submodule M in H?(I'?), the quotient space M © zM is a wandering
subspace for the multiplication by z and we have

M = Z@z”(M@zM).
n=0
For a fixed A € D and every f € M, we write f = Z —0% f] for some unique
sequence {f;} in M ©zM. So

f= ZA”fﬂrZ — M) fj,

which means that f = hy + (z— A)hs for some hy € M&zM and hy € M. If
hi4(z—A)hg = 0, then hy+zhy = Ahs, and hence |A|?||hz||? = ||h1[|?+||h2]|?,

which is possible only if hy = ho = 0. This observation shows that M can
be expressed as the direct sum

(3.1) M=(M&zM)+ (z— M.
We now look at the spectral properties of S,,.

Proposition 3.2. On N,:

(i) R, C o(Sy).
(i) Sw — al is Fredholm for every o € Q, and ind(S,, —al) = —

Proof. We use Lemma 2.1 to this end.

(i) It is sufficient to show Q, C 0(Sy). If o € Q,, then for any function
(z—p)h(z,w) in MywM,, (z—¢(a))h(z, ) vanishes at ¢(«), and therefore
R(a)(My, 5 wMy,) C (2 — ¢(a)H*(T,) # H*(T,). By Lemma 2.1, a €
(Sw)-

(ii) It is equivalent to show that R(a)|as,cwis, is Fredholm with index —1.
We first show that R(«) is injective on M, © wM,, for every a € Q. Let
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(z—¢)h(z,w) be in M. Then there is a sequence of polynomials {p,(z, w)},
such that (z —¢)p,, converges to (z—¢)h in the norm of H*(I'?). Since R(«)
is a bounded operator, (z — ¢(«))pn(z,«) converges to (z — ¢(«))h(z, @),
which, by the fact |p(a)| < 1, implies that p,(z, ) converges to h(z, a) in
H?(T,). Since for every f € H%(T',), we have ||of]| = ||¢||||f] and hence

(3-2) 1z =)l < Ml2fll+ llefIF = T+ lle DA < oo,
so (2 — ¢)pn(z, ) converges to (z — ¢)h(z,a) in M. It follows that

. Pn — Pni, & h_h'7a
lim (z — @)# = (z - 80)7()

n—o0 w—« w—«
which implies that (z — go)h h( 2) ¢ M. If (z — @)h(z,w) is in M, © wM,
such that (z — p(a))h(z,a) = 0 then h(z,a) = 0, and it follows from the
observation above that

)

(z=p)h=(w-a)(z—-¢) € (w — a)M,,

and hence by (3.1) (2 — ¢)h(z,w) = 0 which implies that R(«) is injective
on M, © wM,.

In the proof of (i), we showed that R(a)(M, © wM,) C (z—¢(a))H?(T,).
On the other hand, for every g € H*(T,), (z — ¢)g is in M, by (3.2), and
by (3.1)

(z — ¢(a))g € R(a)(My) = R(e)(My © wMy,).
This shows that

R(a)(My ©wMy) = (2 — p(a)) H? (),

i.e., R(a)|m,own, has a closed range with codimension 1, and this completes
the proof in view of Lemma 2.1. O

Corollary 3.3. If ¢ is bounded with ||¢|cc < 1, then o(S,) = D and
oe(Sw) =T.

Proof. By Proposition 3.2 and the fact that S,, is a contraction, o(S,,) = D
and 0.(Sy) C I'. Since ind(S,,) = —1, 0¢(Sw) is a closed curve, and therefore
0e(Sy) =T. O

We will mention another somewhat deeper consequence of Proposition 3.2
near the end of this section. Here we continue to study the Fredholmness
of S,. Unfortunately, the techniques used for Proposition 3.2(ii) can not
be applied directly to the case here and a technical difficulty seems hard to
overcome. So instead we use (3.1) in this case. We begin with some simple
observations.

Lemma 3.4. Let go( ) = b(w)h( ) be the inner-outer factorization of p(w).
Then ker S¥ = H?(T'y,) © b(w)H?(T,).
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Proof. Since the functions in H?(I'y,) ©b(w)H?(I'y,) depend only on w, the
inclusion

H*(T,) © b(w)H?*(I',) C ker S*
is easy to check.
If fis a function in N, such that S7f = 0, then zZf is orthogonal to

H?(T'?) which means f is independent of the variable z. Since for every
nonnegative integer j

0= <(Z - So)wj7f> = <_90wj7f>7
fisin H*(Ty) © b(w)H?(Ty). O

Theorem 3.5. Let o(w) = b(w)h(w) be the inner-outer factorization of ¢
and

o= 7“})Ig]’))|h(u))|

Then S% has a closed range if and only if o # 0, and in this case SN, = N,,.
Proof. Write K, = H?(I'y,) © b(w)H?(Ty,). By Lemma 3.4, ker S} = Kj,.

