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Primes, permutations and primitive roots

Joseph Lewittes and Victor Kolyvagin

Abstract. Let p be a prime greater than 3, X = {1, 2, . . . , p− 1} and
R the set of primitive roots mod p contained in X. To each g ∈ R
associate the permutation σg of X defined by σg(x) = y where y is the
unique member of X satisfying y ≡ gx (mod p). Let ΣR = {σg|g ∈ R}.
We analyze the parity of the permutations in ΣR. If p ≡ 1 (mod 4) half
the permutations are even and half are odd. If p ≡ 3 (mod 4) they are
either all even or all odd; set ε(p) = 1 in the even case, ε(p) = −1 in the
odd case. Numerical evidence suggests the conjecture that ε(p) ≡ h(−p)
(mod 4), where h(−p) is the class number of the quadratic field Q(

√
−p).

The conjecture is shown to be true, and furthermore ε(p) ≡ −( p−1
2

)!
(mod p). We also study a larger class of permutations of degree p − 1
which generalize the ΣR.
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1. Introduction

Fix an odd prime p and let X = {1, 2, . . . , p− 1}. X will play a dual role,
as a reduced system of residues mod p (0 mod p has no representative in
X) and also as a complete set of residues mod p−1. Let R denote the set of
primitive roots mod p contained in X. With g ∈ R we associate the permu-
tation σg of X defined by σg(x) ≡ gx (mod p). More precisely, σg(x) = y,
the unique element of X satisfying y ≡ gx (mod p). For example, if p = 7,
R = {3, 5}, and, in cycle notation, σ3 = (1 3 6)(2)(4)(5), σ5 = (1 5 3 6)(2 4).
Note that σ3 has 3 fixed points x = 2, 4, 5 which satisfy 3x ≡ x (mod 7).
The permutations σg were, apparently, first studied due to a question of
Brizolis who asked whether for each p there exist g, x satisfying σg(x) = x,
i.e., gx ≡ x (mod p). The question has been answered affirmatively using
methods of analytic number theory and computer searches. A reference for
the literature on this topic is in Guy [2, Problem F9 Primitive Roots, p.
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377]. Our interest here is not on fixed points but on the parity of the per-
mutations, are they even or odd. Note that the inverse of the permutation
σg is just the classical index with respect to g, or, in modern terminology, the
discrete logarithm logg in the cyclic group of residue classes mod p prime
to p. We do not enter into computational aspects of the discrete logarithm.

Some notation. For a permutation σ, s(σ) is the sign of σ, which is 1 or
−1 according as σ is even or odd. |A| denotes the number of elements of
the finite set A. For integers a and b, (a, b) denotes the greatest common
divisor of a and b, but in other contexts (a, b) also denotes a transposition
interchanging a and b. U is the set of units mod p−1 contained in X; thus
U = {x ∈ X|(x, p − 1) = 1}. x, y denote elements of X and u an element
of U . For a fixed g ∈ R, the map U → R by u→ gu (mod p) is a bijection
and |R| = |U | = φ(p − 1), φ being Euler’s function. Let ΣR = {σg|g ∈ R};
clearly |ΣR| = |R|. ΣR is a subset of Sp−1, the symmetric group of degree
p − 1. Are the permutations in ΣR even or odd? The answer is somewhat
unexpected.

Theorem 1.
If p ≡ 1 (mod 4) half the permutations in ΣR are even and half are odd.
If p ≡ 3 (mod 4) all permutations in ΣR have the same sign — either all

are odd or all are even.

Considering the first few primes we have:

p = 3, R = {2}, σ2 = (1 2) odd.
p = 5, R = {2, 3}, σ2 = (1 2 4)(3) even;

σ3 = (1 3 2 4) odd.

We saw above that p = 7 has all even.
For p ≡ 3 (mod 4) we define ε(p) = 1 or −1 according as the permutations

in ΣR are all even or all odd. ε(p) seems to be unpredictable. Trying to
relate ε(p) with some other function of p ≡ 3 (mod 4) led us to compare it
with h(−p), the class number of the imaginary quadratic field Q(

√
−p) with

discriminant −p. See [1, p. 346]. It is known that h(−p) is always a positive
odd integer. See Table 1 for some calculations.

Up to 47 the permutations were analyzed by hand; beyond this a computer
became useful, in fact necessary. The computations in this paper were done
using Maple 8. From Table 1, ε = 1 and ε = −1 appear to be running neck
and neck and this behavior persists. Table 2 shows for each value of N the
number of primes ≡ 3 (mod 4) up to N having ε = 1 and the number having
ε = −1.

