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On automorphisms of type II Arveson
systems (probabilistic approach)

Boris Tsirelson

Abstract. We give a counterexample to the conjecture that the auto-
morphisms of an arbitrary Arveson system act transitively on its nor-
malized units.
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Introduction

We do not know how to calculate the gauge group in this general-
ity. . .

W. Arveson [1, Section 2.8]

Received April 25, 2008.
Mathematics Subject Classification. Primary 46L55, secondary 60G99.
Key words and phrases. product system, automorphism.
This research was supported by the israel science foundation (grant No. 683/05).

ISSN 1076-9803/08

539

http://nyjm.albany.edu/j/2008/14-25.html
http://nyjm.albany.edu/j/2008/Vol14.htm
http://nyjm.albany.edu/nyjm.html


540 Boris Tsirelson

At the moment, most important seems to us to answer the ques-
tion whether the automorphisms of an arbitrary product system act
transitively on the normalized units.

V. Liebscher [5, Section 11]

By an Arveson system I mean a product system as defined by Arveson [1,
3.1.1]. Roughly, it consists of Hilbert spaces Ht (for 0 < t < ∞) satisfying
Hs ⊗ Ht = Hs+t. Classical examples are given by Fock spaces; these are
type I systems, see [1, 3.3 and Part 2]. Their automorphisms are described
explicitly, see [1, 3.8.4]. The group of automorphisms, called the gauge group
of the Arveson system, for type I is basically the group of motions of the
N -dimensional Hilbert space. The parameter N ∈ {0, 1, 2, . . . }∪{∞} is the
so-called (numerical) index; accordingly, the system is said to be of type
I0, I1, I2, . . . or I∞. All Hilbert spaces are complex (that is, over C).

Some Arveson systems contain no type I subsystems; these are type III
systems, see [1, Part 5]. An Arveson system is of type II, if it is not of type
I, but contains a type I subsystem. (See [9, 6g and 10a] for examples.) In
this case the greatest type I subsystem exists and will be called the classical
part of the type II system. The latter is of type IIN where N is the index
of its classical part.

Little is known about the gauge group of a type II system and its natural
homomorphism into the gauge group of the classical part. In general, the
homomorphism is not one-to-one, and its range is a proper subgroup. The
corresponding subgroup of motions need not be transitive, which is the main
result of this work (Theorem 1.10); it answers a question asked by Liebscher
[5, Notes 3.6, 5.8 and Section 11 (question 1)] and (implicitly) Bhat [2,
Definition 8.2]; see also [9], Question 9d3 and the paragraph after it. A
partial answer is obtained by Markiewicz and Powers [6] using a different
approach.

Elaborate constructions (especially, counterexamples) in a Hilbert space
often use a coordinate system (orthonormal basis). In other words, the se-
quence space l2 is used rather than an abstract Hilbert space. An Arveson
system consists of Hilbert spaces, but we cannot choose their bases with-
out sacrificing the given tensor product structure. Instead, we can choose
maximal commutative operator algebras, which leads to the probabilistic
approach. Especially, the white noise (or Brownian motion) will be used
rather than an abstract type I1 Arveson system.

1. Definitions, basic observations, and the result
formulated

I do not reproduce here the definition of an Arveson system [1, 3.1.1],
since we only need the special case

(1.1) Ht = L2(Ω,F0,t, P )
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corresponding to a noise.

Definition 1.2. A noise consists of a probability space (Ω,F , P ), sub-
σ-fields Fs,t ⊂ F given for all s, t ∈ R, s < t, and a measurable action (Th)h
of R on Ω, having the following properties:

Fr,s ⊗Fs,t = Fr,t whenever r < s < t ,(a)

Th sends Fs,t to Fs+h,t+h whenever s < t and h ∈ R ,(b)

F is generated by the union of all Fs,t .(c)

See [9, 3d1] for details. As usual, all probability spaces are standard,
and everything is treated mod 0. Item (a) means that Fr,s and Fs,t are
(statistically) independent and generate Fr,t. Invertible maps Th : Ω → Ω
preserve the measure P .

The white noise is a classical example; we denote it (Ωwhite,Fwhite, Pwhite),
(Fwhite

s,t )s<t, (Twhite
h )h. It is generated by the increments of the one-dimen-

sional Brownian motion (Bt)−∞<t<∞, Bt : Ω→ R.
Given a noise, we construct Hilbert spaces Ht consisting of F0,t-measur-

able complex-valued random variables, see (1.1). The relation

Hs ⊗Ht = Hs+t,

or rather a unitary operator Hs ⊗Ht → Hs+t, emerges naturally:

Hs+t = L2(F0,s+t) = L2(F0,s ⊗Fs,s+t) = L2(F0,s)⊗ L2(Fs,s+t)

= L2(F0,s)⊗ L2(F0,t) = Hs ⊗Ht ;

the time shift Ts is used for turning Fs,s+t to F0,t. Thus, (Ht)t>0 is an
Arveson system. Especially, the white noise leads to an Arveson system
(Hwhite

t )t>0 (of type I1, as will be explained).
For X ∈ Hs, Y ∈ Ht the image of X ⊗ Y in Hs+t will be denoted simply

XY (within this section).
We specialize the definition of a unit [1, 3.6.1] to systems of the form

(1.1).

Definition 1.3. A unit (of the system (1.1)) is a family (ut)t>0 of nonzero
vectors ut ∈ Ht = L2(F0,t) ⊂ L2(F) such that t �→ ut is a Borel measurable
map (0,∞)→ L2(F), and

usut = us+t for all s, t > 0 .

(In other words, the given unitary operator Hs⊗Ht → Hs+t maps us⊗ut

to us+t.) The unit is normalized, if ‖ut‖ = 1 for all t. (In general,

‖ut‖ = exp(ct)

for some c ∈ R.)
Here is the general form of a unit in (Hwhite

t )t:

ut = exp(zBt + z1t) ; z, z1 ∈ C ;
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it is normalized iff (Re z)2 + Re z1 = 0. The units generate (Hwhite
t )t

in the following sense: for every t > 0, Hwhite
t is the closed linear span

of vectors of the form (u1) t
n
(u2) t

n
. . . (un) t

n
, where u1, . . . , un are units,

n = 1, 2, . . . . Indeed, L2(F0,t) is spanned by random variables of the form
exp

(
i
∫ t
0 f(s) dBs

)
where f runs over step functions (0, t) → R constant on(

0, 1
n t

)
, . . . ,

(
n−1

n t, t
)
.

We specialize two notions, ‘type I’ and ‘automorphism’, to systems of the
form (1.1).

Definition 1.4. A system of the form (1.1) is of type I if it is generated by
its units.

We see that (Hwhite
t )t is of type I.

Definition 1.5. An automorphism (of the system (1.1)) is a family (Θt)t>0

of unitary operators Θt : Ht → Ht such that Θs+t(XY ) = (ΘsX)(ΘtY )
for all X ∈ Hs, Y ∈ Ht, s > 0, t > 0, and the function t �→ 〈ΘtXt, Yt〉 is
Borel measurable whenever t �→ Xt and t �→ Yt are Borel measurable maps
(0,∞)→ L2(F) such that Xt, Yt ∈ L2(F0,t) ⊂ L2(F).

Basically, Θs⊗Θt = Θs+t. The group G of all automorphisms is called the
gauge group. Clearly, G acts on the set of normalized units, (ut)t �→ (Θtut)t.

Automorphisms Θt = Θtrivial(λ)
t = eiλt (for λ ∈ R), consisting of scalar

operators, will be called trivial; these commute with all automorphisms,
and are a one-parameter subgroup Gtrivial ⊂ G. Normalized units (ut)t and
(eiλtut)t will be called equilavent. The factor group G/Gtrivial acts on the
set of all equivalence classes of normalized units.

We turn to the gauge group Gwhite of the classical system (Hwhite
t )t.

Equivalence classes of normalized units of (Hwhite
t )t are parametrized by

numbers z ∈ C, since each class contains exactly one unit of the form

ut = exp
(
zBt − (Re z)2t

)
.

The scalar product corresponds to the distance:

|〈u(1)
t , u

(2)
t 〉| = exp

(−1
2 |z1 − z2|2t

)
for u(k)

t = exp
(
zkBt − (Re zk)2t

)
, k = 1, 2. The action of Gwhite/Gtrivial

on equivalence classes boils down to its action on C by isometries. The
orientation of C is preserved, since

〈u(1)
t , u

(2)
t 〉〈u(2)

t , u
(3)
t 〉〈u(3)

t , u
(1)
t 〉

|〈u(1)
t , u

(2)
t 〉〈u(2)

t , u
(3)
t 〉〈u(3)

t , u
(1)
t 〉|

= exp
(
itS(z1, z2, z3)

)
,

where S(z1, z2, z3) = Im
(
(z2 − z1)(z3 − z1)

)
is twice the signed area of the

triangle. So, Gwhite/Gtrivial acts on C by motions (see [1, 3.8.4]).
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Shifts of C along the imaginary axis, z �→ z + iλ (for λ ∈ R) emerge from
automorphisms

Θt = Θshift(iλ)
t = exp(iλBt);

here the random variable exp(iλBt) ∈ L∞(Fwhite
0,t ) is treated as the multi-

plication operator, X �→ X exp(iλBt) for X ∈ L2(Fwhite
0,t ).

Shifts of C along the real axis, z �→ z + λ (for λ ∈ R) emerge from less
evident automorphisms

(1.6) Θshift(λ)
t X = D

1/2
t · (X ◦ θλ

t );

here θλ
t : C[0, t] → C[0, t] is the drift transformation (θλ

t b)(s) = b(s) − 2λs
(for s ∈ [0, t]), Dt is the Radon–Nikodym derivative of the Wiener measure
shifted by θλ

t w.r.t. the Wiener measure itself,

(1.7) Dt = exp(2λBt − 2λ2t),

and X ∈ L2(Fwhite
0,t ) is treated as a function on C[0, t] (measurable w.r.t.

the Wiener measure). Thus,

(Θshift(λ)
t X)(b) = exp

(
λb(t)− λ2t

)
X(θλ

t b).

By the way, these two one-parameter subgroups of Gwhite satisfy Weyl
relations

Θshift(λ)
t Θshift(iμ)

t = e−2iλμtΘshift(iμ)
t Θshift(λ)

t ;
that is, Θshift(λ)Θshift(iμ) = Θtrivial(−2λμ)Θshift(iμ)Θshift(λ).

Rotations of C around the origin, z �→ eiλz (for λ ∈ R) emerge from
automorphisms Θrotat(λ). These will not be used, but are briefly described
anyway. They preserve Wiener chaos spaces Hn,

Θrotat(λ)
t X = einλX for X ∈ Hn ∩ L2(Fwhite

0,t ) ;

the n-th chaos space Hn ⊂ L2(Fwhite) consists of stochastic integrals

X =
∫
· · ·

∫
−∞<s1<···<sn<∞

f(s1, . . . , sn) dBs1 . . . dBsn

where f ∈ L2(Rn) (or rather, the relevant part of R
n). One may say that

Θrotat(λ) just multiplies each dBs by eiλ.
Combining shifts and rotations we get all motions of C. Accordingly, all

automorphisms of (Hwhite
t )t are combinations of Θshift(iλ), Θshift(λ), Θrotat(λ)

and Θtrivial(λ). More generally, the N -dimensional Brownian motion leads
to the (unique up to isomorphism) Arveson system of type IN and motions
of C

N . We need N = 1 only; (Hwhite
t )t is the Arveson system of type I1.

Some noises are constructed as extensions of the white noise,

(1.8) Fs,t ⊃ Fwhite
s,t

(also Th conforms to Twhite
h ). More exactly, it means that Bt ∈ L2(F)

are given such that Bt − Bs is Fs,t-measurable for −∞ < s < t < ∞, and
Bt−Bs ∼ N(0, t−s) (that is, the random variable (t−s)−1/2(Bt−Bs) has the
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standard normal distribution), andB0 = 0, and (Bt−Bs)◦Th = Bt+h−Bs+h.
Such (Bt)t may be called a Brownian motion adapted to the given noise.
Then, of course, by Fwhite

s,t we mean the sub-σ-field generated by Bu − Bs

for all u ∈ (s, t). The Arveson system (Ht)t, Ht = L2(F0,t), is an extension
of the type I1 system (Hwhite

t )t, Hwhite
t = L2(Fwhite

0,t ),

(1.9) Ht ⊃ Hwhite
t .

