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The co-universal C*-algebra of a
row-finite graph

Aidan Sims

ABSTRACT. Let E be a row-finite directed graph. We prove that there
exists a C*-algebra Cp;,(F) with the following co-universal property:
given any C*-algebra B generated by a Toeplitz—Cuntz—Krieger E-family
in which all the vertex projections are nonzero, there is a canonical ho-
momorphism from B onto Cp;,(E). We also identify when a homo-
morphism from B to Cp;,(E) obtained from the co-universal property
is injective. When every loop in E has an entrance, C;,(E) coincides
with the graph C*-algebra C*(E), but in general, Cpy;, (E) is a quotient
of C*(FE). We investigate the properties of Cp;, (E) with emphasis on
the utility of co-universality as the defining property of the algebra.
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1. Introduction

The aim of this paper is to initiate a study of C*-algebras defined by
what we refer to as co-universal properties, and to demonstrate the utility
of such a property in investigating the structure of the resulting C*-algebra.
We do this by considering the specific example of co-universal C*-algebras
associated to row-finite directed graphs.

A directed graph E consists of a countable set E? of vertices, and a
countable set E' of directed edges. The edge-directions are encoded by
maps 7,5 : E' — EY: an edge e points from the vertex s(e) to the vertex
r(e). In this paper, we follow the edge-direction conventions of [9]; that is,
a path in E is a finite sequence ejes...e, of edges such that s(e;) = r(ej+1)
for 1 <i<n.
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Let E be a directed graph. A Toeplitz—Cuntz—Krieger E-family in a C*-
algebra B consists of sets {p, : v € E’} and {s. : s € E'} of elements of B
such that:

(T1) the p, are mutually orthogonal projections;
(T2) sise = py(e) for all e € E'; and
(T3) py > Y ocp Sess for all v € E? and all finite F C 771 (v).

A Toeplitz—Cuntz—Krieger E-family {p, : v € E°}, {s. : s € E'} is called a
Cuntz—Krieger E-family if it satisfies
(CK) pv = 2, (¢)=p SeSe Whenever 0 < lr~L(v)] < o0.

The graph C*-algebra C*(FE) is the universal C*-algebra generated by a
Cuntz—Krieger E-family.

To see where (T1)—(T3) come from, let E* denote the path category of E.
That is, £* consists of all directed paths a = ajas ... a;, endowed with the
partially defined associative multiplication given by concatenation. There is
a natural notion of a “left-regular” representation A of E* on ¢?(E*): for a
path a € E*, A\() is the operator on £2(E*) such that

an Ma)es = {aag if s(a) = r(6)

0 otherwise.

It is not hard to verify that the elements P, := A(v) and S := A(e) satisfy
(T1)—(T3). Indeed, it turns out that the C*-algebra generated by these P,
and S, is universal for Toeplitz—Cuntz—Krieger E-families.

The final relation (CK) arises if we replace the space E* of paths in E
with its boundary E<* (this boundary consists of all the infinite paths in
FE together with those finite paths that originate at a vertex which receives
no edges). A formula more or less identical to (1.1) defines a Cuntz—Krieger
E-family {P>® : v € E%, {S® : e € E'} in B({*(E<*®)). The Cuntz—
Krieger uniqueness theorem [2, Theorem 3.1] implies that when every loop
in E has an entrance, the C*-algebra generated by this Cuntz—Krieger family
is universal for Cuntz—Krieger F-families. When E contains loops without
entrances however, universality fails. For example, if £ has just one vertex
and one edge, then a Cuntz—Krieger E-family consists of a pair P, S where
P is a projection and S satisfies S*S = P = 5§5*. Thus the universal C*-
algebra C*(FE) is isomorphic to C*(Z) = C(T). However, E<* consists of a
single point, so C*({P5°, S°}) = C.

The definition of C*(E) is justified, when E contains loops with no en-
trance, by the gauge-invariant uniqueness theorem (originally due to an Huef
and Raeburn; see [6, Theorem 2.3]), which says that C*(E) is the unique C*-
algebra generated by a Cuntz—Krieger F-family in which each p, is nonzero
and such that there is a gauge action v of T on C*(FE) satisfying v.(py) = py
and 7, (s.) = zs. for allv € E°, e € E' and 2z € T.

Recently, Katsura developed a very natural description of this gauge-
invariant uniqueness property in terms of what we call here a co-universal
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property. In the context of graph C*-algebras, Proposition 7.14 of [7] says
that C*(F) is co-universal for gauge-equivariant Toeplitz—Cuntz—Krieger E-
families in which each vertex projection is nonzero. That is, C*(FE) is the
unique C*-algebra such that:

e C*(FE) is generated by a Toeplitz—Cuntz—Krieger E-family {p,, se}
such that each p, is nonzero, and C*(F) carries a gauge action; and
e for every Toeplitz—Cuntz—Krieger E-family {q,, t.} such that each g,
is nonzero and such that there is a strongly continuous action 5 of T
on C*({qu, te}) satisfying 3.(q») = ¢, and f,(t.) = zt. for all v € E°
and e € E', there is a homomorphism 9,¢ : C*({gy,tc}) — C*(E)
satisfying 1, +(qy) = pp and g 4(te) = s for all v € E° and e € E.

The question which we address in this paper is whether there exists a
co-universal C*-algebra for (not necessarily gauge-equivariant) Toeplitz—
Cuntz—Krieger E-families in which each vertex projection is nonzero. Our
first main theorem, Theorem 3.1 shows that there does indeed exist such
a C*-algebra C?. (F), and identifies exactly when a homomorphism B —

i, (E) obtained from the co-universal property of the latter is injective.
The bulk of Section 3 is devoted to proving this theorem. Our key tool is
Hong and Szymanski’s powerful description of the primitive ideal space of
the C*-algebra of a directed graph. We realise 7C*(E) as the universal
C*-algebra of a modified graph E to apply Hong and Szymanski’s results to
the Toeplitz algebra.

