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Lang’s height conjecture and Szpiro’s
conjecture

Joseph H. Silverman

ABSTRACT. It is known that Szpiro’s conjecture, or equivalently the
ABC-conjecture, implies Lang’s conjecture giving a uniform lower bound
for the canonical height of nontorsion points on elliptic curves. In this
note we show that a significantly weaker version of Szpiro’s conjecture,
which we call “prime-depleted,” suffices to prove Lang’s conjecture.
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Introduction

Let E/K be an elliptic curve defined over a number field, let P € F(K)
be a nontorsion point on F, and write ®(F/K) and §(E/K) for the discrim-
inant and the conductor of E/K. In this paper we discuss the relationship

between the following conjectures of Serge Lang [12, page 92] and Lucien
Szpiro (1983).

Conjecture 1 (Lang Height Conjecture). There are constants C1 > 0 and
Cy, depending only on K, such that the canonical height of P is bounded
below by

~

h(P) > Cl log NK/QQ(E/K) - Cg.
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Conjecture 2 (Szpiro Conjecture). There are constants C3 and Cy, de-
pending only on K, such that

log Nk /D (E/K) < C3log Nk oS (E/K) + Cy.

(We remark that stronger versions of Conjectures 1 and 2 say, respectively,
that C7 may be chosen to depend only on [K : Q] and that C3 > 6 is
sufficient.)

In [9] Marc Hindry and the author proved that Szpiro’s conjecture implies
Lang’s height conjecture, and the dependence of C; and Cy on K and on
the constants in Szpiro’s conjecture were subsequently improved by David [4]
and Petsche [15]. It is thus tempting to try to prove the opposite implication,
i.e., prove that Lang’s height conjecture implies Szpiro’s conjecture. Since
Szpiro’s conjecture is easily seen to imply the ABC-conjecture of Masser
and Oesterlé [14] (with some exponent), such a proof would be of interest.

It is the purpose of this note to explain how the pigeonhole argument
in [16] may be combined with the Fourier averaging methods in [9] to prove
Lang’s height conjecture using a weaker form of Szpiro’s conjecture. Roughly
speaking, the “prime-depleted” version of Szpiro’s conjecture that we use al-
lows us to discard a bounded number of primes from ®(E/K) and F(E/K)
before comparing them. It thus seems unlikely that there is a direct proof
that Lang’s height conjecture implies the standard Szpiro’s conjecture. We
also note that the prime-depleted conjecture is insufficient for many Dio-
phantine applications; see Remark 12.

We briefly summarize the contents of this paper. In Section 1 we describe
the prime-depleted Szpiro conjecture and prove that it implies Lang’s height
conjecture. Section 2 contains various elementary properties of the prime-
depleted Szpiro ratio. Finally, in Section 3 we state a prime-depleted ABC-
conjecture and show that it is a consquence of the prime-depleted Szpiro
conjecture.

Acknowledgements. The author would like to thank the referee for sug-
gestions on improving the exposition.

1. The prime-depleted Szpiro conjecture

We begin with some definitions.

Definition. Let © be an integral ideal of K, let v(®) denote the number
of distinct prime ideals dividing ®, and factor

V(D)

D = H pei
=1
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as a product of prime powers. The Szpiro ratio of ® is the quantity

v
eilog N /opi
() = log NK/Q@ =
I\~ = () u(®)
logNg /g H pi Z log N /@pi
i1 i—1

(If ® = (1), we set 0(®) = 1.) More generally, for any integer J > 0, the
J-depleted Szpiro ratio of ® is defined as follows:

71(D) = Ic{lgm}a(ﬂ b >'

#I>0(D)—J iel

Thus 0;(®) is the smallest value that can be obtained by removing from ©
up to J of the prime powers dividing ® before computing the Szpiro ratio.
We note that if (D) < J, then 0;(®D) = 1 by definition.

Example 3.

log 1728
log 6

log 27
OB2L 3 gy(1728) = 1.

o0(1728) = ~4.16, o1(1728) =

log 3

Conjecture 4 (Prime-Depleted Szpiro Conjecture). Let K/Q be a number
field. There exist an integer J > 0 and a constant C5, both depending only
on K, such that for all elliptic curves E/K,

a7 (D(E/K)) < Cs.

It is clear from the definition that o¢(®) = o(®). An elementary argu-
ment (Proposition 9) shows that the value of o; decreases as J increases,

00(D) > 01(D) > 02(D) > -+~

Hence the prime-depleted Szpiro conjecture is weaker than the classical ver-
sion, which says that oo(D(E/K)) is bounded independent of E. Before
stating our main result, we need one further definition.

