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ABSTRACT. In this paper we explore the combinatorics of the nonneg-
ative part (G/P)>o of a cominuscule Grassmannian. For each such
Grassmannian we define J-diagrams — certain fillings of generalized
Young diagrams which are in bijection with the cells of (G/P)>o. In
the classical cases, we describe JI-diagrams explicitly in terms of pattern
avoidance. We also define a game on diagrams, by which one can reduce
an arbitrary diagram to a JI-diagram. We give enumerative results and
relate our J-diagrams to other combinatorial objects. Surprisingly, the
totally nonnegative cells in the open Schubert cell of the odd and even
orthogonal Grassmannians are (essentially) in bijection with preference
functions and atomic preference functions respectively.
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1. Introduction

The classical theory of total positivity concerns matrices in which all
minors are nonnegative. While this theory was pioneered in the 1930’s,
interest in this subject has been renewed on account of the work of Lusztig [9,
10]. Motivated by surprising connections he discovered between his theory
of canonical bases for quantum groups and the theory of total positivity,
Lusztig extended this subject by introducing the totally nonnegative points
G>o in an arbitrary reductive group G and the totally nonnegative part
(G/P)>q of areal flag variety G/P. Lusztig conjectured a cell decomposition
for (G/P)>0, which was proved by Rietsch [15]. Cells of (G/P)>¢ correspond
to pairs (x,w) where z,w € W, z < w in Bruhat order, and w is a minimal-
length coset representative of W7 = W/W;. Here W; C W is the parabolic
subgroup corresponding to P.

Coming from a more combinatorial perspective, Postnikov [12] explored
the combinatorics of the totally nonnegative part of the type A Grassman-
nian. He described and parameterized cells using certain fillings of Young
diagrams by 0’s and +’s which he called I-diagrams, and which are defined
using the avoidance of the I-pattern. The JI-diagrams seem to have a great
deal of intrinsic interest: they were independently discovered by Cauchon
[3] in the context of primes in quantum algebras (see also [8]); they are in
bijection with other combinatorial objects, such as decorated permutations
[12]; and they are linked to the asymmetric exclusion process [5].

In this paper we use work of Stembridge [20] and of Proctor [14] to gen-
eralize J-diagrams to the case of cominuscule Grassmannians. In this case
the poset W is a distributive lattice and hence can be identified with the
lattice of order ideals of another poset Q7. It turns out that the poset
@’ can always be embedded into a two-dimensional square lattice. Each
w € WY corresponds to an order ideal O,, C Q7 which can be represented
by a generalized Young diagram. We then identify cells of the nonnegative
part of a cominuscule Grassmannian with certain fillings, called I-diagrams,
of O, by 0’s and +’s. Arbitrary fillings of O,, by 0’s and +’s correspond to
subexpressions of a reduced expression for w; the I-diagrams correspond to
positive distinguished subexpressions [11].

We give concise descriptions of I-diagrams for type B and D cominuscule
Grassmannians in terms of pattern avoidance. Unfortunately there does not
seem to exist a concise description for the remaining F7 and Eg cominuscule
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Grassmannians. We also define a game (the I-game) that one can play on
diagrams filled with 0’s and +’s, by which one can go from any such diagram
to a J-diagram.

We then explore the combinatorial properties of JI-diagrams. We define
type B decorated permutations and show that they are in bijection with
J-diagrams. We give some formulae and recurrences for the numbers of
J-diagrams. Finally, we show that there are twice as many type (Bj,n)
J-diagrams in the open Schubert cell as preference functions of length n,
while type (Dy,n) I-diagrams in the open Schubert cell are in bijection
with atomic preference functions of length n.

Organization. In Section 2, we give the relevant background on total posi-
tivity for flag varieties, and in Section 3, we give background on cominuscule
Grassmannians. In Section 4, we introduce JI-diagrams, I-moves, and the I-
game. The following five sections are devoted to characterizing JI-diagrams
for the cominuscule Grassmannians of types A, B and D. In Section 10, we
review type A decorated permutations and describe type B decorated per-
mutations, and in Section 11, we give enumerative results, including those
on preference functions.

Acknowledgements. We are grateful to Frank Sottile and Alex Postnikov
for interesting discussions.

2. Total positivity for flag varieties

We recall basic facts concerning the totally nonnegative part (G/Py)>o
of a flag variety and its cell decomposition.

2.1. Pinning. Let G be a semisimple linear algebraic group over C, split
over R, with split torus 7". Identify G (and related spaces) with their real
points and consider them with their real topology. Let ® C Hom(7,R*)
be the set of roots and choose a system of positive roots ®*. Denote by
BT the Borel subgroup corresponding to ®*. Let B~ be the opposite Borel
subgroup B~ such that BT N B~ = T. Let U" and U~ be the unipotent
radicals of BT and B~.

Denote the set of simple roots by II = {a; | i € I} € ®. For each
«; € 1I there is an associated homomorphism ¢; : SLy — G, generated by
1-parameter subgroups z;(t) € U™, y;(t) € U™, and ) (t) € T. The datum
(T,B*,B~,x;,y;;i € I) for G is called a pinning. Let W = Ng(T)/T be
the Weyl group and for w € W let w € Ng(T') denote a representative for
w.
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2.2. Totally nonnegative parts of flag varieties. Let J C I. The
parabolic subgroup W; C W corresponds to a parabolic subgroup P; in G
containing B*. Namely, P; = Uyew,BTwB™T. Let 7/ : G/BT — G/P; be
the natural projection.

The totally nonnegative part US, of U™ is defined to be the semigroup
in U~ generated by the y;(t) for t € R>p. The totally nonnegative part
(G/Py)>o of the partial flag variety G /Py is the closure of the image of U,
in G/Pj. -

2.3. Cell decomposition. We have the Bruhat decompositions
G/B" = Upew BT wB"/B" = Uyew B~ wB"/B*

of G/B™ into BT-orbits called Bruhat cells, and B~ -orbits called opposite
Bruhat cells. For v,w € W define

Ry = BTwB*/BtNB 9B /B*.

The closure of R, ,, is often called a Richardson variety. The set R,,, is
nonempty precisely if v < w, and in that case is irreducible of dimension
¢(w) — ¢(v). Here < denotes the Bruhat order (or strong order) of W [2].
For v,w € W with v < w, let

Rv,w;>0 = Rv,w N (G/B+)ZO-

We write W for the set of minimal length coset representatives of W/W.
The Bruhat order of W is the order inherited by restriction from W. Let
T7 ¢ W x WY be the set of pairs (z,w) with the property that z < w.
Given (z,w) € Z”7, we define P:}:],w;>0 := 7/ (Ryw:>0). This decomposition of
(G/Py)>o was introduced by Lusztig [10]. Rietsch showed that this is a cell
decomposition:

Theorem 2.1 ([15]). The sets P}, are semialgebraic cells of dimension
l(w) — 4(x), giving a cell decomposition of (G/Py)>o.

In fact the cell decomposition of Theorem 2.1 is a CW complex [13, 17].

3. (Co)minuscule Grassmannians

We keep the notation of Section 2. We say the parabolic P; is mazimal
if J =1\ {j} for some j € I. We may then denote the parabolic by
P; := Pj and the partial flag variety by G/P; := G/P;, which we loosely
call a Grassmannian. Similarly, we use the notation Z7, W7, and W;. We
let Wr{lax denote the maximal length coset representatives of W/ Wj.

Let P; be a maximal parabolic subgroup. We will call P}, the flag variety
G/Pj, and the simple root o cominuscule, if whenever o; occurs in the
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simple root expansion of a positive root v it does so with coefficient one.
Similarly, one obtains the definition of minuscule by replacing roots with
coroots. The (co)minuscule Grassmannian’s have been classified and are
listed below, with the corresponding Dynkin diagrams (plus choice of simple
root) shown in Table 1.

Proposition 3.1. The maximal parabolic P;, the flag variety G/P;, and the
simple root o are (co)minuscule if we are in one of the following situations:

(1) W = A, and j € [1,n] is arbitrary,

(2) W =18, (orCy) and j =1 orn,

(3) W=D, (withn>4) and j =1, n—1, orn,
()W E¢ and j =1 or 6,

(5) W=FE7;andj="1.

For more details concerning this classification we refer the reader to [1].

Besides the Bruhat (strong) order, we also have the weak order on a par-
abolic quotient (see [2] for details). An element w € W is fully commutative
if every pair of reduced words for w are related by a sequence of relations of
the form s;s; = s;5;. The following result is due to Stembridge [20] (part of
the statement is due to Proctor [14]).

Theorem 3.2. If (W,j) is (co)minuscule then W7 consists of fully com-
mutative elements. Furthermore the weak order (W7, <) and strong order
(Wi <) of WJ coincide, and this partial order is a distributive lattice.

Since (W7, <) and (W7, <) coincide, we will just refer to this partial order
as W7. We indicate in Table 2 (mostly taken from [7]) the posets 7 such
that W7 = J(Q7), where J(P) denotes the distributive lattice of order ideals
in P. Note that the posets are drawn in “French” notation so that minimal
elements are at the bottom left. The diagrams should be interpreted as
follows: each box represents an element of the poset (7, and if b; and by are
two adjacent boxes such that by is immediately to the left or immediately
below by, we have a cover relation by < by in @7. The partial order on Q7
is the transitive closure of <. (In particular the labeling of boxes shown in
Table 2 does not affect the poset structure.)

We now state some facts about (7 which can be found in [20]. Let
wg € WJ denote the longest element in W7. The simple generators s; used
in a reduced expression for wé can be used to label Q7 in a way which reflects
the bijection between the minimal length coset representatives w € W7 and
(lower) order ideals O,, C Q7. Such a labeling is shown in Table 2; the label
1 stands for the simple reflection s;. If b € O, is a box labelled by ¢, we
denote the simple generator labeling b by s; := s;; the corresponding index
1 € I is the simple label of b.
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TABLE 1. The (co)minuscule parabolic quotients. The
(co)minuscule node is displayed as the solid dot in the Dynkin
diagram. When two choices of (co)minuscule nodes give iso-
morphic parabolic quotients we have placed them on the
same Dynkin diagram (this happens in D,, and Eg).

H Root system Dynkin Diagram ‘ Grassmannian H

A, 1 2 .- j - n |usual Grassmannian Gr;, 41
&—0—0—0—0==0
B,(n>2)| 1 2 --- ... n |odd-dimensional quadric Q**~!
o0—O0—0—0—C==0
B,(n>2) | 1 2 --- --- n |odd orthogonal Grassmannian
OGn,ZnJrl
&—0—0—0—0=<0
Cp(n>2) 1 2 --- .- n |projective space P?7~1
o0—O0—0—0—C=-9
Cp (n>2) 1 2 --- ... n |Lagrangian Grassmannian LGy, 2,
on
n (n>4) oo 0o O<o even-dimensional quadric Q%72
1 2 .. .o.op21
o—o—o—o—o<. n
D,, (n>4) e | even orthogonal Grassmannian
1 2 . ...n2q
OGy+1,2n41
T 2
Eg 1' 3: 4: 5: 6. real points of the Cayley plane QP?

e

E; 1 3 4 5 6 7 |(real) Freudenthal variety Fr

Given this labeling, if O,, is an order ideal in @7, the set of linear exten-
sions {e : O, — [1,4(w)]} of O, are in bijection with the reduced words
R(w) of w: the reduced word (written down from right to left) is obtained
by reading the labels of O, in the order specified by e. We will call the
linear extensions of O,, reading orders. (Alternatively, one may think of a
linear extension of O,, as a standard tableau with shape O,,.)

