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Unions of arcs from Fourier partial sums

Dennis Courtney

Abstract. Elementary complex analysis and Hilbert space methods
show that a union of at most n arcs on the circle is uniquely determined
by the nth Fourier partial sum of its characteristic function. The end-
points of the arcs can be recovered from the coefficients appearing in
the partial sum by solving two polynomial equations.
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We let T = {z ∈ C : |z| = 1} and D = {z ∈ C : |z| < 1}, and for any
subset E of T and integer k we write

Ê(k) =
1
2π

∫
E

e−ikt dt

for the kth Fourier coefficient of the characteristic function χE of E. As
bounded functions with the same sequence of Fourier coefficients agree al-
most everywhere, any subset E of T is determined up to a set of measure
zero by the sequence Ê(k). If E is known to have additional structure, the
entire sequence may not be needed to recover E. Our present subject is a
simple yet nontrivial illustration of this principle.

An arc is by definition a closed, connected, proper and nonempty subset
of T. We declare T along with the empty set to be a “union of 0 arcs.”

Theorem 1. If n is a nonnegative integer and E1 and E2 are unions of at
most n arcs satisfying

(1) Ê1(k) = Ê2(k), 0 ≤ k ≤ n,

then E1 = E2.
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Thus a set E that is known to be a union of at most n arcs can be
recovered completely from the nth Fourier partial sum of χE , regardless of
any quantitative sense in which this partial sum fails to approximate χE .
This stands in slight contrast to the well-known defects of Fourier partial
sum approximation of functions with jump discontinuities, such as the Gibbs
phenomenon (see, e.g., [4, Chapter 17]). Significantly, the property of the
Fourier basis expressed by Theorem 1 is not shared by other orthonormal
systems of functions on T (see §3).

Our proof of Theorem 1 exploits a connection between unions of arcs
and certain rational functions — the Blaschke products, whose properties
we recall in §1. Each Blaschke product has a nonnegative integer order. In
§2 we construct an injection E 7→ bE from the set of finite unions of arcs
to the set of Blaschke products with the property that if E is a union of at
most n arcs, then bE has order at most n. This map has the property that
if E1 and E2 satisfy (1), then bE1 and bE2 have the same nth order Taylor
polynomial at 0. To prove Theorem 1 it then suffices to observe, as we do
in §3, that a Blaschke product of order at most n is determined by its nth
order Taylor polynomial.

With Theorem 1 in hand, one may ask how to recover E from a partial
list of Fourier coefficients in an explicit fashion. This is the subject of §4,
where we present an algorithm for testing whether or not a given tuple of
complex numbers takes the form (Ê(k))n

k=0 for a union E of at most n arcs,
and for finding the endpoints of these arcs in terms of the Fourier coefficients
in this case.

Perhaps because of its elementary nature, we have not found Theorem 1
explicitly stated in the literature, though it is known, and the literature
abounds with theorems on the reconstruction of a function from partial
knowledge of its Fourier transform. In [6], for example, it is shown that
a function on T that is piecewise constant on a partition of T into m arcs
may be recovered from its mth Fourier partial sum. (Note that Theorem 1
concludes slightly more from a stronger hypothesis.) And our method is
by no means the only route to Theorem 1. It is possible to give a purely
algebraic proof exploiting the fact that for 1 ≤ k ≤ n the numbers Ê(k) are
polynomials in the endpoints of the arcs of E.

We are indebted to Donald Sarason for many valuable discussions, and
to Mihalis Kolountzakis for drawing our attention to [6].

1. Blaschke products

Definition. A (finite) Blaschke product is a function of the form

(2) b(z) = λ

n∏
j=1

z − aj

1− ajz

for some nonnegative integer n, some λ ∈ T, and some a1, . . . , an ∈ D. The
nonnegative integer n is called the order of the Blaschke product.
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If n = 0 we interpret the empty product as 1. The domain of a Blaschke
product is either T, D, or the closure D of D, depending on context. A
Blaschke product is evidently a rational function that maps T to itself and
has no poles in D (it suffices to check the case n = 1). It is well known that
these properties characterize the Blaschke products.