Suppose that v > 0. Then h(w)™! € H®(Ty,) and [|T;_, || = |h | =
a~l. Let F € N, & K,. We can write (L(0)F)(w) = b(w)f(w). Then by
(2.1),

2

o0
IFI? = 2" T s
n=0

= > _ITf |
n=0
> | F1? + IITs0f 1
= /1P + 1 T5 1
= 1 + a2 T; £
= /17 + T 1P T £
> ”f”2 + OtQHfH2 by Lemma 2.4
= (L+a?)|L(O)F|.

Since by Lemma 2.2 [|S?F||? + || L(0)F||* = ||F||?,
1 a?
F|I?> = il
—— )IFI? = =17

This implies that S} is bounded below on N, © K3, and hence S} has a
closed range.

|S2FI? = P2 = | LO)FI? > (1-
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Suppose that o = 0. Let {wy}, be a sequence in D satisfying |h(wg)| < 1
and h(wg) — 0 as k — oo. Let

k
F; .
k(2 w) = 1—wkw +z:1 1—wkw

Then ) )
2 o
L

Using the fact that 73 (1/(1 — wpw)) = g(wg)(1/(1 — Wrw)) for every g €
H?(T'y,), we have

Zzn:r;nl_ EN, O K,

and therefore

o —n ——(n+1)
N nO(wi) h(wg)
SLF, = Z z T
n=0
and )
h(wy)|
Al <= -
1525 < T | T= Ry
It follows ‘ ‘
. h(wy)
155 Fy||? < WHFM\Q-

This implies that S7 is not bounded below on N, © Kj. Since S} is one-
to-one on N, © Kj, S3(N, © Ky) is not a closed subspace. Since S}(N,) =
S¥(N, © Ky), S} does not have a closed range.

Next we shall prove that S7N, = N, when o > 0. Let g(w) € L(0)N,.
We have

00 00
ST Ty bgl* = [ Tyibgl* + > T Vgl ?
n=0 n=1

< IR~ 3 llgl® + 1L(0) gl
< 0.

Hence T_1bg € L(0)N,,, and

SEL(0) Ty 1bg—Zz” 1T*”T;lk 1bg

n=1

— Z —1T;;(n—1)g
n=1

= L(0)"'g.

This implies that SN, = N,. U
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Corollary 3.6. With notations as in Theorem 3.5, the following conditions
are equivalent.

(i) @ #0.

(ii) S has a closed range.
(ili) SN, = N,.
(iv) T3 L(0)N,, = L(0)N,,.

Theorem 3.5 in particular shows that .S, is injective when a > 0. This is
in fact a general phenomenon on N,. The following fact (cf. [5, p. 85]) is
needed to this end.

Lemma 3.7. Let h(w) be an outer function on T'y,. Then there is a sequence
of outer functions {hy}r in H>®(T) such that |hih|x < 1 and hyh — 1
a.e. on 'y, as k — oo.

Theorem 3.8. S, is injective on N,.

Proof. We show that S} has a dense range. Let ¢(w) = b(w)h(w) be the
inner-outer factorization of ¢. By Lemma 3.7, there is a sequence {hy}; in
H>(T"y,) such that

(3.3) lhih|loo <1 and hph — 1 a.e. on T’y as k — oo.
Let g(w) € L(0)N,. By Lemma 2.4, we have

Z 1T Ty, byl * = ||T5;, byll* + Z 1T, T Vg
n=0 n=1

< IhliZllgl® + > ITE"Vgl* by (3.3)

= |3 llgl® + I1L(0) gl
< 0.

Hence Tj; bg € L(0)N,, and we have

1S3L(0)71 55, bg — L(O) ' gl* = Y _ T3 VT bg — T gl

n=0
00

=Y T T3l
n=0
[eS)

< |I(hh — )T g
n=0

_/27r|(hh 1| Z| T*n 29 2d0
o 0 k 27T
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Since g € L(0)N,,
[e.e]
> O ITE"gl* € L (Tw).
n=0

Hence by (3.3) and the Lebesgue dominated convergence theorem,
152 L(0) 1T bg — L(0)"Yg|[> = 0 as k — oo
This implies that S} has a dense range. O

Corollary 3.9. Let p(w) = b(w)h(w) be the inner-outer factorization of
o(w). Then the following are equivalent.

(i) S, is Fredholm.
(ii) b(w) is a finite Blaschke product and h™'(w) € H*(T,).

In this case, —ind(S,) is the number of zeros of b(w) in D counting multi-
plicites.

Proof. We let o = infyep|h(w)|. S, is Fredholm if and only if S7 is
Fredholm, and by Lemma 3.4 and Theorem 3.5 this is equivalent to b be-

ing a finite Blaschke product and o > 0. Clearly, « > 0 if and only if
h=Yw) € H*®(T,). O

A quotient module N is said to be essentially reductive if both S, and Sy,
are essentially normal, i.e., [S¥, S.] and [S}, Sy] are both compact. Essential
reductivity is an important concept and has been studied recently in various
contexts. In the context here, it will be interesting to see what type of ¢
makes N, essentially reductive. Proposition 3.2 has a couple of consequences
to this end. A general study will be made in a different paper.

