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Wandering subspaces and the Beurling
type theorem. II

Kei Ji Izuchi, Kou Hei Izuchi and Yuko Izuchi

ABSTRACT. Let H? be the Hardy space over the bidisk. Let ¢(w) be
a nonconstant inner function. We denote by [z — ¢(w)] the smallest
invariant subspace for both operators T, and T,, containing the function
z — @(w). Aleman, Richter and Sundberg showed that the Beurling
type theorem holds for the Bergman shift on the Bergman space. It is
known that the compression operator S, on H? & [z — w] is unitarily
equivalent to the Bergman shift, so the Beurling type theorem holds
for S, on H? © [z — w]. As a generalization, we shall show that the
Beurling type theorem holds for S, on H? © [z — p(w)]. Also we shall
prove that the Beurling type theorem holds for the fringe operator F,
on [z —w]© z[z — w] and for F, on [z — p(w)] S w[z — p(w)] if ¢(0) = 0.
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1. Introduction

Let T be a bounded linear operator on a Hilbert space H. For a subset
E of H, we denote by [E] the smallest invariant subspace for T' containing
E. Let M C H be an invariant subspace for T. We denote by M & TM
the orthogonal complement of TM in M. The space M & TM is called a
wandering subspace of M for the operator T. We have [M & TM] C M. We
say that the Beurling type theorem holds for 7" if [M © TM| = M for all
invariant subspaces M of H for 1. Our basic problem is to find operators
for which the Beurling type theorem holds.
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Let D be the open unit disk in the complex plane C. We denote by
H?(z) the Hardy space on D with variable z. Let T, be the multiplication
operator on H?(z) by the coordinate function z. The Beurling theorem [3]
says that M = [M © T, M] holds for all invariant subspaces M of H?(z) for
T,. Let L2(z), the Bergman space, be the Hilbert space consisting of square
integrable analytic functions on I with respect to the normalized Lebesgue
measure on . Let B be the Bergman shift on L2(z), that is, Bf(z) = zf(2)
for f € L2(z). It is known that the dimension of wandering subspaces of
invariant subspaces in L2(z) for B ranges from 1 to oo (see [2, 7, 9]). In
[1], Aleman, Richter and Sundberg proved that the Beurling type theorem
holds for the Bergman shift B. In [16], Shimorin showed that if T': H — H
satisfies the following conditions:

() [Tz +y)? < 2(||® + [Tyl?), @,y € H;

(b) ({T™H :n >0} = {0};
then the Beurling type theorem holds for T'. As an application of this the-
orem, Shimorin gave a simpler proof of the Aleman, Richter and Sundberg
theorem. Later, different proofs of the the Beurling type theorem are given
in [13, 14, 17]. Recently, the authors [10] proved the following.

Theorem A. Suppose T : H — H satisfies the following conditions:
() 1Tl + | T*Ta]? < 2|T*TalP, =€ H;
(ii) T is bounded below, i.e., there is ¢ > 0 satisfying that | Tx| > c||z||
for every x € H;
(iii) |T*"z| — 0 as n — oo for every x € H.
Then the Beurling type theorem holds for T.

Also it was pointed out that conditions (i), (ii) and (iii) in Theorem A
are equivalent to conditions (a) and (b) in Shimorin’s theorem.

Let H? = H?(D?) be the Hardy space over the bidisk D?. We identify a
function in H? with its boundary function on the distinguished boundary
I'? of D?, so we think of H? as a closed subspace of the Lebesgue space
L?(I'?). We use z,w as variables in D?. We note that the Hardy space H?
coincides with the closed tensor product H?(z) ® H?(w). Let T, and T, be
multiplication operators on H? by z and w. A closed subspace M of H? is
called invariant if .M C M and T,,M C M. For a subset E of H?, we
denote by [E] the smallest invariant subspace of H? containing E. For a
subspace E of H?, we denote by Pg the orthogonal projection from L?(I'?)
onto E. See books [4, 15] for the study of the Hardy space H?.

Let M be an invariant subspace of H2. Since T} is an isometry on M, by
the Wold decomposition theorem we have

o
M=) oMo zM)".
n=0
So many properties of the invariant subspace M are considered to be encoded
in M &zM. To study M & zM, Yang defined the fringe operator F,, on
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M & 2M by
wa = PM@ZMwa7 f eMo ZM,

and studied the properties of F, (see [21, 23, 24]). Similarly, we may define
the fringe operator F, on M © wM.

