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Uniform estimates for some paraproducts
Xiaochun Li

ABSTRACT. We establish L” x L? to L" estimates for some general para-
products that arise in the study of the bilinear Hilbert transform along

curves.
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1. Introduction

It is an important theme of current research in analysis to decompose more
complicated operators, such as the Cauchy integral on Lipschitz curves [1],
as a sum of simpler operators. This theme has taken special prominence in
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multilinear Harmonic Analysis, beginning with the work of Lacey and Thiele
[12], which expressed the bilinear Hilbert transforms as a sum of modulated
paraproducts. This theme has found much broader application as well.

The bilinear Hilbert transforms have a bilinear symbol given by restriction
to a half-plane, with slope that depends upon the transform in question.
In considering more complicated symbols, one is led to paraproducts which
have a complicated underlying description. One then seeks certain estimates
of these paraproducts that are uniform in the parametrizations. This line of
investigation was started in [23], the results of which give a new, multilinear
proof of the boundedness of the Calderon commutator, fulfilling a program
of study of Calderon [1]. It was further extended in work of the author and
Grafakos [8, 9, 14], in the study of the disc as a bilinear multiplier. Muscalu,
Tao and Thiele [16, 15, 17] gave alternate proofs (and more general proofs)
of these results in the multilinear operator setting.

In this paper, we continue this line of study, considering certain uniform
estimates that are motivated by an analysis of a bilinear Hilbert transform
along polynomial curves. Namely, consider the operators
(11) (f9) — b [ fa=y)gta~plw) L,

—00 Y

for some polynomial p(y). The study of these operators leads to subtle
questions in multilinear analysis, stationary phase methods, and paraprod-
ucts. An initial investigation into operators of this type is given in [6],
where the polynomial is taken to be a square, and the singular kernel is
mollified to ¢'¥/™” /|y| for some B > 0. Without this modification, a signif-
icant difficulty might be encountered. There is a natural analogue of the
bilinear Hilbert transform along parabolas in the ergodic theory setting,
that is, the nonconventional ergodic average + ij:_ol (T"z)g(T™ ). In
[7], Furstenberg proved that the characteristic factor of the trilinear ergodic
averages % Zg:_ol (T g(T*™)h(T") for all a,b,c € Z is characteristic for
the previous nonconventional ergodic average. We are indebted to M. Lacey
for bringing these Furstenberg theorems to our attention. Thus a possible
method for the bilinear Hilbert transform along a parabola is to understand
the trilinear Hilbert transform first. Unfortunately, it turns out the trilinear
Hilbert transform is very difficult to handle. It is very interesting to find
a proof for the bilinear Hilbert transform along curves without using any
information of the trilinear Hilbert transform. It might be possible to obtain
such a way by combining time-frequency analysis and the known results for
the trilinear oscillatory integrals. This investigation will appear in another
paper.

The paraproducts that arise have a richer parametrization than what has
been considered before. The question of uniform estimates is the main focus
of this article. In the next section, a class of paraproducts are introduced.
They are parametrized by:
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e the width of the frequency window associated to the paraproducts,
denoted by L; and Ly below,

e the overlap of the frequency window associated to the paraproducts,
denoted by M; and My below,

e a modulation of the frequency window, denoted by the (lower case)
parameters ni, ng, 2™ below.

Prior results have concentrated on the uniformity of estimates with respect
to My, Ms from LP x L9 to L" for r > 1 and Ly = Lo [16]. The principal point
of this article is to get the estimates for 1/2 < r < 1 and arbitrary Lj, Ls.
Another new point of this article is the (weak) uniformity that we establish
in Ly, Lo and the modulation parameters 2™ (see Theorem 2.2 below). This
novelty is forced upon us by the stationary phase methods that one must
use in the analysis of (1.1). One of anticipated applications of our theorems
is the bilinear multiplier problems associated to the symbol defined by a
characteristic function of a suitable domain with a smooth boundary.

Acknowledgements. The author would like to thank his wife, Helen, and
his son, Justin, for being together through the hard times in the past two
years. And he is also very thankful to Michael Lacey for his constant support
and encouragement.

2. Main results

Let j € Z, L1, Ly be positive integers and M7, My be integers.

wi; = [2F17 M /g 9 olni ]

LZ -‘rMZ LZ +M2
( 727], [ f: J ,fz J jI'

Let @1 be a Schwartz function whose Fourier transform is a standard bump
function supported on [1/2,2], and ®, be a Schwartz function such that

®5 is a standard bump function supported on [—1,1] and @2(0) = 1. For
¢ € {1,2} and n1,ne € Z, define @, ; ,,, by

Besnl® = (08 ) (37 )

It is clear that @g,jm is supported on wy ;. For locally integrable functions
fo's, we define f; ;’s by

fzmjvnl(a’:) = fz * ¢Z7j7nl($)'
We define a paraproduct to be

2
(2.1) U5y Lo, My Mana o (f1, f2)(z) = Z H ff,j,nz(m)'

JEZ 1=1
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Another paraproduct we should introduce is the following. For ¢ € {1,2},
let wj ; denote the set {¢ : oLej+Me o < (€] < 2. 2LedtMe} - Let m be a
nonnegative integer and define ® ; ,, by

3 2™ ()R é.
i (€) = (277081 ()) <W :
Let fy jm be the function defined by

ff,j,m(af) = f¢* (I)Z,j,m(l‘)-
We define a paraproduct to be

2
(2.2) Ly Loy Mo (1 f2) (2) = ZHfZ,j,m(l‘)-

JEZ t=1

One reason we study these paraproducts is that one will encounter such
paraproducts in the study of the bilinear Hilbert transforms along polyno-
mial curves. We have the following uniform estimates for these paraprod-
ucts.

Theorem 2.1. For any p1 > 1, po > 1 with 1/p1 + 1/py = 1/r, there exists
a constant C' independent of My, Mo, n1,no such that

10 10
(2'3) HHLl,L2,M1,M2,TL17n2(f1,f2)HT < O(1+ |n1|) (1+|n2|) ||f1||p1||f2||1727
for all f1 € LPL and fo € LP2.

Theorem 2.2. Let I, 1, 0, 0Mym(f1, f2) be as in (2.2). Suppose that for
all j,
(2'4) ol2j+Mz ~ oLij+Mi+m

Foranye >0, py > 1, po > 1 with 1/p1+1/py = 1/r, there exists a constant
C independent of m, My, Ms, L1, Ly such that

(2'5) HHL17L2,M1,M27m(f17f2)HT < CQEmeallezﬂpza
for all f1 € LPY and fy € LP2.

The case when Ly = Ly and r > 1 was proved in [16]. The constant C
in Theorem 2.1 may depend on Ly, Ly. It is easy to see by the following
argument that C is O(max{2"1,252}). It is possible to get a much bet-
ter upper bound such as O(log(1 + max{Ly/Ly,L1/Ly})) by tracking the
constants carefully in the proof we will provide. But we do not pursue the
sharp constant in this article. The independence of M7, My is the most im-
portant issue. In Sections 3, 4, we give a proof for Theorem 2.1. The proof
of Theorem 2.2 will be given in Section 5. By using Theorem 2.1, we get
the L" bound for Iz, 1, amy Mpm With a operator norm O(219™). Unfortu-
nately sometimes this is not enough for our application. The desired norm
is O(2°™) for a very small positive number €. It might be possible to remove
the condition (2.4) or get the uniform estimate for Iy, 1, ar M,,m in which
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the operator norm is independent of m. The uniform estimate from L? x L?
to L! is trivial and (2.4) is redundant for this case. In Section 5, we see that
the uniform estimates for Il 1, ar,,m,,m can be achieved for py,py > 2 and
1 < r < 2 (see Proposition 5.7) and (2.4) is superfluous for Theorem 2.2
when py,p2 > 2 and 1 < r < 2 (see Corollary 5.3).

3. A telescoping argument

We now start to prove Theorem 2.1. To prove Theorem 2.1, we first
introduce a definition of admissible trilinear form. And we should show that
by a telescoping argument used in [8, 23], we can reduce the problem to
estimates for an admissible trilinear form. And thus L" estimates for r > 1
can be obtained by Littlewood-Paley theorem. The r < 1 case is more
complicated. We have to use the time frequency analysis to deal with this
case in Section 4.

Definition 3.1. An admissible trilinear form is a trilinear form

3
(3.1) ALl,L2,M1,M2,TL17n2(f17f2af3) :/ZHﬁ,j,nZ(aj)dm,

JEZ t=1

where n3 = 0, frjn, = fo * ®¢jn, and &y ;,, is a function whose Fourier
transform is supported on wy ; such that:

(1) Each &y ; is an interval in R such that the distance from the origin to
the interval is not more than 3|w, ;|. And {& ;}; forms a sequence of
lacunary intervals, that is, |wp ;|/|we ;41| < 1/2 for all j € Z. More-
over, |ws3 ;| > Cmax{|wy j|,|ws |} for some constant C' independent
of Ml,MQ,TLl,nQ. -

(2) There are at least two indices £ € {1,2,3} such that ®, ; ,, satisfies

(32) B (0) = 0
(= On(1+ |ng))®
(3.3) ‘D <‘I>e,j,n,_,(\we,j|§)>‘ < %,

for all £ € R and all nonnegative integers «, N. If an index in {1, 2, 3}
satisfies (3.2) and (3.3), we call the index a good index in the trilinear
form Ar, 1,00 Msmime- For the index which is not a good index, we
call it a bad index in the trilinear form Az, r, ar Mo,n1n.-

(3) If ¢ € {2,3} is a bad index, then E[Sg,jﬂw satisfies (3.3). Moreover,
among the other two good indices ¢’ # ¢, at least one of them satisfies
|we ;| < Cmin{|wy 4|, |wa,;], |ws,;|} for some constant C' independent
of f1, f2, f3, M1, Mz, nq, na.
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(4) If 1 is a bad index, then (T)Lj,m satisfies

(3.4) By, ( Z Dy oy (

where m/(j) is some nonnegative integer.

Lemma 3.2. Let f3 be a locally integrable function. Then

/HL17L2,M1,M2,7117?12 (fla f2)(x)f3(m)dm

18 a sum of finitely many admissible trilinear forms such that the number of
admissible trilinear forms in the sum is no more than a constant C' inde-
pendent of My, My, nq,ns.

Proof. For ¢ € {1,2}, write wy j as [asj, be;]. If baj < b1 /16, then |wy ;| <
|wi,;|/6 and the distance from wy j+ws ; to the origin is not less than |w ;|/4.
In this case, simply let w3 ; be a small neighborhood of —(wy j+ws ;) and the

Fourier transform of ®3 ; is a suitable bump function adapted to ws ;, then we
have the desired lemma. Thus we now only consider the case by ; > by ;/16.
Let wg j be [—18by ;,18bs ;]. And ®3; be a Schwartz function such that its

Fourier transform is a bump function adapted to w3 ; and @3,]-(5 ) =1 for all
¢ € [—171)2,]', 17()27]']. Then

[t @ ne w—/ijlmw

JEZ =1

where f3 jn,(x) = f3* ®3(x) and ng = 0. Let 52 be a Schwartz function
such that @, is a bump function on [—1,1] and ®5(¢) = 1 for all & €

[—3/4,3/4] And define <I>2’j by ?{;2’]‘(5) = 52(5/()2,]'). Let f2,j = f * q)g,j.
We also denote f3,, by f3,. We can replace f3;,, by f2; because

/Zfﬂ,] ni f2,] ng f2,j)($)f3,j($)d$

JEZ

is an admissible trilinear form. Hence the only thing we need to show is that

N fou o) = [ 3 Frion @ fas(0) s (a)da

JEZL

is admissible. For any real number z, let [z] denote the largest integer not
exceeding z. Let m(j) be the integer defined by

[(in + M) — (L1j + My) +6

m(j) = I
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By by > b1,;/16, we see that m(j) > 0. By a telescoping argument,
AN (f1, fa, f3) equals to

m(j)
/ZflJ (1) > <f2,j—k(x)f3,j—k(x) - f2,j—k—1(x)f3,j—k—l(x)>dxy
JEZ k=0

since [ f1jn1 () f2,j—m()-1(2) f3 j—m(j)—1(x)dz = 0 due to the following sim-
ple fact on the support of Fourier transform of each function in the integrand,
ie.,

<Suppfl,j,m + SUPP]?27j—m(j)—1> N <— (Suppﬁ’>7j—m(j)—1)> = 0.