All units of (Hwhite
t )t are also units of (Ht)t. It may happen that (Ht)t

admits no other units even though Fs,t �= Fwhite
s,t , Ht �= Hwhite

t . Then (Ht)t
is of type II (units generate a nontrivial, proper subsystem), namely, of
type II1; (Hwhite

t )t is the classical part of (Ht)t, and the white noise is the
classical part of the given noise. The automorphisms Θtrivial(λ) and Θshift(iλ)

for λ ∈ R can be extended naturally from the classical part to the whole
system (which does not exclude other possible extensions). For Θshift(λ) and
Θrotat(λ) we have no evident extension. Moreover, these automorphisms need
not have any extensions, as will be proved.

Two examples found by Warren [11], [12] are ‘the noise of splitting’ and
‘the noise of stickiness’; see also [13] and [9, Section 2]. For the noise of
splitting the gauge group restricted to the classical part covers all shifts of
C (but only trivial rotations [10]), thus, it acts transitively on C, therefore,
on normalized units as well.

A new (third) example is introduced in Section 10 for proving the main
result formulated as follows.

Theorem 1.10. There exists an Arveson system of type II1 such that the
action of the group of automorphisms on the set of normalized units is not
transitive.

The proof is given in Section 11, after the formulation of Proposition 11.1.
The first version [8] of this paper raised some doubts [3, p. 6]. Hopefully

they will be dispelled by the present version.
First of all, in Section 2 we reformulate the problem as a problem of

isomorphism. Isomorphism of some models simpler than Arveson systems
are investigated in Sections 3–9. In Section 11 we reduce the problem for
Arveson systems to the problem for the simpler models. In combination
with the new noise of Section 10 it proves Theorem 1.10.

2. Extensions of automorphisms and
isomorphisms of extensions

Assume that a given noise
(
(Ω,F , P ), (Fs,t), (Th)

)
is an extension of the

white noise (see (1.8) and the explanation after it) generated by a given
Brownian motion (Bt)t adapted to the given noise. Assume that another
noise

(
(Ω′,F ′, P ′), (F ′

s,t), (T
′
h)

)
is also an extension of the white noise, ac-

cording to a given adapted Brownian motion (B′
t)t. On the level of Arveson
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systems we have two extensions of the type I1 system:

Ht ⊃ Hwhite
t , H ′

t ⊃ H ′ white
t ;

here Ht = L2(Ω,F0,t, P ), Hwhite
t = L2(Ω,Fwhite

0,t , P ), Fwhite
0,t being generated

by the restriction of B to [0, t]. (H ′
t and H ′ white

t are defined similarly.)
An isomorphism between the two Arveson systems (Ht)t, (H ′

t)t is defined
similarly to 1.5 (Θt : Ht → H ′

t, Θs+t = Θs ⊗ Θt, and the Borel measurabil-
ity). If it exists, it is nonunique. In contrast, the subsystems (Hwhite

t )t and
(H ′ white

t )t are naturally isomorphic:

Θtransfer
t

(
X(B|[0,t])

)
= X(B′|[0,t]) for all X;

hereB|[0,t] is treated as aC[0, t]-valued random variable on Ω, distributedWt

(the Wiener measure); similarly, B′|[0,t] is a C[0, t]-valued random variable
on Ω′, distributed Wt; and X runs over L2(C[0, t],Wt).

We define an isomorphism between extensions as an isomorphism (Θt)t
between Arveson systems that extends Θtransfer, that is,

Θt|Hwhite
t

= Θtransfer
t for all t.

Adding a drift to the Brownian motion (Bt)t we get a random process
(Bt + λt)t locally equivalent, but globally singular to the Brownian motion.
In terms of noises this idea may be formalized as follows.

Let (Ω,F , P̃ ) be a probability space, Fs,t ⊂ F sub-σ-fields, and (Th)h
a measurable action of R on Ω, satisfying Conditions (b) and (c) of Def-
inition 1.2 (but not (a)). Let P,P ′ be (Th)-invariant probability mea-
sures on (Ω,F) such that P + P ′ = 2P̃ , and 1.2(a) holds for each of
the two measures P,P ′. Then we have two noises

(
(Ω,F , P ), (Fs,t), (Th)

)
,(

(Ω,F , P ′), (Fs,t), (Th)
)
. Assume also that the restrictions P |Fs,t and P ′|Fs,t

are equivalent (that is, mutually absolutely continuous) whenever s < t.
This relation between two noises may be called a change of measure. The
corresponding Arveson systems are naturally isomorphic (via multiplication
by the Radon–Nikodym derivative):

Θchange
t : Ht → H ′

t, Θchange
t ψ = D

−1/2
t ψ, Dt =

dP ′|F0,t

dP |F0,t

.

We are especially interested in a change of measure such that (recall (1.7))

Dt = exp
(
2λBt − 2λ2t

)
for t ∈ (0,∞),

where (Bt)t is a Brownian motion adapted to the first noise, and λ ∈ R a
given number. In this case (Bt− 2λt)t is a Brownian motion adapted to the
second noise. We take B′

t = Bt − 2λt and get two extensions of the white
noise. In such a situation we say that the second extension results from
the first one by the drift 2λ, denote Θchange

t by Θchange(λ)
t and Θtransfer

t by
Θtransfer(λ)

t .
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Note that
Θtransfer(λ)

t

(
X(B|[0,t])

)
= (X ◦ θλ

t )(B|[0,t])

for X ∈ L2(C[0, t],Wt); as before, θλ
t : C[0, t]→ C[0, t] is the drift transfor-

mation, (θλ
t b)(s) = b(s)− 2λs for s ∈ [0, t], it sends the measure Dt · Wt to

Wt.
The isomorphism Θchange(λ) between the two Arveson systems (Ht)t, (H ′

t)t
is not an isomorphism of extensions (unless λ = 0), since its restiction to
(Hwhite

t )t is not equal to Θtransfer(λ). Instead, by the lemma below, they are
related via the automorphism Θshift(λ) of (Hwhite

t )t introduced in Section 1.

Lemma 2.1.
Θchange(λ)Θshift(λ) = Θtransfer(λ),

that is,

Θchange(λ)
t Θshift(λ)

t ψ = Θtransfer(λ)
t ψ

for all ψ ∈ Hwhite
t and all t ∈ (0,∞).

Proof. We take X ∈ L2(C[0, t],Wt) such that ψ = X
(
B|[0,t]

)
, then

Θchange(λ)
t Θshift(λ)

t ψ = D
−1/2
t ·D1/2

t · (X ◦ θλ
t )(B|[0,t])

= (X ◦ θλ
t )(B|[0,t]) = Θtransfer(λ)

t ψ. �

The situation is shown on the diagram

(Ht)t
Θ

��

Θ′

��
(Ht)t

Θchange(λ)

�� (H ′
t)t

(Hwhite
t )t

��

��

Θshift(λ)
��

Θtransfer(λ)

��(Hwhite
t )t

��

��

Θchange(λ)
�� (H ′ white

t )t
��

��

and we see that the following conditions are equivalent:
• There exists an automorphism Θ of (Ht)t that extends Θshift(λ).
• There exists an isomorphism Θ′ between (Ht)t and (H ′

t)t that extends
Θtransfer(λ).

In other words, Θshift(λ) can be extended to (Ht)t if and only if the two
extensions of the type I1 system are isomorphic.

Corollary 2.2. In order to prove Theorem 1.10 it is sufficient to construct
a noise, extending the white noise, such that for every λ ∈ R \ {0} the
extension obtained by the drift λ is nonisomorphic to the original extension
on the level of Arveson systems (that is, the corresponding extensions of the
type I1 Arveson system are nonisomorphic).
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Proof. In the group of all motions of the complex plane we consider the
subgroup G of motions that correspond to automorphisms of (Hwhite

t )t ex-
tendable to (Ht)t. Real shifts z �→ z + λ (for λ ∈ R \ {0}) do not belong to
G, as explained above. Imaginary shifts z �→ z + iλ (for λ ∈ R) belong to
G, since the operators Θshift(iλ)

t of multiplication by exp(iλBt) act naturally
on Ht. It follows that G contains no rotations (except for the rotation by
π) and therefore is not transitive. �

Thus, we need a drift sensitive extension. Such extension is constructed
in Section 10 and its drift sensitivity is proved in Section 11.

3. Toy models: Hilbert spaces

Definitions and statements of Sections 3 and 4 will not be used formally,
but probably help to understand the idea.

The phenomenon of a nonextendable isomorphism (as well as nonisomor-
phic extensions) is demonstrated in this section by a toy model, — a kind
of product system of Hilbert spaces, simpler than Arveson system.

Definition 3.1. A toy product system of Hilbert spaces is a triple

(H1,H∞, U),

where H1,H∞ are Hilbert spaces (over C, separable), and

U : H1 ⊗H∞ → H∞

is a unitary operator.

We treat it as a kind of product system, since

H∞ ∼ H1 ⊗H∞ ∼ H1 ⊗H1 ⊗H∞ ∼ · · ·
where ‘∼’ means: may be identified naturally (using U).

An evident example: H∞ = (H1, ψ1)⊗∞ is the infinite tensor product of
(an infinite sequence of) copies of H1 relatively to (the copies of) a given
vector ψ1 ∈ H1, ‖ψ1‖ = 1. The equation U(ψ ⊗ ξ) = ξ has exactly one
solution: ψ = ψ1, ξ = ψ⊗∞

1 .
An uninteresting modification: H∞ = (H1, ψ1)⊗∞ ⊗H0 for some Hilbert

space H0.
A more interesting example: H∞ = (H1, ψ1)⊗∞⊕(H1, ψ2)⊗∞ is the direct

sum of two such infinite tensor products, one relative to ψ1, the other relative
to another vector ψ2 ∈ H1, ‖ψ2‖ = 1, ψ2 �= ψ1. The equation U(ψ ⊗ ξ) = ξ
has exactly two solutions: ψ = ψ1, ξ = ψ⊗∞

1 and ψ = ψ2, ξ = ψ⊗∞
2 .

Definition 3.2. Let (H1,H∞, U) and (H ′
1,H

′∞, U ′) be toy product systems
of Hilbert spaces. An isomorphism between them is a pair Θ = (Θ1,Θ∞) of
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unitary operators Θ1 : H1 → H ′
1, Θ∞ : H∞ → H ′∞ such that the diagram

H1 ⊗H∞

Θ1⊗Θ∞
��

U �� H∞

Θ∞
��

H ′
1 ⊗H ′∞

U ′
�� H ′∞

is commutative.

Thus,
Θ∞ ∼ Θ1 ⊗Θ∞ ∼ Θ1 ⊗Θ1 ⊗Θ∞ ∼ · · ·

A unitary operator Θ1 : H1 → H1 leads to an automorphism of

(H1, ψ1)⊗∞

(that is, of the corresponding toy product system) if and only if Θ1ψ1 = ψ1.
Similarly, Θ1 leads to an automorphism of (H1, ψ1)⊗∞ ⊕ (H1, ψ2)⊗∞ if and
only if either Θ1ψ1 = ψ1 and Θ1ψ2 = ψ2, or Θ1ψ1 = ψ2 and Θ1ψ2 = ψ1.

Taking Θ1 such that Θ1ψ1 = ψ1 but Θ1ψ2 �= ψ2 we get an automorphism
of (H1, ψ1)⊗∞ that cannot be extended to an automorphism of

(H1, ψ1)⊗∞ ⊕ (H1, ψ2)⊗∞.

Similarly to Section 2 we may turn from extensions of automorphisms
to isomorphisms of extensions. The system (H1, ψ1)⊗∞ ⊕ (H1, ψ2)⊗∞ is an
extension of (H1, ψ1)⊗∞ (in the evident sense). Another vector ψ′

2 leads to
another extension of (H1, ψ1)⊗∞. We define an isomorphism between the
two extensions as an isomorphism (Θ1,Θ∞) between the toy product systems
(H1, ψ1)⊗∞ ⊕ (H1, ψ2)⊗∞ and (H1, ψ1)⊗∞ ⊕ (H1, ψ

′
2)

⊗∞ whose restriction
to (H1, ψ1)⊗∞ is trivial (the identity):

(H1, ψ1)⊗∞ ⊕ (H1, ψ2)⊗∞ �� (Θ1,Θ∞) �� (H1, ψ1)⊗∞ ⊕ (H1, ψ
′
2)

⊗∞

(H1, ψ1)⊗∞.
� �

����������������� � �

		���������������

Clearly, Θ1 must be trivial; therefore ψ′
2 must be equal to ψ2. Otherwise

the two extensions are nonisomorphic.