Let N=H?6 M. Then TN C N and TN C N. Let S, and S,, be the
compression operators on N defined by

S.f=PyT.f and S.f=PyTwf, f€N.

We note that ST = T|y and S}, = Tr |-

One of the most interesting invariant subspaces of H? is [z — w]. It is
known that S, = S, on H? © [z — w] and S, is unitarily equivalent to the
Bergman shift on L2(D) (see [6, 12, 17, 18, 19, 20, 22]). So by the Aleman,
Richter and Sundberg theorem, the Beurling type theorem holds for the
operators S, and S, on H? © [z — w).

As generalized spaces of [z — w], we have invariant subspaces M, :=
[z — ¢(w)] for nonconstant inner functions ¢(w). We put N, = H? &
M. The space N, has been studied by Yang and the first author in [11,
12]. In Section 2, as an application of Theorem A we shall prove that
the Beurling type theorem holds for some other unilateral operators. And
we give a sufficient condition on unilateral weighted shifts W, for which
dim(M & WeM) = 1 for every invariant subspace for We. In Section 3, as
an application of Section 2 we shall prove that the Beurling type theorem
holds for the operator S, on N,. In Section 4, we prove that the Beurling
type theorem holds for the fringe operator Fy, on [z — w] © z[z — w]. And
also the Beurling type theorem holds for the fringe operator F, on M, ©
whM, for every inner function ¢(w) with ¢(0) = 0. In this case, we have
dim(M © F,M) =1 for every invariant subspace M of M, © wM,, for F,.

2. Wandering subspaces
Let B be the Bergman shift on L2(z). We put

en(2) =vn+12", n>0.

Then {e,(2)}n>0 is an orthonormal basis of L2(z). We have B*ey(z) = 0,
vn+1 Vn

B n = — /—=6n d B* n - n—
en(2) \/me +1(z) an en(2) \/me 1

(2), m>1.

Hence 1
n
B*B n = n 5
n(z) = e ()
and
v/ 1
B*?Be,(z) = \/ﬁf;en_l(z), n>1.
n

By these equalities, we have
IBSI? + |BBf|* = 2|B*Bf|
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for every f(z) € L2(z) (see [10]). Books [5, 8] are nice references for the
study of the Bergman space.

Let H be a separable Hilbert space with an orthonormal basis {7, }n>0.
Let ¢ = {cp}n>0 be a sequence of positive numbers with sup,, ¢, < .
Let W be a unilateral weighted shift on H defined by Wet, = ¢,7n41 for
n > 0. We have Wity = 0 and W}, = ¢,—17—1 for n > 1. We note that
{Wery : m >0} and {Wgr, : n > 1} are orthogonal systems. For x € H and
T =) 2 anTy, we have

0o 2 0o
HWCtz = Zanchn—i-l = Z ]an|2ci.
n=0 n=0

Then W, is a bounded linear operator on H and W, is bounded below if
and only if inf,, ¢, > 0.

Theorem 2.1. For another Hilbert space E, let EQ H be the tensor product
of E and H. We define a bounded linear operator T'=1® We on E® H
by T(x®@7,) = 2@ Wery forx € E andn > 0. If1/v/2 < ¢y < 1 and
1< c2(2—c2 ) for every n > 1, then the Beurling type theorem holds for
T.

Proof. First, we prove that ¢, < 1 for every n > 0. To prove this, suppose
that ¢, > 1 for some m > 1. Since 1 < ¢2,,1(2 — ¢2,), we have ¢Z, < 2.
Since 0 < ¢}, — 2¢2, + 1, we have ¢2, < 1/(2 — %)) < ¢2,,;. Thus we get
m < Cmt1 < Cma2 < ---. Since sup, ¢, < 00, ¢, — « as n — oo for
some 0 < a < co. Then 1/(2 — a?) = a2, so a = 1. This contradicts with
1<e, <a.

Since 1 < c2(2—c2_,), we have 1/v/2 < ¢, for everyn > 0. Let f € FQH.
We may write f = Y o 2,®7, for some z,, € E with || f[|? = >°0°, [|2,]|* <
00. Since Wer, L Wery for n # k, we have |Tf||? = 300 [|2n]|?||[WeTal|?,
so ||FII2/2 < [ITf]|? < ||f]|*. Then T is bounded below. We have

0o 2
1712 = | S 2 0 Wik,

n==k

2

00
= 5 Ty & (cn—lcn—Q te Cn—k)Tn—k
n=k

o0
<l
n=~k

—0 ask — oo.