The table shows that up to p = 199, ε(p) ≡ h(−p) (mod 4), except for
p = 3 which is exceptional (the field Q(

√
−3) contains the 6th roots of unity

while all the other fields contain only ±1). We have checked this for p up
to several thousand using the class number tables of Tomita [4]. This leads
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Table 1. Some values of ε(p) and h(−p)

p ≡ 3 (mod 4) ε(p) h(−p) p ≡ 3 (mod 4) ε(p) h(−p)
3 −1 1 83 −1 3
7 1 1 103 1 5
11 1 1 107 −1 3
19 1 1 127 1 5
23 −1 3 131 1 5
31 −1 3 139 −1 3
43 1 1 151 −1 7
47 1 5 163 1 1
59 −1 3 167 −1 11
67 1 1 179 1 5
71 −1 7 191 1 13
79 1 5 199 1 9

Table 2.

N #(ε = 1) #(ε = −1)
200 14 10
1000 44 43
2000 73 82
5000 165 174
10000 309 310

to the empirical conjecture that ε(p) ≡ h(−p) (mod 4) is true; or simply
stated, if p ≡ 3 (mod 4) and g is a primitive root mod p then

(1) s(σg) ≡ h(−p) (mod 4).

Theorem 3, below, is our main result and in the remarks following it we
show how (1) is a consequence.

Theorem 1 follows from a more general result. We move temporarily from
the setting of p, X to a positive integer, m, A = Z/(m), U = A×, the group
of units consisting of the congruence classes mod m relatively prime to m,
|U | = φ(m). For u ∈ U , θu : A → A is multiplication by u; θu(x) ≡ ux
(mod m). Since θuθv = θuv, θ−1

u = θu−1 , where u−1 is the inverse of u
(mod m), each θu is a permutation of A. T = {θu | u ∈ U} is an abelian
group of permutations of A, isomorphic to U and can be thought of as a
subgroup of Sm, the symmetric group of degree m. T being a group either
all permutations in it are even or half are even and half odd. We will say
simply T is even in the former case and even-odd in the latter. Note that
as soon as a single θu is shown to be odd then T is even-odd.

Theorem 2. The parity of T depends on m mod 4:
If m ≡ 0 (mod 4), T is even-odd.
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If m ≡ 1 (mod 4), T is even-odd unless m is a square in which case T is
even.

If m ≡ 2 (mod 4), T is even.
If m ≡ 3 (mod 4), T is even-odd.

The proof will be given in the next section. Here we only show how
Theorem 1 follows from Theorem 2.

Fix the odd prime p and a primitive root g. Every h ∈ R is h ≡ gu (mod
p) for a unique unit u, so for x ∈ X, σh(x) ≡ hx ≡ gux ≡ σg(ux) (mod p) =
σgθu(x). Thus σh = σgθu and ΣR = σgT is a coset of T in Sp−1. Now apply
Theorem 2 with m = p− 1 which shows T is even-odd when p ≡ 1 (mod 4)
and is even when p ≡ 3 (mod 4). Thus ΣR is even-odd when p ≡ 1 (mod 4)
but ΣR = σgT shows that when p ≡ 3 (mod 4) all σh ∈ Σ have the same
sign.

Theorem 3. Let p be a prime greater than 3 and g a primitive root mod p.
If p ≡ 3 (mod 4), then

(2) s(σg) ≡ −
(
p− 1

2

)
! (mod p).

If p ≡ 1 (mod 4), then

(3) s(σg) ≡ −
(
p− 1

2

)
! · g

p−1
4 (mod p).

This also will be proven in the next section.

Remark 1. (1) is a consequence of (2). To see this we cite a theorem of
Mordell [3] which states that for p ≡ 3 (mod 4),

(p−1
2

)
! ≡ (−1)a (mod p)

where a ≡ 1
2(1 + h(−p)) (mod 2). (The proof uses Dirichlet’s class number

formula. See the references in [3], as well as [1, p. 346], cited earlier.)
Thus (2) shows that s(σg) ≡ (−1)a+1 (mod p) or, setting s(σg) = (−1)b,
(−1)b ≡ (−1)a+1 (mod p) which implies (−1)b = (−1)a+1 or b ≡ a + 1 ≡
1
2(1 + h(−p)) + 1 (mod 2). Hence 2b ≡ h(−p) + 3 (mod 4). If b is even,
s(σg) = 1 and 0 ≡ 2b ≡ h(−p) + 3 (mod 4) show h(−p) ≡ 1 ≡ s(σg)
(mod 4), while if b is odd, s(σg) = −1 and 2 ≡ 2b ≡ h(−p) + 3 (mod 4)
show h(−p) ≡ −1 ≡ s(σg) (mod 4).