Remark 3.3. We use the following conventions: we do not distinguish
between the root systems B, and C), since we are only interested in the
posets W7 (thus we refer to the Weyl group of both root systems as B,,);
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TABLE 2. Underlying posets of parabolic quotients.

Parabolic quotient

Qj

W = Anfl

w
W
ot

(=}

(n=28and j=3)

W =B,and j=1

112]3[4]
W =B, and j=n 324 (n=4)
4]
, 5[3]2]1
W =D, and j =1 TT2(3]4 | |( 5)
112]3[4]
W =D, and j=n 325 (n=175)
5]
1[3]4]5]6]
W = Egand j = 1 2i§2
[1]3]4]5]6
7]
16
5
2[4
W=F;and j=1 716(5|4]|3
6/5[4[3[1
542
2413
7]6]5]4]3]1

99
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for W = D,, we always pick j = 1 or n since the case j = n — 1 is essentially
the same as the case j = n; similarly for W = FEg we always pick j = 1.

Remark 3.4. In the literature, the two cases minuscule and cominuscule
are usually distinguished. This distinction will not be important for our
applications.

4. JI-diagrams, I-moves and the I-game

4.1. Positive distinguished subexpressions. In this subsection we give
background on distinguished and positive distinguished subexpressions. For
more details, see [6] and [11]. Consider a reduced expression in W, say
8382818389283 in type As. We define a subexpression to be a word obtained
from a reduced expression by replacing some of the factors with 1. For
example, s3s9 153521 is a subexpression of szsosiszssess. Given a reduced
expression w = s;, 8, ... 5, for w, we set wy 1= i, 8;, ... 5, if K> 1 and
set wy = 1 for k = 0. The following definition given in [11] was implicit in
[6].

Definition 4.1 (Positive distinguished subexpressions). Let w := s;, ... s;
be a reduced expression. We call a subexpression v of w positive distin-

n

guished if

(4.1) V(g-1) < V(-1)Si;
forall j=1,...,n.

Note that (4.1) is equivalent to v(;_1)y < vy < v(j—1ys;;- We will refer to
a positive distinguished subexpression as a PDS for short.

Lemma 4.2. [11] Given v < w in W and a reduced expression w for w,
there is a unique PDS vy for v in w.

4.2. @-diagrams and J-diagrams. The goal of this section is to identify
the PDS’s with certain fillings of the boxes of order ideals of Q7.
Let O, be an order ideal of 7, where w € WJ.

Definition 4.3. An @®-diagram (“o-plus diagram”) of shape O,, is a filling
of the boxes of O,, with the symbols 0 and +.

Clearly there are 2((®) @-diagrams of shape O,. The value of an @-
diagram D at a box x is denoted D(z). Let e be a reading order for O,;
this gives rise to a reduced expression w = w, for w. The ®-diagrams D of
shape O,, are in bijection with subexpressions v(D) of w: we will make the
seemingly unnatural specification that if a box b € O,, is filled with a 0 then
the corresponding simple generator s is present in the subexpression, while
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if b is filled with a + then we omit the corresponding simple generator. The
subexpression v(D) in turn defines a Weyl group element v := v(D) € W.

Example 4.4. Consider the order ideal O,, which is Q7 itself for type A4
with j = 2. Then @’ is the following poset

1123
2134

Let us choose the reading order (linear extension) indicated by the labeling
below:

4156
11213

Then the @-diagrams

0/0]0] [0]+]0] [0]0O]O
010]0] [0]0]|+] |[+|O]|+

correspond to the expressions s35981545352, S318118359 and s3s9511s31. The
first and the last are PDS’s while the second one is not, since it is not
reduced.

We next show that v(D) does not depend on the linear extension e. The
following statement can be obtained by inspection.

Lemma 4.5. If b,/ € O, are two incomparable boxes, then s, and sy
commute.

Lemma 4.5 implies the following statement.

Proposition 4.6. Let D be an ®-diagram. Then:

(1) The element v := v(D) is independent of the choice of reading word
e.
(2) Whether v(D) is a PDS depends only on D (and not e).

Proof. For part (1), note that two linear extensions of the same poset
(viewed as permutations of the elements of the poset) can be connected
via transpositions of pairs of incomparable elements. By Lemma 4.5, v(D)
is therefore independent of the choice of reading word.

Suppose D is an b-diagram of shape O,,, and consider the reduced expres-
sion w := W, = s;, ...S;, corresponding to a linear extension e. Suppose
v(D) is a PDS of w. For part (2), it suffices to show that if we swap the k-th
and (k + 1)-st letters of both w and v(D), where these positions correspond
to incomparable boxes in O,,, then the resulting subexpression v/ will be a
PDS of the resulting reduced expression w’. If we examine the four cases
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(based on whether the k-th and (k 4 1)-st letters of v(D) are 1 or s;,) it is
clear from the definition that v’ is a PDS. O

Proposition 4.6 allows us to make the following definition.

Definition 4.7. A I-diagram of shape O,, is an ®-diagram D of shape O,,
such that v(D) is a PDS.

The following statement follows immediately from Lemma 4.2 and Theo-
rem 2.1.

Proposition 4.8. The cells of (G/Pj)>o defined in Theorem 2.1 are in
bijection with pairs (D, Q) where O, is an order ideal in Q7 and D is a I-
diagram of shape O.,. Furthermore, the cell labeled by (D, O,,) is isomorphic
to (RT)® where s is the number of +’s in D.

Let us now state one of the main aims of this work.
Problem 4.9. Give a compact description of I-diagrams.

4.3. The d-game. Let D be an ®-diagram of shape O,, corresponding to
an element v(D) € W. By Lemma 4.2 and Proposition 4.6 there is a unique
J-diagram D, with v(Dy) = v(D). We call D, the I-ification of D.

Problem 4.10. Describe how to produce Dy from D.

Our solution to Problem 4.10 will be algorithmic, involving a series of
game-like moves. Suppose C C O,, is a convex subset: that is, if z and y are
in C' then any z such that x < z < y must also be in C'. We may extend the
definition of @®-diagrams to C'. In addition, Proposition 4.6 still holds for
@-diagrams of shape C. If D is an ¢-diagram of shape C' we again denote
by v(D) € W the corresponding Weyl group element. If S : C — {0,+,7}
is a filling of C' with the symbols 0, + and ?, we say that an @-diagram D
is compatible with .S if for every x € C

(1) D(z) =0 = S(z) € {0,7}, and

(2) D(z) =+ = S(z) e {+,7}.

If x,y € O, are two boxes we let (z,y) = {z € Oy | x < z < y} be
the open interval between x and y. Similarly, define the half open intervals
(z,y] and [z,y).

Definition 4.11. A I-move M is a triple (x,y,S) consisting of a pair z <
y € O, of comparable, distinct boxes together with a filling S : (z,y) —
{0, +, 7} of the open interval (x,y) such that

(4.2) v(DUz)=v(DUy)
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for every @-diagram D of shape (x,y) compatible with S. Here DUz (DUy)
is the @-diagram of shape [x,y) ((z,y]) obtained from D by placing a 0 in
x (y). We say that (z,y,S) is a J-move from y to z via S.

Now if D is an @®-diagram whose shape contains [z,y], we say that a
I-move M = (z,y,S) can be performed on D if D(y) = 0 and D|(,, is
compatible with S. The result of M on D is the ®-diagram D’ obtained
from D by setting D(y) = + and switching the entry of D(z) (that is,
D'(z) =0if D(x) =+ and D'(z) = + if D(x) =0).

Remark 4.12. Let the simple generator corresponding to the box x (resp. y)
be the simple root a (resp. §). Then (4.2) is equivalent to v(D)s, = sgv(D)
which in turn is equivalent to

(4.3) v(D)™t- B =a.

Example 4.13. Consider the order ideal O,, which is Q7 itself for type A4
with 7 = 2. Then

+101¥Y
|0+

is a J-move, since 95352 = s35253. Here (z,y) consists of the four boxes in
Q7 not equal to z or y, and since S does not involve any ?’s, there is only
one @-diagram D of shape (z,y) compatible with S. Both of the following
are applications of this I-move:

+l0]0 +lo[+
olo[+] — [+|o|+
+l0]0 +lo[+
+lo[+] — [olo|+

For two {0,+, ?}-fillings S, S’ of the same shape let us say that S’ is a
specialization of S (and S a generalization of S’) if S’ is obtained from S by
changing some ?’s to 0’s or +’s. It is then clear from the definition that if
S’ is a specialization of S and (z,y,S) is a J-move then so is (z,y,S").

The following lemma is immediate from the definitions.

Lemma 4.14. If D' is obtained from D by a sequence of I-moves, v(D') =
v(D).

Performing a JI-move on an @-diagram D either reduces the number of
0’s, or moves a 0 to a box which is smaller in the partial order (and the +
to a bigger box). Thus any sequence of I-moves must eventually terminate.

Proposition 4.15. No I-moves can be performed on a I-diagram. FEvery
@-diagram D can be I-ified by a finite sequence of I-moves.
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Proof. Let us assume that a reading order has been fixed for O,, and let n =
f(w). It is known ([11, Lemma 3.5]) that the unique PDS v = t1ta...t,
for v can be constructed greedily from the right. More precisely, we have
that v,y = v, and once we have determined ¢; ... ¢, we can determine v(;_1);
to construct v we set

(4'4) t; = Si; if 'U(j)sz‘.]- < V)
1 otherwise.

The application of a J-move shifts simple generators to the right in the
corresponding word. Since v, already corresponds to the rightmost word,
we deduce that no J-moves can be performed on a J-diagram.

Now suppose an @-diagram D is not a J-diagram. Let D differ from
its J-ification D, at a box b where b is chosen to be as early as possible
in the reading order. By the greedy property of a PDS, D(b) = + and
D, (b) = 0. Denote the set of boxes occurring after b in the reading order
by A C Oy. Then v(D,) has the form v((D4)|4)spv’ for some v/ and v(D)
has the form v((D|a)v’, which implies that v(D]a)sp = v((Dy)|a) and
v((D+)|a) < v(D|a). Thus by the exchange axiom, v(D|4)s; is obtained by
omitting a simple generator from v(D|4). Let b’ be the box corresponding
to this simple generator; then the I-move (b, b, v(D|,4))) can be performed
on D. Repeating this, we eventually obtain D,. O

We say that a set S of I-moves is complete if every ®-diagram D can be
Jd-ified using I-moves in S only.

Problem 4.16. Describe a complete set of I-moves.

5. Type A,_1

In this section we will give a compact description of I-diagrams in type
A,_1 and observe that they are the same as the I-diagrams defined by
Postnikov [12]. Let (W, j) = (An—1,7) so that any O,, can be identified with
a Young diagram within a j x (n — j) rectangle (see Table 2).

Theorem 5.1. An ®-diagram of shape O,, in type A,_1 is a I-diagram if
and only if there is no 0 which has a + below it and a + to its left.

In Theorem 5.1, “below” means below and in the same column, while “to
its left” means to the left and in the same row. If an ®-diagram satisfies this
condition, we say that it possesses the (type A) J-condition. Theorem 5.1
can be proved using the wiring-diagram argument from [12, Theorem 19.1].
This is similar to the proof of the (much) more difficult Theorem 8.1 below.
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Instead, our proof below will appeal to the fact that the cells of the type
A,,—1 Grassmannians have previously been enumerated.

Let x < y be two distinct, comparable boxes in O,. Then [z,y] is a
rectangle (or as a poset, a product of chains). Given z < y, let Sy denote
the following {0, +, 7} filling of (z,y):

0

s |olo|+
ol|lo|o

ololo|o
olo|lo|o
+ ool

(5.1)

That is, Sy is filled with 0’s except for the top left and bottom right corners,
where it is filled with +’s.