By a change of variables j — j + k, we have that A’(f1, fo, f3) is equal to

/Z Z Jrjkm ( <f2»]( z) f3(z) — f2,j—1(m)f37j—1(fl’)> dz

JEZ k=0
where m/(j) is the integer defined by
[(LQj + M) — (L1j + My) + 6]

m'(j) = o

We write this integral as a sum of three parts Ay, Ao, A3, where

A = /Z ( Z fl,]-i-k n1 >f2,]( )(fg,j(l‘) — f3,j_1(1‘))dl‘

JEZ

b= [S(S st

JEZ

- (fo, (= )—f2,j 1(@)) (f3-1(x) — f3,-8(x))dz,

A3 — /Z ( Z fl,]+k n1 ) (f2,j(33) — f27j_1($))f37j_8(33)d17.

JEZ

It is clear that As is an admissible trilinear form. Write A7 as Ay + Aqo,
where

A = /Z < Z J1,j+km ( )(f2,j(33)_f2,j—1($))(f3,j($)_f3,j—1(33))da77

JEZ

Ajg = / > ( Z Fijtrn >f27] (@) (fs(x) = fayr(x))dn

JEZ
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Clearly, Aq; is an admissible trilinear form. Notice that

() -10-[La/L1] |
Supp( Z f17j+k:,n1> C [0,27%2527 M) = [0,27227 F2by ),
k=0

and
supp(faj — faj1) € [—18ba 7, 18 j]\[<16 - 2722y 5, 16 - 2722y ).
Thus Ay is equal to

'(j)
/Z ( f17j+k,n1($)>
k= m’(J 0—[L2/L1]

JEZ
< Soj—1m0(2) (f3.5.m5 (1) — f3,5-1,n5(x))dez,
which is obviously a finite sum of admissible trilinear forms. As for Ag,
observe that

m'(j)—100—[L2/L1]
supp( > ]?17j+k:,n1> C [0,27 %0282/ FMe] — [0, 2730272, ],
k=0
and
supp(fa; — faj1) C [=bay,ba\[=2772 by 5, 272 by ).
Thus Ag is equal to

m' ()
/Z ( Z f1,j+k,m(ﬂf)) (foj = f2j-1(x)) f3,j-s(x)dz,

jez —100—[L2/L1]
which is a ﬁmte sum of admissible trilinear forms. O
Lemma 3.3. Let Ar, 1, My, Msnine be an admissible trilinear form. Then
for any real numbers py,pa,p3 > 1 with 1/p1 +1/p2+1/ps = 1, there exists
C' independent of My, My, nq, no such that
(3.5)
|AL17L27M17M27H1,712 (flr f2, fS)‘ < C(l + ‘nl ‘)10(1 + ‘nQ‘)lo”fl Hp1 Hf2”p2 ”f3Hp37
for all fy € LPY, fo € LP? and f3 € LP3.
Proof. If there is no bad index in the trilinear form, take ¢y to be any integer

in {1,2,3}. Otherwise, let £y be a bad index. Applying the Cauchy—Schwarz
inequality, Az, 1, 0, Momyne 18 dominated by

/SUPWOWJ I1 (Z!fem 2>1 dz.

00 N g
Using Holder’s inequality, we dominate the trilinear form by

H <Z ‘f&me >

P1 g0,

SUP |ffo7j,"zo
JEZ pe
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The Littlewood—Paley theorem yields that for ¢ # ¢

1/2
= 2
()
J
If ¢y € {2,3}, then by (3.3), we have

s  Foin | < 0+ )M (o),
J€E

< CA+ ne)"|l fellp,-
Pe

which clearly yields the lemma. We now only need to consider the case
lo = 1. It suffices to prove that

m’(j)

E f1% @1tk

k=0

(3.6) sup < C(+[ni )"l fillp, -

J

p1

Notice that wy ;’s are essentailly disjoint intervals and Fourier transform of
7,?:(0]) ®1 ik n, is supported on a bounded interval depending on j. The

left-hand side of (3.6) is less than

CHM<Z fl * (I)l,j7n1>
J

It is easy to verify that ) y f1* @1, is a bounded operator on L? associ-
ated to a standard Calderén—Zygmund kernel by paying at most a cost of
(14 |n1)!% in the corresponding estimates. Thus by a standard Calderén—
Zygmund argument, we have for any real number p > 1, there is a constant
C independent of My, My, nq,ns such that

' D fxPujn,

j p
holds for all f € LP, which yields (3.6). Therefore we complete the proof of
the lemma. O

p1

< CA+ml ) flp

Combining Lemma 3.2 and Lemma 3.3, we obtain (2.3) for py,pa,r > 1.
To finish the proof of Theorem 2.1, we need to provide a proof of L" estimate
with 1/2 < r <1 for (2.3), which will be given in Section 4.

4. Time frequency analysis

In this section we prove (2.3) with 1/2 < r < 1 for the paraproducts
by time frequency analysis, which was used for establishing LP (uniform)
estimates for the bilinear Hilbert transforms in [9, 12, 13, 14, 15, 16, 17, 23].

Let F' be a measurable set in R. X (F') denotes the set of all measurable
functions supported on F' such that the L*° norms of the functions are
no more than 1. A function in X (F') can be considered essentially as the
characteristic function 1.
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To obtain Theorem 2.1, by Lemma 3.3, an interpolation argument in [15],
and the scaling invariance, it is sufficient to prove that for any py,ps > 1
such that 1/p; + 1/p2 > 1 and any measurable set F3 C R with |F3| = 1,
there exists a subset Fj C Fj such that |F5| > 1/2 and

(4.1) \ [ sttt i R0 ()
< O+ [m])!(L + o) 0|4 [V 1/

holds for all f1 € X(Fy), fo € X(F»), f3 € X(F}), where C is a constant
independent of fi, fo, f3, M1, Ms,ny,no.

If 2k20+M2 < L1t My jg et w3 ; = [—19 - 28T Mi/g _olij+ M /g) and
®3 ; be a Schwartz function whose Fourier transform is a bump function
adapted to ws j such that EI\>3J(§) = 1forall £ € [—9-20 3+ M /4 oLuj+Mu /g,
If 2b2i+M2 > oLaj+Mi J8 et wg ; = [—18 - 2120+ M2 18 2120+ M2] and @y ; be
a Schwartz function whose Fourier transform is a bump function adapted
to ws ; such that EI\>3J-(£) =1 for all £ € [—17-2L2+M2 17 2L2j+ Mz et
n3 =0, P3n, = P j, f3jns(x) = f3 % P3jn,(x). Define a trilinear form
ALy Ly, My My ni g DY

3
(4.2) ALl,L2,M1,M2,TL17n2(f17f2af3) :/anz,j,w@)df’?-

JEZ =1

Clearly Ay, 1oy, Manans = J TLiy Lo, My Mo ny o (f1, f2)(2) f3(2)dz. Thus to
prove (4.1), it suffices to prove the following lemma.

Lemma 4.1. Let p1,p2 > 1 such that 1/p1+1/ps > 1 and AL, 1y M1 Mo nine
be the trilinear form defined by (4.2). Let Fy, Fy, F3 be measurable sets in
R with |F3| = 1. Then there exists a subset Fy C F3 such that |F§| > 1/2
and there exists a constant C independent of I, Iy, F3, f1, fo, f3, M1, Ms,
ni,no such that

(4.3)  |ALy Lo My Moy s (f15 2, [3))
< C(1+ [ma)'O(1 + [ng) 0| Fy |7t [Fy|V/P2

holds for all f1 € X(F1), fo € X(F»), f3 € X(F}).

Lemma 4.1 and Lemma 3.3 implies the estimates (2.3) by an interpolation
argument in [15]. Therefore we obtain Theorem 2.1 once we finish a proof of
Lemma 4.1. The following subsections are devoted to proof of Lemma 4.1.

4.1. Definitions. To prove Lemma 4.1, we introduce some definitions first.
Let 9 be a nonnegative Schwartz function such that 1Z is supported in
[—1/100,1/100] and satisfies ¢(0) = 1. Let 1y, () = 2¥(2¥z) for any k € Z.
For j € Z and £ € {1,2,3}, define kj, to be an integer such that |wy ;| ~ 2Fic.
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Denote minge( 233 kje by kj. And define
Ity = 279,277 (n + 1))
Define
15 (2) = i, # ¥, (@).

It is easy to see that

3
AL17L27M17M277’L17”2 (fly J2, f3) = /Z Z 1;,n(l‘) H fg,jm[(l‘)dl‘.
(=1

JEZ nEL

For an integer v with 0 < v < 219 let Z(v) be the set of all integers
congruent to v modulo 2'%°. For S C Z(vy) x Z we define

3
(4.4) At ot = [ 30 @ [ fugmoe
( /=1

j,m)ES

Ag depends on Ly, Lo, My, My, n1,n9. We suppress this dependence for no-
tational convenience. Note that there are finite congruence classes modulo
2100 We will therefore concentrate on proving Lemma 4.1 for the trilinear
form Ag.

In time-frequency space, each function fy ;, for £ € {1,2,3} corresponds
to a box Ir; n X wyj. The most difficult situation is when only one of boxes
is the Heisenberg box, i.e., [l jn|lwe ;| ~ 1. In this situation, we can use
the John—Nirenberg type argument to get the equivalence of LP estimates
of Littlewood—Paley type square functions for only one of functions. For
other two functions, there is no such an equivalence and an extra cost for
it has to been paid if one estimates the BMO norm. It turns out that the
LP equivalence for at least one of three functions is the most crucial key to
solve the problem. Our proof will heavily rely on this equivalence for one of
functions.

Let p be a positive number close to 1. To obtain the Lemma 4.1, it suffices
to prove (4.3) for p1 > p, po > p and 1/p; + 1/pe > 1. For simplicity, we
only deal with the case n1 = ng = n3 = 0. The general case can be handled
in the same way by paying at most a cost of (1 4 |n1|)'%(1 + |n2])'? in the
constants.

We now start to prove that for n; = ny = 0, any 1 < p < 2 and any
measurable set I3 with [F3| = 1 in R, there exists a subset Fj of F3 with
|F3| > 1/2 such that

(4.5) |As(f1, fa f3)| < C|Fy|MPH [ Fy|V/P2
holds for all p; > p,p2 > p with 1/p1 + 1/ps > 1, fi € X(F1),f2 €

X (F3), fs € X(F}), where the constant C' is independent of S, Fy, Fb, F3,
f1, f2, f3, My, Ms. Let us introduce some definitions first.
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Definition 4.2. Let p > 1. Define the exceptional set €2 by

3
(4.6) Q=) {zeR: My(M1p)(z) > Co|F|"/?}
(=1
where M f is the Hardy-Littlewood maximal function of f and M, f equals
1
to (M(|f[P))"".