Our second main theorem, Theorem 4.1 is a uniqueness theorem for the
co-universal C*-algebra. We then proceed in the remainder of Section 4 to
demonstrate the power and utility of the defining co-universal property of
C%:,(E) and of our uniqueness theorem by obtaining the following as fairly

m
straightforward corollaries:

a characterisation of simplicity of C. (E);

a characterisation of injectivity of representations of C*. (E);

a description of C*. (F) in terms of a universal property, and a
uniqueness theorem of Cuntz—Krieger type;

e a realisation of C’. (F) as the Cuntz—Krieger algebra C*(F) of a
modified graph F’;

e an isomorphism of C. (E) with the C*-subalgebra of B(¢?(E<*))
generated by the Cuntz-Krieger E-family {P=>°,S=>} described
earlier; and

e a faithful representation of C . (E) on a Hilbert space H such that
the canonical faithful conditional expectation of B(H) onto its di-
agonal subalgebra implements an expectation from C}; (E) onto
the commutative C*-subalgebra generated by the range projections
{sD(sT)* : v € E*}.

Our results deal only with row-finite graphs to simplify the exposition.
However, it seems likely that a similar analysis applies to arbitrary graphs.
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Certainly Hong and Szymariski’s characterisation of the primitive ideal space
of a graph C*-algebra is available for arbitrary graphs. In principle one
can argue along exactly the same lines as we do in Section 3 to obtain a
co-universal C*-algebra for an arbitrary directed graph. Alternatively, the
results of this paper could be bootstrapped to the non-row-finite situation
using Drinen and Tomforde’s desingularisation process [3].

Acknowledgements. The author thanks Iain Raeburn for lending a gener-
ous ear, and for helpful conversations. The author also thanks Toke Carlsen
for illuminating discussions, and for his suggestions after a careful reading
of a preliminary draft.

2. Preliminaries

We use the conventions and notation for directed graphs established in
[9]; in particular our edge-direction convention is consistent with [9] rather
than with, for example, [1, 2, 5].

A path in a directed graph F is a concatenation A = A1 Az ...\, of edges
A\i € Bl such that s()\;) = r(Ajy1) for i < n; we write r(\) for (A1) and
s(A) for s(\,). We denote by E* the collection of all paths in E. For v € E°
we write vE! for {e € El : r(e) = v}; similarly E'v = {e € E' : s(e) = v}.

A cycle in E is a path y = pi1 ... 1), such that 7(u) = s(u) and such that
s(pi) # s(py) for 1 <4 < j < |u|. Given a cycle p in E, we write [u] for the
set

(1] = {p, papss - ppugpia, <oy Py a1}

of cyclic permutations of p. We write [12]° for the set {s(u;) : 1 <1i < |u|} C
E° and [u]* for the set {u; : 1 <i < |u|} € E'. Given a cycle u in E and
a subset M of E° containing [u]°, we say that u has no entrance in M if
r(e) = r(u;) and s(e) € M implies e = p; for all 1 < i < |u|. We denote
by C(E) the set {[1] : u is a cycle with no entrance in E}. By C(E)! we
mean Ueeco(p) C1, and by C(E)° we mean Ucecr) CY.

A cutting set for a directed graph F is a subset X of C(E)! such that
for each C € C(E), X N C! is a singleton. Given a cutting set X for E, for
each z € X, we write u(x) for the unique cycle in F such that r(u) = r(z),
and let A(z) = p(z)21(2)3 - - - po(T) (a5 S0 p(x) = zA(z) for all x € X, and
C(E) = {[u(z)) : = € X}.

3. Existence of the co-universal C*-algebra

Our main theorem asserts that every row-finite directed graph admits a
co-universal C*-algebra and identifies when a homomorphism obtained from
the co-universal property is injective.

Theorem 3.1. Let E be a row-finite directed graph.
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There exists a C*-algebra C}:. (E) which is co-universal for Toeplitz—

Cuntz—Krieger E-families of nonzero partial isometries in the sense
that C} ;. (E) is generated by a Toeplitz—Cuntz-Krieger E-family
{P,:ve E {S.:ec E'}

with the following two properties.
(a) The vertex projections {P, : v € E°} are all nonzero.
(b) Given any Toeplitz—Cuntz—Krieger E-family

{qy:v € E%}, {t.:ec B}

such that each q, # 0 and given any cutting set X for E, there
1 a function k : X — T and a homomorphism

Vgt : C*({qu,te v € E% e € B'}) — Ckun(E)
satisfying Vq+(qw) = Py for all v € E°, 9,4(t.) = Se for all

e € E'\ X, and ¥g4+(tz) = k(z)S, for all x € X.
Given a Toeplitz—Cuntz—Krieger E-family

{qU:UEEO},{t6 : eEEl}

with each q, nonzero, the homomorphism g, : B — Cy. (E) ob-
tained from (1b) is an isomorphism if and only if for each cycle u

with no entrance in E, the partial isometry t, is a scalar multiple of
Dr(p)-

Remarks 3.2. It is convenient in practise to work with cutting sets X and
functions from X to T as in Theorem 3.1(1b). However, property (1b) can
also be reformulated without respect to cutting sets. Indeed:

(1)

The asymmetry arising from the choice of a cutting set X in Theo-
rem 3.1(1b) can be avoided. The property could be reformulated
equivalently as follows: given a Toeplitz—Cuntz—Krieger E-family
{go : v € E°} {te : e € E'} such that each q, # 0, there is a
function p : C(E)' — T and a homomorphism

7/1q,t : C*({vate HEONS Eo,e € El}) - C;;nn(E)

satisfying Vq¢(qw) = Py for all v € E°, ,4(te) = Se for all e €
EY\ C(E)Y, and g(te) = p(e)Se for all e € C(E)'. One can
prove that an algebra satisfying this modified condition (1b) exists
using exactly the same argument as for the current theorem after
making the appropriate modification to Lemma 3.7. That the re-
sulting algebra coincides with C}; (E) follows from applications of
the co-universal properties of the two algebras.