Proposition 5.2. The triples (z,y,S0) defined above are I-moves.
We will call the I-moves (z,y, Sp) the rectangular J-moves.

Proof. For simplicity and concreteness let us suppose that the top left-hand
+ lies on the diagonal with corresponding simple generator si, and that the
rectangle [x,y] has r > 2 rows and ¢ > 2 columns. We use the criterion for
a J-move described in Remark 4.12. Note that o = a,. and 8 = a.

Since Sp has no ?’s we need only check (4.3) for D = Sp. Furthermore
we pick the reading order obtained by reading the rows from left to right
starting from the bottom row:

15]1
10[1 14
51671819
1121314

D
—_
EN
—_
co

—_
[—
[\~
—
w

= (SrJrl te 5r+cfl)(5r715r T 5r+c72) te (5253 T Sc+1)(§15253 T Scfl)ac
= (Sr41 " Spge—1)(Sr—18p - Sppe—2) -+ (5253 Seq1) 2
(

Sp41 37‘+c—1)(5r—137‘ e 5r+c—2) c Q3 et
= (SrJrl e 5r+cf2)ar,r+c72

This proves that (z,y,Sp) is indeed a J-move. O

Theorem 5.3. The I-moves (z,y,Sy) form a complete system of I-moves.
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Proof of Theorems 5.1 and 5.3. Let D be an ®-diagram which does not
satisfy the (type A) J-condition. Let y be one of the boxes closest to the
bottom left which contains a 0 violating the (type A) JI-condition. Let z;
(22) be the box to the left of (below) y containing a + which is closest to y.
Let z be the box which forms a rectangle with y, 21, and z2. We claim that

D|(zy) = So as in (5.1).

2110010

oo

x z2

Otherwise there is a box t € (z,y) — {21, 22} containing a +. We pick ¢
closest to y. If t is not below z; then above t is a box 3’ in the same row as
y such that D(y") = 0. This ¢’ thus violates the (type A) I-condition and is
closer to the bottom left than y, a contradiction. A similar argument holds
if t is not to the left of z5. We conclude that ¢ does not exist.

Thus the rectangular I-move (z,y, Sy) can be performed on D. Therefore
the J-diagrams must be a subset of those @®-diagrams which satisfy the
(type A) I-condition, that is, such that there is no 0 which has a + below
it and a + to its left. But in fact it has been shown that the &-diagrams
satisfying the (type A) J-condition are in bijection with pairs (z,w) where
reW,we W’ and 2 < w [12, 22]. Therefore the J-diagrams must be
exactly those ®-diagrams satisfying the (type A) I-condition. This proves
Theorems 5.1 and 5.3. (]

In [12], Postnikov studied the totally nonnegative part of the type A
Grassmannian (Gry,,)>0, and showed that it has a cell decomposition where
cells are in bijection with certain combinatorial objects he called I-diagrams.
Postnikov’s JI-diagrams are obtained from ours by reflecting in a horizontal
axis. Since Postnikov was using the English convention for Young diagrams
whereas we are using French, Theorem 5.1 shows that our definition of -
diagrams is consistent with Postnikov’s definition.

6. Type (Bn,n)

Now let (W, j) = (B,,n) so that O,, C @’ can be identified with a shape
(a lower order ideal) within a staircase of size n (see Table 2 for the labeling
of Q7 with simple generators). We refer to the n boxes along the diagonal
of Q7 as the diagonal boxes.
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Theorem 6.1. A type (B,,n) I-diagram is an ©-diagram D of shape O,
such that:

(1) If there is a O above (and in the same column as) a + then all boxes
to the left and in the same row as that 0 must also be 0’s.
(2) Any diagonal box containing a 0 must have only 0’s to the left of it.

If an @-diagram D satisfies the conditions above we will say that it satisfies
the (type (Bp,n)) I-conditions.

We now provide some J-moves which will turn out to be complete. Let
x < y be two distinct, comparable boxes in O,, such that [z, y] is a rectangle.
Denote by Sy the filling of (z,y) as in (5.1). The following result is proved
in the same manner as Proposition 5.2.

Proposition 6.2. The triples (z,y,Sy) defined above are I-moves.

We will call the I-moves (z,y, Sy) the rectangular J-moves.
Now let # < y be two distinct diagonal boxes, so that [z,y] is itself a
staircase. Denote by S the following filling of (x,y):

olofo]¥y]
0lo]o
0]0
0

|aooo—|—

In other words, S is filled with 0’s with the exception of the top-left corner
box.

Proposition 6.3. The triples (z,y,S1) defined above are I-moves.
We call the I-moves (x,y,S1) diagonal J-moves.

Proof. We follow the same general strategy as in the proof of Proposi-
tion 5.2, again using the row reading order. Let us assume that the top-left
corner box of (x,y) is labeled by the simple generator s;. We calculate,
using the notation a;; = a; + -+ + ay,

U(D)il Q= (Snflsn) T (Sk—l—l T Snflsn)(skz—l—l T 5n725n71)an

= (Snflsn e (Sk—l—l tet Snflsn)akz—l—l,n

) .
= (Snflsn) C Qo
= (sp—18n)(n-1 + ay)
= ap.

This proves that (z,y,S7) is indeed a J-move. O
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Theorem 6.4. The I-moves (x,y,Sp) and (x,y, S1) form a complete system
of I-mowes.

Before we prove Theorems 6.1 and 6.4, we recall the basic facts concerning
the representation of B,, as signed permutations (see [2]). Let us identify
the type Aa,—1 Weyl group with the symmetric group Sy1;  +,}. There is
a homomorphism ¢ from the B, Weyl group with generators si,...,s, to
S{+1,...,4n}, Which sends s, to (—1,1) and s; to the “signed transposition”
(n—i,n—i+1)(—(n—1i),—(n —i+1)). This map is bijective onto the set
of € St41,.. 4+n} such that 7(i) = —m(—i), called signed permutations. The
Bruhat order on B,, agrees with the order on signed permutations inherited
from type As,_1 Bruhat order.

The embedding ¢ : By, — S, +n) allows us to identify a type (B,, n) ©-
diagram D of shape O,, with the type (A2,—1,n) ®-diagram ¢(D) of shape
O,(w) obtained by reflecting D over the diagonal y = z. The following
observation is clear from the definitions.

(6.1) If v(«(D)) is a PDS of ¢(w) then v(D) is a PDS of w.

Proof of Theorems 6.1 and 6.4. Let D be an ®-diagram. If D violates
condition (1) of Theorem 6.1 then a rectangular I-move can be performed on
it, as in the proof of Theorem 5.1. Otherwise, suppose D violates condition
(2) of Theorem 6.1.

Let y be the diagonal box containing the 0 violating condition (2) closest
to the bottom left and let z be the box in the same row as y containing a
+ and closest to y. Let x be the diagonal box in the same column as z.
We claim that D,y = S1. Using the fact that D satisfies condition (1)
of Theorem 6.1 we deduce that D|, ,) contains only 0’s along the diagonal.
Using the assumption that y was chosen closest to the bottom left we then
deduce that D, ,y = 51.

zlo]olo]y]

X

This shows that (x,y,S1) can be performed on D. Thus after a finite se-
quence of the moves (x,y,Sy) and (z,y,S1), the ®-diagram D can be made
to satisfy the (type (Bp,n)) I-conditions. In particular, a I-diagram must
satisfy the (type (By,n)) I-conditions.
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Conversely, suppose that an @-diagram D satisfies the (type (Bp,n))
J-conditions of Theorem 6.1. A comparison of the J-conditions of Theo-
rems 5.1 and 6.1 implies that (D) (obtained by reflecting D in the diago-
nal) is a type (Az,—1,n) I-diagram. Thus v(¢(D)) is a PDS, hence by (6.1),
v(D) is a PDS. Therefore D is a type (B, n) J-diagram. O

7. Type (Bn,1)

Now let (W, j) = (By, 1) so that O, C @’ can be identified with a single
row (see Table 2 for the labeling of Q7 with simple generators). We call the
box labeled n (if contained in O,,) the middle box, and any two boxes with
the same simple label conjugate. The conjugate of the middle box is itself.

Theorem 7.1. A type (B, 1) I-diagram is an @-diagram D of shape O,
such that if there is a 0 to the right of the middle box, then the box b im-
mediately to the left of this 0 and the conjugate V' to b cannot both contain
+s.

Proof. Suppose D and D’ are two @®-diagrams of shape O, such that
v(D) = v(D'). Then the words corresponding to v(D) and v(D’) are related

by relations of the form s;s; = s;s; and s? = 1; that is, no braid relation is
required. This readily implies the description stated. O

Let x < y be a pair of conjugate boxes in O,,. Let Sy denote the following
filling of (z,y):

[zl ]2 r ]2 ]2 ]+]Y]

The following claim is immediate.
Proposition 7.2. The triples (z,y,S0) defined above are I-mowves.

Theorem 7.3. The I-moves (z,y,Sy) form a complete system of I-moves.

8. Type (Dy,n)

Now let (W,5) = (Dy,n) so that O,, C @7 can be identified with a shape
contained inside a staircase (see Table 2 for the labeling of 7 with simple
generators). We refer to the n boxes along the diagonal of Q7 as the diagonal
boxes. The distance of a box b from the diagonal is the number of boxes
that b is on top of, so that a diagonal box has distance 0 from the diagonal.

In the following we will say that a box b is to the left or to the right
of (above or below) another ¢’ if and only if they are also in the same row
(column). We will use compass directions when the same row or column
condition is not intended.
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Theorem 8.1. A type (D,,n) I-diagram is an ®-diagram D of shape O,
such that:

(1) If there is a 0 above a + then all boxes to the left of that 0 must also
be 0’s.

(2) If there is a 0 with distance d from the diagonal to the right of a + in
box b, then there is no + strictly southwest of b and d + 1 rows south
of the 0.

(3) One cannot find a box ¢ containing a 0 and three distinct boxes by, by, bs
containing +’s such that: ¢ has distance d from the diagonal and is
to the right of bi; the box by is the boxr d + 1 rows below by; and b3 is
strictly northwest of ba and strictly south of by.

An @-diagram D satisfying the conditions of Theorem 8.1 is said to satisfy
the (type (D,,n)) I-conditions.

We now provide a complete set of I-moves. Let = < y be two distinct,
comparable boxes in O,, such that [z,y] is a rectangle. Denote by Sy the
filling of (z,y) as in (5.1). The following result is proved in the same manner
as Proposition 5.2.

Proposition 8.2. The triples (z,y,Sy) defined above are I-moves.

We will call the I-moves (z,y, Sy) the rectangular J-moves.

Now let z < y be two distinct boxes so that x is ¢ columns west of y and
r rows south of it. Let y be distance d from the diagonal. We suppose that
r > d+1 and set k =r—(d+1). Denote by S; the following {0, +, 7 }-filling

of (z,y):

?717]+10(0|¥
?71710]0/0]0
?71710]0(0]0
+10]7/0]0
010(0]0
0100
z|0

where:
(1) The + in the row of y is k boxes to the left of y.
(2) The + in the column of = is k boxes above x. Our assumptions imply
that this + is southwest of the first + and is d + 1 rows south.
(3) The box below the first + and to the right of the second + is a ?.
(4) The remaining boxes are filled with 0’s except for the boxes both west
of the first + and north of the second +.

Proposition 8.3. The triples (z,y,S1) defined above are I-moves.
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Proof. We follow the same general strategy as in the proof of Proposi-
tion 5.2, again using the row reading order. Let us assume that the top-left
corner box of (z,y) is labeled 0 (for readability) and that the diagonal box
below y is labeled by n rather than n — 1. We lose no generality here since
there is an automorphism of the D,, Weyl group swapping s, and s,_1 and
fixing all other generators. Our assumptions give the picture:

0 c—k c
1
m—2 n
d+1 ? m—1
n
r m

where the label m of the diagonal box to the right of z depends on the parity
of k, and the central 7 is labeled ¢ — k+d+ 1. Let m* denote n if m =n—1
and vice versa. Note also that n =c+d + 1.