By this definition, for the measurable set F3 with |[F3| = 1, we take
Fi = F5\Q. If Cy is chosen sufficiently large we see that |Fj| > |F5]/2.

Definition 4.3. Given S C Z(v) x Z and s = (j,n) € S. Let ks =
minge 1 233 {k;¢}. The dyadic interval [27%sn, 275 (n 4 1)] is called the time
interval of s. We denote it by I;.

Definition 4.4. Let S be a subset of Z(y) x Z. We say that S is a convex
set in Z(vy) X Z if for any s € Z(y) x Z with I, C I C I, for some s1,s2 € S,
we have s € S.

Definition 4.5. Let T C S. If there is t € T such that I C I; holds for all
s € T, then T is called a tree with top ¢. T is called a maximal tree with
top t in S if there does not exist a larger tree in S with the same top strictly
containing T.

Definition 4.6. Let T be a tree in S. Define scl(T) the set of scale indices
of T by

sc(T)={j€Z:3ane€Z,s. t. (jn) €T}
For j € scl(T), the j-th shadow of T is defined by
Sh;(T) = J{Is:s=(j,n) € T}.
Define an approximation of 1gy (1) by
Lsh, (1) (%) = lsn,(T) * Yk, (2).
Definition 4.7. Let (j,n) =s € S and ¢ € {1,2,3}. And let

. €Tr) = .
J,m I (1 +22kj|x_y|2)200 Y

kj,'n
Define a seminorm || f¢||;» by

1
|[S|1/;D

n

1 kk —K; kk
A1) Nl = 10, = 5, + o 120550 ],

where D fy j , is the derivative of fy,.
Define ((j, M, K) by

(4.8) ¢4, M, K) =

Lyj+ My — My — L
1J + My 2—6 n —lM—i—K,
Lo Lo
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where L = 219 K is an integer between —10L and 10L and M is an integer

between 0 and 6L For ¢ € {2,3}, we define a ¢ seminorm HfZH]nC

(4.9)
17l e =

I ellyn + sup - |1/p (155 festanmoll, + L3R Dfeciarl, )

For ¢ =1, let the ¢ seminorm Hle HleJn

Definition 4.8. Let T C S be a tree and ¢t = (jr,nt) € T be the top of
T. Denote by It the time interval of the top of tree T.

(a) In the case |wo ;| < |wi;]/6 for all j € scl(T), define Aj(T) for £ €
{1,3} by

1/2
(4.10) AZ(T)(m):( > |1;j;1fgm(a;)\2> .

(Jm)eT

imn¢

For ¢ = 2, define

(4.11) AT () = |1 f2.gmm (2)]-
And in this case, for ¢ € {1,2,3}, define the ¢-size of T by

Jr,nt’

(4.12) sizeg(T) = ﬁuAZ(T)Hp + || fe]

(b) In the case |wa ;| > |wi,;]/6 for all j € scl(T), for £ = 2,3, let fr ;1 =
Jejoif j €scl(T) and fo ;v =0if j ¢ scl(T). Define:

1/2
(4.13) AZ(T)=< > g (fesm = fejrm)(@ )|2>
(

jn)eT

1/2
+< Z |1** (fegme — fz,j,o)($)|2) .
(

j,n)eT

And define Aj(T) by

1/2
(4.14) A“I(T)(ﬂﬂ)=< > |1;;1f17j,n1(x)‘2> :

(Jm)eT

In this case, for ¢ € {1,2, 3}, define the ¢-size of T by

1
(4.15) sizeg(T) = WHAZ(T)HP + ||l

jT7nT7C‘
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Let P be a subset of S. Define the f-size* of P by

(4.16) size;(P) = sup sizey(T),
T TCP
where T ranges over all trees in P.

In the definition of 1}‘5:’;1, we can replace the exponent 200 b~y a larger
number 21% to define a new function. We denote this function by 17, 1157,
is replaced by i;‘n in the definition of Aj(T), we denote the corresponding
function by Ay(T).

Definition 4.9. Let S be a subset of Z(7y) x Z. Suppose that S is a union
of trees T € F. Define count(S) by
(4.17) count(S) = Y |Ir|.

TeF

4.2. Reduction. Let S be a subset of Z() x Z. For Q) defined in (4.6), we
define

(4.18) S(Q)={seS:1, ¢ Q}

The following lemma indicates that we only need to seek the upper bound
for the trilinear form Agq).

Lemma 4.10. Let ny = ny = 0 and f3 € X(F3). For all functions fi €
X(Fy), fo € X(F3), the following inequality holds.

(4.19)  |As(f1, fa, f3) — As() (f1, f2. f3)]
< C'min {1, |F1 |7} min {1,|FL| "7},

where C' is a constant independent of S, I, Iy, F3, f1, fo, fs, M1, Ms.

Proof. Notice that if s = (j,n) € S(Q)¢, then Iy C Q. Let S1(€2) be defined
by

SL(Q) = {s€S(V)°: 2FI, C Q, but 25X 1 ¢ Q}.
We see that S(Q2)¢ = U ,S(2). Let Jr be the set of all time intervals I’s
for s € Sp(Q). It is easy to see that Jr is a collection of disjoint intervals
and ) ;e 7 |J| < |Q] < 1. Hence, it suffices to show that for any J € Jp
and any (j,n) = s € S;(2) such that I, = J, we have

(4.20) ‘ / 1j,n(x)1;[fé,j,m(x)d:p

< €2 P min {1,|Fy |7} min {1, |Fy |7} ],

where C' is a constant independent of f1, fa, f3, M1, Ma, since (4.19) follows
by summing all L’s and J’s together.
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We now prove (4.20). Since F§ = F3\Q and f3 € X(F}), we get for any
(j,n) € S and any positive integer N,
Cn
(4.21) (1%,,(z) f3jn,(x)] < .
[Lin@) i) (1 + 2kadist(, I,)) >N (1 + 2kasdist(x, 2¢))*N

Clearly we have for £ € {1,2} and (j,n) € S,

Cn|fo(y)[2%5¢ dy
(4.22) g < | Iy
(1 + 2kie | — y|)
By the definition of 2, we have for £ € {1,2} and (j,n) € S,
(4.23) | fejime(@)| < Cn min {1, Fp[VP} (1 4 2¥5¢dist(x, Q).

Thus (4.21), (4.23) and the fact 2%53 ~ 2max{kie} vield that the left-hand
side of (4.20) is no more than

2
Cn2~ "N T min {1, |F,|'/7}|]]
=1
for any positive integer N > 2, which is the desired estimate. U

Hence, to prove (4.5), we only need to prove the following lemma for
Ag(q)- The details of the proof of Lemma 4.11 will be given in the next few
subsections.

Lemma 4.11. Let ny =ny =0, 1 < p < 2, F3 C R, and S() be the set
defined in (4.18) and F§ = F\Q. For all p1,pa > p with 1/p1+1/p2 > 1, and
all functions fi1 € X(F1), fo € X(F2), f3 € X(F}), the following inequality
holds.

(4.24) |Asi) (f1, fo. f3)| < C|F1|V/Pr | By |M/P2,
where C' is a constant independent of S, I, Iy, F3, f1, fa, f3, M1, Ms.

4.3. Principal lemmas. We now state some lemmata which will be used
in proof of Lemma 4.11.

Lemma 4.12. Let 1 < g < oo, £ € {1,2,3} and T be a tree in S. Then
(4.25) 1A (), < € inf My(M fo) ()],

(4.26) sizey(T) < C iéllf M, (M fo)(z),
zelr
where C' is a constant independent of f,, T, S, My, M>.

Proof. (4.25) is a consequence of the following L7 estimates of Ay(T).
(4.27) |AsT), < Cllfelle

In fact, one can decompose fy into fylor, and fel(pp)e. For the first func-
tion, apply (4.27) to get the desired estimates. For the second function,
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the desired estimates follow by the fast decay due to Aj(T) is essentially
supported on Ip.

Note that we consider only the case ny = 0. For ny # 0, the following
argument still works if one changes the constant C' to C'(1+ |ng|)®. We only
give the details for the case |wo ;| < |w1,;]/2 and ¢ € {1,3} since other cases
can be done in the same way. In this case, we have

1/2
Az(T)(l’)=< Z |1;‘<::1f£,j,0($)|2> -

(4,n)eT
Notice that Aj(T)(x) is dominated by

(Z |ff,j,o<a:>|2) 1/2,

JEZ
where fy ;0 is defined by fgw = ﬁim,o. Note that @g,j@ is supported on

wy,j and wy ;’s are disjoint. Thus the Littlewood—Paley theorem then yields
the L7 estimates (4.27). To get (4.25), it suffices to show that

|87 (D], < € inf M,(Mfo)(@)lIx]',
€l

where A%

£,out

(T) is defined by

1/2
AZout(T)(ﬂc):< > |1;*n($)((f1(21rp)6)*‘IU,J',O)(ZE)‘Q) :

(j,n)eT

By the definition of 177 and @y 0, we have that for any positive integer N,

175 @) (FLa1r)e) * Pejo) ()]
< Cy / fuly) 12"
- (14 2k dist(a, Is))loo @Ir)e (14 2kit|z — y])
which is clearly dominated by

N

CM fy(z)
(1 + 2kadist(x, 1)) (1 + 285 dist (I, (217)°))
Thus for s € T,

1257, (fLrpye) * Pejo) g

50 °

C|I| . q
< inf M,(M fo)(z)) .
(1 + 2kidist (I, (2IT)C))25q (IGIT a )
By the triangle inequality, we obtain that
. C|IL|"/4 :
HA&out(T)Hq < Z 25 wlénlfr Mq(Mfg)(l‘),

ser (14 L]~ dist(Z, (2I1)°))
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which yields the desired estimate (4.25). Notice that
| CMf()
(1 + |Ip|~dist(-, 1)) ™

which is clearly dominated by inf,ez, M,(M f;)(x)|I1|'/P. Therefore we
obtain (4.26). O

H ]Ty”Tfév]TanH +H2_k] ll;; nTDfévavWHp -

9
p

Lemma 4.13. Suppose that s = (j,n) € S.
If 2Fit ~ 2Fi | then

(4.28) 155 egmell o < €Il

holds for ¢ € {1,2,3}, where C' is a constant independent of s, fs, ny.
If 2kt ~ 2K | then

(4.29) |1 fecimnm)ymll o < CHfZHjm,c

holds for ¢ € {2,3}, where ((j, M, K) is defined in Definition 4.7 and C' is
a constant independent of s, fo,ng, (, M, K.

Proof. We only prove (4.28) since (4.29) essentially is a consequence of
(4.28). Let p = Hngj .- By the definition of the seminorm, we have

(4.30) 5 Feginell, + 151255 D fejnll,, < mlLslMP.
First we prove the BMO estimate for the function, that is

(4.31) 1155 fesmell o < Crs
If |I5] < |J|, by (4.30) we have

1—1 1 11
lnf/ ‘1 f@jne _C|d.73< Hl f@,j,nng|J| P §N|Is|p"]‘ P §N|J|
If |I;] > |J|, by (4.30) we obtain that
mf/ ‘1371 x) feojm, (T c|da:
< |J|/‘ 1** ff,]ng )‘di‘
W1 [ 10850) @ @) dz 111 [ 1855,@)D (o)

< C|J||Is|_1Hlj,nfﬂ,j,nng|J|l__ + |J|H1 DfZ,j,nng|J|1_%

2-1. .1
< CulJPr Ll < CplJ).