Remark 2. Here we only point out that Theorem 1 also follows from The-
orem 3, so the reader may skip Theorem 2, if so desired. Indeed, if p ≡ 3
(mod 4) and g, k ∈ R then (2) shows s(σk) ≡ s(σg) (mod p), as they are
both congruent to −

(p−1
2

)
! (mod p). But −1 6≡ 1 (mod p) so we are forced

to conclude that s(σk) = s(σg), hence all permutations in ΣR have the same
sign. Now assume p ≡ 1 (mod 4) and fix g ∈ R. Since

(
g

p−1
4

)2 ≡ g
p−1
2 ≡ −1

(mod p), g
p−1
4 is a root of the congruence X2 + 1 ≡ 0 (mod p) and the

other root −g
p−1
4 ≡ g

p−1
2 g

p−1
4 ≡ g3 p−1

4 (mod p). Every unit u ∈ U is rela-
tively prime to p − 1, hence odd, so u ≡ 1 or 3 (mod 4). For i = 1, 3 let
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Ui = {u | u ≡ i (mod 4)}. Then u→ v = p−1−u is a bijection of U1 onto U3

and so |U1| = |U3|. If u ∈ U1, u
(p−1

4

)
≡

(p−1
4

)
(mod p− 1). Thus if k ≡ gu

(mod p) with u ∈ U1, then k
p−1
4 ≡ gu p−1

4 ≡ g
p−1
4 (mod p), so by (3) we

have s(σk) ≡ −
(p−1

2

)
·k

p−1
4 ≡ −

(p−1
2

)
! ·g

p−1
4 ≡ s(σg) (mod p) which implies

s(σk) = s(σg) in this case. Similarly, if u ∈ U3 and h ∈ R is h ≡ gu (mod p),
then u

(p−1
4

)
≡ 3

(p−1
4

)
(mod p− 1) and so h

p−1
4 ≡ gu p−1

4 ≡ g3 p−1
4 ≡ −g

p−1
4

(mod p). Then (3) shows s(σh) ≡ −s(σg) (mod p), hence s(σh) = −s(σg)
and so ΣR is even-odd when p ≡ 1 (mod 4).

2. Proofs

Proof of Theorem 2.
The easiest case is m ≡ 0 (mod 4). Take u ≡ −1 (mod m), θu(x) ≡ −x

(mod m). θu is an involution on A so its cycle structure consists of 1-cycles
(fixed points) and 2-cycles (transpositions). θu(x) ≡ x (mod m) iff 2x ≡ 0
(mod m) or x ≡ m

2 (mod m), x ≡ m (mod m). Besides these two fixed
points the remaining m − 2 elements of A break up into a product of m−2

2

transpositions of the form (x,m− x), x = 1, 2, . . . , m−2
2 . Since m−2

2 is odd
θu is an odd permutation and T is even-odd.

Now let m be arbitrary, even or odd, and consider a θu ∈ T . We
have to decompose it into cycles. For every divisor d|m let A(d) =
{x mod m|(x,m) = d}; A is the disjoint union of all the sets A(d). Note that
(x,m) depends only on xmodm. (x,m) = d iff (x

d ,
m
d ) = 1 so |A(d)| = φ(m

d ).
If u ∈ U = A(1), x ∈ A(d) then also ux ∈ A(d) since (ux,m) = (x,m). The
cycle of θu containing x is (x ux u2x . . . ue−1x) where e is the smallest pos-
itive integer such that uex ≡ x (mod m). This last congruence is equivalent
to x

d (ue − 1) ≡ 0 (mod m
d ) and since (x

d ,
m
d ) = 1 it is equivalent to ue ≡ 1

(mod m
d ); which does not depend on x. Thus the φ(m

d ) elements of A(d)
break up into cycles under θu, all having the same length e = e(u, m

d ), the
order of u mod m

d . So the number of cycles of θu on A(d) is

(4) c(u, d) =
φ(m

d )
e(u, m

d )
.

