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Primitive words and spectral spaces

Othman Echi and Mongi Naimi

Abstract. In Bouacida–Echi–Salhi 1999 and 2000, it was shown that
spectral spaces are related to foliation theory. In this paper, we prove
that spectral sets and spaces are also related to the relatively new re-
search topic combinatorics on words, an area in discrete mathematics
motivated in part by computer science.

Let A be a finite alphabet, A∗ be the free monoid generated by A
(i.e., the set of all finite words over A) and A+ be the set of nonempty
words over A. A nonempty word is called primitive if it is not a proper
power of another word. Let u be a nonempty word; then there exist a
unique primitive word z and a unique integer k ≥ 1 such that u = zk.
The word z is called the primitive root of u and is denoted by z = pA(u).

By a language over an alphabet A, we mean any subset of A∗. A
language will be called a primitive language if it contains the primitive
root of all its elements.

The collection T := {O ⊆ A∗ | p−1
A

(O) ⊆ O} defines a topology on
A∗ (which will be called the topology of primitive languages).

Call a PL-space, each topological space X which is homeomorphic to
A+ (equipped with the topology of primitive languages) for some finite
alphabet A.

The main goal of this paper is to prove that the one-point compactifi-
cation of a PL-space is a spectral space, providing a new class of spectral
spaces in connection with combinatorics on words.
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1. Introduction and notations

By an alphabet we mean a finite nonempty set A. The elements of A are
called letters of A. A finite word over an alphabet A is a finite sequence of
elements of A. The set of all finite words is denoted by A∗. The sequence of
zero letters is called the empty word and denoted by ε

A
. We will denote by

A+ the set of all finite nonempty words. If u := u1 . . . un is a finite sequence
of n letters, then n is called the length of the word u and we denote it by
|u|. Let us denote by An the set of all finite words over A of length n.
The concatenation of two words u := u1 . . . un and v := v1 . . . vm of lengths
respectively n and m is the word uv := u1 . . . unv1 . . . vm of length n + m.
The set A∗ equipped with the concatenation operation is a monoid with ε

A

as a unit element. A power of a word u is a word of the form uk for some
k ∈ N. It is convenient to set u0 = εA , for each word u. When k ∈ N

+ \{1},
we say that uk is a proper power of u (here and throughout the paper N

+

stands for the set of all positive natural numbers).
A word u is said to be a prefix (resp. suffix, resp. factor) of a word v if

there exists a word t (resp. t, resp t and s) such that ut = v (resp. tu = v,
resp. tus = v). If u = vt, then we set ut−1 := v or v−1u := t. The prefix of
length k of a word u will be denoted by prefk(u).

A word is called primitive if it is nonempty and not a proper power
of another word. The concept of primitive words plays a crucial role in
combinatorial theory of words (see [24] and [23]).

Topology has proved to be an essential tool for certain aspects of theoret-
ical computer science. Conversely, the problems that arise in the computa-
tional setting have provided new and interesting stimuli for topology. These
problems also have increased the interaction between topology and related
areas of mathematics such as order theory and topological algebra.

An Alexandroff space is a topological space in which any intersection
of open sets is open. These spaces were first introduced by Alexandroff
in 1937 [1] with the name of Diskrete Räume. In [28], Steiner has called
Alexandroff spaces principal spaces. Topologically, Alexandroff spaces play
an important role in the study of the structure of the lattice of topologies
on a given set [28]: the lattice of topologies on any set is complemented;
moreover, each topology has an Alexandroff topology complement.

It is worth noting that the interest in Alexandroff spaces was a conse-
quence of the very important role of finite spaces in digital topology and
the fact that these spaces have all the properties of finite spaces relevant for
such theory.

It is, also, worth noting that Alexandroff T0-spaces have been studied as
discrete models of continuous spaces in theoretical physics ([15] and [27]).

Recently, Alexandroff topologies proved to be useful for some authors
in providing examples and counterexamples in several papers dealing with
topology or foliation theory (see for instance [7], [5], [6], and [11]).
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Let X be a set. Recall that a map μ : 2X −→ 2X is said to be a Kuratowski
closure on X, if it satisfies the following properties:

(1) μ(∅) = ∅.
(2) A ⊆ μ(A), for each A ∈ 2X .
(3) μ(μ(A)) = μ(A), for each A ∈ 2X .
(4) μ(A ∪ B) = μ(A) ∪ μ(B), for each A,B ∈ 2X .