Thus we get the BMO estimate (4.31). Interpolating (4.31) and (4.30), we
have for any p < ¢ < oo,

Hlj:l;l/f&jvnfuq S Clu“[5|1/q
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Notice that an integration by parts and Holder inequality yield that

1155 fegnel oo < N0 fesme L2 (U e,

where 1/p + 1/p’ = 1. Hence the desired estimate (4.28) follows by (4.30)
and L?" estimates for the functions. g

1/2
p/

Lemma 4.14. Suppose that 2Fi¢ ~ 2%i holds for all (j,n) € S. Then for
any tree T in S, we have

(4.32) HA@(T)HBMO < Csizey(T),
where C is a constant independent of T, S, L1, Lo, My, Mo, fo, ny.

Proof. We only give the a proof for £ = 1. Other cases can be handled in
the same way. Let p = size)(S). Let J be a dyadic interval and T = {s €
T : I, C J}. We then dominate inf. [, |A¢(T)(z) — ¢|dz by a sum of the
following three parts.

1/2
/J< Z ‘I;,n(lf)fé,j,nz(l‘)F) dr,

seTy

1/2

/J ST @) fogn @ | da,

SET\TJ
|L]<|J]

and

i]%f/J Z !1;’n(a;)fg,jm(m)|2 —cldx.
s€T\T,
[s[>J]
The first part is clearly dominated by p|J| because of the Holder inequality
and the fact that p is the f-size® of S.
Since p < 2 we estimate the second part by

1/2
Tk 2 ]__l
> | Gateind B
SGT\TJ
|I5|<|J] Lo (J)
1/p
- 1
= Z Hljmfé,jmuipu) |J|"»
SET\TJ

s|<[J]
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1/p
Cllsnfesmll, 1
= Z 14 100 PA
s€T\T (1 + | Ls|~dist(J, Is))
|15 ]<]J]
1/p
C|Is| 1—1
Sp Z . 100 lJI7r < CulJ).
s€T\T, (1 + |[Ls|~Ldist (7, 1))
|15 ]<]J]
The third part is estimated by
12 |2 1/2
: Tk 2
Hclf/ Z 115, () fojme ()] —c| dx |J|1/?
T\ seT\T,
[Ls]>]J]
1/2
< | f / > L@ e @) | de | [
T e,
|Is|>]J]
1/2
/
PE] 2
=C / > <|1j,n($)fz,j,w($)| > dx ],
T seT\T,
15> J]
which is dominated by a sum of the following two terms,
1/2
—1|73* 2
Ry =C / S T @) fe g, ) Pda | LI,
T seT\T,
| 1s|>]J]
and
1/2
B=0 | [ 3 [0 i @[T i@l |1
I seT\T,
[ 1s|>]J]

By Lemma 4.13, we see that for any g > p,

155 Fegmell, < Crulte] 2.
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Thus, by Holder’s inequality, the first term R; is estimated by

1/2
||~ 2| 711/2
c Z . 100”1;>’;1f€,j,nzu4|‘]| / /]
SETVT, (1 + | Is|~dist(J, Is))
[Is|>1]J|
1/2
|I |—1/2|J|1/2
<Cu Z 8_1 ) 100 || < CulJl,
SeTVT (1 + | Is|~dist(J, Is))
s|>]J]
and the second term Rp is estimated by
1/2
Cl X I Gafesndl w50 DSesnl, | 11
SET\TJ
s |>]J]
1/2
|1 |%‘1H1** frinel |J|5’<T}+1>
] f, ', /
<Ol Y —a e
SET\T, (1+ [Is]~tdist(J, 1))
s|>]J]
1/2
|1, 7@ |J| 7D
<Oul X o wo | < Culdl.
SETVT, (1 + |Is|~dist(J, Is))
s |>]J]
This completes the proof of (4.32). O

The principal lemma is the following organization lemma.

Lemma 4.15. Let ¢ € {1,2,3} and S be a subset of Z(y) X Z. S can be
partitioned to two parts S1 and So such that Sy is a union of mazrimal trees
with

(4.33) count(S1) < C(size}(S)) "|Fl,
and

1
(4.34) sizey (Sg) < §size’£(S),

where C' is a constant independent of S, My, Mo, fs, Fy.

Proof. Let Fj be the set of all trees T C S such that size,(T) > size)(S)/2.
Recall that It is the time interval for the top of T. Let Z denote the
collection of all possible I1’s for trees T € Fy. Initially, set S1 := 0, Zgioek :=
7, and Sgtock = S. Take a longest interval J in Zgoc. By the defintion of
7, there must be a tree T € Fy whose top is J. Let T be the maximal tree
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in Sgtock With the top J. Obviously sizey(T) > sizej(S)/2. We remove this
maximal tree from Sgiock. Update Sgpock := Sstock \ T, S1 := S1 U T, and

Istock = Istock\{l S Istock : I C J}
Repeat this procedure until Zgocx = (). Clearly when this process terminates,
Sy is a union of a trees T’s and I5’s are disjoint due to the maximality of

trees. By (4.26) and the size condition on T, we have

inf My(Mfo)(w) = sizef(8),2,

which implies that

Uz € {z e R: M,(Mfo)(2) > size}(S)/2}.
T

Thus the disjointness property of I5’s and (weak) L7 estimates for 1 <
g < oo of Hardy-Littlewood maximal functions yield (4.33). Let Sy =
S\S;. Clearly S, satisfies (4.34). Therefore we complete the proof of Lemma
4.15.

O

4.4. The size estimate for a tree. Let S be a convex subset of Z(7y) x Z.
By the definition of S(€2) in (4.18), it is clear that S(£2) is convex. Partition
S(9) into two subsets SV (Q) and S@)(Q), where

(4.35) SW(Q) = {(j,n) € S(Q) : |waj| < |wi1/6}

(4.36) Q) = {(j,n) € S(Q) : |wa,;| > [w1;]/6}.

For any (j,n) € S1(Q), kj2 = k; by the definition of k;. And for any
(j,n) € SP(Q), 2kt ~ 2k,

Lemma 4.16. For x € {1,2}, S®)(Q) is convex.

Proof. We only prove the lemma for x = 2. One can prove the lemma
for k = 1 similarly. Let s; = (ji1,n1),52 = (jo,n2) in S@(Q). And s =
(j,n) € Z(y) x Z such that I, C I; C Ig,. By the convexity of S(Q2) we get
5 € S(). In order to get s € S (Q), we need to show that |wy ;| > |w1;|/6.
The simple case is the case 2% = |w; j|. In this case,

|w1,j,1/10 < fwr ;| < 10wy j, |,

which implies jo < j < ji. Since |wa j,| > |wij,|/6 and |wa j,| > |wi j,|/6,
the linearity of the function f(j) = (L1j + M1) — (L2j + M) yields that
|wa,j| > fwi,;]/6.

We now turn to another case 2% = |ws j|. Since I, is nested between I,
and Ig,, we get |wy j,|/10 < |wa;| < 10wy j,|. The first half part of this
inequality and the definition of k; imply j» < j. And the second half part
of the inequality and the fact (j;,n;) € S®(Q) yield j < j;. Thus we get
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lwa | > |wi,]/6 by the linearity of the function f(j). Hence s must be in
S(2)(Q) in either case. This proves the lemma. O

Lemma 4.17. Let k € {1,2}, T be a convex tree in SU)(Q) with the top
t = (jr,nt) and 0Sh;(T) be the boundary of the j-th shadow of T. Let
Card(0Sh;(T)) denote the cardinality of the boundary of the j-th shadow.
Then

(4.37) Y~ 27%Card(9Sh,(T)) < C|Ix),
JZiT
where C' is a constant independent of T.

Proof. This lemma is similar to one technical lemma (Lemma 4.8) in [17].
We give a similar proof. Note that the j-th shadow consists of finite disjoint
intervals and its boundary thus contains all endpoints of the intervals. It
is sufficient to consider only all left endpoints since the right endpoints can
be handled in the same way. Let Ot (Sh;(T)) denote the collection of all
left endpoints of the intervals in the j-th shadow. Let z € O (Sh;(T))
and I;(z) = (z — 2%,z — 27%i /2). To prove (4.37), it suffices to show that
the intervals I;(z)’s are disjoint for all possible j, z. Assume that there are
J,J" € scl(T), z € Der(Sh;(T)) and 2" € Die(Sh,/(T)) such that (j,z) #
(4',2") and I;(z) N I;/(2') # 0. By the nesting property of dyadic intervals
and the fact that z — 27% is an endpoint of some dyadic intervals, we see
that j # j/. Without loss of generality, suppose that j < j’. The fact that
I;(z) and I;/(2') have nonempty intersection then implies 2’ € (2 — 27, 2).
Since z is a left endpoint of some intervals in the j-th shadow, 2z’ can not
be in Sh;(T). However, the convexity of T yields that Sh;(T) € Sh;(T).
This is a contradiction. Therefore we obtain the lemma. U

Lemma 4.18. Let v € {1,2}, let T be a convex tree in SW(Q) and let
At (f1, f2, f3) be defined by

3
(4.38) Ar(f1, f2, f3) = Z/H > Frjn(@)de,

7 /=1 nETj
where T; ={n € Z: (j,n) € T} and Fy;, is defined by

(4.39) Frjn(z) =15 ,() fojn, ().
Then we have
(4.40) |AT(f1, fo. f3) = Ax(f1, fa, f3)| < Csize] (T)sizes(T)| Iz,

where C is a constant independent of 'T,S, f1, fo, f3.
Proof. Observe that the difference |[A — Ax| by

D

jéescl(T)

3
1 (@) — (W o) @) ] [Fesime (@),
/=1
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which is dominated by

2. 2

jesel(T) r:|rj=27*

S| (150 @ - (50, 0)*@) ) T, @) [ Lix (s, fo o) o)

where
(4.41) 15 (@) / 2 d
. Sh. Xr) = X
5 (T) Sh, (T) (1 + 225 | — y|2)21000
and

3
o (fi fo, f3) (2 H T, m) " Frgnn(@)].
Holder’s inequality, Lemma 4.13 an?l (4.25) then yield that
(4.42) T2 (frs fo f3)| oy < Csizej (T)sizes(T)2 %
Thus we estimate the difference [Ar — Ar| by

Csize] (T)sizes(T)

> (S - o)) G )
J

jescl(T) :|1)=2~"

)

Leo(I)

By the definition of 1§hj (T)’ it is easy to see that it is a smooth approxi-

mation of 1sh;(T) and for any positive interger N the following inequality
holds.

Lo (1)
Cn|I|
T (14 1|7 dist(1, 9Shy;(T))) ¥

Summing up all I’s with |I| = 27%, we estimate the difference by
Csize}(T)size3(T) » 27" Card(9Sh;(T)).
jéescl(T)
Hence the lemma follows by Lemma 4.17. (|

Lemma 4.19. Let T be a convex tree in S (Q). For £ € {2,3}, let Fy; be
defined by

(4.43) Fpj(x) = 1gp, (1) () fej0(2),
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if T;j # 0, and Fy j =0 if Tj =0. Then we have

< Csize}(T)|Ip |7,
p

1/2
(4.44) S]l\l/[p H <Z |Fg,j_M — FZ,j—M—L|2>
J

where L = 2190 M ranges over all integers between 0 and 6L and C is a
constant independent of fy, T.