Now assume m ≡ 2 (mod 4). Write m = 2t, t odd. The divisors d|m are
d = δ, d = 2δ where δ|t. For u ∈ U we claim e = e(u, m

δ ) and e′ = e(u, m
2δ )

are equal. For clearly e′ ≤ e. But since m is even u ≡ 1 (mod 2), so ue′ ≡ 1
(mod 2) and ue′ ≡ 1 (mod m

2δ ) imply ue′ ≡ 1 (mod 2 · m
2δ = m

δ ). Thus
e ≤ e′, which proves the claim. Also φ(m

δ ) = φ( t
δ ) and φ( m

2δ ) = φ( t
δ ) so that

(4) shows c(u, δ) = c(u, 2δ). Thus for each δ|t, A(δ) with A(2δ) provide a
total of 2c(u, δ) cycles all having the same length e(u, m

δ ). These 2c(u, δ)
cycles contribute a +1 to sign θu. But as δ ranges over the divisors of t this
accounts for all the cycles, showing sign θu = 1 for every θu ∈ T and T is
even.
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Now let m be odd. Let m = pk1
1 p

k2
2 . . . pkr

r be the prime factorization of
m. Since each pi is odd there is a primitive root gi mod pki

i . For i = 1,
2, . . . , r define ui mod m by the congruence ui ≡ gi (mod pki

i ) and ui ≡ 1
(mod m/pki

i ). By the Chinese Remainder Theorem the ui generate the group
of units U in A and then the θui generate T . To focus on a particular one,
say θu1 , we set q = p1, k = k1, t = pk2

2 . . . pkr
r (if r = 1, t = 1). Now

m = qkt and every d|m has the form d = qjδ where 0 ≤ j ≤ k and δ|t. For
d = qjδ, e(u1,

m
d ) is the order of u1 (mod m

d = qkt
qjδ

= qk−j t
δ ). But u1 ≡ 1

(mod t) so the order of u1 (mod m
d ) is just the order of u1 (mod qk−j), thus

e(u1,
m
d ) = e(u1, q

k−j). Now u1 ≡ g1 (mod qk) shows u1 is a primitive root
mod qk, hence also a primitive root mod qk−j , so e(u1, q

k−j) is just φ(qk−j).
Altogether then e(u1,

m
d ) = φ(qk−j) and by (4)

c(u1, d) =
φ(m

d )
φ(qk−j)

=
φ(qk−j t

δ )
φ(qk−j)

= φ

(
t

δ

)
.

For any integer n, φ(n) is even unless n is 1 or 2. Since t is odd we see
that c(u1, d) = φ( t

δ ) is even unless δ = t. Thus A(d) when δ 6= t, contributes
an even number of cycles all of the same length, so contributes +1 to sign
θu1 . When δ = t, d = qjt has c(u1, d) = 1, so A(d) is a single cycle of
length φ(qk−j). For 0 ≤ j ≤ k − 1, φ(qk−j) is even so we end up with k
cycles having even length, which are odd permutations, so sign θu1 = (−1)k.
(When j = k, d = m, A(m) is a fixed point, a cycle of length one.) There
was nothing special about u1 so we see that for each i, 1 ≤ i ≤ r, sign
θui = (−1)ki . As soon as one ki is odd T contains an odd permutation so
is even-odd. If all the ki are even then so are all the θui and the group T
they generate is even. But all the ki are even iff m is a square. But odd
m can be a square only when m ≡ 1 (mod 4). This completes the proof of
Theorem 2. �

Proof of Theorem 3.
For σg ∈ ΣR we denote the inverse permutation, σ−1

g , by γg. Thus γg(x) =
y iff x = σg(y), or x ≡ gy (mod p). For any subset A of Sp−1, A−1 denotes
the set of inverses of the elements in A. We define ΓR = {γg|g ∈ R} = Σ−1

R .
The permutations in these sets satisfy some basic relations which make

us introduce further notation. Since p−1
2 occurs frequently, we set q = p−1

2 ,
p = 2q + 1. Paritition X into I ∪ J where I = {x|1 ≤ x ≤ q} and J =
{x|q+1 ≤ x ≤ p−1}. The variables i, j always range over I, J , respectively.
Note that |I| = |J |, gq ≡ −1 (mod p) for g ∈ R. Define

(5) x∗ =

{
x+ q, if x ∈ I
x− q, if x ∈ J .
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x → x∗ is a fixed point free involution of X which interchanges I and J .
Also x→ p→ x has the same property. We denote these as

(6) η(x) = x∗, ξ(x) = p− x.

Each of η, ξ is a product of q disjoint, hence commuting, transpositions.