Definition. Let E/K be an elliptic curve defined over a number field. The
height of E/K is the quantity

hE/K) =max{h(j(E)),logNguD(E/K)}.

For a given field K, there are only finitely many elliptic curves E/K of
bounded height, although there may be infinitely many elliptic curves of
bounded height defined over fields of bounded degree [18].

We now state our main result.

Theorem 5. Let K/Q be a number field, let J > 1 be an integer, let E/K
be an elliptic curve, and let P € E(K) be a nontorsion point. There are
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constants Cg > 0 and C7, depending only on [K : Q], J, and the J-depleted
Szpiro ratio 05 (D(E/K)), such that

h(P) > Csh(E/K) — Cy.
In particular, the prime-depleted Szpiro conjecture implies Lang’s height con-
jecture.

Remark 6. As in [15], it is not hard to give explicit expressions for Cg
and C7 in terms of [K : Q], J, and 07 (D(E/K)). In terms of the dependence
on the Szpiro ratio, probably the best that comes out of a careful working
of the proof is something like

Cs = Cho s (D(E/K))®

for an absolute constant ¢ and a constant Cf, depending on [K : Q] and J.
But until the (prime-depleted) Szpiro conjecture is proven or a specific ap-
plication arises, such explict expressions seem of limited utility.

Proof. We refer the reader to [19, Chapter 6] for basic material on canonical
local heights on elliptic curves. Replacing P with 12P, we may assume
without loss of generality that the local height satisfies

“ 1
for all nonarchimedean places v at which E does not have split multiplicative
reduction. We factor the discriminant D(E/K) into a product

D(E/K) =219 with v(D3)<J and o0;(D(E/K)) =0c(D1).
We also choose an integer M > 1 whose value will be specified later, and for
convenience we let d = [K : Q.

Using a pigeon-hole principle argument as described in [16], we can find
an integer k with
1<k<(6M)’*
such that for all 1 < m < M we have
AmkP;v) > ¢ log max{|j(E)ly,1} — ¢y for all v € M%,

A(mkP;v) > c3log|Nj )o@ (E/K)|, ' for all v € M% with p, | Da.
(Here and in what follows, c1,c¢,... are absolute positive constants. We
also use the standard notation M and MY for complete normalized sets of
archimedean, respectively non-archimedean, absolute values on K.) Roughly
speaking, we need to force J + d local heights to be positive for all mP with
1 <m < M, which is why we may need to take k as large as O(M )7+,
We next use the Fourier averaging technique described in [9]; see also [10,
15]. Let p, | ®1 be a prime at which E has split multiplicative reduction.
The group of components of the special fiber of the Néron model of F at v

is a cyclic group of order
n, = ord, (D(E/K)),
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and we let 0 < a,(P) < n, be the component that is hit by P. (In practice,
there is no prefered orientation to the cyclic group of components, so a,(P) is
only defined up to £1. This will not affect our computations.) The formula
for the local height at a split multiplicative place (due to Tate, see [19,
VI1.4.2]) says that

3 1 av(P) Ty
A(P;v) > 5183 ( . ) log N /qby*-

In this formula, B(¢) is the periodic second Bernoulli polynomial, equal

to t> —t+ & for 0 <t < 1 and extended periodically modulo 1. As in [9], we

are going to take a weighted sum of this formula over mP for 1 < m < M.
The periodic Bernoulli polynomial has a Fourier expansion

e2mint 1 X cos(2mnt)
7r2 2 2 Z n2z
nez n=1
n#0
We also use the formula (Fejér kernel)
U m 1| ot 1
1— P — ime|
Z< M+1)C°S(m) 2(M+1)‘Ze 2
m=1 m=0

Hence

M
m 1_ (may,(P)
> — - Ny

v

L_m 1 i cos(2mnmay,(P)/ny)
M+1) 272 n?
n=1
m 2rnmay,(P)
5> (1—M+1)cos(m,>
n=1 m=1
1
QTanmaU(P)/nu —
7T2Zn2< M—i—l‘z 2)‘

We split the sum over n into two pieces. If n is a multiple of n,, then
the quantity between the absolute value signs is equal to M + 1, and if n
is not a multiple of n,, we simply use the fact that the absolute value is
non-negative. This yields the local estimate

S

WE
3‘,_.

