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Wandering subspaces and the Beurling
type theorem. II

Kei Ji Izuchi, Kou Hei Izuchi and Yuko Izuchi

Abstract. Let H2 be the Hardy space over the bidisk. Let ϕ(w) be
a nonconstant inner function. We denote by [z − ϕ(w)] the smallest
invariant subspace for both operators Tz and Tw containing the function
z − ϕ(w). Aleman, Richter and Sundberg showed that the Beurling
type theorem holds for the Bergman shift on the Bergman space. It is
known that the compression operator Sz on H2 	 [z − w] is unitarily
equivalent to the Bergman shift, so the Beurling type theorem holds
for Sz on H2 	 [z − w]. As a generalization, we shall show that the
Beurling type theorem holds for Sz on H2 	 [z − ϕ(w)]. Also we shall
prove that the Beurling type theorem holds for the fringe operator Fw

on [z−w]	 z[z−w] and for Fz on [z−ϕ(w)]	w[z−ϕ(w)] if ϕ(0) = 0.
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1. Introduction

Let T be a bounded linear operator on a Hilbert space H. For a subset
E of H, we denote by [E] the smallest invariant subspace for T containing
E. Let M ⊂ H be an invariant subspace for T . We denote by M 	 TM
the orthogonal complement of TM in M . The space M 	 TM is called a
wandering subspace of M for the operator T . We have [M 	TM ] ⊂ M . We
say that the Beurling type theorem holds for T if [M 	 TM ] = M for all
invariant subspaces M of H for T . Our basic problem is to find operators
for which the Beurling type theorem holds.
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Let D be the open unit disk in the complex plane C. We denote by
H2(z) the Hardy space on D with variable z. Let Tz be the multiplication
operator on H2(z) by the coordinate function z. The Beurling theorem [3]
says that M = [M 	 TzM ] holds for all invariant subspaces M of H2(z) for
Tz. Let L2

a(z), the Bergman space, be the Hilbert space consisting of square
integrable analytic functions on D with respect to the normalized Lebesgue
measure on D. Let B be the Bergman shift on L2

a(z), that is, Bf(z) = zf(z)
for f ∈ L2

a(z). It is known that the dimension of wandering subspaces of
invariant subspaces in L2

a(z) for B ranges from 1 to ∞ (see [2, 7, 9]). In
[1], Aleman, Richter and Sundberg proved that the Beurling type theorem
holds for the Bergman shift B. In [16], Shimorin showed that if T : H → H
satisfies the following conditions:

(a) ‖Tx + y‖2 ≤ 2(‖x‖2 + ‖Ty‖2), x, y ∈ H;
(b)

⋂
{TnH : n ≥ 0} = {0};

then the Beurling type theorem holds for T . As an application of this the-
orem, Shimorin gave a simpler proof of the Aleman, Richter and Sundberg
theorem. Later, different proofs of the the Beurling type theorem are given
in [13, 14, 17]. Recently, the authors [10] proved the following.

Theorem A. Suppose T : H → H satisfies the following conditions:
(i) ‖Tx‖2 + ‖T ∗2Tx‖2 ≤ 2‖T ∗Tx‖2, x ∈ H;
(ii) T is bounded below, i.e., there is c > 0 satisfying that ‖Tx‖ ≥ c‖x‖

for every x ∈ H;
(iii) ‖T ∗nx‖ → 0 as n →∞ for every x ∈ H.

Then the Beurling type theorem holds for T .

Also it was pointed out that conditions (i), (ii) and (iii) in Theorem A
are equivalent to conditions (a) and (b) in Shimorin’s theorem.

Let H2 = H2(D2) be the Hardy space over the bidisk D2. We identify a
function in H2 with its boundary function on the distinguished boundary
Γ2 of D2, so we think of H2 as a closed subspace of the Lebesgue space
L2(Γ2). We use z, w as variables in D2. We note that the Hardy space H2

coincides with the closed tensor product H2(z)⊗H2(w). Let Tz and Tw be
multiplication operators on H2 by z and w. A closed subspace M of H2 is
called invariant if TzM ⊂ M and TwM ⊂ M . For a subset E of H2, we
denote by [E] the smallest invariant subspace of H2 containing E. For a
subspace E of H2, we denote by PE the orthogonal projection from L2(Γ2)
onto E. See books [4, 15] for the study of the Hardy space H2.

Let M be an invariant subspace of H2. Since Tz is an isometry on M , by
the Wold decomposition theorem we have

M =
∞∑

n=0

⊕(M 	 zM)zn.

So many properties of the invariant subspace M are considered to be encoded
in M 	 zM . To study M 	 zM , Yang defined the fringe operator Fw on
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M 	 zM by
Fwf = PM	zMTwf, f ∈ M 	 zM,

and studied the properties of Fw (see [21, 23, 24]). Similarly, we may define
the fringe operator Fz on M 	 wM .