We have also

o0 oo
Tf:ZCn($n®Tn+1), T*Tf:ZcZ(a:nQ@Tn),
n=0 n=0
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and
oo
TTf = Z en1(Tn @ Tho1).
n=1
Hence
oo
TP+ 17T f11? = llaoll® + D e+ chery)llzal?
n=1
and
o0
2T Tf|* =) 2¢h |zl
n=0
Therefore
2| T*TfI1” = (ITf1 + 1T**T %)
o0
= (23 — Dllzol* + Y cn(ch(2 = ciy) — 1)l ?
n=1
>0 by the assumption.
Applying Theorem A, we get the assertion. ([

Remark 2.2. Let £ = C. We shall consider the extremal case of conditions
1/vV2<co<land1<c2(2—c2 ). Take co = 1 and inductively we take
cn, such that 1 = c2(2—c2_;). Then we have ¢, = 1 for every n > 0. In this
case, we may think that H = H?(z), We = T, and [[525¢; = 1 > 0.

Take ¢y = 1/+/2 and inductively we take ¢, such that 1 = ¢2(2 — c2_,).
We have ¢, = v/n+ 1/y/n+ 2 for every n > 0. In this case, we may think
that H = L2(z), We = B, and [[[_gc; = 1/v/n+2 — 0 as n — oc.

Corollary 2.3. Let E be a Hilbert space. Then the Beurling type theorem
holds for I ® B on E ® L2(z).

We shall give a sufficient condition on ¢ = {¢p, }n>0 for which
dim(M e W M) =1

for every invariant subspace M of H for We. Let {ay,}n>0 be a sequence of
positive numbers and ag = 1. We define a linear map

Vispan{z" :n >0} - H
by V2" = a,, 7, for every n > 0.

Lemma 2.4. We have that VT, = W,V on span{z" : n > 0} if and only if
nt1 = [}y ¢ for every n > 0. In this case, if 0 < [[2, ¢ < 00, then V
has a bounded linear extension V : H*(z) — H satisfying that V is invertible

and ‘7Tz = ch/.
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Proof. We have VT,2" = W.V2z" if and only if 1741 = ancnTntl-
Hence VT, = W,V on span{z" : n > 0} if and only if a,41 = [[}yc
for every n > 0. In this case, moreover suppose that 0 < [[;2, ¢ < oo.
Then V' is bounded and bounded below on span{z" : n > 0}. Hence V has
a bounded linear extension V : H2(z) — H. It is easy to see that V is
invertible and ‘7TZ = WCXN/. O

We denote by Lat(WW,) and Lat(7%) the lattice of invariant subspaces for
We on H and T, on H?(z), respectively. We write Lat(W.) = Lat(T) if
Lat(W,) and Lat(7,) have the same lattice structure.

Theorem 2.5. If 0 < [[;2,¢ci < oo, then dim(M & W.M) =1 for every
invariant subspace M for We. Moreover we have Lat(W¢) = Lat(T%).

Proof. Let M be a nonzero invariant subspace M for W¢. Let ag = 1 and
oy = H?:_ol ¢; for n > 1. By Lemma 2.4, there is a bounded linear operator
V: H?(z) — H satisfying V2" = aymy, for every n > 0, V is invertible and
XN/TZ = ch/. Then we have

TV IM =V 'W.Mc VM.

Hence VM is an invariant subspace for T,. By the Beurling theorem,
VLM = 0(z)H?2(z) for an inner function 6(z), so M = VO(z)H?2(z). Since
1~/Tz = ch, M is an invariant subspace for W, generated by 176(z) There-
fore we get dim(M © W M) = 1.