Proof. For simplicity, we only prove the lemma for M = 0. It is easy to see
that |Fy; — Fyj—r(x)| is dominated by

|Lan, (m) (@) (feg0(2) = fej—r.0(@))]| +|(Xgn, () (@) = Lan, , (1) (@) fej—r(z)].
Clearly, by the definition of Aj(T) and size;(T), we get

1/2
H (Z ‘lghg‘(T) (fé’j’o B fz’j_L’O) ‘2>
J

Thus to obtain (4.44), it suffices to show that

1/2
(4.45) H < > | (18n, (1) — 1§hjL(T))f£7j—L70‘2>
J

Heuristically one can consider 1§hj (T) 38 1sp;(T). Then by the nesting

< CllAp(T)]], < Csize* (T)|Ip|'/?.
p

< Csize*(T)|Ip|'/P.
p

property of the j-th shadows due to the convexity of the tree, we see that
Sh;_r,(T)\Sh;(T)’s are disjoint and this is the reason why we have such an
estimate.

Now we go to the technical details. Since p < 2, we estimate the left-hand
side of (4.45) by

1/p
( Z \\(1§hj(T)—1§hjL(T>)ffvj—L70H§> :

jéescl(T)

This is dominated by

(> ¥

jescl(T) :|1)=27"i

p \ /P
da:) ,

* * T * 1
/I‘(lshj(T) — 15, (1) @) (Agh, , (1) (@) 0I5 (fo)(2)
is the function defined in (4.41) and

H;(fé) = (Ighj,L(T))l/lofé,j—L,o-
Holder’s inequality, Lemma 4.13 and (4.25) then yield that
(4.46) 15 ()| oy < C'size’ (T)sizey(T)|I|M/7.

where 1§hj (T)
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Thus we dominate the left-hand side of (4.45) by
Csize] (T)sizes5(T)
1/p
* * Tk _1
: ( Z Z ‘( Shy(m) ~ L8n, (1)) (L8n, (1)) 1 |I|)
jescl(T) 1. 1)=27"i Lee(I)
Since Sh;(T) C Sh;_r(T), it is easy to see that

|L8n, () (@) = 1gn, , (1) (@) < Cighj,L(T) ().

On the other hand, observe that |1§hj(T) - lghj,,; (T)| is dominated by
Cn

(1 + 2kidist(z, 0(Sh;(T))))

for any positive integer N. Hence the L°°(I) norm of

dShj(z) = 1sn, ,(T)\Sh;(T) * Yk, . (T) + 5

* * ~* _L
(Lsn,(m) — Lon, () L8n, (1) ™

is estimated by
Cn Cn
(1+ |T|-'dist(, Sh;_.(T)\Sh;(T)))" i (1+ |T|-1dist(, 8(Sh, (T)))
For those I’s contained in Sh;(T), we have
1 < 1
(1 + |77 dist(Z, Shy— 1 (T)\Shy (1))~ (1+|7]-\dist(7, (Shy(T))))
For those I's contained in (Sh;_r(T))¢, we get
1

(1 + [I]-*dist(Z, Sh;_.(T)\Sh;(T)))

N -

N

1

< .
(1+ | 7|~ dist(I, d(Sh,_(T))))™

Thus we have

1
I:m%;kj (1 + 1] dist(Z, Shj_L(T)\Shj(T)))N

< |I|7|Sh;_1(T)\Sh;(T)| + Card(0Sh;(T)) + Card(9Sh;_(T)).

By the nesting property of j-th shadows, the fact 2% ~ 2Fi-2 and Lemma
4.17, we obtain that

DS

j€scl(T) 2| 1|=2""
which yields the desired estimate (4.45). (]

1
10

(L8, (1) — 18n, (1) Lén, . (1)~ )
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Lemma 4.20. Let x € {1,2} and T be a convez tree in S (Q). Then we
have

(4.47) |At(f1, fo, f3)| < Csize](T)sizes(T)|Ir|,
where C is a constant independent of 'T,S, f1, fo, f3.
Proof. By Lemma 4.18, it is sufficient to show that

(4.48) |AT(fi. fo, f3)| < Csize}(T)size}(T)|Ir,

where C' is a constant independent of T, S, f1, fo, f3.
We first prove the simple case x = 1. In this case, kjo = k; for all

(j,n) € T. We thus dominate |Ar| by

/Sup S Byjal@) H< 3 |Fg7j,n(l‘)|2)1/2dl‘.

neT; £#2 \ (jn)eT

By the definition of Ay and Hélder’s inequality, we estimate |Ar| by

Sup |F2
(J;n)eT

where 1/p+ 1/p' =1 and Fy; ,, = 17" f1 jn,. Lemma 4.13 yields that

s HQ‘

1AL(T)]],[|As(T

|75 jnl o < size3(T).
Clearly the definition of size yields
1AL(T)|lp < size](T)| Ix|'/?.

And (4.25) yields
[85(D)], < Ol

Putting all of them together, we obtain (4.47) for the case k = 1.

We now prove the case k = 2. In this case, 2% ~ 2% for all (j,n) € T.
For simplicity, we only consider the case ny = 0. The general case can be
done in the same way by paying a cost of (14 |ng|)!? in the constant. Then

we write the trilinear form AT as

1(f1: f2, f3) Z/HF&J

JEZL
where Fy ; is defined in (4.43). Here we take a convenient notation that Fy ;
is identically zero if j ¢ scl(T). Let L = 2!%°. By the telescoping argument
used in Lemma 3.2, we can write A as a finite sum of two types of trilinear
forms. One type of them is defined by

(149)  Aralfifo o) = [ 30 Fugimety s @)L (Fag, Po)(o)da,

JEZ
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where m/(j) = [(Laj+Ma—L1j—My+6)/L1], M is an integer between 0 and
6L, and II; 1. (F> j, F3 ;) equals either (Fy; — F j_1)F3 j—sr or Foj_r(F3;—
F3;_1). Another type is defined by

(4.50)

/Z ( Z Fijin(x ) (Foj(x) = Foj_r(2)) (Fs—nm(z) — Fsj—nm—r(x))dz,

JEL
which is denoted by At 2(f1, f2, f3).

We now prove the estimate for the first type trilinear form At ;. Let us
first consider the case

Ari(f1, fo. f3) = /Zﬂ g (- (@) (Foj — Fo ) () Fy j s () d.

JEZ

In this case, by the Cauchy-Schwarz inequality, |Ar ;| is estimated by

/ (Z | B mo(g)-2a (@) P s (@) |2> - < Z |Foj(x)—Fyjr(x) |2> 1/2df'3-

Using Holder’s inequality, we dominate it by

) 1/2 ) 1/2
H(Z\Fl,j+m'(j>—MF3,j—8L| > <Z|F2,j — Fyj 1 >
J p j

The first factor in this expression is no more than
> 1/2

[2
)

p

*
1]+m/(]) Mnfl,]—i-m’() Mn1f3,j 8L,0
"ETJ+m’(J) M

)
pl

which is dominated by

[

We estimate it by

()

(Jm)eT

~* 2
‘(1j+m’(j)—M,n) fl,j+m’(j)—M,n1 [f3,5-8L,0 /

j neT]+m p

sup |15, f3.c(an).0] o
P’ (Jm)eT

where K is some integer between —10L and 10L and ((j, M, K)is defined as
n (4.8). Clearly, i;nf37((j7M,K),0 is bounded. Also by Lemma 4.14 and an
interpolation, we have
1/2
(4.51) H <Z |15, frgm > < Csize! (T)|Ig |7
v
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And Lemma 4.19 yields that

(4.52) H (z]: |y j — FQ,]-_L\2>1/2

(4.51) and (4.52) give us the desired estimate for At ; in the first case.
We now consider the case

At 1(f1, fo, f3) = /ZF1,j+mf(j)—M(9C)F2,j—L($)(F3,j — F3j_1)(z)dx.

JEZ

< size}(T)|Ip|V?.
p

In this case, using the Cauchy-Schwarz inequality, we have that |Ar ;| is
estimated by

1/2 1/2

/(Zj:|Fl,j+m'(j)—M(x)F2,j—L($)|2> (Zj:|F3,j(m)—F3,j_L(a:)\2> dz.

By Hoélder’s inequality, we dominate it by

N\ 12 S\ 12
H(Z\Fl,j+m’(j)—MF2,j—L| > <Z|F3,j — Fyj 1 >
j j

The first factor in this expression is no more than
2) 1/2

H <Z Z ‘(I;-l-m’(j)—M,n)2f1,j+m’(j)—M,n1f2,j—L,O
sup |’i;,nf2,§(j,M,K),0|’m,

TR S
P’ (4n)€T

v’ P

p/
We estimate it by

,n)eT

where K is some integer between —10L and 10L and ((j, M, K)is defined as
in (4.8). By (4.29) and the definition of size, we see that

(4.53) sup Hij,an,g(j,M,K),OHOO < Csize;(T).
(j,n)eT

Lemma 4.19 and (4.26) yield that

(4.54) H <Z |Fyj — Fg,j_L\2>1/2

Putting (4.51), (4.53) and (4.54) together, we thus get the desired estimate
for At 1 in the second case.

< |[T|1/p‘
P
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Finally let us estimate At 2. The integrand in (4.50) is dominated by

m' (j) 2
sup | > Fijix(x) (Z |(F — F2J—L)(l’)|2>
J | k=0 JEL

‘ (Z | (s jnr — F3,j_M_L)(:z:)\2> %.

JEZ
There exist p1,p3 € R such that 1/p; +1/p+1/ps =1 and p; > p',p3 > 1.
By Holder’s inequality we dominate A > by

m'(5) 3
sup | > Fijin(e) (Z | Faj — F2J—L|2>
71 k=0 pill \j€EZ P
3
: 'l (Z |Fsj—m — F3J—M—L‘2> .
JEL p3

Just notice that one can simply define the size with respect to any number
ps by using LP3  then (4.26) and Lemma 4.19 still hold. Thus we have

1
2
(Z |Fsj—n — F3,j—M—L‘2>

JEZ

(4.55) < C|Ip|V/Ps

p3

Notice that the supports of Fourier transform of Fj ;ji;’s are essentially
disjoint. We thus have

m’(j)
sup Z By k() < C‘ ZFLJ'
J k=0 p1 J n
Clearly,
|5, < I8,
r 2

By Lemma 4.14 and an interpolation, we have that

|AL(T)]|, < Csize (T)|Ip|/>.
b
J

A routine argument as we did in Lemma 4.14 yields

> Fi
J

Thus we get

< Csizel(T)|Ip |2
2

< Csize] (T).

(4.56) ‘ .
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Now by an interpolation, we obtain that

> P
J

Hence the desired estimate for At o now follows by (4.57), (4.52) and (4.55).
Therefore we obtain Lemma 4.20. (]

(4.57) ‘ < Csize’(T)|Ip| /7.

P1

4.5. Proof of Lemma 4.11. We now prove Lemma 4.11. Without loss of
generality, we can assume that S is a convex set. Lemma 4.16 then yields
that S(V(Q) and S (Q) are convex. By the definition of convexity, we
see that the convexity is preserved for a maximal tree in a convex set and
the remaining set obtained by removing a maximal tree from a convex set.
Thus, applying the organization Lemma 4.15 for S(”‘)(Q) inductively, we
decompose

(4.58) s(q) = Jsi,

where k € {1,2}, o ranges over all possible dyadic numbers, S((f) =U w'T
such that F[ is a collection of convex trees with

(4.59) count(S¥) < Co?,
and for both £ =1 and / = 2,
(4.60) size} (SU9)) < o| Fy| /7.