In the following we use the notation a;; = o; + - - -+« (with a1, = 0),
the notation Sg = S4Sa+1° - Sp, and the notation 5; to indicate a simple
generator which may or may not be present. We assume k > 2; otherwise
the calculation is even simpler.

U(D)_lsac

= (Sr+1 $m) (S]~sme) - (5§+22 n)(Sngg m537/€2+d+25n—1)
(S5 TSI gsn) - (ST RS (ST a

= (ST kS§+k+1)O‘cfk+1,c

'(SC SekHd—T 15” k+d8n) *Oe—k+2,c+1

'(SC ST 15” k+d8n)ac+d+l kn—2

= (S A5 Tra ST k+d+25n 1) Qg dt1—kn—2 + Qn

( d+25n)ad+2n+ac+d+2 kn—2

(CHh

sm ) cOd43n + Qetd+3—k,n—2
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= (S:L__fsm*)ar—l,n
= (S;L;fsm)ar,n72 +am
= q.
In the third last equality, we have used the fact that ac—pir—1p—2 = 0,

which holds since ¢—k+r—1 = n— 1. This proves that the triples (z,y, S1)
are indeed J-moves. O

Now we define a third kind of J-move (z,y,S2). We keep the same as-
sumptions and notation for x and y as for (x,y,S1). However, now given
x and y there is more than one choice for Sa. Denote by Sy (one of) the
following {0, +, ?}-fillings of (x,y):

7171717(+]0]0]Y
?71717]17/0]0]0]0
+10]0/0]|+]0|0]0
0/0/0]0]7|0]0]0
0/0/0]0]+]|0]0
0/0/0]0]0]0
0/0/0]0]0
r/10]0]0

where:

(1) The + (called z1) in the row of y is k boxes to the left of y.

(2) The lower + (called z3) below z; is k rows north of  or alternatively
d + 1 rows south of y.

(3) The remaining two +’s are chosen on the same but any row strictly
south of z; and north of zp: one of these (called z4) is in the same
column as z; and z2 while the other (called z3) is in the same column
as .

(4) The remaining boxes are filled with 0’s except for: the boxes which
are strictly west of z; and strictly north of z3; and the boxes between
(and in the same column as) z, and zy.

The following result is proved in the same manner as Proposition 8.3. In
fact the half of the calculation below 29 is identical.

Proposition 8.4. The triples (z,y,S2) defined above are I-moves.

Theorem 8.5. The I-moves (x,y,S0), (z,y,S51) and (z,y,S2) form a com-
plete system of I-mowes.

Proof of Theorems 8.1 and 8.5. We first show that the ®-diagrams sat-
isfying the (type (Dy,n)) I-conditions correspond to PDS’s. It is well-known
[2] that D,, Weyl group elements can be identified as signed permutations



TOTAL POSITIVITY FOR COMINUSCULE GRASSMANNIANS 73

on the 2n letters {£1,+2,...,£n} which are even: that is, have an even
number of signs in positions 1 through n. This is achieved by the map §
which sends s, — (1,-2)(2,—1) and s; — (n—i,n—i+1)(i —n,i—n—1)
for 1 <i <n —1. Note that § does not preserve Bruhat order.

Using 0, we obtain a type (Ag,—1,n) @-diagram from a type (D,,n) &-
diagram D. The type (A2,—1,n) ®-diagram can be converted to a wiring
diagram wire(D) in a n x n square (+’s become elbows and 0’s become
crosses). For example:

54321
+[0[+]+] +[0[+[+]+ 5 FAHP A A1
+|+{0 N [ O O e -2
0]0 0/0]0]0]+ 3 -3
-+ +|+]0|+]0 27 -4

+1+H[0[+]+ 1 AT A5
—1-2-3-4-5

Note that most boxes are replaced by an elbow or a cross in the same position
and the diagonal-symmetric position. However, boxes corresponding to the
simple generator s,, are replaced by a 2 x 2 square of boxes all containing
either elbows or crosses.

The condition for a wiring diagram to be the wiring diagram of a PDS
is the following: two wires p,q which cross in a square corresponding to
b € D are not allowed to touch or cross again (as we read from northwest to
southwest), except when that touching/crossing happens in one of the two
by two squares corresponding to s,. If p, ¢ both enter a two by two square
corresponding to a diagonal square b’ € D, then the requirement is instead
that the effect on wire(D) of changing b from a 0 to a + is not the same as
the effect of changing b’ between a + and a 0.

We allow touching/crossing again in that two by two square as long as
not all four boxes are touching/crossing.

Now suppose D is an ®-diagram satisfying all three conditions of the theo-
rem. If D does not correspond to a PDS then by Proposition 4.15, a I-move
can be performed. Let us, as in Proposition 4.15, pick the southwestern-
most such J-move. Thus we have two boxes x and y, where y is filled with
a 0 and z is southwest of y.

For the I-move to be valid — i.e., for the signed permutation to be
unchanged by the J-move — the wires which cross in box y of wire(D) must
cross or touch again in box x. Here if x or y corresponds to a generator s,
then one must consider the entire 2 x 2 square of wires. Suppose first that
y corresponds to a simple generator s; for ¢ # n, and let wires a,b cross in
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y (we use y to refer to the box in D and also wire(D)). Say y is in column
¢, using always the labeling of the wiring diagram.

For a and b to cross again, there must be a + to the left of y, so by
condition (1) of Theorem 8.1 there is no + below. Suppose the closest +
to the left of y is in column ¢’. Let us suppose first that the wire a travels
down and passes straight through the diagonal, while the wire b travels
leftwards before turning at the first 4+. In this case, by (1) and (2), wire a
must make a turn in row ¢, resulting in a + in position (¢, ). However,
using conditions (2) and (3) we see that it is not possible for wire b to travel
below row ¢, and so can never meet a again. Now suppose that wire a does
not cross the diagonal. This is only possible if the diagonal square b of D
below y corresponds to the simple generator s,_; and the diagonal square
z immediately southwest of b is a +. Using the conditions (1), (2) and (3)
we obtain a picture similar to

AEERE
0lo[7]0
0[0/7]0
o[0[F

where diagonal boxes are in bold. The wires a and b can only touch at the
box z. But setting x = z is not a valid J-move, since the effect of changing
z is to swap a and —b, not to swap a and b.

Finally, suppose y corresponds to the simple generator s,,. Then again
there must be a + to the left of y, and automatically we deduce that one
wire (say a) travels down through the diagonal while wire b travels to the
left and turns at the closest +. The argument for this case is the same as
before: the wires a and b never touch again. Thus if D satisfies the (type
(Dp,n)) J-conditions it must be a J-diagram.

Let D be an ®-diagram. We shall show that if D does not satisfy the
(type (Dp,n)) I-conditions then one of the I-moves (z,y, Sy), (z,y,S1) and
(x,y,S52) can be applied to it, which will complete the proof. If D violates
the (type (Dp,n)) J-condition (1) of Theorem 8.1 then a rectangular J-move
can be performed on it, as in the proof of Theorem 5.1. Otherwise, suppose
D violates either condition (2) or (3) of Theorem 8.1.

Let y be the box containing the 0 violating condition (2) or (3) closest to
the bottom left. Suppose y is distance d from the diagonal. Let z; be the
box to the left of y containing a + which is closest to y.

Suppose first that there is a box z5 such that (y, 21, z2) violates condition
(2). Pick 2z rightmost with this property. Let z; be k boxes to the left of y
and let = be the box k& boxes below zp. We claim that D], . is compatible
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with S7 and shall explain the claim pictorially. Using condition (1) and the
rightmost property of zo we may deduce at least the following information:

717110|0¥Y
71710]0]0
2171?710/0]0
22/017]0]0
2101710
710]7?
|0

To deduce the location of the remaining 0’s we need to use the assumption
that y is the bottom leftmost box containing a 0 violating conditions (2)
or (3). The 0’s to the left of y allow us to deduce that the ?’s in the rows
between x and z9 are 0’s. The 0’s below y allow us to deduce that the 7’s
north of zz and below 21 are also 0’s. This shows that D], , is compatible
with S; and so the I-move (x,y, S1) can be performed on D.

If y does not participate in a pattern of type (2) but does participate in
a pattern of type (3), then there is no + southwest of z; and (d + 1) rows
south. Using condition (1), there must be a box z, containing a + which is
(d+1) rows below z1, and there is a z3 so that (y, 21, 22, z3) violates condition
(3). We assume z3 is chosen as far south and east as possible (there may
be more than one choice). Let = be the box k rows south of z5 and in the
same column as z3, where 27 is k boxes to the left of y. We claim that
D]z ) is compatible with Sy and shall explain the claim pictorially. The
following information can be deduced using the eastmost-ness of z; and z3
and condition (1).

717077~ 0]|0]Y
?1717]17(7]10]0]0
%310[0]0]*4]0]0]0
?710]0]0[7]0]0]0
?710]0]0[*2]0]0
?710]0]0 0
?710]0]0
]0]0]0

The 0’s to the right of 29 allow us to deduce that the ?’s above x and south
of z9 are 0’s. The southmost-ness of z3 and the assumption that y and z;
are not involved in a violation of condition (2) gives us the remaining 0’s
between z3 and . The 0’s between y and z; and the assumption on y being
as far southwest as possible allows us to deduce that the ?7’s below z9 are
0’s. Finally, the southwest assumption on y allows us to deduce that the ?’s



76 THOMAS LAM AND LAUREN WILLIAMS

between z; and z4 are 0’s. This shows that D\(m,) is compatible with S5
and so the I-move (x,y,S2) can be performed on D. O

Remark 8.6. Theorems 5.1 and 6.1 can also be proved using wiring dia-
grams.

9. Type (Dn, 1)

Now let (W, j) = (Dp, 1) so that O,, C @’ can be identified with a shape
contained inside the double-tailed diamond of size n (see Table 2 for the
labeling of @7 with simple generators). The analysis for this case is nearly
identical to type (B, 1).

We call the boxes labeled n — 1 and n (if contained in O,,) the middle
boxes, and any two boxes with the same simple label conjugate. If b is a
middle box then the conjugate of b is the other middle box. The proof of
the following statement is the same as for Theorem 7.1.

Theorem 9.1. A type (D, 1) I-diagram is an ©-diagram D of shape O,
such that if there is a 0 in a box ¢ greater than the middle bozxes, then for
any box b < ¢ covered by c the conjugate b’ and the box b itself cannot both
contain +s.

Let z < y be a pair of conjugate and comparable boxes in O,,. Let Sy
denote either the filling

[ 2] 2]+]Y]
lz][+][7]7]?

of (z,y) where (z,y) is not adjacent to the middle boxes, or
+|Y
T |+

if (x,y) is adjacent to the middle boxes.
The following claim is immediate.

Proposition 9.2. The triples (z,y,Sy) defined above are I-moves.

Theorem 9.3. The I-moves (z,y,Sy) form a complete system of I-moves.

10. Decorated permutations for types A and B

In [12], Postnikov defined decorated permutations, proved that they are in
bijection with type A I-diagrams, and described the partial order on totally
positive Grassmannian cells in terms of decorated permutations. We will
review decorated permutations in the type A case and then describe type B
decorated permutations.
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10.1. Type A decorated permutations. In this section we will fix W =
Sp, the symmetric group, with standard generators {s;}, j € {1,...n}, and
Wy ={s1,...,8j,...,8n}. Recall from Section 2 that R/ denotes the poset
of cells of the corresponding Grassmannian.