For an inner function 61 (z), V61 (z)H%(z) is an invariant subspace for We.
Thus Lat(We) = Lat(T%). O

3. The Beurling type theorem for S,
Let ¢(w) be a nonconstant inner function,
M, = [z — p(w)] and N, = H?©S M,.

Let T, be the multiplication operator on H?(w) by ¢(w). Its adjoint oper-
ator T, is represented by T3 f = Pr2(,\pf, f € H?(w). In [11], Yang and
the first author showed that

o) [e.e]
N, = {Z ST f(w))2" : f € H*(w), Y T3 £ < oo}.
n=0 n=0
Let
n Ty —1
iU o,
vn+1 -
We note that o¢(z,w) = 1. It is known that {0y },>0 is an orthonormal
basis of N, = H? © [z — w], the special case p(w) = w. If we define the
operator V : N, — L2(z) by Vo, = 0,(z,2), then V is a unitary operator
and S, =S, = V*BV.

on(z,w) =
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Since T, is an isomerty on H?(w), by the Wold decomposition theorem
we have

H(w) =) @p(w)" (H*(w) © p(w)H*(w)).
n=0
Let {A\(w)}{, be an orthonormal basis of H*(w) & ¢(w)H?(w), where
0 <m < oo. Also let
Epn(z,w) = Me(w)on(z, 0(w)) € H?, 0<k<m,n>0.
In [12], Yang and the first author proved the following.

Lemma 3.1. The set {Ey : 0 <k <m,n > 0} is an orthonormal basis of
N, and

vn—+1

SzEk,n = ﬁEk,nJrL

We define the operator
U:N,— (H*(w) e gp(w)H2(w)) ® L:(2)
by
UEk,n = )‘k(w) ® en(z)'

Then U is clearly a unitary operator, and by Lemma 3.1 one easily checks
that

S, =U"(I®@B)U and S;=U"(I® B")U.
By Corollary 2.3, we have the following theorem.

Theorem 3.2. The Beurling type theorem holds for the operator S, on N,
for every nonconstant inner function p(w).

Let S, = Pn,Ty|N,. Then S3 = Py, T7|n,. Since T7 =T on N, we
have ST = 57, so S, = S,. By Theorem 3.2, we have the following.

Corollary 3.3. The Beurling type theorem holds for S, on N, for every
nonconstant inner function p(w).

If p(w) # aw, |a| =1, then S, # S,. There are some differences between
the operators S, and Sy, on IN,,.

Proposition 3.4. Let o(w) = w?po(w) for an inner function po(w). Then
1Sw 12 + 1S5 Sw fII? > 2[5 Sw I
for some f € N,.

Proof. The set {1, po(w),wpg(w)} is contained in H?(w) & o(w)H?(w).
Let f(w) = wyo(w) € Ny. Then wf(w) = p(w). Let

r(w) € H*(w) © p(w)H*(w) with r(w) L 1.
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Then p(w) L r(w)p(w)”, and by Lemma 3.1 r(w)o,(z, p(w)) € N, for
every n > 0. We have
_ Ziso e(w)
o'n(Z,QD(UJ)) - \/m

For every n > 0, we have

€ N,.

(wf (), r(w)on(z: p(w))) = = <w<w>,r<w>zzww>n-l‘>

\/m i=0
1 n
= m(@(w)yr(w)w(w) )

=0.

By Lemma 3.1, 0y,(z, o(w)) and po(w)op(z, p(w)) = ¢o(w) are contained
in N,. For j # 1, since ¢(0) = 0 we have also

(0 (10).05(2 () =~ (). () = 0.
Hence
Suf(w) = (wf(w),1(2 p(w)))or (2 o(w))
= (), 02N, (2, o)
) \/§ )
= —5o1(z0(w)).
We have
. 1 ew) 2y 1
TS f(w) = ﬁﬂ;(T) = §wg00(w) € No.
Hence S;,S, f(w) = twpo(w), so Si2S, f(w) = Loo(w). Therefore
1Suf @) + 15280 f@w)? = 5 + § > 5 =2SeSuf @) O

By Proposition 3.4, we may not apply Theorem A for S, on N,. So we do
not know whether or not the Beurling type theorem holds for the operator
Sy on Ng.

4. The fringe operators

Let M be a nonzero invariant subspace of the Hardy space H? and N =
H? & M. One easily checks the following.

Lemma 4.1. For fe M, fe Mo zM if and only if T} f € N.
We define the fringe operators F, on M © zM by

Fw - PM@ZMT’LU‘MQZM
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and F, on M ©wM by F, = Pyrewm | mewnr- Let o(w) be a nonconstant
inner function. We use the same notations as the ones given in Section 3.
Let {\,(w)}™, be an orthonormal basis of H?(w) © p(w)H?(w). Let

ZUn(Z, Sp(w)) —Vvn+ 190(w)n+1
vn+2 ’

Then we may verify the following lemma (see [12]).