Corollary 3.10. For every p € H*(Ty,), [St, Sy is Hilbert-Schmidt on N,,.

Proof. We let R, and R, denote the multiplications by z and w on the
submodule M,,, respectively. It then follows from Proposition 3.2 and The-
orem 2.3 in [21] that [R}, R,|[R},, Ry] is Hilbert—Schmidt, and the corollary
thus follows from Theorem 2.6 in [21]. O

In the case ¢ is in the disk algebra A(ID), there is a sequence of polynomials
{pn}n satistying p, — ¢ in A(D), and hence [S%, pn(Sw)] — [S5, ¢(Sw)] in
operator norm. Since S; = ¢(S,) on N, we easily obtain the following
corollary.

Corollary 3.11. If p € A(D), then S, is essentially normal.
Question 1. For what ¢ € H*(T',) is Sy, essentially normal on N ?

In the case ¢ is inner, this question can be settled by direct calculations.
We will do it in Section 5.
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4. Compactness of L(0)|n, and D,

In view of Lemma 2.2, the compactness of L(0)|y or D, will give us much
information about the operator S,. So to determine whether L(0)|x or D,
is compact for a certain quotient module N is of great interest. In the case
of N, the compactness is undoubtly dependent on the properties of ¢. This
section aims to unveil the connection.

We first look at the compactness of L(0)|y,. For each fixed ( € D, we
denote by Z,(¢) the number of zeros of ( —¢(w) in D counting multiplicities.
This integer-valued function has an important role to play in this study. As
a matter of fact, in [22, Theorem 5.2.2], the second author showed that if
L(0) on N, is compact, then Z,(() is a finite constant on . The following
describes the functions ¢ for which this is the case.

Lemma 4.1. Let p(w) = b(w)h(w) be the inner-outer factorization of .
Then Z,(C) is a finite constant on D if and only if b is a finite Blaschke
product and |h(w)| > 1 for every w € D.

Proof. It is easy to see that that b is a finite Blaschke product and |h(w)| >
1 for every w € D if and only if

liminf [o(w)| > 1.

lw|—1
Suppose that ¢ = Z,(() for every ¢ € D. To prove the necessity by con-
tradiction, we assume that there exists a sequence {wy}, in D such that
sup, |¢(w,)] < 1 and |w,| — 1. We may assume that o(w,) — (o € D.
Then there exists 79,0 < rg < 1, such that the number of zeros of {y — ¢(w)
in 79D is equal to ¢. By the Hurwitz theorem, for a large positive integer
ng, the number of zeros of ¢(wy,) — ¢(w) in oD is equal to c. Further, we
may assume that wy, ¢ r9D. Hence the number of zeros of ¢(wy,) — ¢(w)
in D is greater than ¢ which contradicts the fact that Z,({) is a constant.

The sufficiency is an easy consequence of Rouché’s theorem in complex

analysis. In fact, if b(w) is a finite Blaschke product and h(w) is an outer
function with |h(w)| > 1 on D, then by Rouché’s theorem, for each ¢ € D
the number of zeros of ( — p(w) in I coincides with the number of zeros of
b(w) in D. So Z,(¢) is a finite constant. O

Theorem 4.2. Let p(w) = b(w)h(w) be the inner-outer factorization of .
Then the following conditions are equivalent.

(i) L(0) on N, is compact.
(ii) b is a finite Blaschke product and |h(w)| > 1 for every w € D.

Proof. (i) = (ii) If L(0) on N, is compact, then by Theorem 5.2.2 in [22]
Z,(C) is a finite constant, and (ii) thus follows from Lemma 4.1.

(ii) = (i) Since b is a finite Blaschke product, for any positive integer m,
we have dim (H*(T',,) © b™(w)H?*(T'y)) < oo and H*(L'y,) © b™(w)H?*(Ty)
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is contained in the disk algebra A(ID). One easily sees that
T (H*(Ty) © b™(w)H?*(Ty)) = {0}, j>m,
so that
H*(T,) © 0™ (w)H?*(Ty,) C L(0)N,.
Then
L(0)N, = (H*(T'w) © b™H*(T,)) & (0™ H?*(I'y) N L(0)N,)
and hence
N, = L(0) N (HA(T) & 6™ HA(T,) + L(0) (" H*(T'w) N L(O)N,.),

which is in fact a direct sum because L(0)|y,, is injective. For simplicity we
write this decomposition as

Ny, = Nijm + Noj.