4. Toy models: probability spaces

Definition 4.1. A toy product system of probability spaces is a triple

(Ω1,Ω∞, α),

where Ω1,Ω∞ are probability spaces (standard), and α : Ω1 × Ω∞ → Ω∞ is
an isomorphism mod 0 (that is, an invertible measure preserving map).
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Every toy product system of probability spaces (Ω1,Ω∞, α) leads to a toy
product system of Hilbert spaces (H1,H∞, U) as follows:

H1 = L2(Ω1); H∞ = L2(Ω∞);

(Uψ)(·) = ψ(α−1(·)).
Here we use the canonical identification

L2(Ω1)⊗ L2(Ω∞) = L2(Ω1 ×Ω∞)

and treat a vector ψ ∈ H1 ⊗H∞ as an element of L2(Ω1 × Ω∞).
An evident example: Ω∞ = Ω∞

1 is the product of an infinite sequence
of copies of Ω1. It leads to H∞ = (H1,1)⊗∞ where H1 = L2(Ω1) and
1 ∈ L2(Ω1) is the constant function, 1(·) = 1.

An uninteresting modification: Ω∞ = Ω∞
1 ×Ω0 for some probability space

Ω0. It leads to H∞ = (H1,1)⊗∞ ⊗H0, H0 = L2(Ω0).
Here is a more interesting example. Let X1 : Ω1 → {−1,+1} be a mea-

surable function (not a constant). We define Ω∞ as the set of all double se-
quences

( ω1, ω2, ...
s1, s2, ...

)
such that ωk ∈ Ω1, sk ∈ {−1,+1} and sk = sk+1X1(ωk)

for all k. Sequences (ω1, ω2, . . . ) ∈ Ω∞
1 are endowed with the product

measure. The conditional distribution of the sequence (s1, s2, . . . ), given
(ω1, ω2, . . . ), must be concentrated on the two sequences obeying the rela-
tion sk = sk+1X1(ωk). We give to these two sequences equal conditional
probabilities, 0.5 to each. Thus, Ω∞ is endowed with a probability measure.
The map α : Ω1 × Ω∞ → Ω∞ is defined by

α

(
ω1,

(
ω2, ω3, . . .
s2, s3, . . .

))
=

(
ω1, ω2, ω3, . . .

s2X1(ω1), s2, s3, . . .

)
.

Clearly, α is measure preserving.
This system (Ω1,Ω∞, α) leads to a system (H1,H∞, U) of the form

(H1, ψ1)⊗∞ ⊕ (H1, ψ2)⊗∞

(up to isomorphism), as explained below. We have

H1 = L2(Ω1), H∞ = L2(Ω∞),

(Uψ)
(
ω1, ω2, ω3, . . .
s1, s2, s3, . . .

)
= ψ

(
ω1,

(
ω2, ω3, . . .
s2, s3, . . .

))
.

The equation U(ψ ⊗ ξ) = ξ becomes

ψ(ω1)ξ
(
ω2, ω3, . . .
s2, s3, . . .

)
= ξ

(
ω1, ω2, ω3, . . .
s1, s2, s3, . . .

)
.

One solution is evident: ψ = 1Ω1 , ξ = 1Ω∞ . A less evident solution is,
ψ = X1, ξ = S1, where S1 is defined by S1

( ω1, ω2, ...
s1, s2, ...

)
= s1. (The equation

is satisfied due to the relation X1(ω1)s2 = s1.) We consider the system
(H ′

1,H
′∞, U ′) where H ′

1 = H1 = L2(Ω1), H ′∞ = (H ′
1,1Ω1)

⊗∞ ⊕ (H ′
1,X1)⊗∞
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(U ′ being defined naturally) and construct an isomorphism (Θ1,Θ∞) be-
tween (H1,H∞, U) and (H ′

1,H
′∞, U ′) such that

Θ∞1Ω∞ = 1⊗∞
Ω1

,

Θ∞S1 = X⊗∞
1 .

To this end we consider an arbitrary n and ξ ∈ L2(Ωn
1 ) = H⊗n

1 , define
ϕ,ψ ∈ L2(Ω∞) by

ϕ

(
ω1, ω2, . . .
s1, s2, . . .

)
= ξ(ω1, . . . , ωn),

ψ

(
ω1, ω2, . . .
s1, s2, . . .

)
= sn+1ξ(ω1, . . . , ωn)

and, using the relation (or rather, the natural isomorphism)

H ′
∞ = (H ′

1)
⊗n ⊗H ′

∞,

we let
Θ∞ϕ = ξ ⊗ 1⊗∞

Ω1
, Θ∞ψ = ξ ⊗X⊗∞

1 ,

thus defining a unitary Θ∞ : H∞ → H ′∞. (Further details are left to the
reader.)

A more general construction is introduced in Section 5.

5. Binary extensions: probability spaces

Definition 5.1. (a) An extension of a probability space Ω consists of an-
other probability space Ω̃ and a measure preserving map γ : Ω̃→ Ω.

(b) Two extensions (Ω̃, γ) and (Ω̃′, γ′) of a probability space Ω are iso-
morphic, if there exists an invertible (mod 0) measure preserving map
θ : Ω̃→ Ω̃′ such that the diagram

Ω̃

γ


�

��
��

��
�

θ �� Ω̃′

γ′
����

��
��

�

Ω

is commutative. (Such θ will be called an isomorphism of extensions.)
(c) An extension of a probability space Ω is binary, if it is isomorphic to

(Ω×Ω±, γ), where Ω± = {−1,+1} consists of two equiprobable atoms,
and γ : Ω× Ω± → Ω is the projection, (ω, s) �→ ω.

By a well-known theorem of V. Rokhlin, an extension is binary if and only
if conditional measures consist of two atoms of probability 0.5. However, this
fact will not be used.

Interchanging the two atoms we get an involution on Ω̃. Denoting it by
ω̃ �→ −ω̃ we have

−ω̃ �= ω̃, −(−ω̃) = ω̃, γ(−ω̃) = γ(ω̃) for ω̃ ∈ Ω̃;
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these properties characterize the involution. In the case Ω̃ = Ω × Ω± we
have −(ω, s) = (ω,−s) for ω ∈ Ω, s = ±1.

An isomorphism between two binary extensions boils down to an au-
tomorphism of (Ω × Ω±, γ). The general form of such automorphism is
(ω, s) �→ (ω, sU(ω)) for ω ∈ Ω, s = ±1; here U runs over measurable func-
tions Ω → {−1,+1}. The automorphism commutes with the involution,
thus, every isomorphism of extensions intertwines the involutions,

θ(−ω̃) = −θ(ω̃) for ω̃ ∈ Ω̃.

Definition 5.2. (a) An inductive system of probability spaces consists of
probability spaces Ωn and measure preserving maps βn : Ωn → Ωn+1

for n = 1, 2, . . .
(b) Let (Ωn, βn)n and (Ω′

n, β
′
n)n be two inductive systems of probability

spaces. A morphism from (Ωn, βn)n to (Ω′
n, β

′
n)n is a sequence of mea-

sure preserving maps γn : Ωn → Ω′
n such that the infinite diagram

Ω1

γ1

��

β1 �� Ω2

γ2

��

β2 �� . . .

Ω′
1

β′
1 �� Ω′

2

β′
2 �� . . .

is commutative. If each γn is invertible, the morphism is an isomor-
phism.

(c) A morphism (γn)n is binary, if for every n the extension (Ωn, γn) of Ω′
n

is binary, and each βn intertwines the corresponding involutions,

βn(−ωn) = −βn(ωn) for ωn ∈ Ωn.

Given a binary morphism (γn)n from (Ωn, βn)n to (Ω′
n, β

′
n)n, we say

that (Ωn, βn)n is a binary extension of (Ω′
n, β

′
n)n (according to (γn)n).

Definition 5.3. Let (Ωn, βn)n be an inductive system of probability spaces,
(Ω̃n, β̃n)n its binary extension (according to (γn)n), and (Ω̃′

n, β̃
′
n)n another

binary extension of (Ωn, βn)n (according to (γ′n)n). An isomorphism between
the two binary extensions is an isomorphism (θn)n between (Ω̃n, β̃n)n and
(Ω̃′

n, β̃
′
n)n treated as inductive systems of probability spaces, satisfying the

following condition: for each n the diagram

Ω̃n

γn ���
��

��
��

�

θn �� Ω̃′
n

γ′
n

��

��
��

��

Ωn

is commutative.

In other words, an isomorphism between the two binary extensions of
the inductive system is a sequence (θn)n where each θn is an isomorphism
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between the two binary extensions (Ω̃n, γ̃n) and (Ω̃′
n, γ̃

′
n) of the probability

space Ωn, such that the diagram

Ω̃n

θn

��

eβn �� Ω̃n+1

θn+1

��

Ω̃′
n

eβ′
n �� Ω̃′

n+1

is commutative for every n.

Lemma 5.4. Let (Ωn, βn)n be an inductive system of probability spaces.
(a) Let Xn : Ωn → {−1,+1} be measurable functions, and

(5.5)

Ω̃n = Ωn × Ω±,

β̃n(ωn, sn) =
(
βn(ωn), snXn(ωn)

)
γn(ωn, sn) = ωn

}
for ωn ∈ Ωn, sn = ±1.

Then (Ω̃n, β̃n) is a binary extension of (Ωn, βn)n (according to (γn)n).
(b) Every binary extension of (Ωn, βn)n is isomorphic to the extension of

the form (5.5), for some (Xn)n.

Proof. (a) Clearly, β̃n and γn are measure preserving, γn is binary, and
γn+1(β̃n(ωn, sn)) = βn(ωn) = βn(γn(ωn, sn)).

(b) Let (Ω̃n, β̃n)n be a binary extension of (Ωn, βn)n according to (γn)n.
Without loss of generality we assume Ω̃n = Ωn × Ω± and γn(ωn, sn) = ωn.
The relations

γn+1(β̃n(ωn, sn)) = βn(γn(ωn, sn)) = βn(ωn),

β̃n(−ωn) = −β̃n(ωn),

show that β̃n is of the form β̃n(ωn, sn) =
(
βn(ωn), snXn(ωn)

)
for some mea-

surable Xn : Ωn → {−1,+1}. �
Given an inductive system (Ωn, βn)n of probability spaces and two se-

quences (Xn)n, (Yn)n of measurable functions Xn, Yn : Ωn → {−1,+1}, the
construction (5.5) gives us two binary extensions of (Ωn, βn)n. One exten-
sion, (Ω̃n, β̃n)n, (γn)n, corresponds to (Xn)n, the other extension, (Ω̃′

n, β̃
′
n)n,

(γ′n)n, corresponds to (Yn)n. We want to know, whether they are isomorphic
or not.

For each n separately, the two binary extensions of the probability space
Ωn coincide: Ω̃n = Ωn × Ω± = Ω̃′

n, γn(ωn, sn) = ωn = γ′n(ωn, sn). Every
isomorphism θn between them is of the form

θn(ωn, sn) =
(
ωn, snUn(ωn)

)
for ωn ∈ Ωn, sn = ±1,

where Un : Ωn → {−1,+1} is a measurable function. In order to form an
isomorphism between the binary extensions of the inductive system, these
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θn must satisfy the condition θn+1(β̃n(ω̃n)) = β̃′n(θn(ω̃n)), that is (recall
(5.5)),

Xn(ωn)Un+1(βn(ωn)) = Un(ωn)Yn(ωn) for ωn ∈ Ωn.

Given an inductive system (Ωn, βn)n of probability spaces, we consider
the commutative group G((Ωn, βn)n) of all sequences f = (fn)n of mea-
surable functions fn : Ωn → {−1,+1} treated mod 0; the group opera-
tion is the pointwise multiplication. We define the shift homomorphism
T : G((Ωn, βn)n)→ G((Ωn, βn)n) by

(Tf)n(ωn) = fn+1

(
βn(ωn)

)
for ωn ∈ Ωn.