Let N = H2	M . Then T ∗z N ⊂ N and T ∗wN ⊂ N . Let Sz and Sw be the
compression operators on N defined by

Szf = PNTzf and Swf = PNTwf, f ∈ N.

We note that S∗z = T ∗z |N and S∗w = T ∗w|N .
One of the most interesting invariant subspaces of H2 is [z − w]. It is

known that Sz = Sw on H2 	 [z − w] and Sz is unitarily equivalent to the
Bergman shift on L2

a(D) (see [6, 12, 17, 18, 19, 20, 22]). So by the Aleman,
Richter and Sundberg theorem, the Beurling type theorem holds for the
operators Sz and Sw on H2 	 [z − w].

As generalized spaces of [z − w], we have invariant subspaces Mϕ :=
[z − ϕ(w)] for nonconstant inner functions ϕ(w). We put Nϕ = H2 	
Mϕ. The space Nϕ has been studied by Yang and the first author in [11,
12]. In Section 2, as an application of Theorem A we shall prove that
the Beurling type theorem holds for some other unilateral operators. And
we give a sufficient condition on unilateral weighted shifts Wc for which
dim(M 	WcM) = 1 for every invariant subspace for Wc. In Section 3, as
an application of Section 2 we shall prove that the Beurling type theorem
holds for the operator Sz on Nϕ. In Section 4, we prove that the Beurling
type theorem holds for the fringe operator Fw on [z − w] 	 z[z − w]. And
also the Beurling type theorem holds for the fringe operator Fz on Mϕ 	
wMϕ for every inner function ϕ(w) with ϕ(0) = 0. In this case, we have
dim(M 	 FzM) = 1 for every invariant subspace M of Mϕ 	 wMϕ for Fz.

2. Wandering subspaces

Let B be the Bergman shift on L2
a(z). We put

en(z) =
√

n + 1zn, n ≥ 0.

Then {en(z)}n≥0 is an orthonormal basis of L2
a(z). We have B∗e0(z) = 0,

Ben(z) =
√

n + 1√
n + 2

en+1(z) and B∗en(z) =
√

n√
n + 1

en−1(z), n ≥ 1.

Hence
B∗Ben(z) =

n + 1
n + 2

en(z),

and

B∗2Ben(z) =
√

n
√

n + 1
n + 2

en−1(z), n ≥ 1.

By these equalities, we have

‖Bf ||2 + ‖B∗2Bf‖2 = 2‖B∗Bf‖2
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for every f(z) ∈ L2
a(z) (see [10]). Books [5, 8] are nice references for the

study of the Bergman space.
Let H be a separable Hilbert space with an orthonormal basis {τn}n≥0.

Let c = {cn}n≥0 be a sequence of positive numbers with supn cn < ∞.
Let Wc be a unilateral weighted shift on H defined by Wcτn = cnτn+1 for
n ≥ 0. We have W ∗

c τ0 = 0 and W ∗
c τn = cn−1τn−1 for n ≥ 1. We note that

{Wcτn : n ≥ 0} and {W ∗
c τn : n ≥ 1} are orthogonal systems. For x ∈ H and

x =
∑∞

n=0 anτn, we have

‖Wcx‖2 =

∥∥∥∥∥
∞∑

n=0

ancnτn+1

∥∥∥∥∥
2

=
∞∑

n=0

|an|2c2
n.

Then Wc is a bounded linear operator on H and Wc is bounded below if
and only if infn cn > 0.

Theorem 2.1. For another Hilbert space E, let E⊗H be the tensor product
of E and H. We define a bounded linear operator T = I ⊗ Wc on E ⊗ H
by T (x ⊗ τn) = x ⊗ Wcτn for x ∈ E and n ≥ 0. If 1/

√
2 ≤ c0 ≤ 1 and

1 ≤ c2
n(2 − c2

n−1) for every n ≥ 1, then the Beurling type theorem holds for
T .

Proof. First, we prove that cn ≤ 1 for every n ≥ 0. To prove this, suppose
that cm > 1 for some m ≥ 1. Since 1 ≤ c2

m+1(2 − c2
m), we have c2

m < 2.
Since 0 < c4

m − 2c2
m + 1, we have c2

m < 1/(2 − c2
m) ≤ c2

m+1. Thus we get
cm < cm+1 < cm+2 < · · · . Since supn cn < ∞, cn → α as n → ∞ for
some 0 < α < ∞. Then 1/(2 − α2) = α2, so α = 1. This contradicts with
1 < cm < α.