Fix a row-finite graph E with no sources and a function « : C(E) —
T. Let {g, : v € E°}, {t. : e € E'} be a Toeplitz—Cuntz—Krieger E-
family such that each g, # 0. Then there is a homomorphism as in
Theorem 3.1(1b) with respect to the fixed function « for some cutting
set X if and only if there is such a homomorphism for every cutting



512 AIDAN SIMS

set X. One can see this by following the argument of Lemma 3.11
below to see that x does not depend on X.

(3) Given a Toeplitz—Cuntz—Krieger E-family {g, : v € E°},{t. : e €
E'} such that each ¢, # 0 and a cutting set X, the functions & :
X — T which can arise in Theorem 3.1(1b) are precisely those for
which ([u]) belongs to the spectrum spg, c«({g, teve B0 ccB1})q, (tn)
for each cycle p without an entrance in E. To see this, one uses
Hong and Szymanski’s theorems to show that in the first paragraph
of the proof of Lemma 3.11, the complex numbers z which can arise
are precisely the elements of the spectrum of the unitary s,(,) + I

in the corner (po(r(u)) + 1) (C*(E)/I) (Pa(r(w) +1)-

Corollary 3.3. Let E be a row-finite directed graph in which every cycle
has an entrance. Then C*(E) = C*. (E). In particular, if {q, : v € E'},

{te : e € E'} is a Toeplitz—Cuntz—Krieger E-family in a C*-algebra B such
that each q, is nonzero, then there is a homomorphism

Vgt : C*({qu,te : v € E% e € B'}) — C*(E)
such that V4¢(qv) = py for allv € E° and 144(t.) = se for all e € E1L.

Proof. For the first statement, observe that the co-universal property of
C? . (E) induces a surjective homomorphism v, s : C*(E) — C, (E). Since
every cycle in E has an entrance, the condition in Theorem 3.1(2) is trivially
satisfied, so 1, s is an isomorphism.

Since every cycle in E has an entrance, a cutting set for £ has no elements.

Hence the second statement is just a re-statement of Theorem 3.1(1b). O

The remainder of this section will be devoted to proving Theorem 3.1.
Our key technical tool in proving Theorem 3.1 will be Hong and Szymanski’s
description of the primitive ideal space of a graph C*-algebra. To do this,
we first realise the Toeplitz algebra 7C*(FE) as a graph algebra in its own
right. This construction is known, but we have found it difficult to pin down
in the literature. The idea is to augment F with an additional copy of each
vertex which receives a nonzero finite number of edges.

Notation 3.4. Let E be a directed graph. Define a directed graph E as
follows (in the equations below, the symbols «a(v), a(e), B(v) and [(e) are
formal symbols used to indicate new copies of vertices v and edges e of E):

E° ={a():ve EYYU{B():ve E’0<|vE!| < o}
E'={a(e):ec E'}U{B(e) : e € E*,0 < |s(e)E'| < o0}
r(a(e)) = a(r(e)) and s(afe)) = a(s(e)) for all e € E*, and
r(B(e)) = a(r(e)), and s(B(e)) = B(s(e)) whenever 0 < |s(e)E'| < oo.
For A\ € E* with [A] > 2, we define a(\) := a(\1)...a(Ay). If E is row-

finite, E is also row-finite.
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Lemma 3.5. Let E be a directed graph and let E be as in Notation 3.4. For
vEEY and e € E', let

g = 4 Pat®) +ppw) i 0<|vE' < o0
. Pa(v) otherwise,

and

A E20) + 536 i 0<|s(e)E' < o0
c Sa(e) otherwise.

Then there is an isomorphism ¢ : TC*(E) — C*(E) satisfying ¢(pT) = q,
and ¢(sT) =t for allv € E° and e € E'.

Proof. Routine calculations show that {g, : v € E%}, {t. : e € E'} is
a Toeplitz—Cuntz—Krieger F-family in C* (E) The universal property of
TC*(FE) therefore implies that there is a homomorphism ¢ : TC*(E) —
C*(E) satisfying ¢(pT) = g, for all v € E° and ¢(s7) = t, for all e € EL.

To see that ¢ is surjective, fix v € E®. To see that py € range(¢), we
consider three cases: (a) v = a(w) for some w with wE! either empty or
infinite; (b) v = a(w) for some w with 0 < [wE!| < oo; or (¢) v = B(w) for
some w with 0 < [wE'| < co. In case (a), we have p, = paw) = ¢(p5) by
definition. In case (b), the set vE* = {a(e),B(e) : e € wE'} is nonempty
and finite. Hence the Cuntz—Krieger relation in C*(E) ensures that

(31)  pv = Pa(w) = Z Sa(e)SZ(e) + s@(e)s;(e) = Z tet: € range(9).
ecvEL ecvEl

In case (c), we have p, = ¢y — Po(w) € range(¢) by case (b). Now fix

e € E'. To see that s, € range(¢), observe that if e = a(f) for some

f € E', then s, = Sa(f) = ¢(s?)pa(s(f)) € range(¢), and if e = B(f), then

Se = Sg(f) = d)(s}—)pﬁ(s(f)) € range(¢) also.