According to (5.5), every X ∈ G((Ωn, βn)n) leads to a binary extension of
(Ωn, βn)n. We summarize the previous paragraph as follows.

Lemma 5.6. The binary extensions corresponding to X,Y ∈ G((Ωn, βn)n)
are isomorphic if and only if XT (U) = Y U for some U ∈ G((Ωn, βn)n).

6. Binary extensions: Hilbert spaces

Given an extension of a probability space, γ : Ω̃ → Ω, we have a natural
embedding of Hilbert spaces, L2(Ω) ⊂ L2(Ω̃), and a natural action of the
commutative algebra L∞(Ω) on L2(Ω̃). (L2 and L∞ over C are meant.)
Assume that the extension is binary. Then the embedded subspace and
its orthogonal complement are the ‘even’ and ‘odd’ subspaces w.r.t. the
involution ω̃ �→ −ω̃ on Ω̃; that is,

ψ ∈ L2(Ω) if and only if ψ(−ω̃) = ψ(ω̃) for almost all ω̃ ∈ Ω̃;

ψ ∈ L2(Ω̃)� L2(Ω) if and only if ψ(−ω̃) = −ψ(ω̃) for almost all ω̃ ∈ Ω̃.

Lemma 6.1. Let γ : Ω̃→ Ω and γ′ : Ω̃′ → Ω be two binary extensions of a
probability space Ω. Then the following two conditions on a unitary operator
Θ : L2(Ω̃′)→ L2(Ω̃) are equivalent:
(a) Θ is trivial on L2(Ω), and intertwines the two actions of L∞(Ω). In

other words,

Θψ = ψ for all ψ ∈ L2(Ω),

Θ(h · ψ) = h · (Θψ) for all ψ ∈ L2(Ω̃′), h ∈ L∞(Ω).

(b) There exists an isomorphism of extensions θ : Ω̃→ Ω̃′ and h ∈ L∞(Ω),
|h(·)| = 1, such that

Θψ = ψ ◦ θ for all ψ ∈ L2(Ω),

Θψ = h · (ψ ◦ θ) for all ψ ∈ L2(Ω̃′)� L2(Ω).

Proof. (b) =⇒ (a): evident. (a) =⇒ (b): Without loss of generality we
assume that Ω̃ = Ω̃′ = Ω×Ω± and γ(ω, s) = γ′(ω, s) = ω. The Hilbert space
L2(Ω̃)�L2(Ω) consists of functions of the form (ω, s) �→ sf(ω) where f runs
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over L2(Ω). Thus, L2(Ω̃) � L2(Ω) is naturally isomorphic to L2(Ω), and
the isomorphism intertwines the actions of L∞(Ω). The operator Θ maps
L2(Ω̃′)�L2(Ω) onto L2(Ω̃)�L2(Ω) and leads to an operator L2(Ω)→ L2(Ω)
that commutes with L∞(Ω) and is therefore the multiplication by a function
h ∈ L∞(Ω). �

An inductive system of probability spaces (Ωn, βn)n leads evidently to a
decreasing sequence of Hilbert spaces,

L2(Ω1) L2(Ω2)� ��� . . .� ���

Similarly, a morphism from (Ωn, βn)n to (Ω′
n, β

′
n)n leads to a commutative

diagram of Hilbert space embeddings

L2(Ω1) L2(Ω2)� ��� . . .� ���

L2(Ω′
1)

��

��

L2(Ω′
2)

��

��

� ��� . . .� ���

The commutative algebra L∞(Ω′
n) acts on L2(Ω′

n) and L2(Ωn), and the
embedding L2(Ω′

n)→ L2(Ωn) intertwines these two actions.

Lemma 6.2. Let (Ωn, βn)n be an inductive system of probability spaces,
(Ω̃n, β̃n)n its binary extension (according to (γn)n), and (Ω̃′

n, β̃
′
n)n another

binary extension of (Ωn, βn)n (according to (γ′n)n). Then the following two
conditions are equivalent:

(a) The two binary extensions are isomorphic.
(b) There exist unitary operators

Θn : L2(Ω̃′
n)→ L2(Ω̃n)

such that for every n, Θn intertwines the actions of L∞(Ωn) on L2(Ω̃n)
and L2(Ω̃′

n), and the following two diagrams are commutative:

L2(Ω̃n) L2(Ω̃′
n)

Θn��

L2(Ωn)
	 


����������� � �

��									

L2(Ω̃n) L2(Ω̃n+1)� ���

L2(Ω̃′
n)

��

Θn

��

L2(Ω̃′
n+1).

��

Θn+1

��

� ���

Proof. (a) =⇒ (b): evident. (b) =⇒ (a): For each n separately we have
two binary extensions (Ω̃n, γn), (Ω̃′

n, γ
′
n) of the probability space Ωn, and

a unitary operator Θn : L2(Ω̃′
n) → L2(Ω̃n) that satisfies Condition (a) of
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Lemma 6.1. On the other hand, due to Lemma 5.4 we may assume that

Ω̃n = Ωn × Ω± = Ω̃′
n,

γn(ωn, sn) = ωn = γ′n(ωn, sn),

β̃n(ωn, sn) =
(
βn(ωn), snXn(ωn)

)
,

β̃′n(ωn, sn) =
(
βn(ωn), snYn(ωn)

)
.

Now Lemma 6.1 gives us hn ∈ L∞(Ωn), |hn(·)| = 1, such that

Θnψ = hn · ψ
for all ψ ∈ L2(Ωn × Ω±) � L2(Ωn). In other words, if ψ(ωn, sn) = snf(ωn)
then (Θnψ)(ωn, sn) = snf(ωn)hn(ωn); here f runs over L2(Ωn). By commu-
tativity of the second diagram, (Θn+1ψ)◦β̃n = Θn(ψ◦β̃′n) for ψ ∈ L2(Ω̃′

n+1).
For the case ψ(ωn+1, sn+1) = sn+1f(ωn+1) we have, first,(

(Θn+1ψ) ◦ β̃n

)
(ωn, sn) = (Θn+1ψ)

(
βn(ωn), snXn(ωn)

)
= snXn(ωn)f(βn(ωn))hn+1(βn(ωn)),

and second,

(ψ ◦ β̃′n)(ωn, sn) = ψ
(
βn(ωn), snYn(ωn)

)
= snYn(ωn)f(βn(ωn)),

Θn(ψ ◦ β̃′n)(ωn, sn) = snYn(ωn)f(βn(ωn))hn(ωn).

They are equal, which means that Xn(ωn)hn+1(βn(ωn)) = Yn(ωn)hn(ωn),
that is,

(hn+1 ◦ βn) ·Xn = hn · Yn.

By Lemma 5.6 it is sufficient to find measurable functions

Un : Ωn → {−1,+1}
such that

(Un+1 ◦ βn) ·Xn = Un · Yn for all n.

We choose a Borel function ϕ : T→ {−1,+1}, where T = {z ∈ C : |z| = 1},
such that ϕ(−z) = −ϕ(z) for all z ∈ T. For example, ϕ(eiα) = +1 for
α ∈ [0, π) but −1 for α ∈ [π, 2π). The functions Un(·) = ϕ(hn(·)) satisfy the
needed equation, since Xn(·) = ±1, Yn(·) = ±1. �

7. Products of binary extensions

Definitions and statements of this section are used only in Section 11 (in
the proof of Lemma 11.10).

Special measures are taken in the next definition in order to keep the
product binary (rather than quaternary).
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Definition 7.1. Let (Ω̃k, γk) be a binary extension of a probability space
Ωk for k = 1, 2; Ω = Ω1 × Ω2; and A ⊂ Ω a measurable set. The product
of these two binary extensions (according to A) is the extension (Ω̃, γ) of Ω
defined as follows:

Ω̃ = {(ω̃1, ω2) : (γ1(ω̃1), ω2) ∈ A}︸ ︷︷ ︸
eA

�{(ω1, ω̃2) : (ω1, γ2(ω̃2)) ∈ Ω \A}︸ ︷︷ ︸
eΩ\ eA

,

the measure on Ã is induced from (the product measure on) Ω̃1 × Ω2, on
Ω̃ \ Ã — from Ω1 × Ω̃2;

γ(ω̃1, ω2) = (γ1(ω̃1), ω2), γ(ω1, ω̃2) = (ω1, γ2(ω̃2)).

Here and henceforth ωk runs over Ωk, and ω̃k runs over Ω̃k.
Clearly, the extension (Ω̃, γ) is binary.
Let a binary extension (Ω̃, γ) of Ω = Ω1×Ω2 be the product of two binary

extensions (Ω̃k, γk), k = 1, 2 (according to a given A ⊂ Ω). Then we have a
natural embedding of Hilbert spaces,

(7.2) L2(Ω̃) ⊂ L2(Ω̃1)⊗ L2(Ω̃2);

it arises from the natural measure preserving map Ω̃1 × Ω̃2 → Ω̃,

(ω̃1, ω̃2) �→
{

(ω̃1, γ2(ω̃2)) if (γ1(ω̃1), γ2(ω̃2)) ∈ A,
(γ1(ω̃1), ω̃2) otherwise.

The restriction of the embedding (7.2) to L2(Ω) is just the tensor product
of the two embeddings L2(Ωk) ⊂ L2(Ω̃k), k = 1, 2, since the corresponding
composition map Ω̃1 × Ω̃2 → Ω̃→ Ω is just γ1 × γ2.

The projection map Ã → Ω̃1, (ω̃1, ω2) �→ ω̃1, need not be measure pre-
serving, but anyway, generates a sub-σ-field F1 on Ã.

Lemma 7.3. Let (Ω̃k, γk) and (Ω̃′
k, γ

′
k) be two binary extensions of a prob-

ability space Ωk (for k = 1, 2), Ω = Ω1 × Ω2, A ⊂ Ω a measurable set,
Θk : L2(Ω̃k) → L2(Ω̃′

k) unitary operators, each satisfying Condition (a) of
Lemma 6.1. Then Θ1 × Θ2 maps L2(Ω̃) onto L2(Ω̃′), L2(Ã) onto L2(Ã′),
and L2(Ã,F1) onto L2(Ã′,F ′

1).

It is meant that

L2(Ã,F1) ⊂ L2(Ã) ⊂ L2(Ã)⊕ L2(Ω̃ \ Ã) = L2(Ω̃) ⊂ L2(Ω̃1)⊗ L2(Ω̃2),

L2(Ã′,F ′
1) ⊂ L2(Ã′)⊕ L2(Ω̃′ \ Ã′) = L2(Ω̃′) ⊂ L2(Ω̃′

1)⊗ L2(Ω̃′
2).

The reader may prove Lemma 7.3 via Lemma 6.1, but the proof below
does not use Lemma 6.1.

Proof. The operator Θ = Θ1 ⊗ Θ2 intertwines the actions of L∞(Ω1) and
L∞(Ω2), therefore, also the actions of L∞(Ω1 × Ω2). In particular,

Θ1
eA
ψ = 1

eA′Θψ for ψ ∈ L2(Ω̃1 × Ω̃2).
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The space L2(Ã) is the closure of linear combinations of vectors of the form
ψ = 1

eA(ϕ1⊗ϕ2), where ϕ1 ∈ L2(Ω̃1) and ϕ2 ∈ L2(Ω2). For such ψ we have

Θψ = Θ1
eA(ϕ1 ⊗ ϕ2) = 1

eA′Θ(ϕ1 ⊗ ϕ2) = 1
eA′(Θ1ϕ1 ⊗Θ2ϕ2) ∈ L2(Ã′),

since Θ1ϕ1 ∈ L2(Ω̃′
1) and Θ2ϕ2 = ϕ2 ∈ L2(Ω2). Therefore

Θ(L2(Ã)) ⊂ L2(Ã′).

The special case ϕ2 = 1 gives Θ(L2(Ã,F1)) ⊂ L2(Ã′,F ′
1). The same holds

for Θ−1, thus, the inclusions are in fact equalities. Similarly,

Θ(L2(Ω̃ \ Ã)) = L2(Ω̃′ \ Ã′).