It is a part of the folklore of general topology that each topology T on a
set X defines a Kuratowski closure (A �−→ A); and conversely, for each
Kuratowski closure μ : 2X −→ 2X , there is a unique topology on X such
that μ(A) = A, for each A ∈ 2X .

If A is an alphabet, then the map μA : 2A∗ −→ 2A∗
, defined by μA(L) =

L ∪ p
A
(L) is a Kuratowski closure defining an Alexandroff topology on A∗.

The topology defined previously will be called the topology of primitive
languages on A∗ (PL-topology, for short) and we denote it by PL(A) (in
other words, the PL-topology is the topology which has primitive languages
as closed sets).

Call a PL-space, each topological space X which is homeomorphic to A+

(equipped with the topology of primitive languages) for some alphabet A.
Let X be a topological space, set X̃ = X ∪ {∞} with the topology whose

members are the open subsets of X and all subsets U of X̃ such that X̃ \U

is a closed compact subset of X. The space X̃ is called the Alexandroff
extension of X (or the one point compactification of X).

The main goal of this paper is to prove that the one-point compactification
of a PL-space is a spectral space, providing a new class of spectral spaces in
connection with combinatorics on words (a relatively new research topic in
discrete mathematics, mainly, but not only, motivated by computer science).

In order to make this paper as self contained as possible, Section 2 will con-
tain material about words and Alexandroff spaces which is needed through-
out.

2. Words and Alexandroff spaces

We begin by recalling some preliminary results.

Lemma 2.1 (Lyndon–Schutzenberger [25]). Let u, v ∈ A∗ with uv = vu.
Then there exists a word t such that u, v ∈ t∗ := {tn | n ∈ N}.

Lemma 2.2 (Lyndon–Schutzenberger [25]). Let u ∈ A+. Then there exists
a unique primitive word z and a unique integer k ≥ 1 such that u = zk.

Notations 2.3. Let u ∈ A+. By Lemma 2.2, there exists a unique primitive
word z and a unique integer k ≥ 1 such that u = zk.

− The word z is called the primitive root of u and is denoted by z =
p

A
(u).

− The integer k is called the exponent of u and is denoted by k = e(u).
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Let Pr(n, k) be the number of primitive words of length n over a nonempty
alphabet A of size k. In [29], Wang has counted the number Pr(n, k) by using
an inclusion/exclusion argument; this count is usually performed by using
Möbius transformations.

Let us recall — see for instance [23] — that we have

Pr(n, k) =
∑
d|n

kdμ
(n

d

)
,

where μ is the Möbius function.
It follows that if the alphabet A is not a singleton, then there are infinitely

many primitive words over A. This fact will be used extensively in the
present paper.

Now we give some elementary properties of the PL-topology. Note that a
systematic study of PL-topologies has been done by Bouallègue–Echi–Naimi
in [8].

Let us, first, recall some concepts. Given a poset (X,≤) and x ∈ X, the
generization of x in X is (↓ x) = {y ∈ X | y ≤ x}, the specialization of x
in X is (x ↑) = {y ∈ X | y ≥ x}. Let X have a topology T and a partial
ordering ≤. We say that T is compatible with ≤ if {x} = (x ↑) for all x ∈ X.

Let (X,T ) be a T0-space. Then X has a partial ordering ≤ induced by T
by defining x ≤ y if and only if y ∈ {x}.

Let X be a topological space. Recall that X is said to be a submaximal
space if each dense subset of X is open [9]. According to Kelley [18], a
topological space X is said to be a door space if every subset of X is either
closed or open. Thus, clearly, every door space is a submaximal space. The
converse does not hold.

Let (X,T ) be a T0-space and ≤ be the ordering induced by T . A chain
x0 < x1 < · · · < xn of elements of X is said to be of length n; the supremum
of the lengths is called the Krull dimension of (X,T ), which we write as
dimK(X,T ).

Let us recall a characterization of submaximal Alexandroff spaces due to
Bezhanishvili et al [4].

Proposition 2.4 ([4, Proposition 4.1]). Let (X,T ) be an Alexandroff T0-
space. Then the following statements are equivalent.

(i) X is submaximal;
(ii) dimK(X,T ) ≤ 1.

Recall that, according to [13], a space X is said to a quasi-Hausdorff
space if for each distinct points x, y ∈ X, either there exists z ∈ X such that
x, y ∈ {z}, or x and y have disjoint neighborhoods. A space X is said to be
a T 1

2
-space if each point of X is either closed or open.