Since 1 ≤ c2
n(2−c2

n−1), we have 1/
√

2 ≤ cn for every n ≥ 0. Let f ∈ E⊗H.
We may write f =

∑∞
n=0 xn⊗τn for some xn ∈ E with ‖f‖2 =

∑∞
n=0 ‖xn‖2 <

∞. Since Wcτn ⊥ Wcτk for n 6= k, we have ‖Tf‖2 =
∑∞

n=0 ‖xn‖2‖Wcτn‖2,
so ‖f‖2/2 ≤ ‖Tf‖2 ≤ ‖f‖2. Then T is bounded below. We have

‖T ∗kf‖2 =

∥∥∥∥∥
∞∑

n=k

xn ⊗W ∗k
c τn

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑

n=k

xn ⊗ (cn−1cn−2 · · · cn−k)τn−k

∥∥∥∥∥
2

≤
∞∑

n=k

‖xn‖2

→ 0 as k →∞.

We have also

Tf =
∞∑

n=0

cn(xn ⊗ τn+1), T ∗Tf =
∞∑

n=0

c2
n(xn ⊗ τn),
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and

T ∗2Tf =
∞∑

n=1

c2
ncn−1(xn ⊗ τn−1).

Hence

‖Tf‖2 + ‖T ∗2Tf‖2 = c2
0‖x0‖2 +

∞∑
n=1

c2
n(1 + c2

nc2
n−1)‖xn‖2

and

2‖T ∗Tf‖2 =
∞∑

n=0

2c4
n‖xn‖2.

Therefore

2‖T ∗Tf‖2 −
(
‖Tf‖2 + ‖T ∗2Tf‖2

)
= c2

0(2c2
0 − 1)‖x0‖2 +

∞∑
n=1

c2
n

(
c2
n(2− c2

n−1)− 1
)
‖xn‖2

≥ 0 by the assumption.

Applying Theorem A, we get the assertion. �

Remark 2.2. Let E = C. We shall consider the extremal case of conditions
1/
√

2 ≤ c0 ≤ 1 and 1 ≤ c2
n(2 − c2

n−1). Take c0 = 1 and inductively we take
cn such that 1 = c2

n(2− c2
n−1). Then we have cn = 1 for every n ≥ 0. In this

case, we may think that H = H2(z), Wc = Tz, and
∏∞

i=0 ci = 1 > 0.
Take c0 = 1/

√
2 and inductively we take cn such that 1 = c2

n(2 − c2
n−1).

We have cn =
√

n + 1/
√

n + 2 for every n ≥ 0. In this case, we may think
that H = L2

a(z), Wc = B, and
∏n

i=0 ci = 1/
√

n + 2 → 0 as n →∞.

Corollary 2.3. Let E be a Hilbert space. Then the Beurling type theorem
holds for I ⊗B on E ⊗ L2

a(z).

We shall give a sufficient condition on c = {cn}n≥0 for which

dim(M 	WcM) = 1

for every invariant subspace M of H for Wc. Let {αn}n≥0 be a sequence of
positive numbers and α0 = 1. We define a linear map

V : span{zn : n ≥ 0} → H

by V zn = αnτn for every n ≥ 0.

Lemma 2.4. We have that V Tz = WcV on span{zn : n ≥ 0} if and only if
αn+1 =

∏n
i=0 ci for every n ≥ 0. In this case, if 0 <

∏∞
i=0 ci < ∞, then V

has a bounded linear extension Ṽ : H2(z) → H satisfying that Ṽ is invertible
and Ṽ Tz = WcṼ .



494 K. J. IZUCHI, K. H. IZUCHI AND Y. IZUCHI

Proof. We have V Tzz
n = WcV zn if and only if αn+1τn+1 = αncnτn+1.

Hence V Tz = WcV on span{zn : n ≥ 0} if and only if αn+1 =
∏n

i=0 ci

for every n ≥ 0. In this case, moreover suppose that 0 <
∏∞

i=0 ci < ∞.
Then V is bounded and bounded below on span{zn : n ≥ 0}. Hence V has
a bounded linear extension Ṽ : H2(z) → H. It is easy to see that Ṽ is
invertible and Ṽ Tz = WcṼ . �

We denote by Lat(Wc) and Lat(Tz) the lattice of invariant subspaces for
Wc on H and Tz on H2(z), respectively. We write Lat(Wc) ∼= Lat(Tz) if
Lat(Wc) and Lat(Tz) have the same lattice structure.

Theorem 2.5. If 0 <
∏∞

i=0 ci < ∞, then dim(M 	 WcM) = 1 for every
invariant subspace M for Wc. Moreover we have Lat(Wc) ∼= Lat(Tz).

Proof. Let M be a nonzero invariant subspace M for Wc. Let α0 = 1 and
αn =

∏n−1
i=0 ci for n ≥ 1. By Lemma 2.4, there is a bounded linear operator

Ṽ : H2(z) → H satisfying Ṽ zn = αnτn for every n ≥ 0, Ṽ is invertible and
Ṽ Tz = WcṼ . Then we have

TzṼ
−1M = Ṽ −1WcM ⊂ Ṽ −1M.

Hence Ṽ −1M is an invariant subspace for Tz. By the Beurling theorem,
Ṽ −1M = θ(z)H2(z) for an inner function θ(z), so M = Ṽ θ(z)H2(z). Since
Ṽ Tz = WcṼ , M is an invariant subspace for Wc generated by Ṽ θ(z). There-
fore we get dim(M 	WcM) = 1.