E, = n > 0.

Lemma 4.2. The set {\z(w)E, : 0 < k < m,n > 0} is an orthonormal
basis of My, © 2M,,.

Theorem 4.3. The Beurling type theorem holds for the fringe operator I,
on [z —w| © z[z — w|. Moreover, dim(M © F,M) =1 for every invariant
subspace M for F,,.

Proof. Let

1 > 2w N
X, = = —vn+ 1w"
" vn+2 vn+1

for every n > 0. By Lemma 4.2, {X,,},>0 is an orthonormal basis of [z —
w] © z[z — w] (see also [6, 17, 18]). It is not difficult to see that wX, L X;
for j # n + 1. Hence

F, X, = <an7 Xn+l>Xn+1

_ < 1 (E?:o ity ntl-i - \/mwm?)

vn+2 vn+1
1 L il e l—i
\/n+3<21_0\/n+2 — Vit )Xo
1 n+1
= +vn+1lvn+2 )X
\/n—|—2\/n+3<\/n—|—1\/n—|—2 " " ) i
vn+1vn+3
- n+ 2 e
Let
. _vVn+1lyn+3
" n+2 '

Then ¢y = \/3/2, o) 1/\/§ < ¢p, and ¢,, < 1 for every n > 0. It is not difficult
to check c2(2 — c2_;) > 1. By Theorem 2.1, we get the first assertion.
We have

e VBVRVAVAYE VE+IVEFS 1 VE+3
};[06"_2 3 4 k+2  VavEt2

Hence [[0° ¢, = 1/v/2. By Theorem 2.5, we get the second assertion. [
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Since
1

vn+2
T:([z — w] © z[z — w]) is dense in H? © [z — w]. As mentioned in the
introduction, S, on H? © [z —w] is unitary equivalent to the Bergman shift
B on L2(D). We note that the dimension of wandering subspaces of invariant
subspaces in L2(z) for B ranges from 1 to oo.

T,:Xn = Jn(sz))

Proposition 4.4. Let o(w) = w?po(w) for an inner function go(w). Then
1Fuf 1+ |12 Fu fII? > 21| Fy Fu f°
for some f € M, © zM,.
Proof. We have
{1, wo(w), wpo(w)} € H?(w) & p(w)H? (w)
By Lemma 4.2, E,,po(w)E,, wpo(w)E, are contained in M, © zM, for
every n > 0. Let f = wyo(w)Ep. Then
p(w)z — p(w)?

wf =(w)Ey = 7

Let
r(w) € H*(w) © p(w)H?*(w) with r(w) L 1.
Then ¢(w) L r(w)p(w)", and by Lemma 4.2 we have r(w)E, € M, © zM,
for n > 0. Hence for every n > 0, we have

1
(wf. r(w)Ey) = mm<“”(w)z ~ pw),
S () \
r(w) Om —vn+ Ir(w)e(w) +1>
o <<s0(w),7“(w)<ﬁ(w)”>
V2v/n+2 vn+1
VAT T{p(w) T(w)w(w)”“>>
= 0.

For j # 1, since ¢(0) = 0 we have also

_ 1 <<w<w>,w<w>f'>
NN e AR ED

i 1<<p(w)2790(w)j“>>

<U}f, EJ>

Hence

_.I_
S
~——
&

I
B

&
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We have
=5 (M0 VBuga(uie(w) ).
Let

ri(w) € H*(w) © o(w)H?*(w)  with ri(w) L weg(w).
Then wyo(w) L m(w)p(w)™ for n > 0. Hence for every n > 0, we have

(Lo Fufr(w)Bn) = - J%<W$%”)Z ~ Vawgo(w)p(w),
ri(w) Z?:o ZZ;:(_p(lw)"l . MTl(w)ap(w)"+1>
- ! ), 1 (w)ip(w)")
- 2m<\/§m<wgpo(w , 1 (w)e(w
VAT Twpo(w), Tl(w)¢(w)”>>
=0.