To finish the proof, observe that if 0 < [vE!| < oo, then Qo= (e)=v Lele =
Pg(v) # 0. Since the t. are all nonzero and have mutually orthogonal ranges,
it follows that for each v € E° and each finite subset F' of vE!, we have
G — D eerlety # 0. Thus the uniqueness theorem [4, Theorem 4.1] for
7 C*(FE) implies that ¢ is injective. O
Notation 3.6. Let E be a directed graph.

(1) For v € E° such that 0 < [vE!| < oo, we define
A, :=pl — Z sT(sT) e TC*(E).
r(e)=v
(2) Given a function x : C(E) — T, we denote by I” the ideal of 7C*(E)

generated by {A, : v € EO}U{ﬁ(C)pr) _SZ(H) :CeC(E),ueC}.
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Lemma 3.7. Let E be a directed graph. Let k be a function from C(E) —
T, and let 1 : C(E) — T denote the constant function 1(C) = 1 for all
C € C(E). Fiz a cutting set X for E, and for each x € X, let C(x) be the
unique element of C(E) such that x € C(x)*. Then there is an isomorphism
T TC*(E)/I' — TC*(E)/I* satisfying

=y +1) =py+ 17 for all v € E°
Te(sT + 1Y) = s, + I" foralle € E'\ X, and
Te(sT + 1Y) = k(C(x))s, + I" forallz € X.

Proof. By the universal property of 7C*(E), there is an action 7 of T¢(¥)
on TC*(E) such that for p € T¢F) we have

Tp(va) = pUT for all v € E°
Tp(sg) =57 for all e € B!\ X, and
7,(s7) = p(C(x))s for all z € X.

By definition of I' and I* and of the action 7, we have 7=(I') = I*. Hence
T determines an isomorphism

7= TC*(E)/I' — (TC*(E)) /1" = TC*(E)/I*
satisfying 7(a + I') = 7=(a) + I* for all a € TC*(E). O

Lemma 3.8. Let E be a directed graph. Fiz a function k : C(E) — T.
Then sI & I* for all v € E°.

To prove this lemma, we need a little notation.

Notation 3.9. Given a directed graph FE, we denote by E<> the collection
E*U{a € E* : s(a)E' = 0}. There is a Cuntz—Krieger E-family in
B(f2(E<>)) determined by

pg, — {fx if r(z) =v

0 otherwise,

and

0 otherwise.

g8, = {ém if 7(z) = s(e)

If 41 is a cycle with no entrance in E, then r(u)E<® = {u*°}, so S =
POO
r(p)’
Proof of Lemma 3.8. By Lemma 3.7, it suffices to show that I' contains
no vertex projections. Let mpw g : TC*(E) — B((*(E<™)) be the rep-
resentation obtained from the universal property of 7C*(FE) applied to the

Cuntz—Krieger family of Notation 3.9. Then ker(mpe g ) contains all the
generators of I, so I' C ker(mps g=). Moreover, ker(mpeo goo) contains
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no vertex projections because each vertex of F is the range of at least one
r € ES®, (|

From this point onward we make the simplifying assumption that our
graphs are row-finite. Though there is no obvious obstruction to our analysis
without this restriction, the added generality would complicate the details
of our arguments. In any case, if the added generality should prove useful, it
should not be difficult to bootstrap our results to the non-row-finite setting
by means of the Drinen—Tomforde desingularisation process applied to the
graph E of Notation 3.4.

Proposition 3.10. Let I be an ideal of TC*(E) such that pl & I for all
v € E°. There is a function r : C(E) — T such that I C I*.

To prove the proposition, we first establish our key technical lemma. This
lemma is implicit in Hong and Szymanski’s description [5] of the primitive
ideal space of C*(E), but it takes a little work to tease a proof of the
statement out of their two main theorems.

Lemma 3.11. Let E be the directed graph of Notation 3.4. Let I be an
ideal of C*(E) such that pay & I for all v € E°. There is a function
K : C(E) — T such that I is contained in the ideal J* of C*(E) generated
by {ppw) 1 v € E°} and {E(C)Pagr(u)) = Sa) : C € C(E),n € C}.

Before proving the lemma, we summarise some notation and results of
[5] as they apply to the row-finite directed graph E in the situation of
Lemma 3.11. A mazimal tail of E is a subset M of E° such that:

(MT1) w € M and vE*w # () imply v € M;

(MT?2) if v € M and vE* # (), then there exists e € vE! such that s(e) € M;
and

(MT3) if u,u € M, then there exists w € M such that uE*w # § and
vE*w # 0.

We denote by M., (E) the collection of maximal tails M of E such that
every cycle u satisfying [u]® C M has an entrance in M. We denote by
MT(E) the collection of maximal tails M of E such that there is a cycle p
in E for which []° C M but g has no entrance in M. Since each 3(v) is a
source in E , the cycles in E are the paths of the form «(u) where p is a cycle
in E. Moreover o(u) € C(E) if and only if u € C(E). Thus if M € M.(E),
then there is a unique Cps € C(F) such that o(C%,;) € M and a(p) has no
entrance in M for each pu € Cyy. We may recover M from Chy:

M = {a(v):v € E° vE*CY; # 0}.
The gauge-invariant primitive ideals of C*(E) are indexed by M,Y(E);
specifically, M € M (E) corresponds to the primitive ideal PI}, generated
by {pw : w € E°\ M}. The non-gauge-invariant primitive ideals of C*(E)
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are indexed by MT(E) x T; specifically, the pair (M, z) corresponds to the
primitive ideal PIj, _ generated by {p. : w € E®\ M}U{zp,(,) —s,} for any
u € Cpy (the ideal does not depend on the choice of u € Cyy). Corollary 3.5
of [5] describes the closed subsets of the primitive ideal space of C*(E) in
terms of subsets of MW(E) UM (E) x T.