Proposition 1. If a rational function r maps T to itself and has no poles
in D, then it is a Blaschke product of order equal to the number n of zeros
of r in D, counted according to multiplicity.

Proof. We induct on n. If n = 0, then r = q−1 for some polynomial q;
write q(z) =

∑m
k=0 qkz

k with qm 6= 0. As q(T) ⊆ T we have

q(z)−1 = q(z) = q((z)−1) =
m∑

k=0

qkz
−k =

∑m
k=0 qkz

m−k

zm
, z ∈ T,

so this holds for all nonzero z ∈ D. As q has no zeros in D, the extreme
right hand side has no pole at 0; thus m = 0 and q is constant as desired.

If r has n + 1 zeros in D, choose one, a, and note that r(z) · ( z−a
1−az )−1 has

n zeros in D and maps T to itself. �

Definition. If b is a Blaschke product, we let Ub = {z ∈ T : Im b(z) ≥ 0}.

If the zeros of a Blaschke product are a1, . . . , an, we calculate from (2)

zb′(z)
b(z)

=
n∑

j=1

1− |aj |2

|z − aj |2
> 0, z ∈ T,

so the argument of b(eit) is strictly increasing in t. The argument principle
implies that b(eit) travels n times counterclockwise around T as t runs from
0 to 2π.

Corollary 1. A Blaschke product b has order n if and only if Ub is a disjoint
union of n arcs.

This is the main reason we include T as a “union of 0 arcs.”

2. Blaschke products from unions of arcs

Let S = {z ∈ C : 0 ≤ 2 Re z ≤ 1} and let φ denote the function

φ(z) =
exp(2πi(z − 1/4))− 1
exp(2πi(z − 1/4)) + 1

.

It is easy to show (see, e.g., [2, §III.3]) that φ maps S bijectively onto
D \ {±1}, that φ restricts to an analytic bijection of the interior of S with
D, that φ maps the right boundary line of S onto {z ∈ T : Im z > 0}, and
that φ maps the left boundary line of S onto {z ∈ T : Im z < 0}.
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Proposition 2. If E is a disjoint union of n ≥ 0 arcs and hE is given by

(3) hE(z) =
1
2
Ê(0) +

∞∑
k=1

Ê(k)zk, z ∈ D,

then hE is an analytic map of D into S, and the function D → D given by

bE = φ ◦ hE

extends uniquely to a Blaschke product D → D of order n satisfying UbE
= E.

Using the formulas for φ and hE one can show without much work that bE

is a rational function; the work in proving Proposition 2 is to establish that
bE has the mapping properties of Proposition 1, and hence is a Blaschke
product, and to prove that UbE

= E.
To motivate the argument, let us work nonrigorously for a moment. For-

mally we have the series expansion

(4) χE(z) =
∑
k∈Z

Ê(k)zk, z ∈ T,

and formal manipulation of the series (3) with z ∈ T then shows that

χE(z) = hE(z) + hE(z) = 2 Re hE(z), z ∈ T.

As χE is {0, 1} valued on T, the maximum principle for harmonic functions
then implies that hE maps D into S, so bE = φ ◦ hE maps D into D and
sends the circle to itself. By Proposition 1 it follows that bE is a Blaschke
product; the equality UbE

= E comes from the mapping properties of φ on
the boundary of S.

What makes this argument nonrigorous is that the series (4) does not
converge for all z ∈ T, and to equate χE with 2 Re hE is to ignore the dis-
tinction between a discontinuous real valued function on T and a harmonic
function on D. To fill in these gaps, we need to use the actual connection
between 2 Re hE and χE — the former is the Poisson integral of the latter.