272

M

3 (1 - M"_i 1) A(mP;v)

m=1
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1 Z(M+1)? 1 &1
> — =Y — | logNg gpm™
= (47T2(M +1) Z (nnv)z 472 nzz:l 712) 0g Nk QPy

n=1

(ML e N e
~\ 2anz T 2a) OBNE/OP

We next sum the local heights over all primes dividing 1,

>3 (1 5 e

po|D1 m=1
1 M+1
> By Z < T - nv) log NK/va'

We set

M+1= ]2 Z nvlogNK/@pv/ Z n;l lOgNK/@p'U + 17
pv‘ﬁl pv|©1

which gives the height estimate

M
Z Z <1— MW—T—I) AmP;v) > 2—14 Z ny log N /pw

pv‘gl m=1 Pv|®1

1 _
_ 24,0% log [Nk /@ (E/K)|".
v 1

We also need to estimate the size of M. This is done using the elementary
inequality

n n n 2
) (o) (M) = (L) |

=1 i=1 =1
valid for all a;, z; > 0. (This is a special case of Jensen’s inequality, applied
to the function 1/z.) Applying (1) with z; = n, and a; = log Nk /op, allows
us to estimate

Z ny 10g Ny /b

Mi1<2| R 1

Z n, ' log N /by
po|D1

Z ny log NK/QpU
po| D1

> log Ng g
Po|D1

— (D)2 +1=0s(D(E/K))? + 1.

<2

+1 using (1),
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In particular, the value of M is bounded solely in terms of o;(D(E/K)).
We now combine the estimates for the local heights to obtain

m=1
M m
> Z 1-— ) + >5\(mkP;v)
m=1 M VEME  pu|D(E/K)
M m )
=< + +Z>Z<1—M+1>)\(mkP;v)
VEMP  pD1 pu|D2” M=l
M m
> Z Z (1 - M+1> (c1logmax{|j(E)|y,1} — c2)
vEMPE m=1
1 -
+ 57 2 log|Nio®(E/K)|,
po|D1
M m )
+ pzi; z_:l (1 ~ 1) c3log|N /0@ (E/K)|,
v | P2 M=

> c4h(j(E)) + cslog Nk oD (E/K) — cg.

In the last line we have used the fact that ©(E/K)j(E) is integral, so

3 logmax{[j(B)}s, 1} + Y log|Ngo®(E/K)|]" > h(j(E)).
vEMS? Po|D1D2

On the other hand,

Ml (1 - Mnjr 1) h(mkP) = mf:l <1 - Mnjr 1) m2k2h(P)

m=

K2M(M +1)(M +2)

= o h(P).

Adjusting the constants yet again yields
. crh(§(E)) + cslogNg o@D (E/K) — ¢ - c10h(E/K) — cg

h(P) = k2 M3 - k203
Since M depends only on o;(D(E/K)) and since k < (6M)7/74, this gives
the desired lower bound for h(P). O

Remark 7. As in [15], a similar argument can be used to prove that
#E(K )tors is bounded by a constant that depends only on [K : Q], J,
and 07 (D(E/K)).
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2. Some elementary properties of the prime-depleted Szpiro
ratio

We start with an elementary inequality.

Lemma 8. Let n > 2, and let aq,...,a, and x1,...,T, be positive real
numbers, labeled so that o, = max ;. Then

01T + -+ apTy N a1r1 + -+ p—1Tn—1

it T, T mte T

with strict inequality unless oy = -+ = ay,.
Proof. Let A=>"", asz; and X =" | ;. Then
(2) AX — ) — (A= apep) X = (X — A)xyy

n

= <Z(an — ai)xZ):cn > 0.

i=1
Hence
(3) é > A— ana:n,

X X —x,

and since the z; are assumed to be positive, inequalities (2) and (3) are strict
unless the «; are all equal. ([

We apply the lemma to prove some basic properties of the J-depleted
Szpiro ratio.

Proposition 9. Let J > 1.
(a) For all integral ideals D,
0j-1(®) > 0;(D).

Further, the inequality is strict unless ® has the form © = J° for a
squarefree ideal J.
(b) Assume that v(®) > J. Then there exists an ideal d | © satisfying

v(d)=J and  07(®) =0(D)0).
(c) Let p be a prime ideal and © an ideal with ptD. Then

o7(D)
o (®) > o;(ptD) > ————~L .
7(®) > 0;(p°D) > log Nyc /P

(d) Let p be a prime ideal and let © an arbitrary ideal (so p is allowed
to divide ©). Then

o7(D)
log N o7(®) > o5pD) > ——~——~L .
(logNg/gp)os (D) = 0;(p°D) = log Ny /op
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Proof. (a) Write ® = [[p;*. To ease notation, we let

qi = log N /qpi-

If v(®) <J -1, then 0;_1(D) = 0;(®) = 1, so there is nothing to prove.
Assume now that v(D) > J. Let I C {1,2,...,v(D)} be a set of indices
with #1 > v(D) — (J — 1) satisfying

Let k € I be an index satisfying e = max{e; : ¢ € I'}. Then Lemma 8 with
a; = e; and z; = ¢; yields

Z €iq; Z €iqi

icl i€l i#k
oj-1(®) = ZEZ > ! i: > 07(D).
4i q;
iel icl, itk

Further, Lemma 8 says that the inequality is strict unless all of the e; are
equal, in which case ® is a power of a squarefree ideal.