Proof of Lemma 3.11. We begin by constructing the function k. Fix C €
C(E). Since py(yy ¢ I for each v € CY, we may fix a primitive ideal J¢ of
C*(E) such that I ¢ JC and Pa(v) & JC for v € C0. By [5, Corollary 2.12],
we have either J¢ = PI}, for some M € MW(E), or J¢ = PIj, ., for some
M € M,(E) and z € T. Since Pa(v) & JC for v € C° we must have
a(C%) C M, and then the maximal tail condition forces

M = Mg := {a(v) : v € E° vE*C° # 0} € M,(E).

Hence J¢ = PI, . for some 2 € T; we set x(C) := z.

For C € C(FE) and v € C?, let J¥ := PI}. wc)- Since B(v) ¢ Mc for
all v € E°, [5, Lemma 2.8] implies that P € JY for all v € E° and our
definition of J” ensures that p,,) ¢ J*.

We claim that the assignment v — J* of the preceding paragraph extends
to a function v +— JY from E° to the primitive ideal space of C*(E) such
that for every v € E°:

(1) I cJY

(2) Pa(v) g JY

(3) Paw) € JV for all w € E% and

(4) either J” =PI}, o for some C' € C(E), or J" is gauge-invariant.
To prove the claim, fix v € E°. If vE*C°? # ) for some C € C(E), then
JV = PI;Wc,K,(C) has the desired properties. So suppose that vE*C? = () for

all C € C(E). Then there exists z¥ € vE<> such that ¥ does not have the
form Apu® for any A € E* and cycle u € E. The set

M = {a(w) : w € E°, wE*z"(n) # § for some n € N}

is a maximal tail of E which contains o(v) and does not contain 3(w) for
any w € EY. By construction of zV, every cycle in M has an entrance
in M, and so JY := PI},, satisfies (2)—(4). It therefore suffices to show
that I C PI},,. For each n € N, we have Pa(zv(n)) € I, so there is a

primitive ideal J of C*(E) containing I and not containing Pa(zv(n))- The
set M, = {w € E° : p,, & J} is a maximal tail of E, so either M, € MW(E)
and J = PI}, , or M,, € M,(F) and J = PI},  for some 2 € T. By
definition, x°(n) € M, and then (MT1) forces a(w) € M, for all w € E°

such that wE*z?(m) # () for some m < n. Hence MY C U,enM,. Hence
parts (1) and (3) of [5, Corollary 3.5] imply that J¥ belongs to the closure
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of the set of primitive ideals of C* (E) which contain I, and hence contains
I itself. This proves the claim.

Observe that I C (),cpo J¥. To prove the result, it therefore suffices to
show that (,cpo J is generated by

{Ps) v € E'} and  {k(C)Par(u)) — Sa(n : C € C(E),n € C}.

For this, first observe that for v € EY, we have PB() € Nyepo J* because
Paw) belongs to each J. Fix ¢ € C(F) and p € C. Since the cycle
without an entrance belonging to a given maximal tail of F is unique, for
each v € E°, we have either J” = PI;MC’H(C), or p,(,) € JY. In particular,
5(C)Pa(r(p)) — Sa(uy € J* for each v € E°, 50 k(C)pa(r(u) —Sa(u) € Nuero J*-
Hence J" C (),cpo J¥, and it remains to establish the reverse inclusion.

Fix a primitive ideal J of C*(E') which contains all the generators of
J*. It suffices to show that (,cpo J¥ C J. Under the bijection between
primitive ideals of C*(E) and elements of MW(E)I_IMT(E) x T, the collection
{J, 1 v € E} is sent to

{M?:vE*C? = () for all C € C(E)}U{(M¢,k(C)): C € C(E)}.

Since each JV trivially contains (1,cpo JV, it therefore suffices to show that

the element Ny of M. (E) UM, (E) x T corresponding to J satisfies

(3.2) Nye{Mv:vE*CO={ forall C € C(E)}
U{(Mc,k(C)): C e C(E)}.

Let My := {v € E° . py & J}. Then either J is gauge-invariant and
Nj = My, or J is not gauge-invariant, and N; = (M, z) for some z € T.
Observe that

(3.3) My C {a(v):ve E'} = (U {M?: vE*C® = { for all C € C(E)})
U (U {(Mc,5(C)): C € C(E)}).

We now consider three cases. _
Case 1: J is gauge-invariant. Then M; € M,(E), and Ny = M. In this
case, (3.3) together with parts (1) and (3) of [5, Corollary 3.5] give (3.2).
Case 2: J is not gauge-invariant, and My # Mg for all C € C(E). We
have Ny = (My, z) for some z € T, and since M; # M¢ for all C € C(F),
it follows that N; does not belong to the subset

{(Mc,k(C)) : C € C(E)}min C {(Mc,k(C)):C e C(E)}
defined on page 58 of [5]. Hence parts (2) and (4ii) of [5, Corollary 3.5]
imply (3.2).
Case 3: My = Mc for some C € C(F). Fix p € C. Since J contains
K(C)Pa(r(n)) — Sa(u)>, We have Ny = (Mc, x(C)) and then part (4iii) of [5,
Corollary 3.5] implies (3.2). This completes the proof. O
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Proof of Proposition 3.10. Let ¢ : T7C*(E) — C*(E) be the isomor-
phism of Lemma 3.5. Observe that by (3.1), we have ¢(A,) = pg(,,) for all
v € E° such that vE! # (). We claim that Paw) & ¢(I) for all v € E°. To see
this, first suppose that vE' = (). Then Pa(v) = d(pT) & ¢(I) by assumption.
Now suppose that vE! # (), say 7(e) = v. Then