For an inner function θ1(z), Ṽ θ1(z)H2(z) is an invariant subspace for Wc.
Thus Lat(Wc) ∼= Lat(Tz). �

3. The Beurling type theorem for Sz

Let ϕ(w) be a nonconstant inner function,

Mϕ = [z − ϕ(w)] and Nϕ = H2 	Mϕ.

Let Tϕ be the multiplication operator on H2(w) by ϕ(w). Its adjoint oper-
ator T ∗ϕ is represented by T ∗ϕf = PH2(w)ϕf, f ∈ H2(w). In [11], Yang and
the first author showed that

Nϕ =

{ ∞∑
n=0

⊕(T ∗nϕ f(w))zn : f ∈ H2(w),
∞∑

n=0

‖T ∗nϕ f‖2 < ∞

}
.

Let

σn(z, w) =
∑n

i=0 ziwn−i

√
n + 1

, n ≥ 0.

We note that σ0(z, w) = 1. It is known that {σn}n≥0 is an orthonormal
basis of Nw = H2 	 [z − w], the special case ϕ(w) = w. If we define the
operator V : Nw → L2

a(z) by V σn = σn(z, z), then V is a unitary operator
and Sz = Sw = V ∗BV .
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Since Tϕ is an isomerty on H2(w), by the Wold decomposition theorem
we have

H2(w) =
∞∑

n=0

⊕ϕ(w)n
(
H2(w)	 ϕ(w)H2(w)

)
.

Let {λk(w)}m
k=0 be an orthonormal basis of H2(w) 	 ϕ(w)H2(w), where

0 ≤ m ≤ ∞. Also let

Ek,n(z, w) = λk(w)σn(z, ϕ(w)) ∈ H2, 0 ≤ k ≤ m,n ≥ 0.

In [12], Yang and the first author proved the following.

Lemma 3.1. The set {Ek,n : 0 ≤ k ≤ m,n ≥ 0} is an orthonormal basis of
Nϕ and

SzEk,n =
√

n + 1√
n + 2

Ek,n+1.

We define the operator

U : Nϕ →
(
H2(w)	 ϕ(w)H2(w)

)
⊗ L2

a(z)

by
UEk,n = λk(w)⊗ en(z).

Then U is clearly a unitary operator, and by Lemma 3.1 one easily checks
that

Sz = U∗(I ⊗B)U and S∗z = U∗(I ⊗B∗)U.

By Corollary 2.3, we have the following theorem.

Theorem 3.2. The Beurling type theorem holds for the operator Sz on Nϕ

for every nonconstant inner function ϕ(w).

Let Sϕ = PNϕTϕ|Nϕ . Then S∗ϕ = PNϕT ∗ϕ|Nϕ . Since T ∗z = T ∗ϕ on Nϕ, we
have S∗z = S∗ϕ, so Sz = Sϕ. By Theorem 3.2, we have the following.

Corollary 3.3. The Beurling type theorem holds for Sϕ on Nϕ for every
nonconstant inner function ϕ(w).

If ϕ(w) 6= aw, |a| = 1, then Sz 6= Sw. There are some differences between
the operators Sz and Sw on Nϕ.

Proposition 3.4. Let ϕ(w) = w2ϕ0(w) for an inner function ϕ0(w). Then

‖Swf‖2 + ‖S∗2w Swf‖2 > 2‖S∗wSwf‖2

for some f ∈ Nϕ.

Proof. The set {1, ϕ0(w), wϕ0(w)} is contained in H2(w) 	 ϕ(w)H2(w).
Let f(w) = wϕ0(w) ∈ Nϕ. Then wf(w) = ϕ(w). Let

r(w) ∈ H2(w)	 ϕ(w)H2(w) with r(w) ⊥ 1.
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Then ϕ(w) ⊥ r(w)ϕ(w)n, and by Lemma 3.1 r(w)σn(z, ϕ(w)) ∈ Nϕ for
every n ≥ 0. We have

σn(z, ϕ(w)) =
∑n

i=0 ziϕ(w)n−i

√
n + 1

∈ Nϕ.

For every n ≥ 0, we have〈
wf(w), r(w)σn(z, ϕ(w))

〉
=

1√
n + 1

〈
ϕ(w), r(w)

n∑
i=0

ziϕ(w)n−i

〉

=
1√

n + 1
〈ϕ(w), r(w)ϕ(w)n〉

= 0.

By Lemma 3.1, σn(z, ϕ(w)) and ϕ0(w)σ0(z, ϕ(w)) = ϕ0(w) are contained
in Nϕ. For j 6= 1, since ϕ(0) = 0 we have also

〈wf(w), σj(z, ϕ(w))〉 =
1√

j + 1
〈ϕ(w), ϕ(w)j〉 = 0.