For j > 0, since ¢(0) = 0 we have

(TP won(w) ) = 5 (s (ot w0

+ V25 + Hwpp(w), w¢0(w)¢<w)j>)
= 0.
Hence

FoFyf = (T, Fu f,weo(w)Eo)wpo(w) Eo

1 1
- NG (ﬂ<wcpo(w),w800(w)>

+ VEwga(u), wpalw) |wpolw) B

= 2\1/5 (\}5 + \/5) wepo(w)Ep

3
= chpo(w)Eo.

Since
* * 3
ToFoFuf = Zgoo(w)Eo €M, © zM,,
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we have F;2F,, f = 3po(w)Ey. Therefore
. 3 /3\2 312 .
IR I? + IF2Fuf I = 5+ (3) >2(3) =2FRufl®. O

By Proposition 4.4, we may not apply Theorem A for the operator F,, on
M, © zM,. So we do not know whether or not the Beurling type theorem
holds for the operator F,, on M, © zM,,.

By the symmetry of variables in [z — w] and Theorem 4.3, the Beurling
type theorem holds for the operator F, on [z — w] © w[z — w]. We may
generalize this fact as follows.

Theorem 4.5. Let p(w) be an inner function with ¢(0) = 0. Then the
fringe operator I, on M,SwM, is unitarily equivlent to the fringe operator
Fy on [z — w]| © z[z — w|, and the Beurling type theorem holds for F, and
dim(M © F,M) =1 for every invariant subspace M of M, S wM, for F,.

To prove this, we need some lemmas. Let ¢(w) be an inner function with
©(0) = 0. One easily checks the following lemma.

Lemma 4.6. We have T} ¢(w) € H?*(w) © o(w)H?*(w), and if Mw) €
H?(w) © p(w)H?*(w) and M(w) L TEp(w), then

TuA(w) € H2(w) & p(w) H(w).
By Lemma 3.1, N, coincides with the closed linear span of
{AW)on(z, () : Aw) € H2(w) & p(w)H2(w),n > 0}.
By Lemma 4.6, (TyA(w))on (2, p(w)) € N, for every
AMw) € (H2(w) S) (p(w)HQ(w)) oC-T;p(w)
and n > 0. Let
wo={f€N, :Tyf e N}

Since ¢(0) = 0, T\ (T, gp( )) = e(w) and p(w)oy, (2, p(w)) ¢ N, for every
n > 0. Hence the space N, © N, o coincides with the closed linear span of
{(Tp(w))on(z, o(w)) : n > 0}. By Lemma 3.1, we have that

(Toe(w))on(z, p(w)) L (Tye(w))oj(z, o(w))  for n# j,
and [[(Tie(w))on(z, p(w))|| = 1. So
{(The(w))(w)on(z, p(w)) : n >0}
is an orthonormal basis of N, © N, g.

One easily sees that Ty (M, © wM,) L Ny . Therefore by Lemma 4.1,
we have the following.

Lemma 4.7. Let g € M, © wM,. Then we may write

o0
Ty9 = Zan(TZS@( Jon(z, (w Z |an|?* < oo.
n=0
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Let
Y, = \/nlﬁ<cp(w)an(z, e(w)) —vn + 1z"+1), n > 0.

Lemma 4.8. Let p(w) be an inner function with ¢(0) = 0. Then {Y,}n>0
is an orthonormal basis of M, © wM,.

Proof. We have
Vn+1vn + 2, = p(w) (2" + D lo(w) + -+ e(w)"™)
— (n+1)2"
Letting n = 0, we have
V2Yy = p(w) — 2 € M.
By induction, we shall show that Y,, € M, for every n > 0. Suppose that
VE+ Wk +2Y;, = p(w) (2" + 2" Lp(w) + - -+ + p(w)*)
— (k412" e M.
We have
VE+ Wk + 20(w)Yy, = o(w)? (2" + 25 Lp(w) + - + p(w)¥)
— (k+ 1) p(w) € M,

Then
p(w)**? = VE+ 1VE + 2p(0)Yi + (k + 1) p(w)
= (" p(w)® + 2 p(w)? + - 4 2p(w) ).
Hence
VEk +2VE + 3Yi 41

= p(w) (2" + 2Fp(w) + -+ p(w)* ) — (k +2)24
=V + 1VE + 20(w)Yy, + (k + 1) 2" p(w)

— (ZFp(w)? + 2" To(w)? + - - + zp(w)* )

+ 2 o(w) + 2P p(w)? + - - + zp(w) T — (k +2)2F 2
= VE+ VR 2p(w)Y + (k +2)2F (p(w) — 2) € M.