Since dim(Ny,,) < 00, to prove that L(0) on NN, is compact it is sufficient
to prove that lim,, .o ||L(0)|n,,, || = 0, ie.,

s
sup — 0 asm — oo.

pmger ()N, [IL(0)~tbmgl?

Let b™g € L(0)N,, and 0 < n < m. By Lemma 2.4, Tjb™ g = T30™g €
H?(I'y), so that

Tp2b"%g = TRTR Ty b g = TRy T ™ g = T30™g € H?(Ty).
Repeating this, we have
(4.1) T,"" g =T,""g € H?(T,).
Using the fact that L(0)A,f = f, i.e.,
oo
L)' f=> AT,
§=0

and that ||h™!|| < 1, we calculate that
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sup Iml®  _ lgll?
brgerON, ILO)70MgI2 ymgerion, Y32, 11570 g|?
. ol
e L(O)N, 2ot [T b g2
2
= sup — Hg*U — by (4.1)
bmgeL(O)Ny Y g [T, 6™ g|
< sup - Hg”2 -
brgeLO)N, 2o T, 24 [I21T;, b7 g2
< sup = Hng_ 3 by Lemma 2.4
bmgeL(0)N,, ijo o™= g]|
1
S om 1

So it follows that lim, oo || L(0)|N,,, || = 0 and this completes the proof. [

Corollary 4.3. If L(0) and R(0) are both compact on N, then ¢ is a finite
Blaschke product.

Proof. If R(0) is compact on N, then by the parallel statement of Theo-
rem 5.2.2 in [22] for R(0), the number of zeros of z —¢(A) in D is a constant
with respect to A € D. Since N, is nontrivial, this constant is equal to 1.
So [l¢llee < 1, and it follows that ||hl|se < 1. If L(0) is also compact on
N, then by Theorem 4.2 h is a constant of modulous 1, hence ¢ is a finite
Blaschke product. O

In fact the converse of Corollary 4.3 is also true and we will see it in
Section 5.

Next we study the compactness of D,. In fact, the compactness of D,
and that of L(0)|n, are closely related.

Theorem 4.4. If ¢ is bounded, then L(0)|n, is compact if and only if D,
18 compact.

Proof. The fact that the compactness of L(0)|y, implies the compactness
of D, follows from Theorem 3.8 and [22, Theorem 5.3.1].

To show that the compactness of D, implies that of L(0)|n,, we first
check that S, is Fredholm in this case. If D, is compact, then by Lemma 2.2
S%S. is Fredholm, and hence S has closed range. Moreover, it follows from
Theorem 3.8 that S} is in fact onto. So it remains to show that S7 has a
finite-dimensional kernel. If we let ¢ = bh be the inner-outer factorization
of ¢, then by Lemma 3.4 we need to show that H%(T',) © bH?(T,,) is a
finite-dimensional subspace in N, or equivalently, b is a Blaschke product.
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For every f € H?(I',) © bH?(T',,) and integers i, j > 0, one checks that
(Dif, (2 = p)2'w!) = (2f, (2 — p)2"w!) = (f,z'w7).
So D} f is orthogonal to (z — ¢)z'w’ when i > 1. Therefore,

IDZ 1 = 1 Par, 2 £
>  sup |(zf,(z —@)p)|, pis polynomial in H*(T,)

[(z—¢)plI<1
= sup  [{f,p)]-
[(z—¢)plI<1
Since
1z = )pll” = lIpl* + llepl? < llplI*(1 + [lell3),
we have

|IDZfI| = sup I(f,p)] = (1 + ||90||<2>o)_1/2||f||,
Ipll<(1+]pl|2,) /2

which means D} is bounded below by a positive constant on H?(T',) ©
bH%(Ty). Since D, is compact, H?(T',,) © bH?*(T',,) is finite-dimensional,
and we conclude that S, is Fredholm.

Now we show that L(0)|y, is compact. For this, we recall the equality
(cf. Proposition 5.1.1 in [22])

82D 4 (L(0)|n, )" (L(0) s, 0201,) = 0.

Since D, is compact, (L(0)|n,)*(L(0)|ars,cz01,) is compact. Since we have
shown that S, is Fredholm in this case, L(0)|rs,o2n, is Fredholm by Lem-
ma 2.1, and therefore L(0)|y, is compact. O

The following example gives a simple illustration for the compactness of
L(0)|n,,-

Example 1. We consider a function ¢(w) = aw, where a € C and a # 0.
Let

Rj= /14 a2+ +a¥

and

w + (az)w ! + -+ (az)!

R; '
Then it is not difficult to check that {e;}; is an orthonormal basis of N,
and one verifies that

€; =

1L(O)e; = H%Hz = R;"

So if |a] < 1, then [|L(0)ej||* > 1 — |al* and hence L(0) on N, is not
compact. If |a| > 1, then lim;_, ||L(0)e;|| = 0 which shows that L(0) on
N, is compact.
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It is clear by Corollary 3.11 that .S, is essentially normal in this case. It
is easy to give a direct calculation of [S},S.]. In fact,

B aRj ' " ‘_5Rj_1 ‘
S.e; = o ejt1, S.ej = R; €1,
SO
* * 102 R? R?—1> .