(7)

η =
∏

i

(i, i∗) =
∏
j

(j, j∗), η = η−1, s(η) = (−1)q

ξ =
∏

i

(i, p− i) =
∏
j

(j, p− j), ξ = ξ−1, s(ξ) = (−1)q.

It may be helpful to get a picture of these, take p = 11. We write them out
in both cycle and tabular presentation.

η = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10) =
(

1 2 3 4 5 6 7 8 9 10
6 7 8 9 10 1 2 3 4 5

)
ξ = (1, 10)(2, 9)(3, 8)(4, 7)(5, 6) =

(
1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1

)
.

Now p− σg(x) ≡ −gx ≡ gx∗ ≡ σg(x∗) (mod p) shows

(8) ξ(σg(x)) = σg(η(x)), ξσg = σgη.

Taking inverses, or by direct proof, we have

(9) γg(ξ(x)) = η(γg(x)), γgξ = ηγg.

We use these relations to define larger subsets of Sp−1:

(10) Σ = {σ ∈ Sp−1|ξσ = ση}, Γ = {γ ∈ Sp−1|γξ = ηγ}.
Clearly ΣR ⊂ Σ, ΓR ⊂ Γ and Γ = Σ−1. We now study the structure of
these sets Σ, Γ, as needed for the proof of the theorem. If G is a group and
ζ ∈ G, C(ζ) denotes the centralizer of ζ in G, the set of elements of G that
commute with ζ. With G being Sp−1 we define

(11) A = C(η), B = C(ξ).

Lemma 1. Let γ ∈ Γ, α ∈ A, β ∈ B, then αγ ∈ Γ and γβ ∈ Γ. If σ ∈ Σ,
then σα ∈ Σ and βσ ∈ Σ.

Proof. Let δ = αγ. Then δξ = (αγ)ξ = α(γξ) = α(ηγ) (by (10)) =
(αη)γ = (ηα)γ (since α commutes with η) = ηδ, which shows δ ∈ Γ. The
proof that γβ ∈ Γ is similar. The proof for σ is done similarly or follows
directly by taking inverses. The results of the lemma can be stated briefly
as AΓB = Γ, BΣA = Σ. �

We now show how every γ ∈ Γ can be brought into a normal form. For
any τ ∈ Sp−1, define

(12)
K(τ) = {i|τ(i) ∈ J} = I ∩ τ−1(J)

D(τ) = {i|τ(i) ∈ I} = I ∩ τ−1(I).
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Thus K(τ) is the set of those i moved by τ into J while D(τ) is the set of
those i that stay in I under τ . Define

(13) r(τ) = |K(τ)|.

It follows that |D(τ)| = q−r(τ) . Now D(τ−1) = I ∩τ(I) = τ(I ∩τ−1(I)) =
τ(D(τ)), which shows |D(τ−1)| = |D(τ)| from which one has

(14) r(τ−1) = r(τ).

Given γ ∈ Γ and k ∈ K(γ), let m = γ(k) ∈ J and let ρ be the transposition
(m,m∗). ρ is one of the factors of η, see (7), so ρ ∈ A and γ′ = ργ ∈ Γ.
Now ργ(i) = γ(i) for i 6= k and ργ(k) = m∗ ∈ I, so γ′ moves one less
member of I to J , r(γ′) = r(γ)− 1. This process may be continued for each
element of K(γ), so by r(γ) successive multiplications of γ on the left by
such transpositions, all of which commute with each other so the order in
which it is done is immaterial, one obtains a permutation θ having r(θ) = 0.
If the product of the transpositions is denoted π, we have

(15)
θ ∈ Γ, θ = πγ, r(θ) = 0,

s(π) = (−1)r(γ), s(θ) = (−1)r(γ) · s(γ).

θ maps I to I and J to J so let µ be the permutation that is θ restricted to I
and is the identity on J . Similarly let ν be θ restricted to J and is the identity
on I. Then µ, ν commute and θ = µν = νµ. Suppose now k, m ∈ I, k 6= m.
Define τ = (k,m), τ ′ = (p−k, p−m) = (ξ(k), ξ(m)). We claim ττ ′ ∈ B. For
ξττ ′ξ−1 = ξτξ−1 · ξτ ′ξ−1 = (ξ(k), ξ(m))(k,m) (since ξ2 is the identity) =
τ ′τ = ττ ′ (since τ , τ ′ are disjoint) which shows ττ ′ commutes with ξ. By
Lemma 1, θττ ′ ∈ Γ. Now write µ−1 as a product of transpositions (not
necessarily disjoint or commuting) τ1τ2 . . . τn, say, where τt = (kt,mt) for
t = 1, . . . , n, and all the elements kt, mt ∈ I, since µ−1 is the identity on
J . Let ωt = τtτ

′
t and set ω = ω1ω2 . . . ωn. Each s(ωt) = 1, so s(ω) = 1 and

each ωt ∈ B so ω ∈ B. Finally let λ = θω, so

(16) λ ∈ Γ, s(λ) = s(θ) = (−1)r(γ) · s(γ).