Hence

Swf(w) = 〈wf(w), σ1(z, ϕ(w))〉σ1(z, ϕ(w))

=
〈
ϕ(w),

ϕ(w) + z√
2

〉
σ1(z, ϕ(w))

=
1√
2
σ1(z, ϕ(w)).

We have

T ∗wSwf(w) =
1√
2
T ∗w

(ϕ(w) + z√
2

)
=

1
2
wϕ0(w) ∈ Nϕ.

Hence S∗wSwf(w) = 1
2wϕ0(w), so S∗2w Swf(w) = 1

2ϕ0(w). Therefore

‖Swf(w)‖2 + ‖S∗2w Swf(w)‖2 =
1
2

+
1
4

>
1
2

= 2‖S∗wSwf(w)‖2. �

By Proposition 3.4, we may not apply Theorem A for Sw on Nϕ. So we do
not know whether or not the Beurling type theorem holds for the operator
Sw on Nϕ.

4. The fringe operators

Let M be a nonzero invariant subspace of the Hardy space H2 and N =
H2 	M . One easily checks the following.

Lemma 4.1. For f ∈ M , f ∈ M 	 zM if and only if T ∗z f ∈ N .

We define the fringe operators Fw on M 	 zM by

Fw = PM	zMTw|M	zM
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and Fz on M 	wM by Fz = PM	wMTz|M	wM . Let ϕ(w) be a nonconstant
inner function. We use the same notations as the ones given in Section 3.
Let {λk(w)}m

k=0 be an orthonormal basis of H2(w)	 ϕ(w)H2(w). Let

En =
zσn(z, ϕ(w))−

√
n + 1ϕ(w)n+1

√
n + 2

, n ≥ 0.

Then we may verify the following lemma (see [12]).

Lemma 4.2. The set {λk(w)En : 0 ≤ k ≤ m,n ≥ 0} is an orthonormal
basis of Mϕ 	 zMϕ.

Theorem 4.3. The Beurling type theorem holds for the fringe operator Fw

on [z − w] 	 z[z − w]. Moreover, dim(M 	 FwM) = 1 for every invariant
subspace M for Fw.

Proof. Let

Xn =
1√

n + 2

(∑n
i=0 zi+1wn−i

√
n + 1

−
√

n + 1wn+1

)
for every n ≥ 0. By Lemma 4.2, {Xn}n≥0 is an orthonormal basis of [z −
w]	 z[z − w] (see also [6, 17, 18]). It is not difficult to see that wXn ⊥ Xj

for j 6= n + 1. Hence

FwXn = 〈wXn, Xn+1〉Xn+1

=

〈
1√

n + 2

(∑n
i=0 zi+1wn+1−i

√
n + 1

−
√

n + 1wn+2

)
,

1√
n + 3

(∑n+1
i=0 zi+1wn+1−i

√
n + 2

−
√

n + 2wn+2

)〉
Xn+1

=
1√

n + 2
√

n + 3

(
n + 1√

n + 1
√

n + 2
+
√

n + 1
√

n + 2
)

Xn+1

=
√

n + 1
√

n + 3
n + 2

Xn+1.

Let

cn =
√

n + 1
√

n + 3
n + 2

.

Then c0 =
√

3/2, so 1/
√

2 < c0, and cn < 1 for every n ≥ 0. It is not difficult
to check c2

n(2− c2
n−1) ≥ 1. By Theorem 2.1, we get the first assertion.

We have
k∏

n=0

cn =
√

3
2

√
2
√

4
3

√
3
√

5
4

· · ·
√

k + 1
√

k + 3
k + 2

=
1√
2

√
k + 3√
k + 2

.

Hence
∏∞

n=0 cn = 1/
√

2. By Theorem 2.5, we get the second assertion. �
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Since
T ∗z Xn =

1√
n + 2

σn(z, w),

T ∗z ([z − w] 	 z[z − w]) is dense in H2 	 [z − w]. As mentioned in the
introduction, Sw on H2	 [z−w] is unitary equivalent to the Bergman shift
B on L2

a(D). We note that the dimension of wandering subspaces of invariant
subspaces in L2

a(z) for B ranges from 1 to ∞.

Proposition 4.4. Let ϕ(w) = w2ϕ0(w) for an inner function ϕ0(w). Then

‖Fwf‖2 + ‖F ∗2w Fwf‖2 > 2‖F ∗wFwf‖2

for some f ∈ Mϕ 	 zMϕ.

Proof. We have

{1, ϕ0(w), wϕ0(w)} ⊂ H2(w)	 ϕ(w)H2(w)

By Lemma 4.2, En, ϕ0(w)En, wϕ0(w)En are contained in Mϕ 	 zMϕ for
every n ≥ 0. Let f = wϕ0(w)E0. Then

wf = ϕ(w)E0 =
ϕ(w)z − ϕ(w)2√

2
.

Let
r(w) ∈ H2(w)	 ϕ(w)H2(w) with r(w) ⊥ 1.