(528~ 8.500e; = ot (=~ 3" )
- ‘a|2+~-—|— |a‘2(j+1) ‘a|2—|—~~~+ ‘a|2j
B <1+|a\2+~-+|a\2(ﬂ'+1) a 1+\a|2+---+\a|2j> ]
= Cj€j.

It is clear that ¢; — 0 as j — oo. One also observes that S, on Ny, is
hyponormal.

By [14], we know that ||S.] = [|¢]lee if |l¢llec < 1, and [|S;]| = 1 for
other cases. In the last part of this section, we calculate the norm and the
essential norm of L(0)|n, and S.. First we recall that the essential norm
|Alle is the norm of A in the Calkin algebra.

Since ||SEF|*> 4+ ||L(0)F||> = | F||?* for every F € N, we have

ISH2 = sup |SIF|?=1—  inf  |L(0O)F|]
: FEN|Fl=1 FEN,,|F|=1
and
@) |t ISFP=1- s JLOFI = 1= [LOK|
Hence

— 2 H
inf  [|L(0)F| :{ VI=llellss, if [lelle <1

FeN,,||F||=1 0, otherwise.

Proposition 4.5. Let a = infyep |p(w)|. Then o < 1 and

ILO) |, I = V1 —a?.

Proof. By [14, Corollary 2.7], ¢(D) "D # (. Hence a < 1. Let wy € Qy,

and
2

(1 = p(wo)z)(1 — wWow)
Then by Lemma 2.5, F' € N, and

IL(0) ||
1F]J2
This implies 1 — [p(wo)|?* < [|L(0)|n, |[*. Thus we get
(4.3) V1—a? <|L(0)| < 1.

If a =0, then || L(0)|n, || = 1.

=1 — [e(wo)*.
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Suppose that « > 0. Then (1/¢)(w) € H*(T'y), and by Lemma 2.4 we
have T}, ,T3" =1 on L(0)N, for every n > 0. Let h € L(0)N,. We have

1/pn =
1Bl = Y pn TSRl
< T on IITZ R
= 11/l 175"l
= |77 hl/ ™.
Then o||h|| < HT;”hH for every h € L(0)N, and n. Hence
1
1

s 5 < TS R? = [[L(0) " A)f?
n=0

for every h € L(0)Ny, and ||L(0)F|? < (1 — a?)||F| for every F € N,.
Therefore || L(0)|n, || < V1 —a? By (4.3), |L(0)|n,| = V1 — a2 O

A combination of (4.2), Propositions 3.1 and 4.5 leads to the following.

Corollary 4.6. Let o = infyep |@(w)|. Then S} is invertible if and only if
a > 0. In this case,

Sr=t = inf S*F|| = a.
RN T 2]

For ¢ € €, let

1— 2 1— 2
ke(z,w) = v |SD_(O| v _|<| .
1—p)z 1-Cuw
By Lemma 2.5, k¢ € N, and ||k¢|| = 1.

Theorem 4.7. Let p(w) € H*(T'y) and p(w) = b(w)h(w) be the outer-
inner factorization of ¢. Suppose that L(0) on N, is not compact. Let

v = liminf),_q [@(w)]. Then v <1 and ||[L(0)|n,[le = /1 —~2. Moreover
I1L(0)|n,lle 7 [IL(0)|n, || if and only if b(w) is a nonconstant finite Blaschke
product and 1/h(w) € H>®(I'y).

Proof. By Theorem 4.2, v < 1. Take a sequence {w;}; in €, such that
lo(w;j)] — v and |w;| — 1 as j — oco. We have

12k | = /1= s Py/1 = () P ;= |

= /1= [p(w;)?

— /1 =72

Let K be a compact operator from N, to H?(T',,). Since kw; — 0 weakly in
No, [(L(0) + K)kuw, || — /1 = ~*. Hence ||L(0)|n,[le = /1 -7

Suppose that v = 0. Then 1 < ||L(0)|n,[le < [[L(0)|n, || < 1. In this case,
either b is not a finite Blaschke product or 1/h ¢ H>®(T',).
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Suppose that 0 < v < 1. Then b is a finite Blaschke product. By
Proposition 4.5, [|L(0)|n,| = V1 — a2, where a = infyep [¢(w)|. We note
that a <. If o = =, then we have ||L(0)|n, | = [|L(0)|n,[le = /1 — 2. In
this case, b is a constant function and 1/h € H*®(T'y,).