By Lemma 4.12 and the definition of S(€2), we know that ¢ <1 in order to
make S((f) nonempty and we can also sharpen the upper bound in the size
estimate for S((,H) by

(4.61) sizej (SU9) < min{1, o|Fy|/P}.

Hence we estimate Ag(q) by

2
[Asoy(Ffo ) <D0 > An(f1, far f3)]-

rk=10<1 TE]—'((,H)

Lemma 4.20 yields that

|As() (f1. fo. f3)] ZZ Z size} (S{)size3(SU)|Ix|.

Applying (4.61) and (4.59), we thus obtain
(4.62)  |Ag()(f1, fo f5)| < C Y min{l,o|F[V/P} min{1, 0| |7 }o 7,

o<1

which clearly implies (4.24). Therefore we have proven Lemma 4.11.
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5. Proof of Theorem 2.2

We now prove Theorem 2.2. The uniform estimate from L? x L? to L!
follows immediately by a change of variables and Littlewood—Paley theory
and (2.4) is superfluous. Take this simple idea and we can get the uniform
estimate for pi,po > 2 and 1 < r < 2 in Proposition 5.7 for the case
ol2i+ Mz  9laj+Mig o 2E1j+Mi < 9L2j+Mz2 /8 For the general case, we pay
a cost of m in the operator norm in this range of p1, ps, p to get Lemma 5.4.

For the r < 1 case, we use some idea from Section 4 and one can see that
technically it is much simpler than what we did in Section 4. We have to
assume (2.4) and pay a little more for the operator norm such as 2™ (see
Lemma 5.10). The uniform estimate might be true but 2°”* for a small € > 0
is good enough for our application.

As we did in Section 4, we set up a trilinear form first. Let us ignore the
condition (2.4) for a while. If 2L20+M2 < 2L1j+Mi /g et

wh ;= {€: 28 ITM g < |¢| < 19 2L1i M8}

and let ®3; be a Schwartz function whose Fourier transform is a bump
function adapted to wj ; such that @37]-({) = 1 for all 2l7+Mi/4 < |¢| <
9. 2l+M /g

If 2Lai+M1 2L2j+M2/8’ let wé’j = {¢: 2L2j+M2/8 <l < 19.2L2j+M2/8}
and ®3 ; be a Schwartz function whose Fourier transform is a bump function
adapted to wj ; such that B3 ;(€) = 1 for all 2L20+M2 /4 < |¢| < 9.2L2d+Mz /g,

If 2L1j+M1/8 < 9L2j+M2 <8- 2L1j+M17 let

Wy =A{€ [€] < 18 - max{2l/ M gl y
and ®3 ; be a Schwartz function whose Fourier transform is a bump function
adapted to wy ; such that EI\>3J(£) = 1 for all [¢| < 17-max{2F1J+M 9l2j+Mzy
Let @3 m = P34, fajm(x) = f3,0(x) = f3 % P3j0(x). Define a trilinear
form AL17L27M17M27m by

3
(5.1) Mivsastuan(Fisfos i) = [ S T] frjmta)d

JEZ b=1

Clearly A, L,0 Moym = [ HLy Loy Mo (f1, f2) () f3(2)de.
We will prove the following two lemmata.

Lemma 5.1. Let p1,p2 > 2 and 1 < r < 2 such that 1/p1+1/p1 = 1/r. Let
I, Fy, F3 be measurable sets in R. There exists a constant C' independent
of F1, Iy, F3, f1, fa, f3, M1, Mz, m such that

(5.2) |ALL Lo, Mo (1, f2, f3)] < Cm|Fy [P Fy VP2 | By VT
holds for all f1 € X(F1), fa € X(F3) and f3 € X(F3).

Lemma 5.2. Let € be any positive number, 1 < p < 2 and Fy, F, F3 be
measurable sets in R such that |F3| = 1. Suppose (2.4) holds for all j’s.
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Then there is a subset Fy C F3 with |F4| > |F3|/2 such that for all p1,pa > p
with 1/p1+1/pe > 1, and all functions f1 € X(F1), fo € X(Fy), f3 € X(F3),
the following inequality holds.

(5.3) ALy Lo My Mo (f1 fa, f3)] < C25 [y [VPH By [MP2

where C' is a constant independent of S, Fy, Fs, F3, f1, fa, f3, M1, Ma, m

Theorem 2.2 is a consequence of these two lemmas by using interpola-
tion and duality. We also have a corollary from Lemma 5.1 by a simple
interpolation.

Corollary 5.3. Let p1,p2 > 2 and 1 < r < 2 such that 1/p1 +1/p1 = 1/r.
There exists a constant C independent of Fy, Fs, F3, f1, fo, f3, M1, Ms, m
such that

(5'4) HHL17L27M17M27m(f17fQ)HT < Cmealle2Hp2
holds for all f1 € LP* and fo € LP2.

5.1. Proof of Lemma 5.1. For ¢ € {1,2,3}, let Try;,, be a translation
function defined by

(5.5) Tryjm (@) = + myy,
where mj, = 2miLe=Me if ¢ € {1,2} and mj3 = 0. Notice that frj.(z) =
Je3.0(Trejm(x)). Write ALy L, vy Mo 8s

AL17L2,M17M27 (flv f2, f3

/R 15, (Trg,mm(w))fg’j,o (Trm,m(a:))da:.

= l(jn )ELXTL
For S C Z(y) x Z we define

(5.6) Asm(f1, f2, f3) = /ZH Z tjm,m(T

JEZ t=1neS;
where S; = {n: (j,n) € S} and Fyj, , is defined by
(5.7) Fyjnm(x) = ((1;,nf£,j,0) o Trm,m) ().
Let kj, be an integer such that [wj ;| ~ 2kit. For s = (4,n) € S, let ky =
k; = miny kjp. The time interval of s is defined by I = [27Fsn, 27k (n + 1))].

We then can define a tree in S as in Section 4. To prove Lemma 5.1, it is
sufficient to prove the following lemma.

Lemma 5.4. Let p1,p2 > 2 and 1 < r < 2 such that 1/p1+1/p1 = 1/r. Let
I, Fy, F3 be measurable sets in R. There exists a constant C' independent
of F1, Iy, F3, f1, fa, f3, M1, Mz, m such that

(5.8) |As,m(f1, f2. f3)| < Cm|Fy|MPr B[ /P2 By T
holds for all f1 € X(F), fa € X(F3) and f3 € X(F3).
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By scaling invariance, we can assume that |F3| = 1. We partition S into
two subsets S and S®), where

(5.9) SW = {(j,n) €S : |wh| < |wi;1/10 or |of ;| < |wh,|/10}

(5.10) S@ = g\sM.
We should change the definitions of sizes of trees in S.

Definition 5.5. Let (j,n) € S and ¢ € {1,2,3}. Define a seminorm Hngjn
by

1 fola 1 —Kjpq %%
(5.11) | felljm = Wulj,nfm,ouz + WHQ k615 Dol

where D fy ;o is the derivative of fy ;.

Definition 5.6. For ¢ € {1,2,3} and a tree T, let (jr,nT) be the top of
the tree T. And define

1/2
(5.12) Az<T><x>=< > |1;:nfz,j,o<x>|2> .

(j,n)eT

If T is a tree in SV, we define

A, + £,

(513) sizeg(T) = W

T,nT’

for all ¢ € {1,2,3}.
If T is a tree in S, define size,(T) by (5.13) only for ¢ € {1,2}. For
¢ = 3, we define the size by

(5.14) sizes(T) = HngijT,
Let P be a subset of S. Define the ¢-size* of T by

(5.15) size;(P) = sup sizey(T),
T:TCP

where T ranges over all trees in P.

One should notice that for Ag) ,,, we have a uniform estimate for py,ps >
2 and 1 < r < 2. We state it as follow

Proposition 5.7. Let p1,ps > 2 and 1 <r < 2 with 1/p1+1/pe = 1/r. Let
f1 € LPY, fo € LP2 and f3 € L™ . Then

(5.16) [As) i (f1s fo F3)| < Cllfrllps | f2llpa I f3ller,
where C' is independent of m, fi1, fo, f3.
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Proof. We do not need time frequency analysis for this proposition. The
key point is that when s € SU) the support of Fourier transform of f3,5,0 1s
away from the origin so that we can apply the Littlewood—Paley Theorem

for the square function generated by f3 ;¢’s. Clearly |AS(1)7m| is estimated
by

3
/R S T feso(Trejm(x))da.

j =1

By Holder’s inequality, we dominate |As(1>,m| by

1/p1 1/p2
H <Z |f1500 T1"1,j,m|p1> (Z | f2,50 0 T1"2,j,m|p2>
7 7 p2
A Yid
()
j

By a change of variables, it is clear that for £ =1, 2,
» 1/pe » 1/pe
(Stsromat) "] | (Sins)
J pe J
Notice the elementary inequality
1/q 1/2
<Z Iaj|q> < <Z |aj|2>
J J
holds for ¢ > 2. We thus dominate |[Agq) ,,| by
D\ 12 S\ 12 S\ 12
[(Strsol) | (1) | [ (S 100l
J J J

Now the Littlewood—Paley theorem yields the desired estimate (5.16). This
proves the proposition. O

p1

T

Pe

P1 P2 r!

We now use time frequency analysis to prove Lemma 5.4. Although we
only need to estimate Ag() ,, due to Proposition 5.7, we still write a proof
for both of Agq) ,, and Age) -

We first prove the size estimate for a single tree, that is,

3
(5.17) | AT (f1, fo, f3)] < C [ size (T)| Iz .
/=1

We only prove the case when T is a tree in S for (5.17) since the other
case is similar. In this case 2Fi¢ ~ 2% for all £in {1,2,3}. We thus dominate
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|AT,m| by

1/2
/ sup |(1] nf?;,]O OTI‘ng |H ( Z 1** f&] 0) Tr&]m(x)‘Q) dz.
R (j,n)€T £#3 \ (j,;n)€T

By the definition of A, and Hélder’s inequality, we estimate [A | by

sup [ 750l [[AT(T) [, ]| A3(T
j,m)eT

Mo

where ngj’o = I;ng,j@. Notice that Lemma 4.13 holds for the seminorm.
Thus we have
HF:;]»,OHOO < size3(T).
Clearly the definition of size yields
1AK(T)||2 < size} (T)|Iz| /2
for ¢ € {1,2}. Putting all of them together, we obtain (5.17).

Lemma 5.8. Let r € {1,2}, T be a tree in S*) and P be a subset of S*)
Suppose that PN'T = 0 and T is a maximal tree in P UT. Then we have

3
(5.18)  |Apur.m(fi, f2, f3) = Ap.m(f1, f2, f3)] < Cm [ ] sizej (T UP)|Ix],
=1

where C is independent of f1, fo, f3, P, T.