It follows that Θ(L2(Ω̃)) = L2(Ω̃′). �

8. Some necessary conditions of isomorphism

Let μ1 be a probability measure on the space R
∞ (of all infinite sequences

of reals), β : R
∞ → R

∞ the shift, β(x1, x2, . . . ) = (x2, x3, . . . ), and μn the
image of μ1 under βn−1. Probability spaces Ωn = (R∞, μn) with maps
βn = β are an inductive system of probability spaces.

Let Borel functions fn : R→ {−1,+1} be given. We define

Xn : Ωn → {−1,+1},
Xn(xn, xn+1, . . . ) = fn(xn),

and consider the corresponding binary extension of (Ωn, βn)n. Another se-
quence of functions gn : R → {−1,+1} leads to another binary extension.
According to Lemma 5.6 the two binary extensions are isomorphic if and
only if there exist Un : Ωn → {−1,+1} such that

(8.1) Un+1(xn+1, xn+2, . . . ) = Un(xn, xn+1, . . . )fn(xn)gn(xn).

Functions that do not depend on xn, that is, functions of the form

(x1, x2, . . . ) �→ ϕ(x1, . . . , xn−1, xn+1, xn+2, . . . )

are a subspace Hn ⊂ L2(μ1). We consider vectors ψn ∈ L2(μ1),

(8.2) ψn(x1, x2, . . . ) = fn(xn)gn(xn),

and the distance between ψn and Hn.

Lemma 8.3. The condition

dist(ψn,Hn)→ 0 as n→∞
is necessary for the two binary extensions to be isomorphic.
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Proof. Let Un satisfy (8.1), then

Un(xn, xn+1, . . . ) = U1(x1, x2, . . . )h1(x1) . . . hn−1(xn−1),

where hn(x) = fn(x)gn(x). We have

ψn(x1, x2, . . . ) = hn(xn) = Un(xn, xn+1, . . . )Un+1(xn+1, xn+2, . . . )

= U1(x1, x2, . . . )h1(x1) . . . hn−1(xn−1)Un+1(xn+1, xn+2, . . . ).

Taking into account thatHn is invariant under multiplication by any (bound-
ed measurable) function of x1, . . . , xn−1 and xn+1, xn+2, . . . we see that

dist(ψn,Hn) = dist(U1,Hn).

The latter converges to 0, since Hn contains all functions of x1, . . . , xn−1. �
The conditional distribution of xn given x1, . . . , xn−1 and xn+1, xn+2, . . .

(assuming that (x1, x2, . . . ) is distributed μ1) is a probability measure νn

on R; this νn is random in the sense that it depends on x1, . . . , xn−1 and
xn+1, xn+2, . . . (whose distribution is the marginal of μ1).

Here is a useful condition on μ1:

(8.4) ∃ε > 0 ∀n P
(
νn is ε-good

) ≥ ε,
where a probability measure ν on R is called ε-good if

(8.5) ∃x ∈ R ∀A ν(A) ≥ εmes
(
A ∩ (x, x+ ε)

)
(A runs over Borel subsets of R; ‘mes’ stands for Lebesgue measure).

Usually ν has a density; then (8.5) requires the density to exceed ε on
some interval of length ε.

Lemma 8.6. Let μ1 satisfy (8.4), and numbers εn ∈ (0,∞) satisfy εn → 0.
Then there exist Borel functions fn : R → {−1,+1} such that for every
c ∈ R \ {0}, defining gn : R → {−1,+1} by gn(x) = fn(x + cεn) we get ψn

(see (8.2)) violating the necessary condition of Lemma 8.3 (and therefore,
(fn)n and (gn)n lead to two nonisomorphic binary extensions).

Proof. We take λ1, λ2, . . . such that

λnεn =

{
1 for n odd,√

2 for n even,

and define
fn(x) = σ(λnx),

where

σ(x) =

{
−1 for x ∈ ∪k∈Z[k − 0.5, k),
+1 for x ∈ ∪k∈Z[k, k + 0.5).

Let c ∈ R be given, c �= 0. It is sufficient to prove that at least one of two
claims

lim sup
n

dist(ψ2n,H2n) > 0, lim sup
n

dist(ψ2n−1,H2n−1) > 0



On automorphisms of Arveson systems 559

holds. Here

ψn(x1, x2, . . . ) = hn(xn) = fn(xn)gn(xn) = fn(xn)fn(xn + cεn)

= σ(λnxn)σ(λnxn + cλnεn).

The function hn is periodic, with period 1/λn. The mean value Mn of hn

over the period is

Mn = λn

∫ 1/λn

0
hn(x) dx =

∫ 1

0
σ(u)σ(u + cλnεn) du.

It reaches ±1 when 2cλnεn ∈ Z; otherwise −1 < Mn < 1. The relations
2c ∈ Z and 2c

√
2 ∈ Z are incompatible, therefore at least one of two claims

sup
n
|M2n| < 1, sup

n
|M2n−1| < 1

holds. (Of course, M2n and M2n−1 do not depend on n, but this fact does
not matter.) It is sufficient to prove that

sup
n
|M2n| < 1 implies lim sup

n
dist(ψ2n,H2n) > 0,

sup
n
|M2n−1| < 1 implies lim sup

n
dist(ψ2n−1,H2n−1) > 0.

The former implication will be proved (the latter is similar). Assume the
contrary: supn |M2n| < 1 and dist(ψ2n,H2n)→ 0.

For any probability measure ν on R, the squared distance in the space
L2(ν) between the function hn and the one-dimensional space of constant
functions is∫ (

hn −
∫
hn dν

)2

dν =
∫
h2

n dν −
(∫

hn dν
)2

= 1−
(∫

hn dν
)2

.

We use the random measure νn, take the average and recall the definition
of Hn:

E

(
1−

(∫
hn dνn

)2)
= dist2(ψn,Hn).

Taking into account that dist(ψ2n,H2n)→ 0 we see that | ∫ h2n dν2n| → 1 in
probability. In order to get a contradiction to (8.4) it is sufficient to prove
that lim supn supν |

∫
h2n dν| < 1, where ν runs over all ε-good measures

(recall (8.4) and (8.5)). Or, equivalently,

lim inf
n

inf
ν
ν
(
h−1

2n (−1)
)
> 0, lim inf

n
inf
ν
ν
(
h−1

2n (+1)
)
> 0.

The former will be proved (the latter is similar). By (8.5),

ν
(
h−1

2n (−1)
) ≥ εmes

(
h−1

2n (−1) ∩ (x, x+ ε)
)
.
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For large n the period 1/λ2n of the function h2n is � ε, therefore

1
ε

mes
(
h−1

2n (−1) ∩ (x, x+ ε)
) ≥ 1

2
· λ2n

∫ 1/λ2n

0

1− h2n(x)
2

dx

=
1
2
· 1−M2n

2

≥ 1
4
(
1− sup

n
|M2n|

)
> 0. �

Remark 8.7. The functions fn constructed in the proof of Lemma 8.6
depend only on the numbers εn, not on the measure μ1.

Let a probability measure μ on C[0, 1] be given. Random variables A(t)
on the probability space Ω = (C[0, 1], μ) defined by A(t)(a) = a(t) for
a ∈ C[0, 1], t ∈ [0, 1], are a random process. For every n the restriction map
C[0, 1]→ C[0, 3−n] sends μ to some μn. Probability spaces

Ωn = (C[0, 3−n], μn)

with restriction maps are an inductive system.
Given Borel functions fn : R → {−1,+1}, we define random variables

Xn : Ωn → {−1,+1} by Xn = fn(A(2 · 3−n−1)). The corresponding binary
extension may be visualized as follows. We consider pairs (a, s) of a function
a ∈ C[0, 1] and another function s : (0, 1] → {−1,+1} constant on each
[2 · 3−n−1, 2 · 3−n) and such that s(2 · 3−n−)s(2 · 3−n) = fn−1(a(2 · 3−n)) for
all n. We get a pair of random processes A(·), S(·) satisfying

S(2 · 3−n)
S(2 · 3−n−)

= fn−1(A(2 · 3−n)).

Their restrictions to [0, 3−n] give Ω̃n. For each t (separately), the ran-
dom variable S(t) is independent of the process A(·) and takes on the two
equiprobable values ±1.

As before, given also gn : R→ {−1,+1} (thus, another binary extension),
we define ψn ∈ L2(Ω) by

ψn = fn(A(2 · 3−n−1))gn(A(2 · 3−n−1)).

We consider the subspaces Hn ⊂ L2(Ω) consisting of functions of A(t) for
t ∈ [0, 3−n−1] ∪ [3−n, 1] only (in other words, functions of the restrictions of
sample paths to [0, 3−n−1] ∪ [3−n, 1]).

Lemma 8.8. The condition dist(ψn,Hn)→ 0 is necessary for the two binary
extensions to be isomorphic.

The proof, similar to the proof of Lemma 8.3, is left to the reader.
Similarly, C[−1, 1] may be used (instead of C[0, 1]), with

Ωn = (C[−1, 3−n], μn);
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the process S(·) jumps at 2 · 3−n, as before. Now Hn consists of functions of
the restriction A|[−1,3−n−1]∪[3−n,1] of A to [−1, 3−n−1]∪ [3−n, 1] (rather than
[0, 3−n−1] ∪ [3−n, 1]). Lemma 8.8 remains true.

The conditional distribution of A(2 · 3−n−1) given A|[−1,3−n−1]∪[3−n,1] is
too concentrated (when n is large) for being ε-good (recall (8.5)). A useful
condition on μ stipulates rescaling by 3n/2:

there exists ε > 0 such that for every n,(8.9)

the conditional distribution of 3n/2A(2 · 3−n−1) given A|[−1,3−n−1]∪[3−n,1]

is ε-good with probability ≥ ε.
Here is a counterpart of Lemma 8.6 for εn = 3−n/2.

Lemma 8.10. Let μ satisfy (8.9). Then there exist Borel functions fn : R→
{−1,+1} such that for every c ∈ R \ {0}, defining gn : R → {−1,+1} by
gn(x) = fn(x+3−nc) we get ψn = fn(A(2 ·3−n−1))gn(A(2 ·3−n−1)) violating
the necessary condition of Lemma 8.8 (and therefore, two nonisomorphic
binary extensions).

The proof, similar to the proof of Lemma 8.6, is left to the reader.

9. A binary extension of Brownian motion

The space C[0, 1] of all continuous functions b : [0, 1] → R, endowed
with the Wiener measure W, is a probability space. Random variables B(t)
on (C[0, 1],W), defined for t ∈ [0, 1] by B(t)(b) = b(t), are the Brownian
motion on [0, 1]. Almost surely, a Brownian sample path on [0, 1] has a
unique (global) minimum,

min
t∈[0,1]

B(t) = B(τ),

τ being a measurable function on (C[0, 1],W), 0 < τ(·) < 1 a.s.
We define another random process A, on the time interval [−1, 1], by

A(t) = B
(
min(1, τ + t)

)−B(τ) for t ∈ [0, 1],

A(t) = B
(
max(0, τ + t)

)−B(τ) for t ∈ [−1, 0].

A W-measurable map C[0, 1] → C[−1, 1] is thus introduced. The map is
one-to-one (mod 0), since B(·) is nonconstant on every time interval, almost
surely.

Proposition 9.1. The process A satisfies (8.9).

The proof is given after three lemmas.
The conditional distribution of the process B given the restriction A|[−1,ε]

(for a given ε ∈ (0, 1)) is the same as the conditional distribution of the
process B given τ and B|[0,τ+ε], since the two corresponding measurable
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partitions of (C[0, 1],W) are equal (mod 0). This conditional distribution is
a probability measure on the set of Brownian sample paths b such that

b(t) = x(t) for t ∈ [0, s + ε],

b(t) > x(s) for t ∈ [s+ ε, 1];

here s ∈ (0, 1− ε) is a given value of τ , and x ∈ C[0, s+ ε] is a given sample
path of B|[0,τ+ε]; of course, s is the unique minimizer of x. We assume that
s < 1 − ε, since the other case is trivial (the conditional distribution is a
single atom).

The corresponding conditional distribution of B|[s+ε,1] is a probability
measure on the set of functions b ∈ C[s+ ε, 1] such that

b(s+ ε) = x(s+ ε),

b(t) > x(s) for t ∈ [s+ ε, 1].

This set depends only on the three numbers s+ε, x(s+ε), and x(s). One may
guess that the considered measure on this set also depends on these three
numbers only (rather than the whole function x). The following well-known
lemma confirms the guess and gives a simple description of the measure.