The following result sheds light on the PL-topology and provides a class
of submaximal spaces which are not door.
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Proposition 2.5. Let A be an alphabet. We equip A∗ by its PL-topology.
Then the following properties hold.

(1) If u ∈ A+ is a primitive word, then u is a closed point and the smallest
open set containing u is V

A
(u) := {un : n ∈ N

+}.
(2) If u ∈ A+ is not a primitive word, then u is an open point and

{u} = {u, pA(u)}.
(3) ε

A
is the unique clopen point of A∗ (clopen:= closed and open).

(4) dimK(A∗) = 1.
(5) A∗ is a T 1

2
-space.

(6) A∗ is a submaximal space. In addition, A∗ is a door space if and only
if A is a singleton.

(7) A∗ is quasi-Hausdorff.

Proof. Let us, first, note that {ε
A
} = {ε

A
} and A∗ \ {ε

A
} = A+ = μ(A+).

Consequently, ε
A

is a clopen point of A∗.
(1) Since A∗ is an Alexandroff space, the smallest open set containing a

word u is VA(u) = {v ∈ A∗ : u ∈ {v}} = {v ∈ A∗ : u ∈ {v, pA(v)}}.
If u ∈ A+ is a primitive word and v ∈ VA(u), then u = v or u = pA(v).

By Lemma 2.2, there exists a unique n ∈ N
+ such that v = un.

Conversely, if v ∈ {un : n ∈ N
+}, then p

A
(v) = u (by Lemma 2.2) and

thus u ∈ {v}, proving that v ∈ V
A
(u). Also, it is clear that u is a closed

point of A∗.
(2) Suppose that u ∈ A+ is not a primitive word. Let v ∈ V

A
(u). Then

u ∈ {v}. Hence v 
= ε
A
, and p

A
(v) is a primitive word. So u ∈ {v, p

A
(v)} and

accordingly u = v (since u is not primitive). It follows that V
A
(u) = {u};

therefore u is an open point.
(3) Let u ∈ A+.
− If u is a primitive word, then V

A
(u) = {un : n ∈ N} 
= {u}. This

implies that u is not an open point.
− If u is not primitive, then {u} = {u, p

A
(u)} 
= {u}; and thus u is not

a closed point.
(4) and (5) These properties follow immediately from (1), (2).
(6) The fact that A∗ is a submaximal space follows immediately from

Proposition 2.4.
Now, we will check when A∗ is a door space. Two cases are to be consid-

ered.
Case 1. Suppose that A is a singleton (say A = {a}). Then a is the

unique primitive word over A. Let S be a nonempty subset of A∗.
− If a ∈ S, then A∗ \S contains only nonprimitive words. Hence A∗ \S

is an open set, by (2). Thus S is a closed set.
− If a 
∈ S, then a ∈ A∗ \ S and thus S = A∗ \ (A∗ \ S) is an open set.

So in this case A∗ is a door space.
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Case 2. Suppose that A contains more than one element. Then there are
infinitely many primitive words over A. Let u ∈ A+ be a primitive word
and v a nonprimitive word with primitive root distinct from u. Then the
subset S := {u, v} is neither closed (p

A
(v) 
∈ S) nor open (V

A
(u) = {un :

n ∈ N
+} 
⊆ S). We conclude that A∗ is not a door space.

(7) Let u, v be two distinct words over A. We consider three cases.
Case 1. Suppose that one of the two words is empty. Say, for instance,

u = ε
A
. Then {ε

A
} and V

A
(p

A
(v)) are disjoint neighborhoods for u, v.

Case 2. Suppose that neither u nor v is primitive; then {u} and {v} are
disjoint neighborhoods for u, v.

Case 3. Suppose that u and v are nonempty words and one of them is
primitive (say for example u is a primitive word). Two subcases have, also,
to be considered.

− If p
A
(u) 
= p

A
(v). Then V

A
(p

A
(u)) and V

A
(p

A
(v)) are disjoint neigh-

borhoods, respectively, of u and v.
− If p

A
(u) = p

A
(v), then u, v ∈ {v} = {u, v}.

Therefore, A∗ is a quasi-Hausdorff space. �
Let ≤ be an ordering on a set X. A subset Y of X is said to be left-

directed in (X,≤) if for each x, y ∈ Y , there is some z ∈ Y such that z ≤ x
and z ≤ y.