S4(e)Pa()Sa(e) + 55()Pa)S8(e) = Pa(s(e) + Pa(se)) = d(Pae)) & O(I)
by assumption. This forces po () € ¢(1).
Lemma 3.11 therefore applies to the ideal ¢(I) of C*(E). Let x : C(E) —

T and J* < C*(E) be the resulting function and ideal. Then I* := ¢~ 1(J*)
is generated by {A, : v € E°} and {/{(C)pz(u) - saT(H) :CeC(E),peC}
by definition of ¢, and contains I by construction. ([l

We are now ready to prove our main theorem.

Proof of Theorem 3.1. With I'' <7 C*(E) defined as in Notation 3.6 and
Lemma 3.7, define C*, (E) := TC*(E)/I'. For v € E° and e € E*, let
P,:=pl +1'and S, := s +I'. Then {P, :v € E}, {Sc:ec E'} isa
Cuntz-Krieger E-family which generates C. (F). The P, are all nonzero
by Lemma 3.8.

Now let {q, : v € E°},{t. : e € E'} be a Toeplitz—Cuntz—Krieger E-
family such that g, # 0 for all v, and let B := C*({gy,t. : v € E% e € E'}).
The universal property of 7C*(F) implies that there is a homomorphism
Tt : TC*(E) — B satisfying m,+(pl) = g, for all v € E° and 7,,(s?) =
te for all e € E'. Since each ¢, is nonzero, I = ker(my ) is an ideal of
TC*(E) such that pZ ¢ I for all v € E°. Let x : C(E) — T and I* be
as in Corollary 3.10. Since I C I", there is a well-defined homomorphism
Yo : B — TC*(E)/IF satisfying 1o(q,) = pl + I* for all v € E° and
Yo(te) = sI + I for all e € E'. Let 7 : TC*(E)/I' — TC*(E)/I" be as
in Lemma 3.7. Then 1)g; := 7= T o1y has the desired property. This proves
statement (1).

For statement (2), suppose first that 1, is injective. For each p € C(E),
we have S, = P,(,) by definition of I 1. Let x(u) be the unique element
of the cutting set X which belongs to [p]'. With t¢,; and x as in (1),
we have ¥g:(t,) = 5(2(1))Vqt(qru))- Since ¥y, is injective, we must have
ty = k(x(1))qr(y for all p € C(E). Now suppose that there is a function
# : C(E) — T such that t,, = k([u])gy(,) for every cycle o with no entrance in
E. Then the kernel I, ; of the canonical homomorphism 7, ; : 7C*(E) — B
contains the generators of I, and hence contains I*. Since the ¢, are
all nonzero, Corollary 3.10 implies that we also have I,; C I A for some
A:C(E) — T. We claim that k = \; for if not, then there exists C' € C(E)
such that k := k(C) is distinct from | = A(C). For p € C, we then have
kpl — sT,Ipl — sI € I*. But then (k — l)p] € I*, which is impossible by
Lemma 3.8. Hence I* = I, = 1", and 1), is injective. U
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4. Properties of the co-universal C*-algebra

In this section we prove a uniqueness theorem for C; (F) in terms of
its co-universal property. We go on to explore the structure and proper-
ties of the co-universal algebra. Throughout this section we have preferred
proofs which emphasise the utility of the co-universal property over other
techniques.

Let E be a row-finite directed graph. We say that a Cuntz—Krieger E-
family {p, : v € E°}, {sc : e € E'} is a reduced Cuntz—Krieger E-family
if

(R) for every cycle u without an entrance in E°, there is a scalar x(u) € T

such that s, = K(1)pr(y)-

We say that {p, : v € E}, {s. : e € E'} is a normalised reduced Cuntz—
Krieger E-family if s, = p,(, for each cycle p without an entrance in E°.

Theorem 4.1. Let E be a row-finite directed graph.

(1) There is a normalised reduced Cuntz—Krieger E-family
{pr:ve EYu{s": EcE'}
that generates C%, (E) and satisfies Theorem 3.1(1a) and (1b). In
particular, given any cutting set X for E, C. (E) is generated by
{pm:ve BE°YU{s™: Ec E'\ X}.
(2) Any other C*-algebra generated by a Toeplitz—Cuntz—Krieger E-fam-
ily satisfying Theorem 3.1(1a) and (1b) is isomorphic to C%, (E).

Proof. For (1) let {P> : v € EY}, {S°: e € E'} be the Cuntz—Krieger E-
family of Notation 3.9. Theorem 3.1(1b) ensures that there is a function & :
X — T and a homomorphism ¢pe geo from C*({P°, S :v € EY e € E'})
onto C*. (E) such that 1px g (PX) = P, for all v € E% 9)px g (5°) =
Se for all e € E'\ X, and ¢p= 5= (S) = k(x)S, for all z € X. Hence
Pyt 1= Ypoo goo (Pg°) and s 1= thpeo g0 (S2°) generate Cp. (E) and satisfy

Theorem 3.1(1a) and (1b). To prove the last assertion of (1), fix x € X and
calculate:

= S (53w

= (S3w)"
€ C*({P>*,8*:ve E°, E c E'\ X}.