Lemma 9.2. The conditional distribution of B|[s+ε,1] given that τ = s and
B[0,τ+ε] = x is equal to the conditional distribution of B|[s+ε,1] given that
B(s+ ε) = x(s+ ε) and B(t) > x(s) for t ∈ [s+ ε, 1].

Proof. We take n such that 1
n < ε. Let k ∈ {1, . . . , n− 1}. The conditional

distribution of B|[ k
n

,1] given B|[0, k
n

] depends only on B
(

k
n

)
(by the Markov

property of B) and is just the distribution of the Brownian motion starting
from

(
k
n , B

(
k
n

))
. Therefore the conditional distribution of B|[ k

n
,1] given both

B|[0, k
n

] and k−1
n < τ < k

n is the distribution of the Brownian motion starting

from
(

k
n , B

(
k
n

))
and conditioned to stay above the minimum of the given

path on [0, k
n ]. (Indeed, a measurable partition of the whole probability space

induces a measurable partition of a given subset of positive probability, and
conditional measures for the former partition induce conditional measures
for the latter partition.) Now it is easy to condition further on B|[ k

n
,τ+ε] and

combine all k together. �
Lemma 9.2 gives the conditional distribution of B|[τ+ε,1] given τ and

B|[0,τ+ε]. Now we turn to the conditional distribution of B|[τ+ε,τ+3ε] given τ ,
B|[0,τ+ε] and B|[τ+3ε,1] (in the case τ +3ε < 1). We are especially interested
in B(τ + 2ε).

Lemma 9.3. The conditional distribution of B(τ+2ε)−B(τ), given τ (such
that τ + 3ε < 1), B|[0,τ+ε] and B|[τ+3ε,1], has the density

x �→
(
1− e−2ax/ε

)(
1− e−2bx/ε

)
1− e−ab/ε

· 1√
πε

exp
(
− 1
ε

(
x− a+ b

2

)2
)

for x > 0,
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where a = B(τ + ε)−B(τ) and b = B(τ + 3ε)−B(τ).

Proof. Using Lemma 9.2 we turn to an equivalent question: a Brownian
motion starting from

(
s+ ε,B(s+ ε)

)
is conditioned to stay above B(s) on

[s+ε, s+3ε], and is known on [s+3ε, 1] (which means another conditioning,
of course); we need the (conditional) distribution of B(s+2ε). Omitting for
a while the condition B[s+ε,s+3ε](·) > B(s) we get the so-called Brownian
bridge, — the Brownian motion on [s+ε, s+3ε] with given boundary values
B(s+ ε), B(s+ 3ε). (Later we’ll condition the bridge to stay above B(s).)

For the bridge, B(s + 2ε) has normal distribution N
(B(s+ε)+B(s+3ε)

2 , ε
2

)
.

Given B(s+ 2ε) we get two independent bridges, one on [s+ ε, s+ 2ε], the
other on [s+ 2ε, s+ 3ε]. The bridge on [s+ ε, s+ 2ε] stays above B(s) with
the probability (calculated via the reflection principle)

pε(a− x)− pε(a+ x)
pε(a− x) = 1− exp

(
− 2
ε
ax

)
,

where a = B(s+ ε)−B(s), x = B(s+2ε)−B(s), b = B(s+3ε)−B(s), and

pε(u) =
1√
2πε

exp
(
− u2

2ε

)
.

It remains to write similar formulas on [s+2ε, s+3ε] and all of [s+ε, s+3ε],
and apply the Bayes formula

pX|A(x) =
P

(
A

∣∣X = x
)
pX(x)

P
(
A

)
for the conditional density pX|A(·) of a random variable X given an event A.
Namely, X = B(s + 2ε) − B(s) ∼ N

(
a+b
2 , ε

2

)
, pX(x) = pε/2

(
x − a+b

2

)
, A is

the event B[s+ε,s+3ε](·) > B(s), P
(
A

∣∣X = x
)

=
(
1− e−2ax/ε

)(
1− e−2bx/ε

)
,

P
(
A

)
= 1− e−ab/ε. �

Lemma 9.4. There exists ε > 0 such that for all a, b ∈ (0,∞) the probability
measure on (0,∞) that has the density

x �→
(
1− e−2ax

)(
1− e−2bx

)
1− e−ab

· 1√
π

exp
(
−

(
x− a+ b

2

)2)
is ε-good (as defined by (8.5)).

Proof. It is sufficient to prove that

inf
a,b∈(0,∞)

inf
x∈[ a+b

2
+1, a+b

2
+2]

pa,b(x) > 0,

where pa,b(·) is the given density. Assume the contrary: there exist an, bn, xn

such that bn ≥ an > 0, an+bn
2 + 1 ≤ xn ≤ an+bn

2 + 2, and pan,bn(xn) → 0.
Then (

1− e−2anxn
)(

1− e−2bnxn
)

1− e−anbn
→ 0.
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It follows that 1 − e−2anxn → 0, anxn → 0, an

(
an+bn

2 + 1
) → 0, an → 0,

anbn → 0, and (
1− e−2anxn

)(
1− e−2bnxn

)
anbn

→ 0 .

Therefore
1− e−2an

an
· 1− e−2bn

bn
→ 0;

1− e−2bn

bn
→ 0;

bn →∞, bnxn →∞; 1− e−2bnxn → 1;

1− e−2anxn

anbn
→ 0;

1− e−anbn

anbn
→ 0,

in contradiction to anbn → 0. �
Proof of Proposition 9.1. Lemma 9.3 (for ε = 3−n−1) gives us the con-
ditional distribution of A(2 · 3−n−1) given τ and A|[−1,3−n−1]∪[3−n,1], but
only for the case τ + 3−n < 1. Lemma 9.4 states that the correspond-
ing distribution of 3n/2A(2 · 3−n−1) is ε-good. It remains to note that
P

(
τ + 3−n < 1

) ≥ P
(
τ < 2/3

) ≥ ε. �
Combining Proposition 9.1 and Lemma 8.10 we get a binary extension

of the inductive system (of probability spaces) formed by the restrictions
A|[−1,3−n] of the process A. In terms of the Brownian motion B the inductive
system is formed by B|[0,τ+3−n], and the binary extension may be visualized
by a random function S : (τ, 1)→ {−1,+1} constant on

[τ + 2 · 3−n−1, τ + 2 · 3−n) ∩ (0, 1)

for each n and such that

(9.5)
S(τ + 2 · 3−n)
S(τ + 2 · 3−n−)

= fn−1

(
B(τ + 2 · 3−n)−B(τ)

)
for all n such that τ +2 ·3−n < 1. Here fn : R→ {−1,+1} are the functions
given by Lemma 8.10. They are constructed as to make the binary extension
sensitive to drift in the following sense. For every c ∈ R \ {0} the binary
extension constructed via

fn

(
B(τ + 2 · 3−n)−B(τ) + c · 2 · 3−n

)
is not isomorphic to that for c = 0.

10. A new noise extending the white noise

This is a noise richer than white noise: in addition to the incre-
ments of a Brownian motion B it carries a countable collection of
independent Bernoulli random variables which are attached to the
local minima of B.

J. Warren [11, the end]

. . .magically, this independent random variable has appeared from
somewhere! Indeed, it really has appeared from thin air, because. . .
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it is not present at time 0!
L.C.G. Rogers, D. Williams [7, p. 156]

The two ideas mentioned above will be combined; at every local minimum
of the Brownian motion B, a new random variable will appear from thin
air. That is, the binary extension, performed in Section 9 at the global
minimum, will be performed at every local minimum, thus achieving locality
and stationarity required from a noise, while retaining the drift sensitivity
achieved in Section 9 (as will be shown in Section 11).

A new random sign attached to a local minimum at τ may be thought of
as a random choice of one of the two functions S : (τ, τ + ε1) → {−1,+1}
constant on [τ + εn+1, τ + εn) (for each n) and such that

(10.1) S(τ + εn) = S(τ + εn−)fn

(
B(τ + εn)−B(τ)

)
(the numbers εn ↓ 0 and the functions fn : R→ {−1,+1} being chosen ap-
propriately). Given a time interval (0, t), for each local minimizer τ ∈ (0, t)
we describe the new random sign by the value S(t) (of the corresponding
function S), denoted however by ηt(τ). Relation (10.1) turns into the rela-
tion (10.8) between ηs(τ) and ηs+t(τ).

Before attaching something to the local minima we enumerate them. For
every time interval (a, b) ⊂ R there exists a measurable enumeration of
local minima on (a, b), — a sequence of Fwhite

a,b -measurable random variables
τ1, τ2, · · · : Ω → (a, b) such that for almost all ω the Brownian path t �→
Bt(ω) has a local minimum at each τk(ω), no other local minima exist on
(a, b), and the numbers τ1(ω), τ2(ω), . . . are pairwise different a.s. Here is a
simple construction for (a, b) = (0, 1) taken from [9, 2e]. First, τ1(ω) is the
minimizer on the whole (0, 1) (unique a.s.). Second, if τ1(ω) ∈ (0, 1/2) then
τ2(ω) is the minimizer on (1/2, 1), otherwise — on (0, 1/2). Third, τ3(ω) is
the minimizer on the first of the four intervals (0, 1/4), (1/4, 1/2), (1/2, 3/4)
and (3/4, 1) that contains neither τ1(ω) nor τ2(ω). And so on.

All measurable enumerations (τ ′k)k result from one of them (τk)k in the
sense that

τ ′k(ω) = τσω(k)(ω) a.s.

for some (unique, in fact) random permutation σ : Ω → S∞, that is, an
Fwhite

a,b -measurable random variable σ valued in the group S∞ of all bijective
maps {1, 2, . . . } → {1, 2, . . . } (equipped with its natural Borel σ-field). See
also [9, 2e].

Each τk is a measurable selector of the set of all local minimizers; for
short, let us say just a selected minimum. Here is the general form of a
selected minimum τ in terms of a given enumeration (τk)k:

(10.2)
τ(ω) = τk(ω) for ω ∈ Ak,

where (A1, A2, . . . ) is a countable measurable partition of Ω.
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Every selected minimum may serve as (say) the first element of some enu-
meration.

Given two adjacent time intervals (a, b) and (b, c), we may choose mea-
surable enumerations (τ ′k)k and (τ ′′k )k of local minima on (a, b) and (b, c)
respectively, and combine them into a measurable enumeration (τk)k on
(a, c), say,

(10.3) τ2k−1 = τ ′k, τ2k = τ ′′k for k = 1, 2, . . .

taking into account that the point b is a.s. not a local minimizer.
Now we can attach independent random signs to the local minima. Let

Ωwhite
1 ⊂ C[0, 1]

be a set of full Wiener measure such that for every ωwhite
1 ∈ Ωwhite

1 the set
LocMin(ωwhite

1 ) of all local minimizers of the path ωwhite
1 is a dense countable

subset of (0, 1). We introduce the set {−1,+1}LocMin(ωwhite
1 ) of all functions

η1 : LocMin(ωwhite
1 )→ {−1,+1} and consider the disjoint union Ω1 of these

sets over all ωwhite
1 ,

Ω1 =
{

(ωwhite
1 , η1) : ωwhite

1 ∈ Ωwhite
1 , η1 ∈ {−1,+1}LocMin(ωwhite

1 )
}
.

Every measurable enumeration (τk)k of the local minima on (0, 1) gives
us a one-to-one correspondence

Ω1 ↔ Ωwhite
1 × {−1,+1}∞,

(ωwhite
1 , η1)↔

(
ωwhite

1 ,
(
η1(τk(ωwhite

1 ))
)
k

)
;

here {−1,+1}∞ = {−1,+1}{1,2,... } is the set of all infinite sequences of num-
bers ±1. (As usual, a set of Wiener measure 0 in Ωwhite

1 may be neglected.)
We take the uniform probability distribution m on {−1,+1} (giving equal
probabilities 0.5 to −1 and +1), equip {−1,+1}∞ with the product mea-
sure m∞, and Ωwhite

1 ×{−1,+1}∞ — with the Wiener measure multiplied by
m∞. Then, using the one-to-one correspondence, we transfer the probability
measure (and the underlying σ-field) to Ω1. The choice of an enumeration
(τk)k does not matter, since m∞ is invariant under permutations.