Proof. It is easily checked that (3) does define an analytic function on D,
e.g., because

∑∞
k=1 |Ê(k)|2 is convergent. One can then verify the identity

2hE(z) =
1
2π

∫ 2π

0

1 + ze−is

1− ze−is
χE(eis) ds, z ∈ D.

(Fix z, expand 1
1−ze−is as a power series in z and interchange the sum and

the integral.) Taking real parts it follows that for any r ∈ [0, 1) and any t

(5) 2 Re hE(reit) =
1
2π

∫ 2π

0
Pr(t− s)χE(eis) ds,

where

Pr(t) = Re
(

1 + reit

1− reit

)
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is the Poisson kernel. It is elementary (see, e.g., [2, §X.2]) that for r ∈ [0, 1)
the function Pr is nonnegative and satisfies 1

2π

∫ 2π
0 Pr(θ) dθ = 1; thus (5)

implies that 2 Re hE(z) ∈ [0, 1] for all z ∈ D, and hE maps D into S.
As r increases to 1, the Pr converge uniformly to the zero function on

the complement of any neighborhood of 0 (see, e.g., [2, §X.2]). From (5) we
conclude

(6) lim
r↑1

2 Re hE(rz) = χE(z)

at any z ∈ T at which χE is continuous. We conclude that for any such z
the limit limr↑1(φ ◦ hE)(rz) exists and is in T.

We claim that φ◦hE is a rational function. In the case n = 0 this is clear.
Otherwise, from the definition of φ it suffices to show that exp(2πihE) is a
rational function, and for this it suffices to treat the case n = 1. In this case
there are real numbers a < b with b−a < 2π satisfying E = {eit : t ∈ [a, b]},
and Ê(k) = exp(−ikb)−exp(−ika)

−2πik for all k > 0. Let log denote the analytic
logarithm defined on C \ {z ∈ C : z ≤ 0} that is real on the positive real
axis and recall that log(1− z) = −

∑∞
k=1

zk

k for all z ∈ D. A comparison of
power series shows

hE(z) =
b− a

4π
+

1
2πi

(
log(1− e−ibz)− log(1− e−iaz)

)
, z ∈ D,

so exp(2πihE) = exp(i b−a
2 ) 1−e−ibz

1−e−iaz
is rational.

At this point we know that bE = φ ◦ hE is a rational function mapping D
into itself. From (6) we deduce that bE maps T into itself, so bE is a Blaschke
product by Proposition 1. The equality UbE

= E then follows from (6). The
order of bE is n by Corollary 1. �

If E1 and E2 are two unions of arcs related by (1), it is clear from the
definition that hE1 and hE2 have the same nth order Taylor polynomial at
0. As φ is analytic at 0, the same is true of bE1 and bE2 .

Corollary 2. If n ≥ 0 and E1 and E2 are each unions of at most n arcs
satisfying

(7) Ê1(k) = Ê2(k), 0 ≤ k ≤ n,

then there are Blaschke products b1 and b2, each of order at most n, satisfying
Ej = Ubj

for j = 1, 2 and

(8) b̂1(k) = b̂2(k), 0 ≤ k ≤ n.

3. Blaschke products from Toeplitz matrices

Fix a positive integer n for the remainder of this section. Our goal is to
show that Blaschke products b1 and b2 having order at most n and satisfying
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(8) must be equal. Let L2 denote the space of square-integrable functions
T → C, with inner product

〈f, g〉 =
1
2π

∫ 2π

0
f(eit)g(eit) dt, f, g ∈ L2.

(We identify two functions if they agree almost everywhere.)
For 0 ≤ k ≤ n we let ζk denote the function T → C given by z 7→ zk.

It is immediate that {ζk : 0 ≤ k ≤ n} is an orthonormal subset of L2. We
denote its span, the space of analytic polynomials of degree at most n, by
P ; we let π : L2 → P denote the orthogonal projection.

Definition. If f : T → C is bounded, Tf : P → P denotes the linear map
given by

Tfξ = π(fξ), ξ ∈ P.