For (2), let A be another C*-algebra generated by a Toeplitz—Cuntz—
Krieger family {p7} : v € E°}, {s2 : e € E'} with each p? nonzero, and
suppose that A has the same two properties as C}. (E). Applying the
co-universal properties, we see that there are surjective homomorphisms
¢:Cx. (E) — Aand ¢ : A — CF, (F) such that ¢(p) = pi, ¢(s7) = s,
Y(pd) = p*, and 9 (s2) = s™ for all v € E° and e € E' \ X. In particular,
¢ and v are inverse to each other, and hence are isomorphisms. ([
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Remark 4.2. Of course statement (1) of Theorem 4.1 follows from the
definition of C} . (E) (embedded in the proof of Theorem 3.1). However the
argument given highlights how it follows from the co-universal property.

Corollary 4.3. Let E be a row-finite directed graph. Let ¢ : C}; (E) — B
be a homomorphism. Then ¢ is injective if and only if ¢(pl) # 0 for all

v e EY.

Proof. Suppose that ¢ is injective. Then that each p]* # 0 implies that
each ¢(p)') # 0 also.

Now suppose that ¢(p™) # 0 for all v € E°. Then the co-universal
property of C%. (F) ensures that for any cutting set X for E, there is a

m

homomorphism ¢ : ¢(Cr. (E)) — C,, (E) satisfying v (¢(py*)) = py* for all

v € EY and (¢p(s™)) = s™ for all e € E'\ X. Theorem 4.1(1) implies that
1) is surjective and an inverse for ¢. ([l

Corollary 4.4. Let E be a row-finite directed graph. Then CF. (E) is

min
simple if and only if E is cofinal.

Proof. First suppose that E is cofinal. Fix a homomorphism ¢ : C:. (E) —
B. We must show that ¢ is either trivial or injective. The argument of [9,
Proposition 4.2] shows that ¢(p) = 0 for any v € E°, then ¢(p) = 0 for
all v € E° which forces ¢ = 0. On the other hand, if ¢(p?) # 0 for all
w € E°, then Corollary 4.3 implies that ¢ is injective.

Now suppose that E is not cofinal. Fix v € E° and € E<™ such that
vE*z(n) = ( for all n € N. Standard calculations show that

I, :=span{sy'(sj3')" : s(a) = s(B) = x(n) for some n < |z|}

is an ideal of C}, (F) which is nontrivial because it contains p;’zo). To

see that p" & I, fix n < |z| and o, € E*z(n). It suffices to show
that p)'si(sj)* = 0. Let I := |a. By Theorem 3.1(2), {p;® : v € E°},
{s™, e € E'} is a reduced Cuntz—Krieger E-family, and in particular a stan-
dard inductive argument based on relation (CK) shows that

pr= Y s
AEvESt
Fix A € vESL. Since vE*z(n) = 0 for all n € N, we have a # A\ for
all N € E*. Since || = 1 > |A|, it follows that (s}")*si* = 0. Hence

(0%
py'sa (sf)" =0 as claimed. O

Corollary 4.5. Let E be a row-finite directed graph. Then C}. (E) is the
universal C*-algebra generated by a normalised reduced Cuntz—Krieger E-
family. That is, if {q, : v € E°}, {t. : e € E1} is another normalised reduced
Cuntz—Krieger family in a C*-algebra B, then there is a homomorphism
gt Chin(E) — B such that w7 (p) = qu for allv € E° and my4(s™) = t.

for all e € E'.
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Proof. The universal property of 7C*(E) implies that there is a homo-
morphism Wg:t : TC*(E) — B such that Wgt(pg) = ¢, and WqT,t(seT) = te
for all v € E° and e € E'. Let I, := ker(wgt), and let Iym ¢n be the
kernel of the canonical homomorphism 7rme78m : TCH*(E) — CfL. (E). Let
K := I,4NIym gm. Define p&X := pI + K and s& := s7 + K for all v € E° and
e € E'. Since both {p,s™} and {q,,t.} are normalised reduced Cuntz-
Krieger families, {p/,sX} is also. Since no pZ belongs to Iym gm, each pX
is nonzero. Hence Theorem 3.1(1b) and (2) imply that there is an iso-
morphism ¥« ;@ TC*(E)/K — Cy; (E) such that ¢pK75K(pff) = p
and ,x ok (s&) = sP* for all v,e. By definition of K, the homomorphism

Wgt : TC*(E) — B descends to a homomorphism 7;;7; :TC*(E)/K — B,
and then 7y 1= TI'g:t o (¢pK78K)*1 is the desired homomorphism. O
Lemma 4.6. Let E be a row-finite directed graph. Fiz a cutting set X for
E. Define a directed graph F as follows:

FO={¢(v):v e E"%

F'={¢(e):ec E'\ X}
s(¢(e)) = C(s(e)) and r(¢(e)) = C(r(e)).

There is an isomorphism ¢ from C*(F') to Cy; (E) such that ¢(p¢(w)) = py'
for all v € E° and B(s¢(e)) = st for all e € F1l.