Now Ω1 is a probability space. Similarly, Ωt becomes a probability space
for every t ∈ (0,∞). Given s, t ∈ (0,∞), we get a natural isomorphism

Ωs × Ωt ←→ Ωs+t,(10.4) (
(ωwhite

s , ηs), (ωwhite
t , ηt)

)←→ (ωwhite
s+t , ηs+t)

where (ωwhite
s , ωwhite

t ) ←→ ωwhite
s+t is the usual composition of Brownian

paths, and

(10.5) ηs+t(τ) =

{
ηs(τ) if τ < s,

ηt(τ − s) if τ > s.
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(The notation is not good for the case s = t, since ωs and ωt are still treated
as different variables; hopefully it is not too confusing.) The composition
(ηs, ηt)←→ ηs+t is described conveniently in terms of an enumeration of the
form (10.3) for a = 0, b = s, c = s+ t:

(10.6) ηs+t(τ2k−1) = ηs(τ ′k), ηs+t(τ2k) = ηt(τ ′′k − s) for k = 1, 2, . . .

(of course, all these η and τ depend implicitly on the underlying ωwhite).
We have a noise (an extension of the white noise). It is described above

via probability spaces Ωt satisfying Ωs ×Ωt = Ωs+t rather than sub-σ-fields
Fs,t (on a single Ω) satisfying Fr,s⊗Fs,t = Fr,t, but these are two equivalent
languages (see [9, 3c1 and 3c6]), and the corresponding Arveson system is
just Ht = L2(Ωt).

However, it is not yet the new, drift sensitive noise that we need. Rather,
it is Warren’s noise of splitting. The binary extension performed at each τ
should follow the construction of Section 9. To this end we retain the prob-
ability spaces Ωt constructed before, but replace the straightforward iso-
morphisms (10.4)–(10.5) with less evident, ‘twisted’ isomorphisms. Namely,
(10.5) is replaced with

ηs+t(τ) = ηt(τ − s) if τ > s,(10.7)

ηs+t(τ) = ηs(τ)
∏

n:τ+εn∈(s,s+t]

fn

(
B(τ + εn)−B(τ)

)
if τ < s.(10.8)

As before, all these η and τ depend implicitly on the underlying ωwhite, and
B(s)(ωwhite

t ) = ωwhite
t (s) for s ∈ [0, t].

The new noise is thus constructed. Its parameters (εn)n and (fn)n will
be chosen later. (In fact, εn = 2 · 3−n−1, and fn are given by Lemma 8.10.)

The classical part of the new noise is exhausted by the white noise, which
can be proved via the predictable representation property, see [9, 4d].

In order to examine the impact of drift on the new noise we need the
relation

(10.9) LocMin(ωwhite
t ) = LocMin

(
θλ
t (ωwhite

t )
)

(for all t, λ and almost all ωwhite
t ∈ Ωwhite

t ); as before, θλ
t : C[0, t]→ C[0, t] is

the drift transformation, (θλ
t b)(s) = b(s) − 2λs. The relation (10.9) follows

from the well-known fact that all local minima of the Brownian motion are
sharp (a.s.) in the sense that

B(t)−B(τ)
|t− τ | → ∞ as t→ τ, t �= τ

whenever τ is a local minimizer. See [4, Section 2.10, Items 7,8]. (In fact,
|t− τ | may be replaced with

√|t− τ |/ ln2 |t− τ |.)
It is easy to guess that a drift corresponds to a shift of the functions fn.

The proof (rather boring) is given below.
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Lemma 10.10. Let numbers λ ∈ R, εn ↓ 0 and Borel functions

fn, gn : R→ {−1,+1}
satisfy

gn(x) = fn(x+ 2λεn) for all x ∈ R and n.
Let two extensions of the white noise be constructed as before, one corre-
sponding to (fn)n and (εn)n, the other corresponding to (gn)n and (εn)n.
Then the second extension results from the first one by the drift 2λ (as de-
fined in Section 2), up to isomorphism of extensions.

Proof. The probability spaces Ωt and measure preserving maps Ωt → Ωwhite
t

are the same for both extensions, however, the corresponding isomorphisms
αf , αg : Ωs × Ωt → Ωs+t differ; αf , used in the first extension, involves fn

(recall (10.8)), while αg, used in the second extension, involves gn instead
of fn.

We introduce the third extension, resulting from the first one by the drift
2λ, and seek an isomorphism between the second and third extensions.

The third extension uses the same Ωt but with probability measures P ′
t

different from the probability measures Pt used by the first and second
extensions; namely,

dP ′
t

dPt
= Dt = exp(2λBt − 2λ2t).

The white noise extended by the third extension is generated by the Brow-
nian motion B′

t = Bt − 2λt. Note also that the third extension uses αf .
The probability space Ωt consists of pairs (ωwhite

t , ηt) where

ωwhite
t ∈ Ωwhite

t ⊂ C[0, t]

and ηt ∈ {−1,+1}LocMin(ωwhite
t ). The drift transformation θλ

t may be treated
as a measure preserving map

θλ
t : (Ωwhite

t ,Dt · Wt)→ (Ωwhite
t ,Wt).

Using (10.9) we define θ̃λ
t : Ωt → Ωt by θ̃λ

t (ωwhite
t , ηt) = (θλ

t ω
white
t , ηt) and

get a measure preserving map

θ̃λ
t : (Ωt, P

′
t )→ (Ωt, Pt).

Clearly, B′
s = Bs ◦ θ̃λ

t for s ∈ [0, t]. It remains to check that θ̃λ
s × θ̃λ

t = θ̃λ
s+t

in the sense that the diagram

Ωs × Ωt

αf

��

eθλ
s ×eθλ

t �� Ωs × Ωt

αg

��
Ωs+t

eθλ
s+t �� Ωs+t

is commutative. Let ωs = (ωwhite
s , ηs) ∈ Ωs and ωt = (ωwhite

t , ηt) ∈ Ωt. We
have αf (ωs, ωt) = (ωwhite

s+t , ηs+t), where ωwhite
s+t is the usual composition of
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ωwhite
s and ωwhite

t , while ηs+t is obtained from ηs and ηt according to (10.7),
(10.8). Thus,

θ̃λ
s+t

(
αf (ωs, ωt)

)
= θ̃λ

s+t(ω
white
s+t , ηs+t) =

(
θλ
s+t(ω

white
s+t ), ηs+t

)
.

On the other hand,

(θ̃λ
s × θ̃λ

t )(ωs, ωt) =
(
θ̃λ
s (ωs), θ̃λ

t (ωt)
)

=
(
(θλ

s (ωwhite
s ), ηs), (θλ

t (ωwhite
t ), ηt)

)
.

Clearly, αg

(
(θλ

s (ωwhite
s ), ηs), (θλ

t (ωwhite
t ), ηt)

)
=

(
θλ
s+t(ω

white
s+t ), η′s+t

)
for some

η′s+t (since θλ
s × θλ

t = θλ
s+t). Finally, η′s+t = ηs+t by (10.7), (10.8) and the

equality
gn

(
θλ
s+t(ω

white
s+t )(τ + εn)− θλ

s+t(ω
white
s+t )(τ)

)
= gn

(
ωwhite

s+t (τ + εn)− ωwhite
s+t (τ)− 2λεn

)
= fn

(
ωwhite

s+t (τ + εn)− ωwhite
s+t (τ)

)
. �

11. The binary extension inside the new noise

According to Section 9, the Brownian motion B leads to an inductive
system of probability spaces formed by the restrictions of B to the time
intervals [0, τ + 3−n]∩ [0, 1], where τ is the (global) minimizer of B on [0, 1].
Further, every sequence (fn)n of Borel functions fn : R→ {−1,+1} leads to
a binary extension of this inductive system. The extension is formed by the
restrictions of B and Sf to [0, τ + 3−n] ∩ [0, 1]; here Sf : (τ, 1) → {−1,+1}
is a random function satisfying (9.5).

On the other hand, according to Section 10, (fn)n (in combination with
εn = 2 · 3−n−1) leads to a noise that extends the white noise. The noise is
formed by the Brownian motion B and the random variables ηt(τ); here τ
runs over all local minimizers of B on (0, t). In turn, the noise leads to an
Arveson system that extends the type I1 Arveson system of the white noise.

These constructions of Sections 9 and 10 are related as follows.

Proposition 11.1. If two sequences (fn)n, (gn)n of Borel functions

R→ {−1,+1}
lead to isomorphic extensions of the type I1 Arveson system (of the white
noise), then they lead to isomorphic binary extensions of the inductive sys-
tem of probability spaces.

The proof is given after the proof of Proposition 11.4.

Proof of Theorem 1.10. The binary extension, constructed in Section 9
using the functions fn given by Lemma 8.10 (combined with Proposition 9.1),
is not isomorphic to the extension that corresponds to the shifted functions
gn(x) = fn(x + 3−nc), unless c = 0. By Proposition 11.1, (fn)n and (gn)n
lead to nonisomorphic extensions (constructed in Section 10) of the type I1
Arveson system (of the white noise). By Lemma 10.10, these nonisomorphic
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extensions result from one another by a drift. This drift sensitivity implies
Theorem 1.10 by Corollary 2.2. �

Comparing (9.5) and (10.8) we see that the function t �→ ηt(τ) behaves
like the function Sf . (Here τ is the global minimizer of B on [0, 1].) In other
words, we may let for some (therefore, all) n such that τ + 3−n < 1,

Sf (τ + 3−n) = ητ+3−n(τ),

thus defining a measure preserving map from the probability space Ωnoise(f)

of the noise on [0, 1] to the probability space Ωbin(f) of the binary extension
on [0, 1];

Ωnoise(f) → Ωbin(f);

here f = (fn)n is the given sequence of functions. Accordingly, we have a
natural embedding of Hilbert spaces,

L2(Ωbin(f))→ L2(Ωnoise(f)).

Striving to prove Proposition 11.1 we assume existence of an isomorphism
Θ = (Θt)t between the two Arveson systems,

Θt : L2(Ω
noise(f)
t )→ L2(Ω

noise(g)
t ),(11.2)

Θt is trivial on L2(Ωwhite
t ).(11.3)

Note that Ωnoise(f) = Ωnoise(f)
1 .

Proposition 11.4. Θ1 maps the subspace L2(Ωbin(f)) of L2(Ωnoise(f)) onto
the subspace L2(Ωbin(g)) of L2(Ωnoise(g)).

The proof is given after Lemma 11.5.
The structure of L2(Ωnoise(f)) is easy to describe:

L2(Ωnoise(f)) = Hf
0 ⊕Hf

1 ⊕Hf
2 ⊕ · · · ,

whereHf
n (called the n-th superchaos space) consists of the random variables

of the form ∑
k1<···<kn

η1(τk1) . . . η1(τkn)ϕk1,...,kn ,

ϕk1,...,kn ∈ L2(Ωwhite
1 ),

∑
k1<···<kn

‖ϕk1,...,kn‖2 <∞,

where (τk)k is a measurable enumeration of the local minimizers of B on
(0, 1) (the choice of the enumeration does not matter). See [10, (3.1)] for
the case fn(·) = 1 (Warren’s noise of splitting); the same argument works
in general. Note that Hf

0 = L2(Ωwhite
1 ).
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It is well-known that the superchaos spaces may be described in terms of
the Arveson system, and therefore Θ1 maps Hf

n onto Hg
n. We need the first

superchaos space only; here is a simple argument for this case:

H1 =
{
ψ ∈ L2(Ωnoise) : ∀t ∈ (0, 1) ψ = Q0,tψ +Qt,1ψ

}
;

here Q0,t is the orthogonal projection of L2(Ωnoise) = L2(Ωnoise
t )⊗L2(Ωnoise

1−t )
onto the subspace L2(Ωnoise

t )⊗ L2(Ωwhite
1−t ), and Qt,1 onto

L2(Ωwhite
t )⊗ L2(Ωnoise

1−t ).

We have

Θ1

(
L2(Ω

noise(f)
t )⊗ L2(Ωwhite

1−t )
)

= Θt

(
L2(Ω

noise(f)
t )

) ⊗Θ1−t

(
L2(Ωwhite

1−t )
)

= L2(Ω
noise(g)
t )⊗ L2(Ωwhite

1−t )

by (11.3); therefore Θ1Q
f
0,t = Qg

0,tΘ1. Similarly, Θ1Q
f
t,1 = Qg

t,1Θ1. It follows
that

Θ1H
f
1 = Hg

1 .