Recall that a subspace Y of a topological space X is said to be irreducible
if any two nonempty open sets of Y meet. It is worth noting that Y is
irreducible if and only if Y is irreducible.

Let (X,T ) be a T0-space and ≤ be the ordering induced by the topology
T . If Y is a left-directed subset of X, then Y is irreducible in (X,T ).

Now, suppose that (X,T ) is an Alexandroff space; then a subset Y ⊆ X
is irreducible if and only if Y is left-directed (see Hoffman [14, Lemma 1.1]).

A T0-space X is said to be sober if each nonempty irreducible closed
subset C of X has a generic point (that is, there exists a ∈ C such that
C = {a}).

The following result gives a complete characterization of Alexandroff sober
spaces.

Theorem 2.6. Let X be an Alexandroff T0-space and ≤ be the ordering
induced by the topology of X. Then the following statements are equivalent:

(1) X is a sober space.
(2) Each decreasing sequence of (X,≤) is stationary.

Proof. (1) =⇒ (2) First, let us show that if Y is an irreducible subset of
X, then Y has an infimum.

Indeed, since Y is an irreducible closed set of X, it has a generic point
a; {a} = Y . Thus a ≤ y, for each y ∈ Y . On the other hand, if z ∈ X is
such that z ≤ y, for each y ∈ Y , then Y ⊆ {z}. Therefore, Y ⊆ {z}; and
consequently, z ≤ a; proving that a is an infimum of Y .
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Let (xn)n∈N be a decreasing sequence of (X,≤). Since Y = {xn | n ∈ N}
is left-directed, then Y is an irreducible subset of X and consequently, it has
an infimum a in Y , by the previous comment; so that {a} = Y .

But (↓ a) is an open subset of X containing a, this yields (↓ a) ∩ Y 
= ∅.
Hence there is p ∈ N such that xp ∈ (↓ a). Therefore,

xn ≤ xp ≤ a ≤ xn ≤ xp

for each n ≥ p, proving that the sequence (xn)n∈N is stationary.
(2)=⇒(1) Let C be an irreducible closed subset of X. Suppose that C

has no generic point. Pick x0 ∈ C. Then {x0} ⊆ C; so that there is y0 ∈ C

such that y0 /∈ {x0}; consequently, {x0}∪{y0} ⊆ C. Since C is left-directed
[14, Lemma 1.1], there is x1 ∈ C such that x1 ≤ x0 and x1 ≤ y0.

Necessarily, x0 
≤ x1; if not {x0} = {x1} and thus y0 ∈ {x1} = {x0}, a
contradiction. One may do the same thing for x1 ∈ C in order to get x2 ∈ C
such that x2 ≤ x1 and x1 
≤ x2 etc . . . This procedure provides a decreasing
sequence (xn)n∈N of elements of C which is not stationary, a contradiction.
It follows that C has a generic point. �
Remark 2.7. The assertion that if Y is an irreducible subset of a sober
space X then Y has an infimum is proved in the Johnstone’s book Stone
spaces [16] (it is a part of the proof of [16, Lemma I.1.9]).

3. Spectral sets and spaces

A topology T on a set X is said to be spectral [13] if and only if the
following axioms hold:

(1) T is sober (that is, every nonempty irreducible closed subset of X is
the closure of a unique point).

(2) (X,T ) is compact.
(3) The compact open subsets of X form a basis of T .
(4) The family of compact open subsets of X is closed under finite inter-

sections.
In lattice theory, a spectral space is showed to be homeomorphic to the

prime spectrum of a bounded (with 0 and 1) distributive lattice.
Let Spec(R) denote the set of prime ideals of a commutative ring R with

identity, ordered by inclusion, and call a partial ordered set spectral if it
is order isomorphic to Spec(R) for some ring R [22]. Such spectral sets
are of interest not only in (topological) ring and lattice theory, but also in
computer science, in particular, in domain theory (introduced in 1970 by
Dana Scott as a mathematical theory of computation for the semantics of
programming languages [26]).

Although many results about spectral sets have been obtained by Dobbs,
Hochster, Fontana, Lewis, Ohm and Kaplansky (see for instance, [10], [12],
[13], [17], [21] and [22]), a complete algebraic characterization of spectral
sets still seems very far off.
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Recall that if R is a ring, then the Zariski topology (the hull kernel topol-
ogy) for Spec(R) is defined by letting C ⊆ Spec(R) be closed if and only if
there exists an ideal A of R such that C = {P ∈ Spec(R) | P ⊇ A}.