Here fξ is the pointwise product of f and ξ.

If we let ‖Tf‖ denote the norm of Tf regarded as a linear operator on P
and write ‖f‖∞ = supz∈T |f(z)|, it is clear that

‖Tf‖ ≤ ‖f‖∞
for any bounded f . It is also clear that for any such f

〈Tfζk, ζj〉 = f̂(j − k), 0 ≤ j, k ≤ n,

so the matrix of Tf with respect to the orthonormal basis {ζk : 0 ≤ k ≤ n}
is constant along its diagonals (it is a Toeplitz matrix ).

If f is a Blaschke product, then f is analytic on D, so the matrix of Tf

is lower triangular with first column (f̂(k))n
k=0. Our hypothesis (8) is thus

that Tb1 = Tb2 , and to deduce that b1 = b2 it suffices to show how to recover
a Blaschke product b of order at most n from the operator Tb it induces on
P .

Lemma 1. If b is a Blaschke product of order at most n, then ‖Tb‖ = 1,
and for any nonzero r ∈ P satisfying ‖Tbr‖ = ‖r‖ one has Tbr = br.

Proof. There are nonzero polynomials p and q, each of degree at most n,
satisfying b = p/q. Clearly Tbq = p, and as b maps T to itself, we have
|p(z)| = |q(z)| for all z ∈ T, so ‖p‖ = ‖q‖. We deduce that ‖Tbq‖ = ‖q‖ and
thus ‖Tb‖ ≥ 1; since also ‖Tb‖ ≤ ‖b‖∞ = 1, we conclude ‖Tb‖ = 1.

If r ∈ P satisfies ‖Tbr‖ = ‖r‖ we have

‖r‖2 = ‖Tbr‖2 = ‖π(br)‖2 ≤ ‖br‖2 =
∫ 2π

0
|b(eit)|2|r(eit)|2 dt = ‖r‖2,

from which ‖π(br)‖ = ‖br‖ and thus π(br) = br as desired. �

Remark 1. The argument of Lemma 1 can be modified to show that if f
is bounded and analytic on D and ‖f‖∞ = 1, then ‖Tf‖ ≤ 1 with equality
if and only if f is a Blaschke product of order at most n. With more
work, one can prove the Caratheodory–Fejer theorem: every lower triangular
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(n + 1)× (n + 1) Toeplitz M satisfying ‖M‖ = 1 is of the form Tf for such
an f .

We are now in a position to give a short proof of Theorem 1.

Proof of Theorem 1. By Corollary 2 there are Blaschke products b1 and
b2 of order at most n satisfying Ubj

= Ej for j = 1, 2 and b̂1(k) = b̂2(k) for
0 ≤ k ≤ n. This second fact implies that Tb1 = Tb2 . By Lemma 1 there is
nonzero q ∈ P satisfying ‖Tb1q‖ = ‖Tb2q‖ = ‖q‖ and

b1 =
Tb1q

q
=

Tb2q

q
= b2,

so E1 = Ub1 = Ub2 = E2. �

As the Fourier coefficients of a bounded function are coefficients with
respect to an orthonormal basis of the Hilbert space L2, one might wonder
if Theorem 1 is a special case of a simpler result about arbitrary orthonormal
bases of L2. This is not the case. There are, for example, orthonormal bases
B for L2 with the property that for every finite subset F ⊆ B, there is an arc
A with the property that every element of F is constant on A. (The basis
(e2πit 7→ f(t))f∈H , where H is the Haar basis of L2[0, 1] constructed in [3,
§III.1], has this property.) In this situation, if E ⊆ A and E′ ⊆ A are any two
unions of arcs with the same total measure, one will have 〈χE , f〉 = 〈χE′ , f〉
for all f ∈ F : any finite collection of coefficients with respect to B must fail
to distiguish infinitely many unions of n arcs from one another.