Then ϕ(w) ⊥ r(w)ϕ(w)n, and by Lemma 4.2 we have r(w)En ∈ Mϕ 	 zMϕ

for n ≥ 0. Hence for every n ≥ 0, we have

〈wf, r(w)En〉 =
1√

2
√

n + 2

〈
ϕ(w)z − ϕ(w)2,

r(w)
∑n

i=0 zi+1ϕ(w)n−i

√
n + 1

−
√

n + 1r(w)ϕ(w)n+1

〉
=

1√
2
√

n + 2

(
〈ϕ(w), r(w)ϕ(w)n〉√

n + 1

+
√

n + 1〈ϕ(w)2, r(w)ϕ(w)n+1〉
)

= 0.

For j 6= 1, since ϕ(0) = 0 we have also

〈wf, Ej〉 =
1√

2
√

j + 2

(
〈ϕ(w), ϕ(w)j〉√

j + 1

+
√

j + 1〈ϕ(w)2, ϕ(w)j+1〉
)

= 0.

Hence

Fwf = 〈wf, E1〉E1 =
1√
2
√

3

(
1√
2

+
√

2
)

E1 =
√

3
2

E1.



THE BEURLING TYPE THEOREM. II 499

We have

T ∗wFwf =
√

3
2

T ∗w

(
1√
3

(
ϕ(w)z + z2

√
2

−
√

2ϕ(w)2
))

=
1
2

(
wϕ0(w)z√

2
−
√

2wϕ0(w)ϕ(w)
)

.

Let
r1(w) ∈ H2(w)	 ϕ(w)H2(w) with r1(w) ⊥ wϕ0(w).

Then wϕ0(w) ⊥ r1(w)ϕ(w)n for n ≥ 0. Hence for every n ≥ 0, we have

〈T ∗wFwf, r1(w)En〉 =
1

2
√

n + 2

〈
wϕ0(w)z√

2
−
√

2wϕ0(w)ϕ(w),

r1(w)
∑n

i=0 zi+1ϕ(w)n−i

√
n + 1

−
√

n + 1r1(w)ϕ(w)n+1

〉

=
1

2
√

n + 2

(
1√

2
√

n + 1
〈wϕ0(w), r1(w)ϕ(w)n〉

+
√

2
√

n + 1〈wϕ0(w), r1(w)ϕ(w)n〉
)

= 0.

For j > 0, since ϕ(0) = 0 we have

〈T ∗wFwf, wϕ0(w)Ej〉 =
1

2
√

j + 2

(
1√

2
√

j + 1
〈wϕ0(w), wϕ0(w)ϕ(w)j〉

+
√

2
√

j + 1〈wϕ0(w), wϕ0(w)ϕ(w)j〉
)

= 0.

Hence

F ∗wFwf = 〈T ∗wFwf, wϕ0(w)E0〉wϕ0(w)E0

=
1

2
√

2

(
1√
2
〈wϕ0(w), wϕ0(w)〉

+
√

2〈wϕ0(w), wϕ0(w)〉
)

wϕ0(w)E0

=
1

2
√

2

(
1√
2

+
√

2
)

wϕ0(w)E0

=
3
4
wϕ0(w)E0.

Since

T ∗wF ∗wFwf =
3
4
ϕ0(w)E0 ∈ Mϕ 	 zMϕ,
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we have F ∗2w Fwf = 3
4ϕ0(w)E0. Therefore

‖Fwf‖2 + ‖F ∗2w Fwf‖2 =
3
4

+
(3

4

)2
> 2
(3

4

)2
= 2‖F ∗wFwf‖2. �

By Proposition 4.4, we may not apply Theorem A for the operator Fw on
Mϕ 	 zMϕ. So we do not know whether or not the Beurling type theorem
holds for the operator Fw on Mϕ 	 zMϕ.

By the symmetry of variables in [z − w] and Theorem 4.3, the Beurling
type theorem holds for the operator Fz on [z − w] 	 w[z − w]. We may
generalize this fact as follows.

Theorem 4.5. Let ϕ(w) be an inner function with ϕ(0) = 0. Then the
fringe operator Fz on Mϕ	wMϕ is unitarily equivlent to the fringe operator
Fw on [z − w] 	 z[z − w], and the Beurling type theorem holds for Fz and
dim(M 	 FzM) = 1 for every invariant subspace M of Mϕ 	 wMϕ for Fz.

To prove this, we need some lemmas. Let ϕ(w) be an inner function with
ϕ(0) = 0. One easily checks the following lemma.

Lemma 4.6. We have T ∗wϕ(w) ∈ H2(w) 	 ϕ(w)H2(w), and if λ(w) ∈
H2(w)	 ϕ(w)H2(w) and λ(w) ⊥ T ∗wϕ(w), then

Twλ(w) ∈ H2(w)	 ϕ(w)H2(w).