In the remarkable paper [13], Hochster has proved that spectral spaces
are exactly topological spaces homeomorphic to the prime spectrum of a
ring equipped with the Zariski topology.

One can, obviously, see that (X,≤) is spectral if and only if there exists
an order compatible spectral topology on X.

By an Alexandroff-spectral space (A-spectral space, for short), we mean
a topological space such that its one-point compactification (Alexandroff
compactification) is a spectral space [3].

Before recalling the main result of [3], let us rewrite [3, Definition 1.5];
but with a slight change as done in [11].

Definitions 3.1. Let X be a topological space and U a subset of X.
(1) U is said to be intersection compact open, or ICO, if for each compact

open subset O of X, U ∩ O is compact.
(2) U is said to be intersection compact closed, or ICC, if for each compact

closed subset O of X, U ∩ O is compact.
(3) U is said to be intersection compact open closed, or ICOC, if it is ICO

and ICC.
(4) Let P be a property. U is said to be co-P if X \ U satisfies P.

A complete characterization of A-spectral spaces has been given by Bel-
aid–Echi–Gargouri.

Theorem 3.2 ([3]). A space X is A-spectral if and only if the following
axioms hold.

(1) (X,T ) is a sober space.
(2) X has a basis of compact open sets which is closed under finite inter-

sections.
(3) For each compact closed subset C of X, there exists a co-compact

ICOC open subset O of X such that O ⊆ X \ C.

An up-spectral space is defined to be a topological space satisfying the
axioms of a spectral space with the exception that X is not necessarily
compact [2]. Up-spectral spaces have been introduced and studied by Belaid
and Echi [2], in order to give some substantial information on a conjecture
about spectral sets raised by Lewis and Ohm in 1976 [22].

Using [3, Theorem 2.2], it is clear that an A-spectral space is up-spectral.
A natural question is whether an up-spectral space is necessarily A-spectral?

The above question has been answered by Echi and Gargouri in [11].
Next, we recall a concept introduced in [11].

Definition 3.3 ([11]). Let X be a topological space and U a subset of X.
Call U a T -subset of X, if U is a closed compact co-ICO subset of X.
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Recall that a link between up-spectral spaces and A-spectral space has
been given by Echi and Gargouri as follows.

Theorem 3.4 ([11, Theorem 1.8]). Let X be a topological space. Then the
following statements are equivalent:

(1) X is A-spectral;
(2) X satisfies the following properties:

(i) X is up-spectral.
(ii) For each compact closed subset C of X, there exists a T -subset D

of X such that C ⊆ D.

Now we are in a position to state the main result of this paper.

Theorem 3.5. Let (X,T ) be a PL-space and ≤ be the ordering defined on
X by: u ≤ v if and only if v ∈ {u}. Then the following properties hold.

(1) (X,≤) is a spectral set.
(2) (X,T ) is an up-spectral space.
(3) (X,T ) is spectral if and only if X has a unique closed point (in other

words, any alphabet associated to X is a singleton).
(4) (X,T ) is an A-spectral space.

Proof. One may suppose without loss of generality that X = A+ (equipped
with the topology of primitive languages), for some finite alphabet A.

(1) Let Prim(A) be the set of all primitive words over A. For u ∈ Prim(A),
we let Xu be the set {un | n ∈ N

+}. Then

X =
⋃

u∈Prim(A)

Xu

is an ordered disjoint union, where the ordering on Xu is defined by un ≤ um

if and only if n = m or m = 1.
By [22, Teorem 4.1], in order to prove that (X,≤) is spectral, it is enough

to show that (Xu ,≤) is spectral, for each u ∈ Prim(A). But this is an
immediate consequence of the characterization of L(eft)-spectral spaces done
by Dobbs–Fontana–Papick in [10]. Therefore, (X,≤) is a spectral set.

(2)

− (X,T ) is a sober space.
This follows immediately from Proposition 2.5(4) and Theorem 2.6.

− (X,T ) has a basis of compact open sets which is closed under finite
intersections.

It is easily seen that B := {V
A
(u) | u ∈ A∗} ∪ {∅} is a basis of

compact open sets; and for each two words u, v ∈ A∗, the two sets
V

A
(u) and V

A
(v) are comparable or do not meet.