(b) If © = J° is a power of a squarefree ideal, then o;(D) = o(D/c¢) for
every ideal ¢ | J satisfying v(¢) = J, so the assertion to be proved is clear.
We may thus assume that ® is not a power of a squarefree ideal.

Suppose in this case that 0;(®) = o(®/0) for some d | © with v(d) <
J — 1. Then

07-1(D) <o(D/0) = 7,;(9),

contradicting the strict inequality o;_1(®D) > 07(®) proven in (a).
(c) We always have

o;(pD) < 05-1(D),

since in computing o ;(p¢®), we can always remove p and J — 1 other primes
from ®. If this inequality is an equality, we’re done. Otherwise the value
of o7(p®) is obtained by removing J primes from ®. Continuing with the
notation from (a) and letting ¢ = log N K/QP, this means that there is an
index set I with #I > v(®) — J such that

eq + Zez’qz‘ q+ Zei%’

(D) = il > il _ 4 +X7
a+> a6 a+d q 9TY
icl iel

where to ease notation, we write X and Y for the indicated sums.

If Y =0, then also X =0 and v(D) < J, so 07(p°D) equals either e or 1.
In either case, it is greater than o;(®) = 1. So we may assume that Y > 0,
which implies that ¥ > log 2.
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‘We observe that

Hence
_X 14X @) 0s(®)

Y 1+4¢/Y —1+¢/Y = 3¢
(The final inequality is true since ¢ > log2 and Y > log2.) This proves
that o;(®D) is greater than the smaller of o;_1(®) and ¢;(D)/3g. But
from (a) we have o7_1(D) > 07(D), so the latter is the minimum.

(d) Let © = p'®" with p { . Then writing ¢ = log Nk gp as usual and
applying (c) several times, we have

o1 (p°D) = 0 (p°T'D") < 04(D) < qo s (p'D’) = qo (D).
Similarly

07 (D)

/ iy
GJ(pGQ) _ UJ(pe-i-i@/) > UJ(q©> > O'J(F(']@ ) _ O'Jé@). m

3. The prime-depleted Szpiro and ABC' conjectures

In this section we describe a prime-depleted variant of the A BC-conjecture
and show that it is a consequence of the prime-depleted Szpiro conjecture.
For ease of notation, we restrict attention to K = Q and leave the gener-
alization to arbitrary fields to the reader. For other variants of the ABC-
conjecture, see for example [1, 2, 7, 11].

Conjecture 10 (Prime-Depleted ABC-conjecture). There exist an inte-
ger J >0 and an absolute constant Cg such that if A, B,C € 7 are integers
satisfying
A+B+C=0 and ged(A,B,C) =1,
then
o7(ABC) < Cs.
The classical ABC-conjecture (with non-optimal exponent) says that

0(ABC) is bounded, which is stronger than the prime-depleted version,
since 07(ABC) is less than or equal to o(ABC).

Proposition 11. If the prime-depleted Szpiro conjecture is true, then the
prime-depleted ABC'-conjecture is true.

Proof. We suppose that the prime-depleted Szpiro conjecture is true, say
with J primes deleted. Let A, B,C € Z be as in the statement of the
depleted ABC-conjecture. We consider the Frey curve

E:y*=z(z+ A)(xz — B).
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An easy calculation [20, VIII.11.3] shows that the minimal discriminant of E
is either 24(ABC)? or 278(ABC)?, so in any case we can write

D(E/Q) = 2°(ABC)?
for some exponent e € Z. Then using Proposition 9 we find that

o7 ((ABC)?) _ 20;(ABC)
log 2  log2

01 (D(E/Q)) = 0;(2°(ABC)?) >

So the boundedness of o;(D(E/Q)) implies the boundedness of o;(ABC).
U

Remark 12. The Szpiro and ABC-conjectures have many important con-
sequences, including asymptotic Fermat (trivial), a strengthened version
of Roth’s theorem [3, 6], the infinitude of non-Wieferich primes [17], non-
existence of Siegel zeros [8], Faltings’ theorem (Mordell conjecture) [5, 6],. . ..
(For a longer list, see [13].) It is thus of interest to ask which, if any, of these
results follows from the prime-depleted Szpiro conjecture. As far as the au-
thor has been able to determine, the answer is none of them, which would
seem to indicate that the prime-depleted Szpiro conjecture is qualitatively
weaker than the original Szpiro conjecture.
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