If @ < ~, then b is a nonconstant finite Blaschke product and 1/h €
H>(T'y,). This implies that o = 0 and ||L(0)|n, || = 1. In this case we shall
prove that [|L(0)|n,|le = v/1 —~% We note that ||1/h|lc = 1/7. The idea
of the proof is the same as that of Theorem 4.2. We have

N U7 Jol?
pmge LN, [IL7H0)0™ |12 = ymgernio)n, 2oneo I T30 gl
o Isl?
bmgeL(0)Ny Dme0 72””Tf/"thﬂTﬁmbm_”gHz

< 1

- ZZL:O ,}/271 !

Hence || L(0)|n,[le < /1 =72, so that we obtain
IZO) [, lle = VT =72 < V1 — a2 = ||L(0)|w, || O

Theorem 4.8. ||S;||c = ||S:|| for every N,.

Proof. First, suppose that 0 < ||¢]|cc < 1. Let K be a compact operator on
N,. Let {w;}; be a sequence in €, such that |[¢(w;)| — [|¢[/ as j — oo.
Then Kk, — 0 as j — oc. One easily sees that [|STky,|| = |¢(w;)|, so that
1% kw, || — [l¢llco as j — oo. Hence [|S} + K| > [[¢l|l- By [14, Proposition
3.5), [IS21l = [l ¢lloc, so that

1Szlle = I15%lle = llelloo = 1521 = 115zl

Thus we get ||S;|le = ||S:||-

Next, suppose that 1 < ||¢[|cc < 00. By [14, Proposition 3.5], ||S,|| = 1.
Suppose that liminf|,,_; [¢(w)| > 1. By Theorem 4.2, L(0) is compact on
Ny. Since S.S} = I — (L(0)|n,)*L(0)|n,, [|S:S%]le = 1, so that ||S;|. = 1.

Suppose that a := liminf,_; [p(w)] < 1. Take a sequence {w;}; in
Q, such that liminf; .o |p(w;)| = o and |w;| — 1 as j — oo. Let a; =
maxyer [p(w;w)|. Since [|¢]loc > 1, we may assume that o; > 1 for every
J. Since |¢(wj)| < 1, ¢(w;I") is a closed curve in C which interesects with
both D and C\ D. Hence there is ¢; € I satisfying 1 — 1/5 < [p(w;¢;)| <
1. Note that w;¢; € €,. Let K be a compact operator on N,. Then
102 + Kby, | = lp(wji)| — 1 as § — 00, 50 [[S2 + K]| > 1. Hence

1S:lle = 15%lle = 1 2> (152 = (IS le-

Thus we get the assertion. O
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5. The case when ¢ is inner

This section gives a detailed study for the case when ¢ is inner. On the
one hand, the fact that ¢ is inner makes this case very computable, and, as a
consequence, many of the earlier results have a clean illustration in this case.
On the other hand, the case has a close connection with the two classical
spaces, namely the quotient space H?(I') © oH?(T") and the Bergman space
LZ(D). This fact suggests that the space N, indeed has very rich structure.

Some preparations are needed to start the discussion. With every inner
function #(w) in the Hardy space H?(T',) over the unit circle I',, there is
an associated contraction S(6) on H?*(T',,) © 0H?*(T,,) defined by

SO)f = Ppwf, f(w)e H*(Ty)©0H*(Ty),

where Py is the projection from H?(T',) onto H%*(T,) © 0H*(T). The
operator S(f) is the classical Jordan block, and its properties have been
very well studied (cf. [1, 18]). We will state some of the related facts later
in the section. Here, we display an orthonormal basis for N,.

Lemma 5.1. Let p(w) be a one variable nonconstant inner function. Let
{\e(w) T, be an orthonormal basis of H*(Ty) & o(w)H?*(Ty), and

w w4

N/Ea

€; =

for each integer 7 > 0. Then
{Me(w)ej(z,o(w)) : k=0,1,2,...,m, j=1,2,...}
is an othonormal basis for N,.

Proof. First of all, we have the facts that
N, = { s f 1003 T3P < oo
n=0
and -
H(Ty) =Y @@/ (w)(H*(Tw) & p(w)H? (Ty)).
j=0

Write
EkJ = )\k(w)ej(z7 Sp(w))'
Then if (k,j) # (s,t) and j <,
| L

=L () 2t w)ot " H(w) 2
W;;W(u})w (w)2!, As(w)e" ™" (w)2")

G+ D (w), " (w) A (w))
- NESES]

<Ek,j7 ES,t> -

=0,
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and || Ey j|| = 1 for every k,j. Let f(w) € H*(Ty,) and write

f(w Z <Zak,])\k > w), ii\ak7j\2<oo.

J=0 =0 k=0
Then
[e.9] [e.9] m m
ZHT* w)Z =D gl Z]+1)Z|ak,j|2'
n=0 j=n k=0 7=0 k=0
Hence
Zz”T* )€ N, <:>Z]+1 Z|ak]| < 0.
j=0 k=0

In this case, we have

[o¢]

nrx
E zT@
n=0

[e.e]

(im ) )+ e =)

M81M

m
Z VJj+1lag By ;.