(3) According to (2), X is spectral if and only if it is compact.
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− If A is not a singleton, then there are infinitely many primitive words.
Hence

X :=
⋃

u∈Prim(A)

VA(u)

is an open covering of X which has no finite subcover. Thus X is not
compact.

− Now, if A is a singleton (say for example A = {a}), then the unique
closed point (the unique primitive word) of A∗ is the word a. In this
case, X = V

A
(a); and thus X is compact.

(4) To prove that X is A-spectral, let us use Theorem 3.2. Since X
is up-spectral, it is enough to show that (X,T ) satisfies Condition (3) of
Theorem 3.2.

Let C be a compact closed set of X. Then there exist finitely many
primitive words p1, p2, . . . , pn over A such that

C ⊆ VA(p1) ∪ VA(p2) ∪ . . .VA(pn).

Set

O :=
⋃

u∈Prim(A)\{p1,p2,...,pn}
V

A
(u);

then, clearly, O is a clopen set of X. It is easy to check that each closed set
of a topological space is ICOC. Thus O is a co-compact ICOC open subset
of X such that O ⊆ X \ C.

Therefore, (X,T ) is an A-spectral space. �

Next, we give an example a topological space satisfying Properties (1),
(2) of Theorem 3.5 and Conditions (4), (5), (6) of Proposition 2.5 which is
not a PL-space.

First, let us recall that the study of the geometric and topological prop-
erties of digital images is the goal of digital topology. In the process of
digitizing a movie, some situations are often represented by subspaces and
quotients of locally finite topological spaces, so the study of these topological
spaces is important. The digital line, also known as the Khalimsky line, is
the major building bloc of the digital n-space. The Khalimsky line is the set
of the integers Z, equipped with the topology K, generated by the subbase
GK = {{2n − 1, 2n, 2n + 1} | n ∈ Z} [19], [20]. Hence a set U ⊆ Z is open in
K if and only if whenever x ∈ U is an even integer, then x − 1, x + 1 ∈ U .

Example 3.6. The Khalimsky line (Z,K) satisfies the following properties:

(1) K is an Alexandroff topology.
(2) {2n} = {2n} and {2n + 1} = {2n, 2n + 1, 2n + 2}, for each n ∈ Z.

Let ≤K be the ordering induced by the Khalimsky topology. Then
the ordered set (Z,≤K) is a 1-dimensional poset which looks like
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. . . 2n•

��
��

��
��

2(n+1)
•

��
��

��
��

. . .

. . . 2n+1• . . .

(3) For each n ∈ Z, {2n} is closed and {2n + 1} is open in (Z,K). Thus
(Z,K) is a T 1

2
-space.

(4) (Z,K) is a submaximal space.
(5) K is a quasi-Hausdorff topology.
(6) (Z,≤K) is a spectral set.
(7) (Z,K) is a noncompact A-spectral space.
(8) (Z,K) is not a PL-space.

Proof. Clearly, Properties (1), (2), (3) and (5) are straightforward.
(4) This property follows immediately from Proposition 2.4 and the fact

that the digital line is 1-dimensional.
(6) Let X1 be the set of elements of height 1 and X0 the set of elements

of height 0. Since for each x ∈ X0, (x ↑) ∩ (y ↑) = ∅, for all but finitely
many y ∈ X0, and also for each x ∈ X1, (↓ x)∩ (↓ y) = ∅, for all but finitely
many y ∈ X1, the poset (Z,≤K) is spectral, by [22, Corollary 5.10].

(7) Of course, ((↓ 2n), n ∈ Z) is an open covering of Z which has no finite
subcovering. Thus (Z,K) is not compact.

− The fact that the digital line is 1-dimensional implies that it is a sober
space (by Theorem 2.6).

− The collection B := {(↓ x) | x ∈ Z} ∪ {∅} is a basis of compact open
sets of the digital line, which is closed under finite intersections.

− It is easily seen that compact subsets of the digital line are exactly
finite sets (since (↓ x) is finite, for each x ∈ Z). Thus each subset of
Z is ICOC. It follows that Condition (3) of Theorem 3.2 is satisfied.

Therefore, (Z,K) is A-spectral.
(8) If X = A+ for some alphabet A, then for each primitive word u over

A, V
A
(u) = (↓ u) is an infinitely countable set. But, for the digital line, the

set (↓ x) has cardinality 1 or 3, for each x ∈ Z. It follows that the digital
line is not a PL-space. �
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