Proof. Clearly the difference |Apyr,m — Ap,,| is dominated by a sum of
CATt,, and at most finite many following trilinear forms

‘/ Z <ZF£1,jnm ><ZF£2,]nm )
jescl(T) \neT neP
< Z Fﬂgjnm >d$

ne(PUT);

where ({1, 02, ¢3) is a permutation of (1,2,3). By (5.17), it sufficient to show
that this trilinear form can be estimated by the right-hand side of (5.8). We
only handle the most difficult case /1 = 1,¢> = 2. Other cases are similar.
We estimate the trilinear form by

(5.19)
( 5 Fm) ( 5 Fm) ( 5 Fm)
neT; neP; ne(PUT);

jescl(T) | 1|=2""
There is at least one index ¢ € {1,2} satisfying k;, = k;. Without loss of
generality, assume kj; = k;j. We have that for any positive integer IV,

C
> Fijnm < = ¥ 1 fegol o
nETj

Leo(I) (1 +2k3dlst(_[(m]1),_[f]j))

Li(1)
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where I(mj1) = I +mj1 is an interval generated by shifting I to the right
by m;1 and n’ € (P U T); which minimizes the distance between I, and
I(mj1). Since Lemma 4.13 holds for the seminorm, we get

E Fljnm

nETj

Cnsize;(PUT)
Lo (I N (1 + ijdist(l(mjl), IT))N

And since PN'T = () and T is a maximal tree in P U T, we have

: : F27j7n7m

nEPj

< Cn
ey (1 28dist(I(my2), (Ir)°))

w1 fesolly

which is obviously bounded by
Cysizes(P U T)|I|'/?
(1 + Qkidist(l(mjg), (IT)C))

N -

Similarly, we also have

E . Fijnm

< Csizel(P UT)|I|V2.

ne(PUT); L2(I)
Thus we estimate (5.19) by
Z Z Chysize] (P U T)sizes (P U T)size;(P U T)|I|
%

T N L
jEsel(T) 1.|7=2~*s (1 + 2kidist(I(mj1), It))" (1 + 2kidist(I(mj2), (IT)°))
Let jt be the index for the top of T. If jp+ 10m > j > j, we only have at
most 10m different values for j. Notice that if I(mj1) C (I1)¢, then we can
replace dist(I(mj 1), It) by dist(L(m;1),0It). Thus if we only sum j from
Jr to jr + 10m we get that (5.19) is dominated by

3
Cm [ [ size; (P U T)| 1.
/=1

The remaining thing we need to deal with is to sum all j > jp + 10m.
The main difficulty is the case I(mj1) € (It)¢ and I(mj2) € I, because

in other cases we gain (1 + 2% dist(I(m;), 8IT))_100 in the estimate for at
least one of ¢ € {1,2}, which trivializes the estimate. We also know from
the definition of m, that dist(Z(m;1), I(m;2)) < 2™|I|. To make the difficult
case happen, the interval I must satisfy dist(I(mj,),0It) < 10 - 2™|I] for
both ¢ = 1,2. Sum |I(m;,)| for all such I's to get a upper bound C2m27%i.
Then summing these upper bounds for all j > jp + 10m we get a bound
C273™|I'p|. Therefore we estimate (5.19) by Cm [[o_, sizej(PUT)|I7|. This
proves the lemma. O
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Lemma 4.15 still holds for the sizes of trees defined in Subsection 5.1.
Let x € {1,2}. Applying this organization lemma inductively for S*), we
decompose

(5.20) st = Jsi,
where o ranges over all possible dyadic numbers, SE,R) =U ) T such that

T TTexs
F7 is a collection of maximal trees with

(5.21) count(S¥) < Co~2,
and
(5.22) size} (SU)) < o| Fy|'/?

holds for all ¢ € {1,2,3}.
Notice that Lemma 4.12 holds for the new sizes of trees defined in Sub-
section 5.1. We thus can also sharpen the upper bound in the size estimate

for S& by
(5.23) sizej (SU9) < min{1, o|Fy|/?}.
Hence by Lemma 5.8 we estimate Ag,, by
2 3
Z Z Z m H size} (SU))|Ip|.
k=1 0 qept) =1
Applying (5.23) and (5.21), we thus obtain

(5.24)  |Asm(f1s f2: f3)]
< sz o2 min{1,0|F|"?*} min{1, o|F3|"/?} min{1, o},

which clearly implies (5.8). Therefore we have proven Lemma 5.4.

5.2. A truncated trilinear form. First by a change of variable, we write
ALy Lo My Mam 8S

3
(5.25) ALy Ly vy My (f15 f2, f3) = /ZHfé,j,O(ﬁ&j,m(m))dxv

J =1
where Try jm(2) = Try jm — mj2, Trojm(z) = 2, Trz jm(z) = 2 — mje.

To prove Lemma 5.2, we have to set up our time-frequency decompo-
sition in a slightly different way for technical reasons. Recall that ¢ is a
nonnegative Schwartz function such that ¢ is supported in [—1/100,1/100]
and z/p\(O) = 1. And ¥y (x) = 2F¢(2%2). Let Q be the set defined as in (4.6).
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As before, kj, is an integer such that 2Fi¢ ~ |wy ;| for for £ € {1,2,3} and
kj = min{k;;}. For a very small positive number ¢, we define

(5.26) Q; = {z € Q:dist(z,Q°) > 2m2 7k},

(5.27) Vi1 = Yjo = Y3 = Lq,)e * Py, (2).

€, v¥j, depend on m,e but this dependence is suppressed for notational
convenience. A truncated trilinear form is defined by

3
(5.28) Aam(fr, fo. f3) = /ZH1/1je(33)f£,j,0(:fvr&j,m(x))dx'

JEZ 0=1

Heuristically, ¢, can be considered as 1(q,)c since it is a smooth approxima-
tion of 1(q;)e- In time space, 2; is an exceptional set which can be removed.
we can handle it well. The technical details about this can be found in
Section 4. In order to get 2 instead of 2™ in the estimates, we have to
remove only a smaller set. Here is the lemma which allows us to do so.

Lemma 5.9. Let Iy, Iy, I be measurable sets. Let Fy = F5\Q2. Then
(5:29)  |(ALy.Lovty Mom — Dam) (1, f2, f3))]
< €271 min {1, | [ |Y/P} min {1, |F[V/P}

holds for all functions f1 € X(F1), fa € X(F2), f3 € X(F3), where C is a
constant independent of L1, Lo, My, Mo, m, f1, fa, f3, I, Fo, F3.

Proof. The difference |Ar, 1, M, Mo.m — Aq,m| is dominated by

/z

dx.

3 3
1-— H Vje() H Fego(Trejm(@))
/=1 /=1

Clearly,

3 3
'1 — H%’z(m) < 32 11— je(a)]
=1 =1

For ¢ = {1,2}, by the definition of 2, we have for any positive integer NN,

- Cn | fe(y)[28
o(Tryim < ~
| fe0(Tregm(@))] /(1+2’fjflm,j,m($)—yl)N

< 022" (1 4 2¥i¢dist(Try (), °))? min{1, | Fy|/P}.

Since f3 € X(F3), we obtain that
Cn
(1 + 2ksdist(Tra j m (2), 29)) ™

(5.30) | f350(z)| <
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Thus by the fact that 2% ~ max{2%i¢}, kjs > k;1 +m and the definition of
25, the difference in the left-hand side of (5.29) is estimated by

Z // 2k dyON24m min{1, |F["/P} min{1, |F2|1/p}d$
=) Ja, (1+ 28|z —y))V (1 + 2ksdist(Trs j n (2), )™
< Z/ C’N24m min{1, |F}|"/?} min{1, \Fg\l/p} dy
(1 + 2kidist(y, QC))
< C27100m min{1, |F1|1/p}min{1, | Fp|V/PY.
Therefore we have finished the proof. O

By this lemma, we only need to consider Aq,,. For S C Z(v) x Z we
define

(5.31) As.m(f1, f2, f3) = /ZHZ t.gnm(Z

JEZ L=1nES;

where ﬁg,jm,m is defined by
(5.32) Frjnm(z) = Yje(x)15, (Trejm(@)) frjo(Trejm(@)).

As before we only need to consider the trilinear form (5.31). To prove
Lemma 5.2, it is sufficient to show the following lemma due to Lemma 5.9.

Lemma 5.10. Let € be any positive number, 1 < p < 2 and Fy, Fy, F3 be
measurable sets in R such that |F3| = 1. There is a subset F§ C Fy with
|Fi| > |F3]/2 such that for all p1,p2 > p with 1/p1 + 1/pa > 1, and all
functions f1 € X(F1), fo € X(F), f3 € X(F3), the following inequality
holds.

(5.33) |As,0m(f1, fo, f3)] < C25™ By |VP1 | Ry P2

where C is a constant independent of S, Fy, Iy, Fs, f1, fo, f3, L1, Lo, M,
Mg, m

5.3. Preliminary lemmata. To prove Lemma 5.10, we should change the
definitions of size of a tree in S and set up some lemmata first.

Definition 5.11. Let (j,n) € S and ¢ € {1,2,3}. Let ¢}, be the function

2k;
(5.34) Vi) = /(Q_)C ( |2)200dy

1+ 2% |z —y

Define a seminorm HffH]n " by
(5.35) | Fellznm = T2 |1/p 157 (550 © T ) Fell,

i0q** * ~ 1
+ |Is|1/2 HZ_kﬂljm (%’é © Tré,j,m)Dfé,j,OHp,
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-1 . . — . ..
where Try i 18 the inverse of Try ; ,, and D f ;o is the derivative of fy ;0.

Definition 5.12. For ¢ € {1,2} and a tree T, let (jT,nT) be the top of the
tree T. And let A}, (T) be defined by

1/2
(5.36) AZm(T)(w)=< > !1}”(96)(@4OﬁZ;,m)(x)fz,j,o(w)|2> -

(j,n)eT

If T is a tree in S, we define
. 1 X
(5.37) sizeg, (T) = WHAM(T)HP | fell s

for all £ € {1,2}.
Let P be a subset of S. Define the (¢,m)-size* of T by

(5.38) sizep ,,(P) = sup sizeg,,(T),
T:TCP

where T ranges over all trees in P.
In the definition of 1[);%, we can replace the exponent 200 by a larger

number 2% to define a new function. Denote this function by J;g. If17,
and zp;fg are replaced by I}“n and 1’/;;-‘5 respectively in the definition Azm(T),
we denote the corresponding function by Ay, (T).

Lemma 5.13. Let 1 < g < o0, £ € {1,2,3} and T be a tree in S. Then

(5.39) A7 (D], < Omi&fr My(M fo)(x)| Iz |9,

(5.40) sizeg ;m(T) < C min{2%™|Fy|Y/P, inf Mp(M fr)(x)},
xelr

where By =1 if 0 =1, By =2 if £ =2, and C is a constant independent of
ff)T; S} Ll; L2; M17M2-

Proof. Repeating an argument similar to that used in the proof of (4.25)
and (4.26), we easily obtain (5.39) and part of (5.40). The only thing we
need to prove is

(5.41) sizegn (T) < C20|Fy| /7.