ω = τ1τ
′
1 . . . τnτ

′
n = τ1 . . . τnτ

′
1 . . . τ

′
n since the τ permutations act only on I

while the τ ′ act only on J . But τ1 . . . τn = µ−1, so λ = θω = νµµ−1τ ′1 . . . τ
′
n,

which acts only on J . Thus λ(i) = i and λ is a permutation of J . We claim
λ is uniquely determined by the fact that λ ∈ Γ and λ is the identity on
I; thus the intermediate choices of various transpositions, starting from γ,
always lead to the same λ. Indeed, since λ ∈ Γ, λξ = ηλ so λξ(i) = ηλ(i) =
η(i) = i+ q. Given j, let i = p− j = ξ(j), so λξ(i) = λξ(ξ(j)) = p− j + q.
Since ξ2 is the identity, λ(j) = p + q − j = 3q + 1 − j, and λ is uniquely
determined. Clearly λ2 is the identity; λ is an involution on J . λ has a fixed
point if j = 3q + 1− j, j = 3q+1

2 , which is an integer iff q is odd. Thus

(17) s(λ) = (−1)
q
2 if q is even, s(λ) = (−1)

q−1
2 if q is odd.
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Considering p (mod 8), write p = 8k + e, e = 1, 3, 5, 7, q = 4k + e−1
2 , one

sees q is even for e = 1, e = 5 but q
2 is even for e = 1, odd for e = 5. For

e = 3, e = 7, q is odd, but q−1
2 is even for e = 3, odd for e = 7. In summary,

(18) s(λ) = 1 if p ≡ 1 or 3 (mod 8), s(λ) = −1 if p ≡ 5 or 7 (mod 8).

Noting (16) we now have for any γ ∈ Γ

(19) s(γ) = (−1)r(γ) · s(λ).

To complete the proof of Theorem 3 we need:

Lemma 2. For γ ∈ Γ

(20)
q∑

i=1

γ(i) =
q(q + 1)

2
+ qr(γ).

Proof. LetD = D(γ), K = K(γ), d ∈ D, k ∈ K and S =
q∑

i=1

γ(i); thus S =∑
d

γ(d)+
∑

k

γ(k) and γ(k) ∈ J . Then γ(p−k) = γξ(k) = ηγ(k) = γ(k)−q,

so γ(p−k) ∈ I, γ(k) = γ(p−k)+q. Thus S =
∑

d

γ(d)+
∑

k

γ(p−k)+qr(γ).

But the numbers {γ(d), γ(p − k)} are q in number, all in I and distinct,

since γ is a permutation. Thus
∑

d

γ(d)+
∑

k

γ(p− k) =
q∑

i=1

i =
q(q + 1)

2
so

S = q(q+1)
2 + qr(γ), as claimed. �

Now consider
(p−1

2

)
! = q! =

q∏
i=1

i. For g ∈ R and γg = σ−1
g we have

i = σg(γg(i)) ≡ gγg(i) (mod p), hence
q∏

i=1

i ≡ g
P

i γg(i) ≡ g
q(q+1)

2 (gq)r(γg)

(mod p) by the lemma. Suppose p ≡ 3 (mod 4), q is odd and q+1
2 is an

integer. Noting gq ≡ −1 (mod p) gives q! ≡ (−1)
q+1
2 (−1)r(γg) (mod p). By

(17), since q is odd, (−1)
q−1
2 = s(λ), so (−1)

q+1
2 = −s(λ) so that q! ≡

−s(λ)(−1)r(γg) ≡ −s(γg) (mod p), by (19). Thus s(γg) ≡ −(q!) (mod p)
and since s(σg) = s(γg) we have s(σg) ≡ −

(p−1
2

)
! (mod p) which is (2).