By Lemma 3.1, Nϕ coincides with the closed linear span of{
λ(w)σn(z, ϕ(w)) : λ(w) ∈ H2(w)	 ϕ(w)H2(w), n ≥ 0

}
.

By Lemma 4.6, (Twλ(w))σn(z, ϕ(w)) ∈ Nϕ for every

λ(w) ∈
(
H2(w)	 ϕ(w)H2(w)

)
	 C · T ∗wϕ(w)

and n ≥ 0. Let
Nϕ,0 = {f ∈ Nϕ : Twf ∈ Nϕ}.

Since ϕ(0) = 0, Tw(T ∗wϕ(w)) = ϕ(w) and ϕ(w)σn(z, ϕ(w)) /∈ Nϕ for every
n ≥ 0. Hence the space Nϕ 	Nϕ,0 coincides with the closed linear span of{
(T ∗wϕ(w))σn(z, ϕ(w)) : n ≥ 0

}
. By Lemma 3.1, we have that

(T ∗wϕ(w))σn(z, ϕ(w)) ⊥ (T ∗wϕ(w))σj(z, ϕ(w)) for n 6= j,

and ‖(T ∗wϕ(w))σn(z, ϕ(w))‖ = 1. So{
(T ∗wϕ(w))(w)σn(z, ϕ(w)) : n ≥ 0

}
is an orthonormal basis of Nϕ 	Nϕ,0.

One easily sees that T ∗w(Mϕ 	 wMϕ) ⊥ Nϕ,0. Therefore by Lemma 4.1,
we have the following.

Lemma 4.7. Let g ∈ Mϕ 	 wMϕ. Then we may write

T ∗wg =
∞∑

n=0

an(T ∗wϕ(w))σn(z, ϕ(w)),
∞∑

n=0

|an|2 < ∞.
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Let

Yn =
1√

n + 2

(
ϕ(w)σn(z, ϕ(w))−

√
n + 1zn+1

)
, n ≥ 0.

Lemma 4.8. Let ϕ(w) be an inner function with ϕ(0) = 0. Then {Yn}n≥0

is an orthonormal basis of Mϕ 	 wMϕ.

Proof. We have
√

n + 1
√

n + 2Yn = ϕ(w)
(
zn + zn−1ϕ(w) + · · ·+ ϕ(w)n

)
− (n + 1)zn+1.

Letting n = 0, we have
√

2Y0 = ϕ(w)− z ∈ Mϕ.

By induction, we shall show that Yn ∈ Mϕ for every n ≥ 0. Suppose that
√

k + 1
√

k + 2Yk = ϕ(w)
(
zk + zk−1ϕ(w) + · · ·+ ϕ(w)k

)
− (k + 1)zk+1 ∈ Mϕ.

We have
√

k + 1
√

k + 2ϕ(w)Yk = ϕ(w)2
(
zk + zk−1ϕ(w) + · · ·+ ϕ(w)k

)
− (k + 1)zk+1ϕ(w) ∈ Mϕ.

Then

ϕ(w)k+2 =
√

k + 1
√

k + 2ϕ(w)Yk + (k + 1)zk+1ϕ(w)

−
(
zkϕ(w)2 + zk−1ϕ(w)3 + · · ·+ zϕ(w)k+1

)
.

Hence
√

k + 2
√

k + 3Yk+1

= ϕ(w)
(
zk+1 + zkϕ(w) + · · ·+ ϕ(w)k+1

)
− (k + 2)zk+2

=
√

k + 1
√

k + 2ϕ(w)Yk + (k + 1)zk+1ϕ(w)

−
(
zkϕ(w)2 + zk−1ϕ(w)3 + · · ·+ zϕ(w)k+1

)
+ zk+1ϕ(w) + zkϕ(w)2 + · · ·+ zϕ(w)k+1 − (k + 2)zk+2

=
√

k + 1
√

k + 2ϕ(w)Yk + (k + 2)zk+1(ϕ(w)− z) ∈ Mϕ.

This completes the induction. Thus we get Yn ∈ Mϕ for every n ≥ 0.
We have also

T ∗wYn =
1√

n + 2
T ∗w
(
ϕ(w)σn(z, ϕ(w))

)
=

1√
n + 2

(T ∗wϕ(w))σn(z, ϕ(w)) because ϕ(0) = 0

∈ Nϕ by Lemmas 3.1 and 4.6.
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Hence by Lemma 4.1, Yn ∈ Mϕ 	 wMϕ for n ≥ 0. Since ϕ(0) = 0 and
‖ϕ(w)σn(z, ϕ(w))‖ = 1, it is not difficult to show that ‖Yn‖ = 1 for n ≥ 0.