This completes the induction. Thus we get Y;, € M., for every n > 0.
We have also

TiY, = s Tule(wouz, o)
= 5 (Tip(u)ou(z.ow)  because ¢(0) =0

€N, by Lemmas 3.1 and 4.6.




502 K. J. IZUCHI, K. H. IZUCHI AND Y. IZUCHI

Hence by Lemma 4.1, Y,, € M, © wM, for n > 0. Since ¢(0) = 0 and
lo(w)on(z, @(w))]| =1, it is not difficult to show that ||Y,|| =1 for n > 0.
Let 0 <n < j. Then

(p(w)u(zp(w)) — Vi F 12, 241) =

and (2", p(w)o;(z, p(w))) = 0. So
1

(Yn,Yj) = W+2—m<w(w)0n(z, p(w)), p(w)aj(z, p(w)))
1

s (ol W) pl0)

1 n : o J N
B \/n+1\/n+2\/j+1\/j+2<zz p(w) ,Zzégo(w)J Z>

=0 =0

! n—i j—i
R Nea Winn PILA ML

=0 because ¢(0) =0 and n < j.

Hence {Y, }n>0 is an orthonormal system in M, © wlM,.
Let g € M, © wM,. By Lemma 4.7, we may write

Tig =Y an(Thp(w))on(z, o(w))
n=0

for some Y% |an|* < co. We have
9(z,w) =w <Z an(To0(w))on (2, w(w))> +9(2,0)
n=0

= (Z anp(w)on(z, <p(w))> +9(z,0).

n=0

Since g € [z — p(w)], g(¢(¢), () = 0 for every ¢ € D. Then

g(QD(C), 0) == Z ango(C)an(go(C), QD(C))
n=0

=3 VT Tanp(C)
n=0

Hence

o0
9(z,0) = — Z V4 la,2", 2z eD.
n=0
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Therefore for (z,w) € D? we get

9(z,w) =Y an(p(w)on(z, ¢(w)) — Va + 12+
n=0

(e}
= Vn+2a,Y,
n=0
and
o
Z(n + 2)|an|* < .
n=0
Thus we get the assertion. ([

Remark 4.9. By the last paragraph of the proof of Lemma 4.8, we have

T, (My © wMy) = {Z an(Typ(w))on(z, p(w)) : Y (n+2)|anf* < OO}-
n=0

n=0
Remark 4.10. If ¢(0) # 0, we can prove that
Zn = (p(w) = (0))on(z, p(w)) — Vn+1(z — (0))2" € M, S wMy,
for every n > 0. But in this case, Z,, £ Z; for n # j.
Proof of Theorem 4.5. We note that

n ) n+l—1
Y — 1 (EZZO z SO('LU) _ /n 4 1ZTL+1>, n 2 0

ToVn+2 VRS
We have T.Y,, LY for j #n+ 1. For, we have
(T:Y0,Y;)

1
= T s P lon(z e(w), e(w)oy(z e(w)
because ¢(0) =0
1 < S, 2 p(w)r i S 2lp(w)i >

Vit 22 Vn+1 ’ Vi+l

1 n—i j— i+1
TVt a2/ Vit 2 2_{p(w)" ™ p(wp T 2,

J
=0 ¢=0
If either n — i # j — £ or i + 1 # £, then

(p(w)" " p(w)? H (" 2 =0

because p(0) = 0. If n—i=j—/¢and i+ 1 = ¢, then j = n+ 1. Thus
T.Y, LY; for j #n+1.

n




504

K. J. IZUCHI, K. H. IZUCHI AND Y. IZUCHI

Hence we get

FzYn = <TzYn’ Yn+1>Yn+l

n n+l

(o(w)"", (w)
1=0 /=0

(Z 2 ) +Vn+1vn 2 |V

1 1
CVn+2vn+3\vnFivn+2

n+1f€>

1 N
( i 2+\/n+1\/n+2>Yn+1

Vit 2yn+3\WVn+
n+1 1
VL
vn+3\n+2
vn+1lyn+3
= —Yn+1.
n+2
By the proof of Theorem 4.3, F, on M, © wM, is unitarily equivalent to
F,, on [z — w] © z[z — w]. By Theorem 4.3, we get the assertion. O
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