Now take p ≡ 1 (mod 4), so q is even. In this case s(λ) = (−1)
q
2 , by (17),

and so s(γg) = (−1)r(γg)(−1)
q
2 , by (19). We’ve seen q! ≡ g

q(q+1)
2 (gq)r(γg)

(mod p). But g
q(q+1)

2 = (gq)
q
2 g

q
2 ≡ (−1)

q
2 g

p−1
4 (mod p), and (gq)r(γg) ≡

(−1)r(γg) thus q! ≡ g
p−1
4 (−1)

q
2 (−1)r(γg) ≡ g

p−1
4 s(γg) (mod p). The inverse

of g
p−1
4 (mod p) is (−1)g

p−1
4 so the above congruence shows s(σg) = s(γg) ≡

−
(p−1

2

)
! · g

p−1
4 (mod p), completing the proof of Theorem 3. �
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We’ve seen that given γ ∈ Γ there are α ∈ A, β ∈ B such that αγβ = λ,
so γ = α−1λβ−1 ∈ AλB, and hence Γ ⊂ AλB. On the other hand since
λ ∈ Γ, Lemma 1 shows AλB ⊂ Γ. Thus Γ = AλB, is an A−B double coset.
Taking inverses, Σ = Γ−1 = B−1λ−1A−1 = BλA is a B − A double coset,
since A, B are groups and λ = λ−1 Since γ ∈ Γ if and only if γ−1 ∈ Σ, we see
that any γ in Γ of order two is in Γ∩Σ; in particular λ ∈ Γ∩Σ. In general,
if a permutation π ∈ Γ ∩ Σ then by the basic relations (10), πξ = ηπ, so
πξπ−1 = η and ξπ = πη, so π−1ξπ = η = πξπ−1. Thus π2ξ = ξπ2, hence
π2 ∈ B. Similarly π2 ∈ A. Thus π ∈ Γ ∩ Σ implies π2 ∈ A ∩ B. The
converse is false, take ε to be the identity permutation. Then ε2 ∈ A ∩ B
but ε 6∈ Γ ∩ Σ, otherwise that would imply ξ = η, which is false.

3. The average value of r

Recall that q = p−1
2 , I = {i | 1 ≤ i ≤ q} and J = {j | q + 1 ≤ j ≤ p− 1}.

For each g ∈ R we have the permutation σg and the quantity r(σg), which is
the number of i for which σg(i) ∈ J . To lighten the notation we now write
r(g) for r(σg). One can also define re(g), the number of even i for which
σg(i) ∈ J and similarly ro(g), the number of odd i for which σg(i) ∈ J .
Our interest here is in the averages of these quantities taken over all g ∈ R.
Thus r̄ = 1

|R|

∑
g∈R

r(g) is the average of the numbers r(g). In the same way

we have r̄e, r̄o.

Theorem 4. Let p be a prime ≥ 5; then

(21) r̄ =
p+ 1

4
.

For p ≡ 1 (mod 4)

(22) r̄e =
p+ 3

8
, r̄o =

p− 1
8

.

Remark 3. We have no information about r̄e, r̄o when p ≡ 3 (mod 4).

Proof. We make use of the fact that R has a symmetry that allows us to
evaluate

∑
g∈R

r(g). For every g ∈ R, g−1 ≡ gp−2 (mod p) is also a primitive

root since (p−2, p−1) = 1. Actually we should write, instead of g−1 or gp−2,
the value reduced mod p to obtain its representative in X. But this slight
carelessness should not lead to any confusion. g → g−1 is an involution
on R, with no fixed points, since g−1 ≡ g (mod p) implies g2 ≡ 1 (mod p)
which is possible only if 2 ≡ 0 (mod p− 1) which forces p = 3, but we have
excluded p = 3. Note that σg−1 should not be confused with σ−1

g = γg ∈ ΓR.
Now we claim the following relation holds between r(g) and r(g−1):

(23) r(g) + r(g−1) = q + 1.
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Assuming this to be true we can write the sum∑
g∈R

r(g) =
∑

{g,g−1}⊂R

(r(g) + r(g−1))

where {g, g−1} ranges over the |R|
2 2-element subsets {g, g−1} ⊂ R. Thus∑

g∈R

r(g) =
∑

{g,g−1}⊂R

(q + 1) =
1
2
|R|(q + 1)

so r̄ =
1
2
|R|(q+1)

|R| = q+1
2 = p+1

4 , proving (21). To prove (23) recall that
we introduced for τ ∈ Sp−1, I = K(τ) ∪ D(τ). Now we introduce J =
K ′(τ) ∪D′(τ) where K ′(τ) = J ∩ τ−1(I) = those j for which τ(j) ∈ I and
D′(τ) = J ∩ τ−1(J) = those j for which τ(j) ∈ J . We claim |K ′(τ)| = r(τ);
for