=0
This shows that {Ej j}1; is an othonormal basis of N, = H*(T?)e M,. O

.
Il
O

The operators L(0)|n,,, R(0)|n, and D, are easy to calculate in this case.
In fact, one checks that

L(0)Ey ; =

and
A (0)((0) + (0 2+ -+ + 27)

Vij+1 .
So L(0)|n, and R(0)|n, are both compact if m < oo, that is, ¢(w) is a finite
Blaschke product. We summarize this observation and Corollary 4.3 in the
following corollary.

Corollary 5.2. For ¢ € H*(T',,), L(0) and R(0) are both compact on N,
if and only if ¢ is a finite Blaschke product.

R(0)Ey; =

The operator D, is also easy to calculate in this case. One first verifies
that

= 2 (e plw)) - VTF TP W), 0k <m, 0] < o0,

Xpje
RV

is an othonormal basis for M, © zM,. Then

(5.1) D.Xp,; = 2 )\Z(%p(“’)) = \/%E;w

which is also compact if p(w) is a finite Blaschke product.
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Two other observations are also worth mentioning. First one calculates
that

1 I . o
zE) i, Egy) = 26 (w)? THw) 2, N (w) ot T (w) 2!
1 Jot
- - A (W), Mg (w) 177 () 271 1Y,
TV 2 2 () AT )
Hence
(2Ekj, Est) #0 <= t=j+1 and k = s,
and

S:Ekj = (S:Ek j, Bk j+1)Ek j+1

1 J
= Ap(w), Ag(w)) Eg 4
T *j+2;< k(w), A (w)) B jt
Vitl
——=F} 1.
Vite ot
This calculation reminds us of the Bergman shift B on the Bergman space
L%(D) with the orthonormal basis {y/j + 1¢?};. In fact, if we define the
operator

U:N, — (H*I') o ¢H*T)) ® L2(D)

by

(5.2) U(Er;) = M(w)y/j +1¢7,

then U is clearly a unitary operator, and one checks that
(5.3) US,=(I®B)U.

So from this view point N, can be identified as (H?*(I') © ¢ H?*(T')) ® L2(D).
As both H?(T') © pH%(T) and L2(D) are classical subjects, this observation
indicates that the space N, indeed has very rich structure.

The other observation is about the range R(D.). Let F € N,. Then by
Theorem 2.3,

[(S:G, )|
FeD,(M,ozM,) < sup — = < 0.
(Mo ©2Mp) = b LG
Write

m [oe) m o0
F = ZZ%JEW ZZ |ag,j|* < oo,

k=0 j=0 k=0 j=0

G= ZZbk,jEk,j, ZZ by ;| = 1.

k=0 7=0 k=0 j=0
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Then
(3G, F)| _ |[(30h0 2720 b By 24 oZ}”oakjSzEkM
IL0)G] | 202 0 by *’f (w))
_ |Z?:0< j= obkjEkﬁZj:oak,jSzEkJM
Va2, B
|Zk oZ] =0 \/]Tbk’,]-‘rlakﬂ‘
Voo T, bl

and

S*G,F AN
sup K826, F) _ SN G+ Dlargl?.

cenglal=1 ILO)G] P

Write ¢ ; = /j + lag ;, then we have F' € D, (M@ o zM@) if and only if
F=>Y % 222 NN g )° < .
=0 j—0 VJ +1 k=0 j=0
So
U(R(D.)) = (H*(T) © ¢H*(T')) ® H*(T).

The above fact also can be proved using (5.1) and (5.2).

It follows directly from (5.3) that S, on N, is essentially normal if and
only if ¢ is a finite Blaschke product. Now we take a look at the essential
normality of S,,. Some facts about the space H2(T') © ¢H?(T') need to be
mentioned here. We recall that the Jordan block S(y) is defined by

S(p)g = Pywg, g€ H*T) o pH*(T),

where P, is the orthogonal projection from H?(T') onto H*(I') © o H*(T).
The two functions P,1 and P,wy play important roles here, and we let the
operator Ty on H?(T') & pH?*(T') be defined by Tog = (g, P,wp)P,1. One
verifies that

T5Tog = | Po1|* (g, PWp) Py, ToTgg = || Powe|*(g, Pol) Ppl
and
(5:4) I —S()"S(p) = [P *TyTo, I —S(9)S(p)* = |Powel > ToTy.
For every g(w) € H*(T'y,) © ¢H?(I'y,), we decompose wg as

wg(w) = S(p)g(w) + (I — Pplwg(w).
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Using the facts that (I — P,)wg = (wg, )¢, Pp,1 =1—¢(0)¢ and S, = 5.,
where S,g = Pn_¢g, we have

Swg(w)e;(z, p(w))

= Z(wg(w)ej (2, 0(w)), Em,n>Em,n

| oP,1

1—¢(0)p
_ e (2. olw w ﬂ
= (St et + () 3 (P2
= (S()g)ej(z, p(w)) + (g, Powp)(I — (0)S.) "1 So(P,1 - e(z, p(w))).