Let 0 ≤ n < j. Then〈
ϕ(w)σn(z, ϕ(w))−

√
n + 1zn+1, zj+1

〉
= 0

and
〈
zn, ϕ(w)σj(z, ϕ(w))

〉
= 0. So

〈Yn, Yj〉 =
1√

n + 2
√

j + 2

〈
ϕ(w)σn(z, ϕ(w)), ϕ(w)σj(z, ϕ(w))

〉
=

1√
n + 2

√
j + 2

〈
σn(z, ϕ(w)), σj(z, ϕ(w))

〉
=

1√
n + 1

√
n + 2

√
j + 1

√
j + 2

〈
n∑

i=0

ziϕ(w)n−i,

j∑
`=0

z`ϕ(w)j−`

〉

=
1√

n + 1
√

n + 2
√

j + 1
√

j + 2

n∑
i=0

〈ϕ(w)n−i, ϕ(w)j−i〉

= 0 because ϕ(0) = 0 and n < j.

Hence {Yn}n≥0 is an orthonormal system in Mϕ 	 wMϕ.
Let g ∈ Mϕ 	 wMϕ. By Lemma 4.7, we may write

T ∗wg =
∞∑

n=0

an(T ∗wϕ(w))σn(z, ϕ(w))

for some
∑∞

n=0 |an|2 < ∞. We have

g(z, w) = w

( ∞∑
n=0

an(T ∗wϕ(w))σn(z, ϕ(w))

)
+ g(z, 0)

=

( ∞∑
n=0

anϕ(w)σn(z, ϕ(w))

)
+ g(z, 0).

Since g ∈ [z − ϕ(w)], g(ϕ(ζ), ζ) = 0 for every ζ ∈ D. Then

g(ϕ(ζ), 0) = −
∞∑

n=0

anϕ(ζ)σn(ϕ(ζ), ϕ(ζ))

= −
∞∑

n=0

√
n + 1anϕ(ζ)n+1.

Hence

g(z, 0) = −
∞∑

n=0

√
n + 1anzn+1, z ∈ D.
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Therefore for (z, w) ∈ D2 we get

g(z, w) =
∞∑

n=0

an

(
ϕ(w)σn(z, ϕ(w))−

√
n + 1zn+1

)
=

∞∑
n=0

√
n + 2anYn

and
∞∑

n=0

(n + 2)|an|2 < ∞.

Thus we get the assertion. �

Remark 4.9. By the last paragraph of the proof of Lemma 4.8, we have

T ∗w(Mϕ 	 wMϕ) =

{ ∞∑
n=0

an(T ∗wϕ(w))σn(z, ϕ(w)) :
∞∑

n=0

(n + 2)|an|2 < ∞

}
.

Remark 4.10. If ϕ(0) 6= 0, we can prove that

Zn := (ϕ(w)− ϕ(0))σn(z, ϕ(w))−
√

n + 1(z − ϕ(0))zn ∈ Mϕ 	 wMϕ

for every n ≥ 0. But in this case, Zn 6⊥ Zj for n 6= j.

Proof of Theorem 4.5. We note that

Yn =
1√

n + 2

(∑n
i=0 ziϕ(w)n+1−i

√
n + 1

−
√

n + 1zn+1
)
, n ≥ 0.

We have TzYn ⊥ Yj for j 6= n + 1. For, we have

〈TzYn,Yj〉

=
1√

n + 2
√

j + 2

〈
zϕ(w)σn(z, ϕ(w)), ϕ(w)σj(z, ϕ(w))

〉
because ϕ(0) = 0

=
1√

n + 2
√

j + 2

〈∑n
i=0 zi+1ϕ(w)n+1−i

√
n + 1

,

∑j
`=0 z`ϕ(w)j+1−`

√
j + 1

〉

=
1√

n + 1
√

n + 2
√

j + 1
√

j + 2

n∑
i=0

j∑
`=0

〈ϕ(w)n−i, ϕ(w)j−l〉〈zi+1, z`〉.

If either n− i 6= j − ` or i + 1 6= `, then

〈ϕ(w)n−i, ϕ(w)j−l〉〈zi+1, z`〉 = 0

because ϕ(0) = 0. If n − i = j − ` and i + 1 = `, then j = n + 1. Thus
TzYn ⊥ Yj for j 6= n + 1.
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Hence we get

FzYn = 〈TzYn, Yn+1〉Yn+1

=
1√

n + 2
√

n + 3

(
1√

n + 1
√

n + 2

(
n∑

i=0

n+1∑
`=0

〈ϕ(w)n−i, ϕ(w)n+1−`〉

〈zi+1, z`〉

)
+
√

n + 1
√

n + 2

)
Yn+1

=
1√

n + 2
√

n + 3

(√
n + 1√
n + 2

+
√

n + 1
√

n + 2
)

Yn+1

=
√

n + 1√
n + 3

( 1
n + 2

+ 1
)
Yn+1

=
√

n + 1
√

n + 3
n + 2

Yn+1.

By the proof of Theorem 4.3, Fz on Mϕ 	 wMϕ is unitarily equivalent to
Fw on [z − w]	 z[z − w]. By Theorem 4.3, we get the assertion. �
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