A decorated permutation T = (m,d) is a permutation 7 in the symmetric
group S, together with a coloring (decoration) d of its fixed points 7 (i) = i
by two colors. Usually we refer to these two colors as “clockwise” and “coun-
terclockwise”, for reasons which the partial order will make clear. When
writing a decorated permutation in one-line notation, we will put a bar over
the clockwise fixed points. A nonexcedance of a (decorated) permutation 7
is an index ¢ € [n] such that either 7(i) < i, or 7(i) = ¢ and ¢ is labeled
clockwise.

Let I(j,n) denote the set of type (A,—1,7) J-diagrams and let D;,, denote
the set of decorated permutations on n letters with j nonexcedances. Let us
refer to the maximal order ideal in (7 as the mazimal shape. So for example
in type A, the maximal shape for Q7 is a j x (n — j) rectangle.

Much of the content of the following result can be found in [12, 22].

Theorem 10.1. There exist maps ®1, ®o, and 3, such that the following
diagram commutes.

10.1.1. From pairs of permutations to decorated permutations.
The bijection ®; was stated (with slightly different conventions) in the ap-
pendix of [22]. Let (v,w) € Z7. Then ®1((v,w)) = (,d) where 7 = vw™?.
To define the decoration d, we make any fixed point that occurs in one of the
positions w(1l),w(2),...,w(k) a clockwise loop — a nonexcedance — and we
make any fixed point that occurs in one of the positions w(k + 1),...,w(n)
a counterclockwise loop — a weak excedance. The fact that ®; is a bijection
will be established in Section 10.1.4.

10.1.2. From pairs of permutations to J-diagrams (and back). To
define &5, we may simply take a JI-diagram D of shape O, to the pair
(v(D),w). It follows from Proposition 4.8 that this is a bijection.
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The map P2 can also be described as follows (see also [12]). View an
@-diagram D within the maximal shape and label the unit steps of the
northeast border of the maximal shape with the numbers from 1 to n (from
northwest to southeast); we label the southwest border with the numbers
from 1 to n (from northwest to southeast). The map @ is defined by
interpreting an @-diagram D as a wiring diagram; replace each 0 with a
Cross + and each + with an elbow —)(—. By starting from the southwest
labels of the border and traveling northeast we can read off a permutation
v. If we replace all boxes with a + and perform the above procedure we
can read off a permutation which we will call w. Then ®9(D) = (v, w).

10.1.3. From J-diagrams to decorated permutations. Now we de-
scribe ®3. Given a JI-diagram D of shape O,,, we label the northeast border
of O, with the numbers 1 to n from northwest to southeast, just as in the
definition of ®,. We ignore the 0’s in the I-diagram and replace each +
with a vertex as well as a “hook” which extends north and east (ending at
the boundary of O,). We let G(D) denote the graph which is the union
of the hooks and the vertices. Now define a permutation 7 as follows. If i
is the label of a horizontal unit step, we start at ¢ and travel along G(D),
first traveling as far south as possible, and then zigzagging east and north,
turning wherever possible (at each new vertex). Then 7 (i) is defined to be
the endpoint of this path. Clearly (i) > 4. Similarly, if ¢ is the label of
a vertical unit step, we start at ¢ and travel along G(D), first traveling as
far west as possible, and then zigzagging north and east, turning wherever
possible. As before, (i) is defined to be the endpoint of this path, and
clearly (i) <. If i is a step which cannot travel anywhere then ¢ becomes
a counterclockwise fixed point (weak excedance) if the step is horizontal and
i becomes a clockwise fixed point (nonexcedance) if the step is vertical. This
map was proved to be a bijection in [19] and is a simplification of a map
found by Postnikov.

Remark 10.2. If we consider a clockwise fixed point to be a nonexcedance
and a counterclockwise fixed point to be a weak excedance, then it is clear
that ®3 maps J-diagrams contained in a j X n — j rectangle to permutations
in S, with precisely j nonexcedences. Clearly even more is true; the shape
of the Young diagram O,, determines the positions of the nonexcedences and
weak excedances.

Example 10.3. Consider the following JI-diagram D (viewed inside of the
J by n — j rectangle associated to the corresponding Grassmannian Gr; ).
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o
+ o+
o

Then ®9(D) = ((1,3,6,2,4,5,8,7),(1,4,6,8,2,3,5,7)). To compute ®3(D),
we construct the following graph G(D).

Following the procedure explained above, the resulting permutation is
(1,4,5,3,8,6,7,2).

10.1.4. Proof of Theorem 10.1. If we compare the definition of ®3 to
®, and P9, it is clear that what ®3 does is to interpret the J-diagram as two
wiring diagrams (one for v and one for w) and then to compute w=! followed
by v. Thus ®3 = ¢ o $9, proving the commutativity of the diagram. Since
®y and P35 are bijections, so is P.

10.2. Type B decorated permutations and type B permutation
tableaux. We now describe the type (B, n) analogue of Theorem 10.1. Let
50,51, - - -, Sn—1 denote the Coxeter generators of the type B,, Coxeter group,
where sy labels the special node of the Dynkin diagram. Note that in this
section only we are departing from the earlier notation set up in Section 3
by using 0 rather than n for the special generator. To avoid confusion, we
refer to all objects as “type B,,” objects without specifying the cominuscule
node.

Recall from Section 7 that B, Weyl group elements can be thought of as
signed permutations via the embedding ¢ into Sy1; . +,). We will use the
notation (ay,...,a,) to denote the signed permutation 7 such that 7 (i) = a;.

We define a B,, decorated permutation to be a signed permutation in which
fixed points are either labeled clockwise or counterclockwise, and such that
m(i) is a clockwise fixed point if and only if 7(—%) is a counterclockwise fixed
point. When writing a type B decorated permutation in list notation, we
will indicate a clockwise fixed point by putting a bar over the corresponding
letter.

In this section our parabolic subgroup W; will be {s1,...,5,-1}. The
pairs (v, w) of Theorem 2.1 will be denoted Z”. Let I7(n) denote the set of
type B J-diagrams contained in the maximal shape (this time an inverted
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staircase), and let D,]f denote the set of type B decorated permutations on
the letters {£1,...,£n}.

Theorem 10.4. There exist bijections ®P, &8 and ®F, such that the fol-
lowing diagram commutes.

A I5(n)

&P Y

Proof. We denote by 61 : I(n,2n) — d(n,2n) the involution of type
(Agp—1,n) J-diagrams obtained by reflection in the diagonal. Reflecting
a type B J-diagram in the diagonal defines an embedding ¢ 7 : IP(n) —
d(n,2n) such that the image of ¢y is the fixed points of 6 7.

Let Z™ denote the parametrising set of Theorem 2.1 for (As,-1,n) where
we take the symmetric group to be Syii  +pn). Define iz : B — 17
by tz(z,w) = (¢(z),t(w)) where on the right-hand side we use ¢ : B, —
S{+1,...,+n}- This map makes sense since ¢ is a Bruhat embedding [2]. The
image of ¢z is the set of fixed points of the map #7, obtained by applying
0 Sgs1,. 40y — Sx1,.. 40} given by 0(m)(i) = —m(—i), to each of a pair of
permutations.

Similarly, define vp : DZ — D(n,2n). Again the image is the set of fixed
points of 0p : D(n,2n) — D(n,2n), the map induced by 6. Here if 7 (i) = ¢ is
a fixed point labeled clockwise (resp. counterclockwise) then 0p(m)(—i) = —i
is a fixed point labeled counterclockwise (resp. clockwise).

By the diagonal reflection invariance of the definitions of ®q, ®o, ®3 in
Theorem 10.1 we see that the three bijections commute with the respective
involutions 6 1, 0p, and f7. We may thus restrict Theorem 10.1 to the fixed
points of 8 1,6p, and 07, giving the stated result. O

Example 10.5. Consider the following JI-diagram D.

’+O+
o

which in list notation is equal to ((2,—1,3),(—3,—1,2)). To compute the
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corresponding decorated permutation we construct from D the following
graph G(D).

Then the resulting decorated permutation is (1,3, —2).

10.2.1. Type B permutation tableaux. We define a type B,, permuta-
tion tableau to be a type (Bp,n) J-diagram D of shape O,, which contains
no all-zero column. In other words, if a column of O,, has at least one box,
not all boxes in that column may be 0 in D. Since ®% is a bijection, the type
B,, permutation tableaux are in bijection with the set of type B, decorated
permutations such that all fixed points in positions 1 through n are coun-
terclockwise. Thus the type B,, permutation tableaux are in bijection with
the set of B, permutations; in particular, there are 2"n! of them. Later,
Proposition 11.4 will give a more refined count of the type B, permutation
tableaux.

Note that if a type B, J-diagram contains an all-zero column, then the
diagonal box in that column contains a 0, which implies that all boxes to
its left are 0. Deleting this “hook” we obtain a type B,_1 J-diagram, and
if we repeat this procedure, we will eventually obtain a type B permutation
tableau.

Permutation tableaux in type A were studied in [19]. They are simpler
than JI-diagrams but can be applied to the study of permutations. Rather
surprisingly, type A permutation tableaux are related to the asymmetric
exclusion process [5].

10.2.2. Partial order on Z5. Rietsch [16] has given a concrete description
of the order relation on cells: Pa}], wi>0 C P:;:]’,w’;>0 precisely if there exists
z € Wy such that 2/ < zz < wz < w’. This poset has nice combinatorial
properties: it is thin and EL-shellable, and hence is the poset of cells of a
regular CW complex [22].

Postnikov [12] described this poset in the case of the type A Grassmannian
in terms of decorated permutations. One draws decorated permutations on
a circle; the cover relation involves uncrossing two chords emanating from 4
and j that form a “simple crossing”. Similarly, one can describe the partial
order on ZP in the case of the type B Grassmannian in terms of type B
decorated permutations. The cover relation is exactly the same, except that
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each time we uncross the pair of chords ¢ and j, we must also uncross the
pair of chords —i and —j (which will necessarily also form a simple crossing).

11. Enumeration of cells

The cells in the totally nonnegative Grassmannian for type A were enu-
merated in [21, 12]. In this section we will give some formulae and recur-
rences for the number of totally nonnegative cells in Grassmannians of types
(Bn, 1), (Dp,1), (Bp,n), and (Dy,n). We will often count the cells which lie
inside the open Schubert cell, or in other words, we will count I-diagrams
of maximal shape.

11.1. Enumeration of type (B, 1) and (D, 1) I-diagrams. Let by,
be the number of type (B,,1) J-diagrams of maximal shape, and let En(q)
be the g-generating function of (B, 1) J-diagrams of maximal shape, where
we weight J-diagrams according to the number of +’s. Similarly define dy,
and d,,(q). Below, [i] denotes the g-analog of i.

Proposition 11.1. Bn(q) is the coefficient of ™ in

1—(qg+¢*)z+ (1 —¢*)a?
1— 2%z 1 222

In particular, the numbers b, are equal to sequence A006012 in the Sloane

Encyclopedia of Integer Sequences [18], with generating function #ﬁﬁ.

Proof. It is easy to check that by(q) = 1, b1(q) = [2], and by(q) = 1 + 2¢ +
2¢° 4 ¢>. We will prove that for n > 3,

bu(@) = (1+¢)°bu-1(q) — (1 + 9)¢°bn2(9),
using the description of Theorem 7.1. A maximal-shape (B,,1) J-diagram
D' can be obtained from a maximal-shape (B,—1,1) I-diagram D by adding
two boxes, one to the left and one to the right of D. Each of these two boxes
can contain a 0 or a +, except that we may not put a 0 into the new box to
the right of D if D has a + in its leftmost and rightmost boxes. This gives
the stated recursion. (]

Now let us consider type (D,,, 1) I-diagrams. For n > 4, we have the same
recurrence as above: dy(q) = (1 + ¢)%dn_1(q) — (1 + ¢)¢?dp_2(q). We have
initial conditions do(q) = 1, d1(q) = [2], da(q) = [2]2, ds(q) = [2]* — ¢*[2].
This implies the following result.