Assume 20 H107n © Q: otherwise the upper bound infye . My (M fy)(x)
implies (5.41). Let T1 be a collection of all s = (j,n) € T such that
2T, € Q but 28411, € Q. Then

(e}

T:UTL

L=[Bym~+10)
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Let Jz be the set of all time intervals I’s for s € Ty. Clearly, Jz is a set
of disjoint intervals and ) ;.; [J| < min{|[7[,1}. Thus it is sufficient to
show that for any J € J; and any (j,n) € T such that Iy = J,

—~_1 ~
(542) |15 (65 0 Tor) Fusolls < O (it My(M f) ()P LN

holds for a large integer N, where ﬁ,j,o is foj0 or 2_kﬂng,j70, since the
desired estimate follows by summing up all L’s and J’s. By the definition
of V3, we have
15205 0 Trg (@)
C
< . 200 .ol
(1 + 2k dist(x, J)) (1 + 2kjdlst(Tré7j7m(a:), (Q])C))

200 ’

which is clearly dominated by
C
(1+ 2hidist(a, 7)) " (1 + 28 dist (Jjm, (25)°))

100 °

where Jj ,, is the interval {ﬁm,m(m) :x € J}. Since L > fym + 9, by the
definition of ﬁm,m we thus dominate ‘1;‘"‘”( o ﬁ;;m)| by
C
(1 + 2ksdist(x, 1)) " (1 + 2kidist (J, (2))) "

Thus we have
ok ol r3 . —
1157 (e © Trejm) Feoll, < € (inf My(M fo) ()" L7101,
which yields (5.42). O
Lemma 5.14. Suppose that s = (j,n) € S. If 2Fit ~ 2Fi  then

(5.43) Hl** (1/}]6 OTI‘ZJ m)fgyj OHOO — CH'ﬁH]nm

holds for ¢ € {1,2,3}, where C' is a constant independent of s, fo, m, L1,
LQ; Ml; MQ'

Proof. Let u = H ng . By the definition of the seminorm, we have

]7n7m

(5.44) (1155 (50 © Trg ) Fesoll, + N5 (5 0 Tee i) Dol
< N|IS|1/p'
First we prove the BMO estimate for the function, that is

(5.45) 1155, (w50 Tr, < Cu.

I m)fm OHBMO
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If |I5] < |J|, by (5.44) we have
mf/ !1** Vi 0 Trm m)(:n)fg,jp(a:) — c‘d:p

1—1 1 11
< Hl (wgfoTrZ,]m)fZ,]OH |J| P < N|I8|p"]‘ P < N|J|
If |I5] > |J|, by (5.44) we obtain that

mf/ ‘1 zpﬂ ) Trm m) (@) fejm, () — c‘dm
<l [ | (wnweo T jm)fw) («)

*ok ——
< i / [157,) (55 0 T ) @) i () da

dx

1
1] [ @50 Trt ) @D i) o
< || L Y| (w]eoTrz,]mm,WH Bl
+ |15 (wﬂoTrg,]m)Dfe,WH Bl

< CulIP 7|1t < Cull.

Thus we get the BMO estimate (5.45). Interpolating (5.45) and (5.44), we
have for any p < ¢ < oo,

~—1
Hljjl (1/’;( © Trg,j,m) fejme Hq < O/L|IS|1/q-
Notice that an integration by parts and Holder’s inequality yield that
Hl** ( e © Tr&y m)féd WH

< |55 (5 OT% m) fegne|l [ (L5 (45 éoT% m) fegne) Hl/z

where 1/p+ 1/p’ = 1. Hence the desired estimate (5.43) follows by (5.44)
and the LP" estimate for the functions. O

1/2

Lemma 5.15. For any tree T in S, let
(5:46)  Ag(T)(2)

1/2
:< Z ﬁ;,n(ﬁ&j,m(ib))?z;é(ﬂ?)fz,j,o(ﬁz,j,m(x)|2> :
(

j,n)eT
Then for £ =1 we have

(5.47) | A (T) || g0 < Csize; (T),

(5.48) | A, (T) < C'mysize} (T),

lsvio
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(5.49) | A (T)|, < Cm' =/ %sizel (T) T[4,
where ¢ > 2 and C' is a constant independent of T, S, L1, Lo, My, My, fr,1y.

Proof. (5.47) can be obtained routinely as we did for Lemma 4.14. We
omit the details. We need only prove (5.48). (5.49) is a simple consequence
of (5.47), (5.48) and an interpolation argument.

Clearly by a change of variables HAg,m(T)H2 = “Ag,m(T)“Q. Thus (5.47)
and an interpolation yield

(5.50) | A ()|, < Csize} (T)| I |2

Let p = sizej(T). Let J be a dyadic interval and Tj = {s € T : I, C 3J}.
We then dominate inf. [, [A,(T)(x) — ¢[dz by a sum of the following three
parts.

1/2
/J(Z ﬁ;n(ﬁz,j,m(m))iz;e(x)fe,j,o(ﬁe,j,m(x))‘2) dx,

seTy

1/2

/J Z 13, (ﬁﬁ,j,m(x)) {/;;fé(m)ff,j,o (ﬁf,j,m(m)) |2 dz,

and
1/2

J SET\TJ
[Ls[>1J]

T, can be decomposed to a union of trees T ;;’s such that the time
intervals I, ,’s are disjoint and all of them are contained in 3.J. Using the
Cauchy—Schwarz inequality, the first part is estimated by

_ N\ 12
(S IBenmml) e
k

Appying (5.50), we dominated the first part by CulJ|.
Since p < 2 we estimate the second part by

1/2

T — X j— 2 1—-1
ST 1@ 0 Ty fegin, © Tregm)| Bl
SET\TJ
|L:1<1] Lo(J)
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1/p
~ —~ ~ —~ 1—1
= Z H(lj,n © Trfvjvm)ﬂ)jf(fé,j,nz © Trf,j,m)Hip(J) |J|" P
SET\TJ
|1s]<|J]|
1/p
_ CI|(X55, © Tregm) V5o (fejme © Tregm)|l) e
p
- . ~—1 100
seT\T (1 + 15|~ dist(J, Tre,j,m(fs)))
|1s]<|J]|
1/p
< O|Is| ‘J‘l_%
= . =1 100 ’
s€T\T (1 + [Is|~tdist(J, TrZ,j,m(IS)))
|1s]<|J]|

where ﬁ;;m(ls) is the interval {ﬁg_;m(a;) :x € Ig}. Observe that if

~—1
[I;] < 277191 J] and s € T\T, then dist(J, Tr, ;,,(Is)) ~ dist(J, I;). Thus
summing for all s in this case, we get the desired estimate C'u|J|. In the
remaining case, there are only 10m different scales for |I|’s since s’s satisfy

~—1
27 10LJ| < |I,| < [J]. The worst situation is that when Try ;. (Is)N.J # 0,
~—1 ~—1
because otherwise dist(.J, Tr, ; ,,,(I5)) can be replaced by dist(9.J, Try ;,,(Is))
~—1
and thus the desired estimate follows. But in this situation, Tr ; ,,, (1) must

be a subset of 3J since |I5| < |J|. For all T;z_‘]lm(js) C 3J with a fixed
scale, the sum of |I|’s is no more than 3|J|. Summing for at most 10m
different scales, we thus get the upper bound CmpulJ|. Hence the second
part is dominated by Cmy|J]|.

The third part is estimated by

1/2 2 1/2

inf / ST (Teeyn (@) 05 (@) frjo0(Trejm(@) || — ¢ da
S\ sem\T,
[Is|>|J]

.|J|1/2

1/2

< irclf/ Z ‘i;n(ﬁg’j7m(.’£))'l;;g(flf)f&j’o(ﬁg,j7m(x))|2 —c|dx
JlseT\T,
[s|>|J]

.‘J‘1/2
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1/2
/!
: — 2
< C / Z <‘1] n TI‘g’] m )wjf(x)fé,j,O(Tré,j,m(x))‘ > dx |J|7
SET\TJ
[s|>|J]
which is dominated by a sum of following two terms,
Ry =
1/2
: — 2
l [ X I (Tl T o (Fosm(@) o | 191
SET\TJ
|Is|>]J]
and
Ry =
1/2
Cl [ X 1T Tl G o (T ) | Grgm(elde | 1),
SET\TJ
s |>J]
where Gy, is the function defined by
G jm(z) = 15, (T jn(2))¥50(2) D fo .0 (Tre jm())
By Lemma 5.14, we see that for any ¢ > p,
| (155, 0 Trgjm) 5o (fejme © Tre,j,m)Hq < Op|I V.
Thus, by Hoélder’s inequality, the first term R; is estimated by
1/2
— ok . * T 2
C Z 15| IH(lg‘,n © Tr&j,m)i/’jé(f&j,nz © Tr&j,m)Hzx‘J‘m |J]
. ~—1 100
seT\T (1 + [~ dist(J, Trz,j,m(fs)))
[s|>J]
1/2
I —-1/2 J 1/2
<on| ¥ L 7] < Culdl.

. ~1 100
servr, (1+ L[ ~tdist(J, Try 0, (15)))
[Is|>]J]

It is obvious by the fact 2%i¢ ~ 2% when ¢ = 1 and the definition of the
seminorm that

(5.51) 1Gegmllp < 1 felljinmlTs[ 27
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Thus the second term R» is estimated by
1/2

C Z H (iin © ﬁ&j,m){/;;g (f£7j70 o ﬁg:jvm) HLPI(J) HG&j’me ‘J‘

SET\TJ
| s|>|J]
) 1/2
1_ . T T
- C Z |Is|p 1 H(]_;k:; o ﬂé,j,m)¢;g(fﬂ,j,ng o) Tl“é,j,m) p,+1|J|P (p’+1)
- K . ~ 1 100
seT\T, (1 + |IS|_1dISt(J7 Trf,j,m(ls)))
| s|>|J]
-]
1/2
|1, 7@+ |.J| 7D
<Cu| >, p— 100 I < CulJl.
s€T\T (1 + [I]~dist(J, Tre,j,m(fs)))
|Is|>]J]
This completes the proof of (5.48). O

Lemma 5.16. Let T be a tree in S and P be a subset of S. Suppose that
PNT =0 and T is a maximal trec in P UT. Then we have

552 ‘APUTQm(f17f2Jf3) AP,Q7m(f17f27f3)‘

2
< |AT,Q,m(f17 f27 f3)‘ +Cm H SiZGZ(T U P)|IT|7
=1

where C' is independent of f1, fo, f3, L1, Lo, My, Mo, P, T.

The proof is similar to the proof of Lemma 5.16. We omit the details and
leave it as an exercise to the readers.

5.4. Proof of Lemma 5.10. It is easy to prove a size estimate for the
trilinear form on a single tree, that is, for any tree T,

2
(5.53) At 0m(f1, f2 f3)| < CmPP~ ] ] size} (T)| I,
/=1

where C' is independent of Ly, Lo, My, Ms, m, f1, fa, f3, T
In fact, by Holder’s inequality, we estimate |AT Q,m| by

12T (T) ),

By (5.49) and the definition of size, we obtain (5.53) immediately.
Lemma 4.15 still holds for our new sizes of trees and S. Applying this
organization lemma inductively for S, we decompose

(5.54) s=Js.
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where o ranges over all possible dyadic numbers, S, = Upez, T such that
F, is a collection of maximal trees with

(5.55) count(S,) < Co P,
and
(5.56) size} (Sy) < o|Fy|Y/?

holds for all ¢ € {1,2}.
By (5.40), the upper bound in the size estimates for S, can be sharpened
by

(5.57) size} (Sy) < min{1, 2% | F)|Y/? o |F,|'/P}.
Hence by Lemma 5.16 and (5.53) we estimate Ag o by

2
D> m ][] sizei(So) | Ixl.
(=1

o TeF, =

Applying (5.57) and (5.55), we thus dominate ‘Asyg,m(fl, fo, f3)| by
(5.58)
Cm’y_ o P min{1, 2" [F1['/?, ol Fi |7} min{1, 2" By /7, o] Fy| 7},

(e

which clearly implies (5.33). Therefore we have completed the proof of
Lemma 5.10.
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