4. An algorithm

Let F denote the map sending a union of at most n arcs E to the tuple
(Ê(k))n

k=0 in Cn+1. Suppose c = (ck)n
k=0 is given, and we desire to know

whether or not c in the range of F . The arguments of the previous sections
give us the following procedure. (We use the orthonormal basis of §3 to
identify linear operators on P with (n + 1)× (n + 1) matrices.)

(1) Calculate the nth Taylor polynomial at 0 for φ( c0
2 +

∑n
k=1 ckz

k), and
make its coefficients the first column of a lower-triangular Toeplitz
matrix M .

(2) Evaluate ‖M‖.
If ‖M‖ 6= 1, then c is not in the range of F .

(3) Otherwise ‖M‖ = 1 and by the Caratheodory–Fejer theorem (see
Remark 1) there is a unique Blaschke product f of order at most n
satisfying M = Tf . Find F = Uf (e.g., by solving f(z) = ±1 to get
the endpoints of the arcs) and calculate the coefficients of the nth
order Taylor polynomial at 0 for bF .

If these coefficients are the first column of M then bF = f and
c = F(F ); otherwise c is not in the range of F .
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Remark 2. The third step of the algorithm is necessary as the map E 7→ bE

from unions of n arcs to Blaschke products of order n is not surjective. One
can check, for example, that of the Blaschke products bt(z) = zn−t

1−tzn for real
|t| < 1, all of which satisfy Ubt = Ub0 , only b0 is in the range of E 7→ bE .

If we know in advance that c = F(E) is in the range of F , this algorithm can
recover E from c in a somewhat explicit fashion. The matrix M constructed
from c is TbE

; Lemma 1 implies that if we choose a nonzero q ∈ P satisfying
‖Mq‖ = ‖q‖, we will have bE = Mq

q . If q is chosen so as to have minimal
degree, the polynomials Mq and q will have no nontrivial common factors.
In this case the degree of q is the order of bE , and the endpoints of the arcs
of E — the solutions to bE(z) = 1 and bE(z) = −1 — are the roots of the
polynomials Mq− q and Mq + q. A computer has no difficulty carrying out
this procedure to find the arcs of E to any given precision from the tuple
c = F(E).

As this algorithm involves solving polynomial equations, we cannot ex-
pect symbolic formulas for these endpoints of the arcs of E in terms of the
Fourier coefficients Ê(k). Formulas for the polynomials Mq ± q, however,
can be obtained with some effort. The entries of M are polynomials in
exp(2πiÊ(0)), Ê(1), . . . , Ê(n) with complex coefficients. As M has norm
1, a vector q will satisfy ‖Mq‖ = ‖q‖ if and only if q is an eigenvector for
the self-adjoint matrix M∗M corresponding to the eigenvalue 1; we can find
such a q by using Gaussian elimination, for example. As the entries of M∗M
are polynomials in the entries of M and their complex conjugates, the coeffi-
cients of q and Mq± q will be rational functions in exp(2πiÊ(0)), Ê(1), . . . ,
Ê(n) and their complex conjugates. Cases may arise in computing Mq ± q
symbolically: in row reducing the symbolic matrix M∗M − I, one needs to
know whether or not certain functions of the matrix entries are zero — but
explicit formulas can be obtained in every case.

We give one example. Suppose that E is a union of at most two arcs, with
Ê(0), Ê(1), and Ê(2) given. Write E0 = exp(2πiÊ(0)) and Ek = −2πikÊ(k)
for k = 1, 2. Carrying out the above procedure, one finds that if both E1

and the denominator of

a =
E2E1 + 2E1 − E2

1E1 − 2E1E0

E2
1E0 + E2E0 − E2 + E2

1

,

are nonzero, then the starting points of the arcs of E are the solutions z of
the equation

z2 − az +
(

E1 + (1− E0)a
E1E0

)
= 0.

The endpoints of the arcs of E are given by a similar formula.
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