Proposition 11.2. Jn(q) is the coefficient of ™ in

1—(g+ )z +(1-2¢° —¢*)a® + (1 +2¢ — ¢*)2®
1 2Pz 1 222 '
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In particular, the numbers dp (for n > 3) are given by sequence A007070 in
the Sloane Encyclopedia of Integer Sequences [18].

11.2. Enumeration of (B,,, n) I-diagrams and type B permutation
tableaux.

11.2.1. The total number of (B,,,n) I-diagrams. Let B(n) be the num-
ber of type (B, n) I-diagrams; equivalently, it is the number of type B dec-
orated permutations on {£1,...,£n}. Let b(n) be the number of elements
in the Coxeter group of type B,,. That is, b(n) = 2"nl.

Proposition 11.3. The sequence of numbers B(n) is sequence A010844
from the Sloane Encyclopedia of Integer Sequences [18]|. The numbers are
given by the recurrence B(0) =1 and B(n+1) =2(n+1)B(n) + 1.

Proof. A type B decorated permutation is chosen via the following pro-
cedure: first choose a number k (where 0 < k < n), which will be the
number of clockwise fixed points; then choose their location in (Z) ways; fi-
nally, choose the structure of the remainder of the permutation by choosing

a normal type B permutation of size n — k in b(n — k) ways. Therefore
B(n) = b(n) + <?>b(n —1)+ (Z)b(n —2) 4 (Z)b(@).

Since ("{Nbpr1—k =2(n+1)()by_g, B(n+1) =2(n+1)B(n) +1. O

11.2.2. The total number of B,, permutation tableaux. We say that
a 0 in a J-diagram is restricted if it is on the diagonal or if there is a +
below it in the same column. We say that a row is restricted if it contains
a restricted 0. Let ¢, ; be the number of type B;,, permutation tableaux
with k& unrestricted rows and exactly j +’s on the diagonal. Let T),(z,y) =

> tnkr1 gty
Proposition 11.4. T,,(z,y) = (y + 1)"(z + 1)(z +2)...(x +n —1).
The strategy of this proof comes from an idea in [4].

Proof. We will show that T}, (z,y) = (y+1)(z +1)T;,—1(x + 1,y). To prove
this, let us consider the process of building a type B, permutation tableau
D’ from a type B,_; permutation tableau D of shape O,. Let k be the
number of unrestricted rows of D. There are two possibilities: either we
can add a new (empty) row of length n to D (adding a north step to the
border of O,), or we can add a new column c of length n to D (adding a
step west to the border of the Young diagram). The first possibility is easy
to analyze: D’ contains the same number of +’s on the diagonal as D and
has one additional unrestricted row.
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For the second possibility there are two cases: either we will fill the bottom
(diagonal) box of ¢ with a 0 or we will fill it with a 4. In each case all boxes
in a restricted row must be filled with 0’s, and the other boxes may be filled
with 0 or +. We need to compute how many ways there are to fill the
boxes of ¢ such that the resulting tableau D’ has i unrestricted rows, where
1< k+1.

In the first case, note that every 0 above the bottom-most + in ¢ is re-
stricted. Also the 0 is the bottom (diagonal) box of ¢ is restricted. Summing
over the position a of the bottom-most +, the number of ways to fill the
boxes of ¢ such that D’ has ¢ unrestricted rows is 25:1 (‘Zj) = (Zlfl)

In the second case, since the bottom (diagonal) box of ¢ is a +, all 0’s
that we place in column c are restricted. Therefore there are (Z lf 1) ways to
fill the boxes of ¢ such that the D’ has i unrestricted rows.

Our arguments show that

k k
tnij =1tn-14i-15 T Z (2 . 1) tn—1k,j + Z (2 . 1) tn—1kj—1,
E>i

k>i—1

which implies that t,;; = > 5, 4 (Zl_“l) (tn—1,k,j+tn—1,kj—1)- It follows that
To(z,y) = (y + V(@ + DTh-a(z + 1,y). O

11.2.3. Recurrences for type (B,,n) cells of maximal shape. Let
b(n) be the number of type (B,,,n) J-diagrams of maximal (staircase) shape.
Let [i] = 14+q+---+¢ ! denote the g-analogue of i and let [i]) denote the
j-th derivative (with respect to ¢) of [i{]. We have the following recurrence
for b(n).

Proposition 11.5. We have b(0) =1 and
n—2 ;
[n—1]® ‘
b(n) = [0+ 1b(n —1) + ¢ Y | ———b(n—i—1).
i=1

Proof. This result is proved by considering the various possibilities for the
top row of the I-diagram. Whenever there is a 0 in the top row which is to
the right of some + (let us call such a 0 restricted), then every box below
that 0 must also be a 0. In a type B J-diagram, whenever there is a 0 on
the diagonal, all boxes to its left must also be 0’s. Therefore whenever we
have a restricted 0 in the top row, say in column ¢, then the ¢-th column and
the n + 1 — i-th row of the I-diagram contain 0’s. If we delete this column
and this row, the resulting diagram is a JI-diagram of staircase shape of type
B_1.
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If we g-count the possible configurations for the top row of a type B,
J-diagram which have no restricted 0’s, we will get [n+ 1]. Deleting the top
row of such a diagram leaves us with a type B,_; J-diagram.

If we g-count the possible configurations for the top row of a type B,, I-
diagram which have precisely 7 restricted 0’s, where ¢ > 1, we get QQW.
Deleting the top row of the I-diagram as well as the ¢ columns and rows
corresponding to the ¢ restricted 0’s leaves us with a type B,—;—1 I-diagram.

O

11.2.4. Preference functions. We denote by B,, the set of (B,,n) I-
diagrams of maximal (staircase) shape such that the bottom square contains
a +. The set of (B,,n) J-diagrams of maximal shape has twice the cardi-
nality of B,,, since the bottom square of a I-diagram imposes no restrictions
on any other square.

Definition 11.6. A preference function of n is a word of length n where all
the numbers 1 through k& occur at least once for some &k < n.

In other words, a preference function of n lists the possible ways that n
candidates may rank in a tournament, allowing ties.

Theorem 11.7. The set B, is in bijection with the set of preference func-
tions of length n. Therefore the number of maximal type (By,n) I-diagrams
has twice the cardinality of the preference functions of length n. This is
sequence A000629 in the Sloane Encyclopedia of Integer Sequences [18].

Theorem 11.7 follows from Lemmata 11.8 and 11.10 below. First recall
that ®F gives a bijection between type B, J-diagrams of maximal shape
and type B, decorated permutations such that the nonexcedances are in
positions 1, ..., n. Soin particular, any fixed points that occur are clockwise.
(Since they are all oriented the same way, we will ignore this orientation from
now on.) Let J,, denote the set of type B,, decorated permutations such that
the nonexcedances are in positions 1,...,n, and such that there is never a
fixed point in position n. Restricting ®Z to B,, gives the following result.

Lemma 11.8. ® is a bijection from B, to J,.

We now define a bijection « from J, to preference functions of length n.
Let m € J,. The preference function p = (p1,...,pn) := a(m) is defined as
follows. Let It be the set of indices i of m where m(i) > 0. The entries of
7 in positions I will tell us about the “repeated” entries in the preference
function. Let K be the complement of the set I™ +1:={i+1|ie [t} in
{1,...,n}. Let S; be the sequence that we obtain if we take the sequence
of negative entries of 7, forget the signs, and then use the relative order of
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the entries to extract a permutation on {1,...,m} for m < n. We now put
the entries of S; (in order) into the entries p, where k € K. Finally, looking
at each i +1 € I'™ + 1 in increasing order, we define p; 1 := Pr(i)-

Example 11.9. Suppose n =9 and 7 = (-6, —8,—-3,—1,—-9,5,—7,4, —2).
Then I+ = {6,8), K = {1,2,3,4,5,6,8}, and S, = (4,6,3,1,7,5,2), and
the preference function is a(m) = (4,6,3,1,7,5,7,2,1).

Lemma 11.10. The map « s a bijection from J, to the set of preference
functions of length n.

Proof. Since no permutation in .J,, has a fixed point in position n, IT+11is a
subset of {1,...,n} as it should be. Also, the definition p;;1 := pr(;) makes
sense because (i) < ¢ by the condition on nonexcedances of m. Therefore
« is well-defined.

To show « is a bijection we will define its inverse. Let K be the set of
indices corresponding to the first occurrence of each positive integer in the
preference function p. K includes 1, so we can reconstruct the set I as
K¢—1={k—1| ke K, where K¢ is the complement of K in {1,...,n}.
Now for each entry a in p (say in position ¢ + 1) which is not the first
occurrence of a, we look at the closest occurrence of a to the left of position
i+ 1. Say it occurs in position ¢/ < i. Then we set m(i) = ¢; note that
the nonexcedance condition is satisfied. Let T' be the set of all such ' and
let T¢ be the complement of 7. We now complete our reconstruction of
7 by placing the elements of 7T in the unfilled positions of 7 in the same
relative order as the first occurrences of entries of p, and then negating their
signs. U

11.3. Enumeration of (D,,n) J-diagrams. In this section we show
that the set D,, of maximal type (D,,n) I-diagrams is in bijection with
a distinguished subset of preference functions, the atomic preference func-
tions. A preference function is atomic if no strict leading subword consists
of the only occurrences in the word of the letters 1 through j < k.

Theorem 11.11. Atomic preference functions of length n are in bijection
with mazimal type (Dy,n) I-diagrams. Therefore the cardinality of the set
of mazximal type (Dy,n) I-diagrams is given by sequence A095989 from the
Sloane Encyclopedia of Integer Sequences [18].

Let A, be the set of atomic preference functions of length n. For D € D,
we let Or(D) denote the set of indices ¢ such that row i of D is completely
filled with 0’s. We will prove Theorem 11.11 by describing maps ¢ : D,, —
A, and ¥ : 4, — D,, and showing that they are inverse to each other.
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® is defined as follows. Embed the I-diagram D into a staircase shape
with n rows by adding a diagonal to D which is filled entirely with *’s. Label
the west side (north side) of the staircase with the numbers from 1y to ny
(1n to ny), as in the following diagram:

ONAN3SN2NIN
1W k |
2/ *

5w>k

Turn each + and each * into an —)(— and each 0 into a crossing +
This will turn our diagram into a wiring diagram which gives a permutation
m = (D) (where paths i — 7(i) travel from the west to the north border).
We now add signs to 7, making the ith entry positive if i € Og(D); and
otherwise negative. Clearly this signed permutation is an element of the set
J, defined in Section 11.2.4. In fact, the map we have described is essentially
the map ®F. We now define ®(D) := a(n(D)), where « is the map used in
Section 11.2.4.

Proposition 11.12. ®(D) is an atomic preference function for D € D,,.

Proof. Suppose that ®(D) is not atomic. This means that there is a proper
leading subword (say of length j) of ®(D) which consists of all occurrences
of the numbers 1 through r for some positive r. Recalling the definition of «,
this means that any negative entry of 7 := m(D) after position j has greater
absolute value than any negative entry of m(D) in the first j positions.
Furthermore, if for any ¢ € It we have 7(i) < j then ¢ +1 < j. This implies
that if we ignore signs, the first j entries of 7(D) form a permutation of S},
and 7(7) is negative.