Similarly, L2(Ωnoise
t ) = H0(t) ⊕H1(t)⊕H2(t)⊕ · · · (the upper index, be

it f or g, is omitted). Identifying L2(Ω1) with L2(Ωt)⊗ L2(Ω1−t) we have

H1 = H1(t)⊗H0(1− t)︸ ︷︷ ︸
Q0,tH1

⊕H0(t)⊗H1(1− t)︸ ︷︷ ︸
Qt,1H1

.

The commutative algebra L∞(Ωwhite
1 ) acts naturally on H1:

h ·
∑

k

η1(τk)ϕk =
∑

k

η1(τk)h · ϕk for h ∈ L∞(Ωwhite
1 ).

Also the commutative algebra L∞(0, 1) acts naturally on H1. In particular,
1(0,t) acts as Q0,t, and 1(t,1) acts as Qt,1. In general,

h ·
∑

k

η1(τk)ϕk =
∑

k

η1(τk)h(τk)ϕk for h ∈ L∞(0, 1).

(The choice of enumeration (τk)k does not matter.) The two actions com-
mute, and may be combined into the action of L∞(μ) (on H1) for some
measure μ on Ωwhite

1 × (0, 1):

h ·
∑

k

η1(τk)ϕk(·) =
∑

k

η1(τk)h(·, τk)ϕk(·) for h ∈ L∞(μ).

The measure μ may be chosen as∫
hdμ = E

∑
k

1
k2
h(B, τk)

(or anything equivalent).
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Lemma 11.5. The diagram

Hf
1

h
��

Θ1 �� Hg
1

h

��
Hf

1

Θ1 �� Hg
1

is commutative for every h ∈ L∞(μ).

Proof. Given [a, b] ⊂ [0, 1], we define a subalgebra Γ(a, b) ⊂ L∞(μ) as
consisting of the functions of the form

h(ωwhite
0,1 , t) =

{
h′(ωwhite

0,a , ωwhite
b,1 ) for t ∈ (a, b),

0 for t ∈ (0, a) ∪ (b, 1),

where h′ ∈ L∞(Ωwhite
a × Ωwhite

1−b ), and ωwhite
0,1 ∈ Ωwhite

1 is treated as the triple
(ωwhite

0,a , ωwhite
a,b , ωwhite

b,1 ) according to the natural isomorphism between Ωwhite
1

and Ωwhite
a × Ωwhite

b−a × Ωwhite
1−b . For each n = 1, 2, . . . we define a subalgebra

Γn ⊂ L∞(μ) by

Γn =
2n∑

k=1

Γ
(k − 1

2n
,
k

2n

)
.

It is easy to see that Γn corresponds to a measurable partition; in other
words, Γn = L∞(Ωwhite

1 × (0, 1), En, μ) for some sub-σ-field En of the σ-field
E of all μ-measurable sets. We have En ↑ E , that is, E1 ⊂ E2 ⊂ · · · and E
is the least sub-σ-field containing all En, which follows from the fact that
Γ1∪Γ2∪ . . . contains a countable set that separates points of Ωwhite

1 × (0, 1).
If Θ1hn = hnΘ1 (as operators Hf

1 → Hg
1 ) for all n, and hn → h almost

everywhere, and supn ‖hn‖∞ < ∞, then Θ1h = hΘ1. Thus, it is sufficient
to prove the equality Θ1h = hΘ1 for all h ∈ Γ1 ∪ Γ2 ∪ . . . . Without loss of
generality we may assume that h ∈ Γ(a, b) for some a, b. Moreover, I assume
that b = 1, leaving the general case to the reader. Thus,

h(ωwhite
0,1 , t) = h′(ωwhite

0,a )1(a,1)(t).

We recall that Θ1 = Θa⊗Θ1−a, H1 = H1(a)⊗H0(1−a)⊕H0(a)⊗H1(1−a),
and note that

Θ1

(
Hf

1 (a)⊗Hf
0 (1− a)) = Hg

1 (a)⊗Hg
0 (1− a),

Θ1

(
Hf

0 (a)⊗Hf
1 (1− a)) = Hg

0 (a)⊗Hg
1 (1− a).

The subspaces Hf
1 (a) ⊗Hf

0 (1 − a) and Hg
1 (a) ⊗Hg

0 (1 − a) are annihilated
by h, thus, Θ1h and hΘ1 both vanish on Hf

1 (a)⊗Hf
0 (1− a). On the other

subspace, Hf
0 (a) ⊗Hf

1 (1 − a), h acts as h′ ⊗ 1, while Θ1 acts as 1 ⊗ Θ1−a.
Therefore Θ1h = hΘ1. �
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Proof of Proposition 11.4. We apply Lemma 11.5 to h ∈ L∞(μ) defined
by

h(ωwhite
1 , t) =

{
1 if τ(ωwhite

1 ) = t,

0 otherwise,

where τ is the (global) minimizer on (0, 1). This function acts on H1 as the
projection onto the subspace

{η1(τ)ϕ : ϕ ∈ L2(Ωwhite
1 )} = L2(Ωbin)� L2(Ωwhite). �

Proof of Proposition 11.1. We have two binary extensions, (Ωbin(f)
n , β̃f

n)n
and (Ωbin(g)

n , β̃g
n)n, of an inductive system (Ωwhite

n , βn)n of probability spaces
(according to (γf

n)n and (γg
n)n respectively). Their isomorphism is ensured

by Lemma 6.2, provided that Condition 6.2(b) is satisfied by some unitary
operators Θbin

n : L2(Ω
bin(f)
n ) → L2(Ω

bin(g)
n ). Using the natural embeddings

L2(Ω
bin(f)
n ) ⊂ L2(Ωbin(f)) and L2(Ω

bin(g)
n ) ⊂ L2(Ωbin(g)) we define all Θbin

n

as restrictions of a single operator Θbin : L2(Ωbin(f)) → L2(Ωbin(g)). Using
Proposition 11.4 we define Θbin as the restriction of Θ1 to L2(Ωbin(f)). It
remains to prove that

Θbin
(
L2(Ωbin(f)

n )
)

= L2(Ωbin(g)
n ),(11.6)

Θbin
n intertwines the actions of L∞(Ωwhite

n )

on L2(Ωbin(f)
n ) and L2(Ωbin(g)

n ),
(11.7)

Θbin
n is trivial on L2(Ωwhite

n )(11.8)

for all n.
By (11.3), Θbin is trivial on L2(Ωwhite); (11.8) follows.
By Lemma 11.5, Θbin intertwines the actions of L∞(Ωwhite) on L2(Ωbin(f))

and L2(Ωbin(g)); (11.7) follows.
The proof of (11.6) is the point of Proposition 11.9 below. �

Proposition 11.9. The operator Θbin maps the subspace

L2(Ωbin(f)
n ) ⊂ L2(Ωbin(f))

onto the subspace
L2(Ωbin(g)

n ) ⊂ L2(Ωbin(g)).

The proof is given after Lemma 11.10.
Recall that the elements of L2(Ω

bin(f)
n ) are functions of the restrictions of

B and Sf to [0, τ + 3−n] ∩ [0, 1].
For a given t ∈ (0, 1) we consider the sub-σ-field Ff

t on Ωbin(f), generated
by the restrictions of B and Sf to [0, t]. The elements of the subspace
L2(Ωbin(f),Ff

t ) are functions of B|[0,t] and Sf |[0,t] (that is, Sf |(τ,t]).
We know L∞(Ωwhite) acts on L2(Ωbin(f)). In particular, for 0 < r < s < 1,

the function 1(r,s)(τ) (that is, the indicator of {ωwhite : r < τ(ωwhite) < s})



574 Boris Tsirelson

acts as the projection onto a subspace Hf
r,s of L2(Ωbin(f)). The same holds

for g. We have Θbin(Hf
r,s) ⊂ Hg

r,s, since Θbin intertwines the two actions of
L∞(Ωwhite). We define

Hf
r,s,t = Hf

r,s ∩ L2(Ωbin(f),Ff
t ) for 0 < r < s < t < 1.

Lemma 11.10. Θbin(Hf
r,s,t) ⊂ Hg

r,s,t.

Proof. The binary extension Ωbin(f) is constructed on the time interval
(0, 1), but the same can be made on the time interval (0, t), giving a bi-
nary extension Ωbin(f,t) of Ωwhite

t , using the (global) minimizer τt on (0, t);
sometimes τt = τ1, sometimes τt �= τ1.

The binary extension Ωbin(f) is the product (recall Definition 7.1) of two
binary extensions, Ωbin(f,t) and Ωbin(f,1−t), according to the set

A ⊂ Ωwhite
1 = Ωwhite

t ×Ωwhite
1−t ,

A =
{
ωwhite

1 : τ1(ωwhite
1 ) = τt(ωwhite

1 |[0,t])
}
.

We know that Θ1 = Θt ⊗Θ1−t. Similarly to Proposition 11.4,

Θt(L2(Ωbin(f,t))) = L2(Ωbin(g,t));

we define Θbin,t : L2(Ωbin(f,t)) → L2(Ωbin(g,t)) as the restriction of Θt and
observe that Θbin is the restriction of Θbin,t ⊗Θbin,1−t to

L2(Ωbin(f)) ⊂ L2(Ωbin(f,t))⊗ L2(Ωbin(f,1−t))

(recall (7.2)).
By Lemma 7.3, Θbin(L2(Ã,F1)) = L2(Ã′,F ′

1), where the sets Ã ⊂ Ωbin(f),
Ã′ ⊂ Ωbin(g) correspond to the inequality τ < t, the sub-σ-field F1 on Ã is
induced by the sub-σ-field Ff

t on Ωbin(f), and F ′
1 on Ã′ — by Fg

t .
Taking into account that (r, s) ⊂ (0, t) we get Hr,s,t ⊂ L2(Ã,F1). There-

fore Θbin(Hf
r,s,t) ⊂ L2(Ã′,F ′

1). On the other hand,

Θbin(Hf
r,s,t) ⊂ Θbin(Hf

r,s) ⊂ Hg
r,s.

It remains to note that L2(Ã′,F ′
1) ∩Hg

r,s ⊂ Hg
r,s,t. �

Proof of Proposition 11.9. If r, s, t and n satisfy t ≤ r + 3−n then

Hg
r,s,t ⊂ L2

(
Ωbin(g)

n

)
(since t ≤ τ(·) + 3−n for all relevant points), and therefore

Θbin
(
Hf

r,s,t

) ⊂ L2

(
Ωbin(g)

n

)
.

The elements of L2

(
Ωbin(f)

n

)
are functions of the restrictions of B and

Sf to [0, τ + 3−n] ∩ [0, 1]. For every N such that 1
N < 3−n consider the
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functions of the restrictions of B and Sf to [0, τ + 3−n − 1
N ] ∩ [0, 1]; these

are L2(Ω
bin(f)
n , EN ) for some sub-σ-field EN , and⋃

N

L2(Ωbin(f)
n , EN ) is dense in L2(Ωbin(f)

n ),

since EN ↑ E (a similar argument is used in the proof of Lemma 11.5; note
that Sf jumps at τ+2 ·3−n, not τ+3−n). In order to prove Proposition 11.9
it remains to prove that

Θbin
(
L2(Ωbin(f)

n , EN )
) ⊂ L2(Ωbin(g))

for all N (satisfying 1
N < 3−n).

Clearly,
L2(Ωbin(f)) = H0, 1

N
⊕ · · · ⊕HN−1

N
,1

(for every N). Every ψ ∈ L2(Ωbin(f)) is of the form

ψ = ψ1 + · · ·+ ψN , ψk ∈ H k−1
N

, k
N
.

If ψ ∈ L2(Ω
bin(f)
n , EN ) then ψk ∈ L2(Ωbin(f),Fk−1

N
+3−n) (since

τ(·) + 3−n − 1
N
<
k − 1
N

+ 3−n

for all relevant points), thus, ψk ∈ Hf
k−1
N

, k
N

, k−1
N

+3−n
. Taking into account

that Θbin
(
Hf

k−1
N

, k
N

, k−1
N

+3−n

)
⊂ L2(Ω

bin(g)
n ) we see that

Θbin(ψ) ∈ L2(Ωbin(g)
n ). �
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