So

(5.5) US,U*=S(p) @I +Ty® (I —¢(0)B)"'B

For further discussion, we assume ¢ is not a singular inner function, i.e.,
¢ has a zero in D. We first look at the case when ¢(0) = 0. In this case
(5.5) reduces to the cleaner expression

(5.6) US,U" =S(p) @I +Th® B.
Using (5.6) and the fact S(p)*To = TpS(¢)* = 0, one easily verifies that
USySwU" = S(¢)*S(p) @ I +T5Ty ® B*B,

=2 <(5(s0)9)€j(27 p(w)) + (wg, @) ej (2, w(w))7Em,n>Em,n

ej (Z7 So(w))a Em,n>Em,n

and
US,S,,U* = 8(p)S(p)* @I+ TyTy @ BB*.
Then by (5.4)

(5.7) U[Su: SwlU" = (I = S()S(p)") @I — (I = S(p)"S(p)) ® 1
+TiTy ® B*B — Ty ® BB*
=TTt ® (I — BB*) — T Ty ® (I — B*B).

Since Ty is of rank 1 and it is well-known that I — BB* and I — BB*
are Hilbert—Schmidt, (5.7) implies that [S}, S| is Hilbert—-Schmidt. The
Hilbert—Schmidt norm of [S},S,] can be readily calculated in this case.
First of all, Py,1 =1 and Py, Wp = wy. Let A\g(w),k =0,1,2,..., be an
orthonormal basis of H?(I',,) © ¢H?(T,) and A\g(w) = 1. Then by (5.7),

(S SwlAk(w)e; (2, p(w))
(ToTg Ak (w))ej (2, p(w)) — (TgToAr(w))e; (2, p(w))

j+1 B j+2
_ Ak(0)ej(z p(w)) (Ak(w),m(stO(w)ej(z,w(w))7

Jj+1 Jj+2




N,-TYPE QUOTIENT MODULES ON THE TORUS 455

and one calculates that

1 1 2|¢'(0)?

. (2, p(w)|)? = =

from which it follows that

2
N m
IS5 Sullltrs = 5 = 1= 2" (),

In the case ¢(0) # 0, we need an additional general fact. For a € D, we

let 7o (w) = So if we let operator U, be defined by

l—aw"

V(D) (e w) = Y P p 2 ), 7e ),

1—-aw
then it is well-known that U, is a unitary. We let M’ = U,([z — ¢]) =
[z — ¢(74)] and N’ = H?(D?)© M'. The two variable Jordan block on N’ is
denoted by (S, S5,,). Then by [25],
UnS.Ux = S., UaSuUs = 74(S5,).
Since 7, (7o (w)) = w, we also have
UaTo(Sw)UE = S,

So if ¢(0) # 0, we pick any zero of ¢, say a. Since ¢(7,(0)) = p(a) = 0,
[S!,*,S! ] is Hilbert—Schmidt by the above calculations, and it then follows
that [S}),S,] is Hilbert—Schmidt (cf. [20, Lemma 1.3]). So in conclusion,
when ¢ is not singular [S}, S,,| is Hilbert-Schmidt on N,,.

These calculations on S, and .S,, prove the following theorem.

Theorem 5.3. Let ¢ be an one variable inner function. Then N is essen-
tially reductive if and only if ¢ is a finite Blaschke product.

On N, the commutater [S},S,] can also be easily calculated. One sees
that

US:S,U* = (I ® B) (S(go) QI+To® (I — mB)—lg)
= S(p) ® B* + Ty ® B*(I — ¢(0)B) ' B,

and

USyWS:U* = (5(@ @I +Tyo (I - go(O)B)_lB> (I® BY)
=S(p)®@B*+Ty® (I —p(0)B)"'BB*.

So
U[S;Sw]U* =Ty ® [B*7 (I - WB)_IB]
It was shown in [26] that

(5.8) wlf(B),g(B)] = /D f () ()dA,
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where f and g are analytic functions on DD that are continuous on D and
the derivatives f’ and ¢’ are in L2(D). Using (5.8), one easily verifies that
[B*, (1 —(0)B)~1B] is trace class with tr[B*, (1 — (0)B)~!B] = 1. There-
fore, [S%, Sy] is trace class with

tr[S%, Sy = tr Ty - tr[B*, (I — »(0)B) "' B

=tr T(]
= ¢'(0).
Example 2. As we have remarked before that S, on IV, is equivalent to
the Bergman shift B and S, = S, in this case, and moreover ¢’ = 1. So
from the calculations above
2
tr[B*aB] :17 and ”[B*ﬂB]H%{S:?_?’
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