Now note that since |7(1)| < j, the first n — j entries in the first row of D
must be zero. Similarly, since |7(2)| < j, the first n — j entries of the second
row of D must be zero. Continuing, since |7 (j)| < j, the first n — j entries
of the jth row of D must be zero, i.e., all entries in the jth row of D are
zero. But this means that 7(j) > 0, a contradiction. O

We remark that this proof did not use the forbidden patterns of type
(Dp,n) J-diagrams in any way. In fact, we can define ® for any ®-diagram
D, and ®(D) will be an atomic preference function; this is a many-to-one
map. What we need to prove next is that when we restrict ® to the set of
type (Dp,n) I-diagrams, we get a bijection to the set of atomic preference
functions.
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11.3.1. The inverse bijection ¥. We shall refer to the type (Dy,n) I-
conditions as the first, second and four-box pattern. We remark that a
consequence of our labeling of the columns and rows is that if the 0 involved
in the second or four-box JI-pattern is in column k then the lowest 4 involved
in the I-pattern is in row k.

We will construct the inverse map V¥ : A,, — D,, recursively. Recall from
Lemma 11.10 that given a preference function f, we can already construct
the signed permutation w(f) := a~1(f). Let w := |w(f)|.

We will first construct the path P, = ny — w~(n)y (consisting of all
boxes traveled through by the wire which goes from ny to w™(n)y ), then
the path P,_1 = (n— 1)y — w'(n — 1), then (n —2)xy — w(n —2)w,
and so on. The general idea here is that each path P; will travel as close
to the northwest border of the staircase as possible. After all the paths P,
have been constructed, the staircase will have been completely filled in to
give an @-diagram which we define to be ¥U(f), and will then show is a type
(Dp,n) J-diagram. We will make this precise in the form of an algorithm
in the following paragraphs.

Let D; = U?:ZP]- denote the set of boxes used by P, Pj+1, ..., P, so that
Dy is completely filled in. Abusing notation, we also use D; to denote
the corresponding staircase shape partially filled with 0’s and +’s (diagonal
boxes are always filled in with *’s). Let Cy(D;), Rq(D;) denote the b-th
column and a-th row of D;. We say a row or a column is complete if all its
boxes have been filled in.

Let i* = w™1(i) so that P; goes from i to i*. A path P; is completely
determined by its set PZ-Jr of boxes containing +’s which are linearly ordered
according to the order in which they are visited. Our construction of PZ-Jr
will always have the form

+ / / ro /
]Di _(617017627627"'7ckackack+1ack+£_1)

where ¢; € Pi+ N(D;—D;4+1) and c;» € PZ-Jr ND;4+1. In other words, the primed
boxes are old, while the unprimed ones are newly added. In our notation it
is possible for £ = 0, or in other words, ¢y, is the last + on P;r.

We now give the construction of P; by describing ¢y, co, ..., ck. It may be
helpful for the reader to look at Example 11.4 alongside the description of
this algorithm.

Given ¢, ¢,...,c¢j_1, it is clear that 09‘—1 is determined. Suppose c;-_l =
(a,b) is in row a and column b. If j =1 we set ¢j_; = (a,b) = (0,7). If all
rows below row a have been filled in then we are already done: the path P
is determined.
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Otherwise, let a (if it exists) be the highest row (smallest number) below
a and above row b which contains a + and let ¢* = (a/,’) (if it exists) be
the rightmost + in row a’. We have a number of mutually exclusive cases:
(Z) Suppose one of the following holds:
(a) ¢* does not exist and * > b.
(b) All the rows below row a have been filled in D;41.
(c) ¢ exists and is equal to (i*,b).
(d) ¢* exists and i* > o’ and all the rows below and including a’ are
complete in D;q.
Then c;_; is already the last new + in D; and the rest of the +’s on
P; are determined by D;y.
(A) If ¢* exists and i* < d/, or ¢* does not exist and i* < b, we set
¢; = (i*,b), and
(11.1) c; will be the last + of F;.

(B) Suppose c* exists, i* = b, and either w=1(i) > 0 or Ry(D;11) is filled
with 0’s. Then ¢;_; is already the last new + on P; and:

(11.2)  the path P; will visit the diagonal square (:*,7*) and exit at iy, .

(C) Suppose ¢* exists. If i* > b, w(b) < 0 and Rp(D;y1) is filled with 0’s
apart from one box then we set ¢; = (b,0'). Then:

(11.3) P; will visit the diagonal square (b,b) and then turn at c;;
(11.4) c; is the last new + of D;.

(D) In all other cases we set ¢; = (a’,b). Then:

(11.5) P; will turn at ¢; and head to ¢; = ¢”.

Note that only in Case D does one have to continue constructing ¢j1. The
construction of P; typically involves multiple instances of Case D, followed
by one instance of another case.

We will call a + placed via Case C a special + and a + placed via Case
D a normal +. Let us call a + inside some D; a corner + if:

(a) Its row is not yet complete.

(b) It is the rightmost + in its row.

We claim that:

Proposition 11.13. The algorithm described above is well-defined. More
precisely:

(1) The construction gives paths P; which go from iy to iy, .

(2) The positions of the new +’s ¢; are empty in Djy.
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(3) No +’s are encountered while going from 03‘—1 to c;.
(4) The stated facts (11.1), (11.2), (11.3), (11.4) and (11.5) hold.

Furthermore, in Cases A, B, C, D each c} of the form c¢* in the algorithm is
a corner + of Djy1.

Proposition 11.13 will be proved simultaneously with the following propo-
sitions.

Proposition 11.14. Let C = Cy(D;) be a column of an intermediate dia-
gram D;.

(1) If b < i, then C is empty.

(2) If C contains a corner +, say c, then this corner + is unique. Every
filled square of C' below ¢ belongs to a complete row. FEvery filled
square to the right of ¢ belongs to a complete column.

(3) If b > i and C does not contain a corner + then C' is completely filled
n.

Proposition 11.15. Let R = R,(D;) be a row of an intermediate diagram
D;.
(1) If R is complete then R is either completely filled with 0’s or all rows
below R are also complete.
(2) If R contains a corner + then the exit aw has been used by a path P;
for some j > 1.

Proposition 11.16. In any intermediate diagram D; we have the following:

(1) All boxes weakly to the north-west of a corner + or a normal + are
filled in, and all bozes strictly northwest of any + are filled in.

(2) Corner +’s are arranged from north-east to south-west, forming the
corners of a (English notation) Young diagram.

Proposition 11.17. The set of new squares P; N (D; — D;y1) contains at
most one box in each row, except in Case B when one has a row completely
filled with 0’s.

Proposition 11.18. There are no violations of the type (D,,,n) I-condition
i any intermediate diagram D;.

Proof of Propositions 11.13—11.18. All the claims hold when no paths
have been added. Let us assume that D;;; has been constructed and that
all statements hold. We shall show that D; satisfies all these conditions.

We first note:

(1) Proposition 11.14(1) is obvious.

(2) A corner + is always normal.
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(3) Proposition 11.15(1) follows from Proposition 11.17 and the following
wire-counting argument. Let n be the number of rows below and
including R. If R is not completely filled with 0’s then n — 1 wires
will travel from the north through row R. Let R’ be any row below
R, say of length £ — 1. Then there are ¢ exits below and including R’
of which at least £ — 1 must have been used, so £ — 1 wires exit to the
left below R’ and hence must enter and occupy every square of R’.

Suppose P; has been constructed up to 03‘—1 = (a,b), where 03‘—1 might
mean the “entrance” iy = (0,7). In our explanations we will assume that
cj_1 # (0,4) — ie. that j > 1. (Note that the special case ¢j_; = (0,4) is
easier.) We may assume (inductively) that i > a and that ¢;_, is a corner
+in Djqq.

Case 1: Suppose that ¢* = (d/,V’) exists. By Proposition 11.16(2), ¢*
is either a corner + or its row is filled in. Furthermore, if ¥’ < b then by
Proposition 11.16(1) all the rows below row a are complete, so we are in Case
Z(b), and nothing needs to be proved (the fact that P; will exit correctly
follows from counting wires). Suppose b’ = b so that the row a’ is complete.
If * > @ then we are in either Case Z(c) or Z(d). The only new boxes we
fill are with 0’s. It is straightforward to verify the claimed properties.

Now suppose that i* < a/. Then we are in Case A. Consider R =
R;«(D;y1). By Proposition 11.14(2), the box (i*,b) is either empty or R
is complete. If R is complete, then because of the way we chose d’, it must
be filled with 0’s. But this can be shown to be impossible by considering
the wire that passed through (i*,b). (The wire P’ passing through (i*,b)
did not exit at i}y, since the current wire P needs to use this exit. So
this wire traveled down column b through (i*,b). But there aren’t any +’s
between (i*,b) and (a,b) so P’ turns at (a,b) which means it is the same
wire as P, a contradiction.) By Proposition 11.16, Proposition 11.14(3) and
the way we chose @/, we see that all the boxes to the left of (i*,b) have
been filled with 0’s in D;4;. It is easy to see that Propositions 11.13, 11.14,
11.15, 11.16, and 11.17 continue to be satisfied in D;. Since the boxes in
{(c,d) | a < ¢ <i*,b<d<n} are all filled with 0’s, the first and four-box
J-conditions are immediate (for the four-box condition one also uses Propo-
sition 11.16). Suppose the second J-condition is violated by the new + in
box (i*,b). There are two possibilities:

(i) The + in (i*,b) is the lower + in the J-pattern.
(ii) The + in (¢*,b) is the higher + in the I-pattern.

In case (i), the 0 in the violating pattern is in column i* say at (z,7*) with a
+ at (z,y) where b > y > i*. Since (i*,b) is empty in D;1, by Proposition
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11.15 and Proposition 11.14, column * is filled in so all the squares below
(x,7) contain 0’s. But it follows from the definition of the algorithm that
row i* is already complete in D;;;, a contradiction. In case (ii), let the
0 in the J-pattern be in box (i*,j). Then Cj(D;y1) is complete with 0’s
under (i*,j), and one deduces that R;(D;y1) is complete and has a single
+, which must then be in a column to the left of column b. Consider the wire
P’ which passed vertically through the 0 in box (4, ). This wire cannot turn
somewhere between (j,b) and (a,b) for then the second I-condition would
have been already violated in D;,1. But this means P’ = P;, a contradiction.
This completes the verification of the properties in Case A (when ¢* exists).

Now suppose i* > a’. We have already treated the case b < b so we
assume b’ > b. If Ry (D;41) is complete, then by Proposition 11.15(1) all
rows below are complete so we are in Case Z(d). The argument is again
straightforward.

Otherwise, if R,/ (D;41) is not complete, then ¢* is a corner +, b’ > b, and
(a/,b) is empty. The squares between ¢;_; and (a',b) are either unfilled or
contain 0’s (this comes from Proposition 11.14(2) and the way we chose a’).
Similarly, the squares below (a’,b) are either unfilled or belong to complete
rows. Note that these squares do not contain +’s for otherwise either (a’, b)
would be filled (if the closest such + is normal) or ¢* could not be a + (if
the closest such + is special — this follows from the description of Case C
below). It is also clear from the definitions and Proposition 11.14(2,3) that

(11.6) there are 0’s between (a’,b) and c*.

Now suppose i* > b. Suppose first that Rp(D;+1) is complete. If Ry(D;y1)
is filled with 0’s then since there are no +’s under (a’,b) we deduce that all
the exits (b+1)w, (b+2)w,...,nw have been used. Thus automatically we
have ¢* = b and we are in Case B. Since we are only adding 0’s the claimed
properties are easy to verify, except perhaps the I-condition. But row Ry is
also filled with 0’s so there are no possibilities of any J-patterns.