τ−1(I) = {x|τ(x) ∈ I} = K ′ ∪D.
Thus q = |τ−1(I)| = |K ′| ∪ |D| = |K ′| + q − r(τ), showing |K ′| = r(τ).
For any x, σg−1(x) ≡ g−x ≡ gp−1−x (mod p). For 1 ≤ x ≤ p − 2 we have
1 ≤ p− 1− x ≤ p− 2 and for x = p− 1, p− 1− x = 0 ≡ p− 1 (mod p− 1).
We define the permutation ψ ∈ Sp−1 by ψ(x) = p− 1− x for 1 ≤ x ≤ p− 2
and ψ(p− 1) = p− 1.

ψ =
(

1 2 · · · q − 1 q q + 1 · · · p− 2 p− 1
p− 2 p− 3 · · · q + 1 q q − 1 · · · 1 p− 1

)
and so σgψ(x) ≡ gp−1−x ≡ σg−1(x) (mod p). Thus σg−1(x) = σgψ(x) =
σg(p− 1− x), for x 6= p− 1 and σg−1(p− 1) = σg(p− 1) = 1. Now r(g−1) is
the number of i for which σg−1(i) ∈ J which is |K(σg−1)|, or is the number of
i for which σgψ(i) ∈ J . For i = q, σgψ(q) = σg(q) ≡ gq ≡ p− 1 (mod p), so
σgψ(q) ∈ J . Thus r(g−1) = 1 + the number of i = 1, 2, . . . , q− 1 for which
σg−1(i) ∈ J . Now for i = 1, 2, . . . , q − 1, j = ψ(i) ranges over p− 2, p− 3,
. . . , q + 1, which are all of J except for p− 1 and σg−1(i) = σgψ(i) = σg(j).
Thus σg−1(i) ∈ J iff σg(j) ∈ J which means j ∈ D′(σg). But D′(σg) does
not contain p − 1, since σg(p − 1) = 1 Thus K(σg−1) = D′(σg) ∪ {q} so
r(g−1) = |D′(σg)|+1 = (q−r(g))+1 = q+1−r(g), or r(g)+r(g−1) = q+1
as claimed and the proof of (21) is complete.

To prove (22) we make use of another symmetry of R that occurs only
when p ≡ 1 (mod 4). In this case −g ≡ p − g (mod p) is also a primitive
root because −g ≡ g

p−1
2 · g ≡ g

p+1
2 (mod p) and (p+1

2 , p − 1) = 1 since
p ≡ 1 (mod 4) means p+1

2 is odd. (When p ≡ 3 (mod 4), p+1
2 is even and

(p+1
2 , p − 1) = 2 so −g ≡ g

p+1
2 (mod p) is not a primitive root.) Now for i

even, σ−g(i) ≡ (−g)i ≡ gi ≡ σg(i) (mod p) and so σ−g and σg agree on all
even i. Thus re(−g) = re(g). For i odd, σ−g(i) ≡ (−g)i ≡ −gi ≡ p − σg(i)
(mod p) and since σ−g(i), p−σg(i) both are inX this forces σ−g(i) = p−σg(i)
for i odd. Now if i is one of the odd i for which σg(i) ∈ J , then σ−g(i) =
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p−σg(i) ∈ I, while if i is one of the odd i for which σg(i) ∈ I, then σ−g(i) =
p− σg(i) ∈ J . Thus of the q

2 odd i (since p ≡ 1 (mod 4) , q = p−1
2 is even)

in I, those for which σg(i) ∈ J and those for which σ−g(i) ∈ J are disjoint
sets and any i belongs to one of these 2 sets. Thus ro(g)+ ro(−g) = q

2 . Now
we can calculate averages. r̄o = 1

|R|

∑
{g,−g}

(ro(g) + ro(−g)), where the sum is

over the 1
2 |R| 2-element sets {g,−g} ⊂ R, gives r̄o = 1

|R| ·
1
2 |R| ·

q
2 = q

4 = p−1
8 .

Finally, since r(g) = re(g)+ro(g), r̄ = r̄e+r̄o or r̄e = r̄−r̄o = p+1
4 − p−1

8 = p+3
8

and the proof of Theorem 4 is finished. �
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