Proof. Let {pc) : v € E}, {s¢() : € € E'\ X} denote the universal
generating Cuntz—Krieger F-family in C*(F'). Recall that for z € X, we
write p(z) for the unique cycle with no entrance in E such that p(z); = z,
and we define A(z) to be the path such that u(x) = zA(z). For v € E* with
lv| > 2 and v; ¢ X for all i, we write ((v) for the path ((v1)---((v,)) € F.
Define

Qv = P¢(v) for all v € E°,
te == 8¢(e) for all e € E'\ X, and
t:l? = SZ(}\(:E)) for all z € X.
It suffices to show that the ¢, and t. form a normalised reduced Cuntz—
Krieger E-family; the result will then follow from Theorem 3.1(1b) and (2).
The g, are mutually orthogonal projections because the p¢(,) are. This

establishes (T1).
For e € F! we have t’t, = SZ‘(e)SC(e) = Ps(¢(e)) = Ys(e)- For each z € X,

since p(x) has no entrance in E, we have 7(z)(F)*®! = {¢(\(z))}, so the
Cuntz—Krieger relation forces Sc(/\(x))szo\(x)) = P¢(s(x))- Hence

tyte = S(()\(x))SZ()\(z)) = P((s(x)) = Ds(a)-
This establishes (T2).
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Fix v € F° such that vE! # 0. If v = r(x) for some x € X, then
r(v) = {2}, and we have

Qv = Pe(o) = S0 S = bty = D el
eErEl(v)

If v # r(x) for all x € X, then vF! = {((e) : e € vE'}, and so

Qu = Pe(v) = Z spsy = Z tetr.

fevFt ecvE!

This establishes both (T3) and (CK). O

Corollary 4.7. Let E be a row-finite directed graph. There is an isomor-
phism
wpoo,Soo . C;Lln(E) — C*({P;})O7S€oo V€ E07€ S El})

satisfying Vp goo (PI) = PX for all v € E° and Yps= g (sT) = S for all
e€ B

Proof. As observed above, {P>° : v € E°}, {S%° : e € E'} is a normalised
reduced Cuntz—Krieger E-family with each P;° nonzero. The result there-
fore follows from Corollaries 4.3 and 4.5. O

We now identify a subspace of £2(E<) which is invariant under the
Cuntz—Krieger family of Notation 3.9. We use the resulting Cuntz—Krieger
family to construct a faithful conditional expectation from C?, (E) onto its
diagonal subalgebra.

Let © denote the collection

Q={ac E*:s(a)E' =0}
U{au™ :a € E*, uis a cycle with no entrance }
U{z € E® 1z # ap™ for any «, p € E* such that s(a) =7(p) = s(p)}.

So z € E<* belongs to (2 if and only if either z is aperiodic, or = has the
form au™ for some cycle p with no entrance in E. Observe that

(4.1)

if z € Q and if y € ES* and m,n € N satisfy ¢™(x) = 0™ (y), then y € Q.

We regard £2(€)) as a subspace of £2(E<>). The condition (4.1) implies
that (2(E<>) is invariant for the CuntzKrieger E-family of Notation 3.9.
We may therefore define a CuntzKrieger E-family {P$ : v € E0}, {S% :
e € E'} in B(£2(Q)) by

PQ

v = Plleq) and S = 52|20y

e

for all v € E° and e € E'. Since every vertex of E is the range of at least
one element of Q, we have P! # 0 for all v € E°.
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Lemma 4.8. Let E be a row-finite directed graph. There is an isomor-
phism ¥pa go + Chi(E) — C*({P, S : v € E% e € E'Y}) satisfying
Ypa ga(pi) = P for allv € E® and ¢pa ga(s) = S5 for all e € EL.

Proof. The proof is identical to that of Corollary 4.7. (]

For the next proposition, let W denote the collection of paths o € E*
such that « # Gu for any 8 € E* and any cycle p with no entrance in E.

Proposition 4.9. Let FE be a row-finite directed graph.
(1) The C*-algebra C%, (E) satisfies

min(E) = span{s;’(s5')" - o, B € W, s(a) = s(B)}-

(2) Let D := span{sy'(si')* : « € E*}. There is a faithful conditional
expectation W : C*. (E) — D such that
si(smy* ifa=p
\I} m my*x — (0% (0%
(sa(5)") {O otherwise
for all o, B € W with s(a) = s(B).

Proof. By Lemma 4.8 it suffices to prove the corresponding statements for
the C*-algebra B := C*({P$, S :v € E% e € E'}.

(1) We have B = spW{Sg}(Sg)* : o, f € E*} because the same is true of
TC*(E). If a« € E*\ W, then a = o/ " for some o’ € W, some cycle p with
no entrance in F and some n € N. Since {P:v € E%}, {S%:ec E'}isa
normalised reduced Cuntz—Krieger E-family, (Sf})” = Pf%u)’ so S5t = S%.

(2) Let {&, : x € Q} denote the standard orthonormal basis for £2(Q2). For
each z € , let 0,, € B((*(Q)) denote the rank-one projection onto C&,.
Let ¥ denote the faithful conditional expectation on B(¢?(f2)) determined
by ¥(T') = erﬂ 02,4210, ., where the convergence is in the strong operator
topology. It suffices to show that

(4.2) W(SE(SH)) = {sg(sg})* b2

0 otherwise

for all o, 5 € W with s(a) = s(3).
Fix a, f € W with s(a) = s(f). If a = 3, then

SS(SS)* = Z Pax;
yes(a)
and (4.2) is immediate. So suppose that « # 3. For x € 2, we have

Orz ifx=oay=7py
0 otherwise.

Hx,xsg(sg)*am,w = {

Hence we must show that ay # Oy for all y € s(a)2. Fix y € s(a)Q.
First observe that if |o| = |8| = [, then (ay)(0,]) = a # 5 = (By)(0,1).
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Now suppose that |a| # |5]; we may assume without loss of generality that
|a] < |B]. We suppose that ay = Sy and seek a contradiction. That ay = Sy
implies that = a3’ and y = 'y. Hence r(8') = s(8') and y = (8')*°. Since
y € Q, it follows that 3’ = p™ for some cycle p with no entrance and some

n € N, contradicting 5 € W. O
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