We claim with our assumptions that R,(D;y1) cannot be complete but
not filled with 0’s. Suppose this is the case. Then by Proposition 11.17,
n — b+ 1 wires have already been drawn passing through row b. Consider
the wire P; which passes through (b,"). This wire cannot also pass through
¢* so by the assumptions there is some € (@, ) so that (x,b’) contains a +.
This + must be special, so R;(D;4+1) is complete. But then there is a wire
Py, passing vertically through box (x,b), which contradicts our assumptions.

Thus we suppose that Ry(D;41) is not filled in (but still i* > b). If i* = b
and w™1(i) > 0 we are again in Case B and it is easy to verify all the claimed
properties.
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Now consider Case C, so Ry(D;+1) is filled with 0’s apart from one square.
Since exit by has not been used, n — b — 1 of the exits (b + 1)w,...,nw
have been used in D;y;. By a counting argument, all rows below R;, are
filled in, so the + in (b,b) is the last new + on path P;. This proves Propo-
sition 11.13. The other properties are straightforward to establish except
Proposition 11.18. It follows from Proposition 11.14(2,3) and Proposition
11.15(1) that the region {(c¢,d) | b > ¢ > a,n > d > b} is filled with 0’s in
D;11. Using the 0’s in (11.6) we see that the + in (b,?’) is not involved in
any J-conditions. Finally we consider the new 0’s placed in column b. Only
(a/,b) has a + to the left, so Proposition 11.18 follows.

In all other situations we are in Case D. The new + in (a/, b) becomes the
new corner -+ in column b, unless the row @’ becomes complete. If row a’
becomes complete, then column b is also complete by Proposition 11.15(1).
Again the stated properties are immediate except Proposition 11.18. This
last property follows from the definition of ¢* (minimality of row) and argu-
ments similar to those in Case A.

Case 2: ¢* does not exist. If ¢* < b, then the argument is exactly the same
as in Case A when ¢* does exist. So we may suppose ¢ > b and we are in
Case Z(a). Consider the columns Cy(D;41) for k > b. By Proposition 11.14
they are either completely filled, or contain a corner +. Any corner +’s in
these rows must be below or on row b. But a counting argument shows that
there is not enough space to fit corner +’s, and thus all rows below and
including row b are complete. The argument is now the same as the other
Case Z arguments. O

We have shown that ¥ maps atomic preference functions to J-diagrams.
Recall that 0(D) denotes the set of rows of D which are completely filled
with 0’s.

Lemma 11.19. Let f be an atomic preference function with corresponding
signed permutation w = w(f). Then 0(¥(f)) ={j | w(j) > 0}.

Proof. Let D = U(f). Suppose i* is such that w=!(i) > 0; then setting
j =1i*, we have w(j) > 0. Then in particular i* > i since w does not have
an excedance at ¢*. By construction, up till D;; no +’s have been placed in
row *. If i* = i we are done. Otherwise ¢* > 4, and if column Cj=(D;41) has
a corner + we are done since it must be encountered by the path P;. Suppose
otherwise, so Cj+ is complete (by Proposition 11.14) and must contain a +
in say (x,y). But then R;(D;;1) is complete, so by Proposition 11.15(1) so
is Rz* (D/L'Jrl).

Conversely, suppose i* is such that w~=!(i) < 0; in other words, setting
j =1*, we have w(j) < 0. If i* < i then we are done since the construction
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of P; will place a + in row R;« before it is complete. So suppose i* > i and
that R;«(D;+1) is completely filled with 0’s. If i* = 4 then f is not atomic
so we suppose i* > i. Let us pick j € (4,7*] such that R;<(D;) is complete
but R« (Dj41) is not. Again with the same argument as above, we conclude
that Cj«(D,+1) has a corner +, say ¢*. Thus the path P; travels through c*,
at which time it will enter Case C and create a + in row i*. O

Theorem 11.20. The map V¥ : A, — D,, is a bijection.

Proof. It follows from the construction (Proposition 11.13(1)) that ® o ¥ is
the identity, so it suffices to show that ® is injective. For an atomic prefer-
ence function f, we will show that there are no choices in the construction of
U(f) if we require that ¥(f) is a I-diagram D satisfying ®(V(f)) = f and
satisfying the condition of Lemma 11.19 that all 0 rows correspond exactly
to the j such that w(j) > 0.

We may suppose by induction that there are no choices for the construc-
tion of Dj1 = U7_,; Pj. Now suppose we have constructed the +’s of Pf
up to 09—1 as in the stated algorithm. We will show that the stated algo-
rithm is the only possible way to extend P;, using the notation and explicit
descriptions given in the proof of the propositions.

In Cases Z and A we have no choice if we require P; exits at ij;,. So we
may assume we are in Cases B, C, or D and that ¢* exists. In particular
(a’,b) is empty. For P; to exit at i}, we must fill any unfilled boxes between
¢;_; and (a',b) with 0’s. If i* = b and w™' (i) < 0 then the only way for row
1 to be completely filled with 0’s is for P; to go to the diagonal and then go
straight to 4}, without turning. Alternatively, if R,(D;41) is complete and
i* > b then by the proof of the algorithm we must have i* = b and Ry(D;1)
filled with 0’s. This shows that Case B is forced.

Otherwise we are in Cases C or D. The first choice is thus (a’,b). Suppose
we place a 0 in (a/,b). Then using the first J-condition we see that all boxes
below (a’,b) must also be filled with 0’s. Since the boxes between ¢* and
(a/,b) are filled with 0’s we see using the first and second JI-conditions that
the only place for a + in row b is in box (b,b'). But we cannot have row ¢*
being completely filled with 0’s, otherwise we would be in Case B. Thus we
must turn at (b,b"). We claim that this is exactly Case C. It is clear that
i* > b. We need to show that row ¢* in D, is filled (necessarily with 0s)
except the box (b,b") which is empty. The columns Cy(D;11) for & >k > b
do not contain corner +’s so by Proposition 11.14 they are complete. The
columns Cy(D;41) for k < V' cannot contain +’s in the rows between a’ and
b, so they are either complete or contain a corner 4+ below row b. Thus
row b contains 0’s in all boxes except (b,b') in D;41. If row b is complete in
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D;11, then a wire-counting argument shows that exit ij;, has been used. But
the wire passing through 7}j, cannot have gone straight from ¢* to (b,t’) for
otherwise (a’,b) would not be empty in D;11. Thus there must be a complete
row between rows a’ and b, which contradicts either Proposition 11.17 or the
fact that the current wire will travel down column b to the diagonal from
(d,b).

Thus when there is a choice, a 0 is placed in (a/,b) only in Case C.
However, if the diagram satisfies the conditions of Case C and we place a
+ in (a/,b) instead then the wire P; will exit in row b, contradicting the
estimate ¢* > b. Thus Case C is forced by our assumptions. In all other

cases, we will perform Case D.
O

11.4. Example. Suppose n =9 and f = (4,6,3,1,7,5,7,2,1). Then w =
w(f)=—-6 —8 =3 —1 —95 —74 —2. The construction of ¥(f) proceeds
as follows:

First i = 9 and i* = 5. When j = 1, we have (a,b) = (0,9) and ¢* does
not exist. We are in Case A so ¢; = (5,9) and Dy is as shown below.

INSNTNONDONANIN2N I N
0 * |

W N =

0
0
4vA0 *
15%%% En
61 *
Twl *
8wl | *
Il *

Now i = 8 and ¢* = 2. When j = 1, we have (a,b) = (0,8), ' =5, and
c¢* =(5,9). We are in Case A so ¢; = (2,8) and Dsg is below.

INSNTNONOSNANSN2NIN
1w 010 * |
2w 0 |+ *
3w 0
4w 0 *
o]+
6w *
Twl *
8wl | *
Il *
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This is Case D so ¢; = (2,7) and ¢} = (2,8). When j =2, ¢, = (2,8) =
(a,b), ' =5, and ¢* = (5,9). This is Case D so ¢ = (5,8) and ¢, = (5,9).
When j = 3, (a,b) = (5,9). Neither o’ nor ¢* exist so we are in Case A,
c3 = (7,9), and D7 is below.

INSNTNONONANIN2N LN
0Jo0 * |

1w 0

2w 0

3w 0 |0

4w 010 *
+E
0
_l’_

W]
6w
w]
8wl | *
Iy *

Now i = 6 and ¢* = 1. When j =1, (a,b) = (0,6), a’ =2, and ¢* = (2,7).
We are in Case A so ¢; = (1,6) and Dg is below.
INSNTNONDONANINZ2NIN

0t * |
+ *

1w
2w
3w
4wy
oW
6w
Tw]
8W *
9W %

+ oo+ |
*

+ o+ |o|o|o|o

Now i =5 and ¢* = 6. When j = 1, we have (a,b) = (0,5), «’ = 1, and
¢* = (1,6). This is Case D so ¢; = (1,6) and ¢} = (1,6). When j = 2 we
have (a,b) = (1,6), ' = 2, and ¢* = (2,7). This is Case B so there are no
new +’s; Ds is below.

INSNTNONDNANSN2N]T N

0+[+ * |
_|_

1w 0
2w 0
3w 0
4w 0
_l’_
0
_l’_

W]
6w
Tw]
8W *
9W *

o)+ | oo+ o

. (o] (o] (@] (@n]
*
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Now i = 4 and i* = 8. When j =1, (a,b) = (0,4), a’ =1, and ¢* = (1, 5).
This is Case D so ¢; = (1,4) and ¢} = (1,5). When j = 2, (a,b) = (1,5),
a’ =2, and ¢* = (2,7). This is again Case D so ¢o = (2,5) and ¢, = (2,7).

When j = 3, (a,b) = (2,7), ¢’ =5, and ¢* = (5,8). This is still Case D
so c3 = (5,7) and ¢§ = (5,8). When j = 4, (a,b) = (5,8), ' = 7, and
c¢* = (7,9). This is Case B so there are no new +’s; Dy is below.

TNONONANSNZN] N
+[+[E * |
0|+ *
0 *
0
0
*

1w
2w
3w
4wy
oW
6w
Tw]
38w
I

0
+
0
0
+
0
*

*oo—i-oo—i-ogo

|*o+o+oooo§

Now i = 3 and ¢* = 3. When j =1, (a,b) = (0,3), a’ =1, and ¢* = (1,4).
This is Case D so ¢; = (1,3) and ¢} = (1,4). When j = 2, (a,b) = (1,4),
a' =2, and ¢* = (2,5). This is Case D so ¢o = (2,4) and ¢}, = (2,5). When
Jj =3, (a,b) =(2,5), " =5, and ¢* = (5,7). This is Case A so c3 = (3,5);
D3 is below.

6NONANSNZNIN
+[+[H [*]
BeBE
_l’_

1w
2w
3w
4wy
oW
6w
Tw
8w
I

*

+
0
0
0
0
*

x |o|+|o|o]|+]o]2

*oo—l—oo—i—o%’

|*©—|—o+oooo2®

Finally ¢ = 2 and i* = 9. When j = 1, (a,b) = (0,2), ¢’ = 1, and
¢* = (1,3). This is Case D so ¢; = (1,2) and ¢ = (1,3). When j = 2,
(a,b) = (1,3), ' = 2, and ¢* = (2,4). This is Case D so ¢s = (2,3) and
¢y =(2,4). When j = 3, (a,b) = (2,4), a’ =3, and ¢* = (3,5). This is Case
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C so c3 = (4,5); Do is below.

INSNTNONONANSNZ2NIN
1w 0 + + [ #|
2/ -+ *
3w *
4wy
oW
6w
Tw]
8w
Iw]

* S+ +

* [ ]+

Ll el e} fan) fan)

*|o|l+|olo|+]|o

¥ |o|lo|+ oo+ |

|*©—|—o—|—ooo
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